ArcGIS地统计分析精品PPT课件
arcgis学习--地统计分析
ArcGIS软件应用实验7一、实验目的使用默认参数值创建模型来生成臭氧浓度表面的整个过程。
二、实验内容1、学习Geostatistical Analyst 扩展模块2、生成臭氧浓度表面三、实验步骤(一)准备工作1、激活地统计模块在主菜单上,单击自定义→扩展模块,选中GeostatisticalAnalyst复选框,单击关闭;图1-1扩展模块2、调出地统计工具条在主菜单上,单击自定义→工具条→GeostatisticalAnalyst,GeostatisticalAnalyst工具条即被添加到ArcMap会话中;图1-2工具条3、添加数据单击标准工具工具条上的添加数据按钮添加数据,按住CTRL键并选择O3_Sep06_3pm和ca_outline两个数据集,单击添加。
图1-3添加数据4、修改属性1、右键单击内容列表中的ca_outline图层图例(图层名称下面的框),然后单击无颜色,确保图层无颜色,只有范围;图1-4无颜色2、双击内容列表中O3_Sep06_3pm图层的名称。
打开图层属性对话框,在图层属性对话框中,单击符号系统选项卡。
在显示对话框中,○1单击数量,然后单击分级色彩;○2在字段框中,将值设置为OZONE;○3选择“黑色到白色”色带,以便这些点可以在本教程将要创建的颜色表面之上凸出来;符号系统对话框应如下所示:图1-5分级符号3、经过属性修改后,图层如下:图1-6结果(二)使用默认选项创建表面使用默认GeostatisticalAnalyst设置创建(插值)臭氧浓度表面。
臭氧点数据集(O3_Sep06_3pm)将用作输入数据集,并采用普通克里金法对值未知的位置处插入臭氧值。
在一系列对话框中单击下一步来接受默认设置。
1、地统计分析对话框单击GeostatisticalAnalyst工具条上的GeostatisticalAnalyst箭头,然后单击地统计向导,将弹出地统计向导对话框;图2-1地统计工具条地统计向导对话框,在方法列表框中,单击克里金法/协同克里金法。
ArcGIS地统计分析
探索性数据分析需要借助于ArcGIS的探索性数据分析
工具。
2.1 添加探索性数据分析工具
通常,ArcGIS的探索性数据分析模块并没有打开,在 默认界面上没有探索性数据分析工具,需要手动添加。添加
方法如下。
(1)开启地统计分析扩展模块:单击ArcMAP界面上 “Customize”︱“Extensions”命令,弹出“Extensions”
Geostatistical Analysis 地统计空间分析
2014/10/20
主要内容
1. ArcGIS地统计分析模块介绍 2. 探索性数据分析工具 3. 探索性数据分析
4. 空间插值技术 5. 实例——绘制臭氧浓度图 6. 小结
1 ArcGIS地统计分析模块介绍
ArcGIS地统计分析模块(ArcGIS Geostatistical
局部性插值方法。全局性插值方法以整个研究区的样点数据
集为基础来计算预测值,如全局多项式;局部性插值方法则 使用一个大研究区域内较小的空间区域内的已知样点来计算 预测值,如反距离权重法、局部多项式、径向基函数、核平 滑和扩散核。
4.1.1 反距离加权插值
反距离加权插值法的基本原理在于,一般来讲物体离得 近,它们的性质就越相似。反之,离得越远则相似性越小。 反距离加权插值法以插值点,与样本点间的距离为权重进行 加权平均,离插值点越近的样本点赋予的权重越大。
提供多种计算面值的方法:
简单 熵 平均值 中值 众数 标准差 聚类 四分位距
2.6 Semivariogram/Covariance Cloud (半变异/协方差函数云)
半变异/协方差函数云表示的是数据集中所有样点对
的理论半变异值和协方差,并把它们用两点间距离的函数 来表示,用此函数作图来表示。
arcgis 课件.ppt
点“应用”按钮,点 “关闭”按钮。
这时,在地图显示区 中,处于沿10号州际 公路1000米缓冲区范 围内的油炸圈饼点就 会被高亮显示。
点击按钮“添加全部值”。
实验步骤及方法
第8步 根据属性选择要素——如要选择及定位第10号州际公 路。
在图层列表(TOC)中,反选图层――Railroads 边上的检查 框,关闭这个图层。因为下面的操作不需要显示这个图层。
执行菜单命令<选择>-> <通过属性选择>。 在属性选择对话框中,你可以构造一个查询条件。通过构造表
实验步骤及方法
第7步 根据要素属性 设置图层渲染样式
在图层列表(TOC)中 反选Land use 边上 的检查框(将√去 掉),从而关闭图层 Land Use 的显示。 然后右键点击图层- Streets,点“属性” 菜单命令。在出现的 图层属性对话框中, 点击“符号”选项页。
•在对话框的左边区域,有地图渲染方式列表。 点击“类 别”,依次点击“唯一值”。在“值字段”下的下拉列表中, 选择字段“CLASS”。
在图层列表(TOC)中, 选中Railroads然后点击右键执行“打开属性表”命令。
这时会显示与“Railroads” 图层相关的属性表窗口。这个表中的每一行是一个记录, 每个记录表示“Railroads”图层中的一个要素。.
实验步骤及方法
第6步 设置并显示地图提示信息 地图提示以文本方式显示某个要素的某一属性,使用地图
ARCMAP-ARCGIS第13章-地理数据库解析课件
第一节 Geodatabase概述
1. Geodatabase数据模型 ② Geodatabase数据模型的结构 • 3)要素数据集(Feature Datasets) • 要素数据集是共用一个通用坐标系的相关要素类的集合。 要素数据集用于按空间或主题整合相关要素类。它们的主要 用途是,将相关要素类编排成一个公用数据集,用以构建拓 扑、网络数据集、地形数据集或几何网络;保存空间相关要 素类的集合或构建拓扑、网络、地籍数据集和 terrain。
第一节 Geodatabase概述
2. Geodatabase的类型 地理数据库是用于保存数据集集合的“容器”。有以下三
种类型:
① File Geodatabase(文件地理数据库):在文件系统中以文件 夹形式存储。每个数据集都以文件形式保存,该文件大小最多可 扩展至 1 TB。建议使用文件地理数据库而不是个人地理数据库。 ② Personal Geodatabase(个人地理数据库):所有的数据集都 存储于 Microsoft Access 数据文件内,该数据文件的大小最大 为 2 GB。 ③ ArcSDE 地理数据库:也称作多用户地理数据库。这种类型的数 据库使用 Oracle、Microsoft SQL Server、IBM DB2、IBM Informix 或 PostgreSQL 存储于关系数据库中。这些地理数据库 需要使用 ArcSDE,并且在大小和用户数量方面没有限制。
第一节 Geodatabase概述
1. Geodatabase数据模型 ② Geodatabase数据模型的结构 • 9)值域(Domains) • 定义属性的有效取值范围,可以是连续的变化区间,也可 以是离散的取值集合。 • 10)(Validation rules) • 对要素类的行为和取值加以约束的规则。如规定不同管径 的水管要连接,必须通过一个合适的转接头。规定一栋房子 地可以有1-2个主人。
ARCGIS_地统计分析
ARCGIS_地统计分析地统计分析是一种以地理空间数据为基础,通过空间与属性数据的分析与处理,揭示地理现象的分布规律、相互关系及其演化过程的一种科学方法。
ARCGIS(Arc Geographic Information System)是一种常用的地理信息系统软件,具有强大的地理空间数据分析功能。
本文将介绍ARCGIS地统计分析的原理、应用方法及其在研究、规划和决策等领域的重要性。
ARCGIS地统计分析的原理是将地理空间数据与属性数据相结合,通过特定的算法与方法分析地理现象的分布规律与关系。
ARCGIS提供了多种空间分析工具,包括空间数据插值、空间聚类、空间插值、空间模式、空间点格局等,以支持用户对地理现象进行全面的分析和理解。
其中,空间插值分析是一种根据已有的离散空间点数据,推测未知位置点处的属性值的方法,常用于地质勘查、环境监测等领域;空间聚类分析可用于发现空间集群的位置、大小和分布模式,常用于城市规划、交通规划等领域;空间模式分析则可以通过分析地理对象的空间关系,揭示地理对象分布的内在规律。
在ARCGIS地统计分析中,数据的选择与准备是非常重要的环节。
首先,需要选择与研究对象相适应的数据类型,如矢量数据、栅格数据等。
其次,需要对数据进行预处理,包括数据清洗、数据转换等操作,以确保数据质量和一致性。
然后,需要选择合适的统计分析方法,并根据具体情况制定相应的参数设置。
最后,对分析结果进行可视化展示,以便进一步的分析和解释。
总之,ARCGIS地统计分析是一种有效的地理空间数据分析方法,可以揭示地理现象的分布规律和相互关系,并为各个领域的研究、规划和决策提供科学支持。
通过合理选择和处理数据,结合合适的统计分析方法,可以获取有意义的分析结果,并在实际应用中发挥重要作用。
因此,熟练掌握ARCGIS地统计分析技术,对于科研人员、规划师和决策者来说,具有重要的价值和意义。
ArcGIS实战15、地统计分析
局部多项式插值方法的属性设置
局部多项式插值法内插结果
19
15.2.2空间插值
3)反距离权重法 反距离权重法,又称为距离反比加权法,它是一种加权移动平均法,以内插点与 样本点之间的距离为权重,属于确定性的内插方法。如果采样点在整个区域中均 匀分布且未聚类,则反距离权重法的效果最佳。
反距离权重插值法内插结果
泛克里金插值创建的概率图
25
15.2.2空间插值
4)指示克里金法 指示克里金法是一种非参数方法,无需了解数据的分析类型,该方法的特点是可 以将异常值对插值的影像降到最低,因此也是常用的方法之一。
指示克里金法插值的标准误差指示图
Байду номын сангаас
26
15.2.2空间插值
5)概率克里金法 概率克里金法是指示克里金法的一种改进。它不仅具有指示克里 金法的优点,即非参数和无分布特性,同时也减小了估计方差, 提高了插值精度,降低了指示克里金法的平滑作用。
析取克里金法的预测图
28
15.2.2空间插值
3、ArcGIS10新增的插值方法 含障碍的扩散插值法和含障碍的核插值法是AcGIS10地统计提供的 两种新的插值方法,它们也是独立的地理处理工具。 含障碍的扩散插值法是在研究区中考虑障碍的插值方法,可使用 不同的成本表面修改插值(扩散)过程以便更精确地构建感兴趣 的现象的模型。核插值是一阶局部多项式插值法一个变形,当评 估值仅存在较小偏差且比无偏差评估值更加精确时,可以将其作 为首选的评估值。
【直方图】对话框
6
15.2.1探索性空间数据分析工具
2、QQ分布 分位数——分位数图(又称QQ图)用来评估两个数据集分布的相 似程度。包括正态QQ分布图和常规QQ分布图。 正太QQ分布图是将已知数据集与正态分布数据集进行比较,检查 数据的正态分布情况。 常规QQ分布图对两个数据集进行比较,评估两个数据集分布的相 似程度。
地理统计图表的解读 ppt课件
国 家
能源消费总量
单位GDP能耗
(亿吨标准煤) (吨标准煤/万美元)
煤炭
①
13.2
14.22
69.6
②
30.7
3.73
24.9
③
7.1
1.89
17.7
④
8.5
30.7
17.3
能源消费构成(%)
石油 天然气 水电和核电
21.5
2.2
6.7
39.7 25.7
9.7
51.1 12.5
18.7
20.6 55.3
(3)、在高考地理试题中,以统计图表设计的试题难度一般不 大,以中等难度、简单题偏多。
(4)、在地理高考试题中,地理统计图表呈现形式既有选择题 也有综合题,分值一般较大,普遍占试卷总分值的20-30%左右。
2020/10/28
5
数据据表格的判读完成3~4题。
1982年
近海20洋20/1,0/2冬8 季降温慢;
11
地理统计图表的解读
2020/10/28
1
一、地理统计图表的含义和类型
含义: 借助数学工具(统计图、统计表格)来说明地理事物的数量特征(如比
例、分布等)、相互的数量关系、数量的发展变化等。反映地理事物时空变化过程
和地理信息量化处理的一种形式.
2020/10/28
2
精品资料
一、地理统计图表的含义和类型
总人口(万人)年平均气 35年降水量 0~14岁(%) 温(℃)35.2(7 mm)
中国1某5~产6区4岁(%)8~12 58.34690~660 美国65某岁产及区以上(%1)5~17 6.34770~520
北半球最适宜 8~12 区
ARCGIS空间统计分析演示文稿ppt
• 注意: ARCGIS“空间统计”工具箱,只 要分析中涉及距离(对于空间统计总 是如此),就应使用 投影坐标系(而 不是基于度、分、秒的 地理坐标系) 对数据进行 投影。
1.ARCGIS空间统计任务
➢汇总某分布模式的关键特征。 ➢标识具有统计显著性的空间聚类(热点/
冷点)和空间异常值。 ➢评估聚类或分散的总体模式。 ➢对空间关系建模。
空间模式是否随着时间
推移发生变化?
或高/低聚类 (Getis-Ord
General G)
是否突然出现药品购买高峰?
随着时间推移,该疾病是保持固定 在同一个地理位置,还是扩散到邻 近的地方?
抑制措施是否有效?
空间过程彼此之间是否 多距离空间聚类分析
类似?
(Ripley's K 函数)
该疾病的空间模式是否反映出高危 人群的空间模式?
1.1汇总关键特征
问题
工具
示例
中心在哪里?
平均中心或中位 数中心
人口中心在哪里以及它如何随时间变化?
哪个要素的地理 位置最便利?
中心要素
应将新建的支持中心定址在哪里?
主导方向或方位 是什么?
线性方向平均值
冬பைடு நூலகம்的主要风向是什么? 在此地区如何确定断层线的方位?
哪个犯罪团伙所涉及的地域最大?
要 密 程素集度的程如分度何散或?程融度合、标分准布距(标离准或差方椭向圆)哪种疾病菌株的分布范围最广? 根据动物选择的生活地点,各物种会达到什么样的 融合程度?
商业入室盗窃的空间模式是否偏离 商业场所的空间模式?
数据是否在空间上相关?空间自相关 (Global Moran's I)回性归的残空差间是 自否相表关现?出具有统计显著
ArcGIS地统计分析ppt课件
精选课件ppt
14
6.Crosscovariance Cloud (正交协方差函数云)
正交协方差函数云表示的是两个数据集中所有 样点对的理论正交协方差,用于多数据集协变 分析。 通过分析多因素(数据集)关联特征,在地统 计空间分析中可以有效利用这种相关特征增强 建模效果,如协同克里格插值分析。
精选课件ppt
Histogram(直方图)指对采样数据按一定的分级方案 进行分级,统计采样点落入各个级别中的比例,并通 过柱状图表现出来。直方图可以直观的反映采样数据 分布特征与规律。
精选课件ppt
7
2.QQPlot分布图
QQPlot分布图是可以将现有数据的分布与标准 正态分布对比,从而来分析和评价现有数据。 如果数据图形越接近一条直线,则它越接近于 服从正态分布。
ArcGIS地统计分析功能是借助于ArcGIS地统计分析 模块(ArcGIS Geostatistical Analyst)来实现的。
精选课件ppt
1
模块介绍
(1)打开地统计分析扩展模块:单击ArcMAP界面上 “ 工具” ︱“扩展”命令,弹出“扩展”对话框,选中 Geostatistical Analyst的复选框。 (2)添加Geostatistical Analyst工具条。选择ArcMAP界 面上的“视图”菜单︱ “工具条”命令,确保Geostatistical Analyst工具条被选中。之后,在ArcMAP工具栏将出现 Geostatistical Analyst工具条。
精选课件ppt
20
地统计插值
地统计插值,也就是克里格插值。克里格方法 (Kriging)是以变异函数理论为基础,在有限 区域内对区域化变量进行无偏最优估计的一种 方法,是地统计学的主要内容之一。
【精选】arcgis11-地形分析剖析幻灯片
计算坡度Slope
• 地面上某点的坡度表示了地表在该点的倾斜程度
• 坡度与坡向的计算通常在3×3的DEM栅格窗口(如 图)中进行
• 坡度有两种表示方法:度或百分比
坡度的应用非常广泛,例如:
• 根据坡度起伏变化,确定崩塌、泥石 流区域或严重的土壤侵蚀区,作为灾 害防治与水土保持工作的基础。
• 提取平坦区域,为大型商业中心或房 屋建筑选址。
1、项目过程数据收集和分析, 2、项目方案措施有效性追踪;
主导来料不良可接受验证。
SMT组长 贾大合
Production Supplier
Member Member
提供每周PCB来料不良报表 主导拟定改善对策
40
课题选定 现状调查 设定目标 要因分析 确定要因 制定对策 对策实施 效果确认 标准化 下步计划
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
ArcGIS中空间数据统计、插值PPT课件
作业
1、利用练习数据制作AOM的克里格 插值图;
2、采用反距离加权、全局多项式、 径向基函数等插值方式制作AOM分布图, 并与克里格插值图进行比较;
3、采用克里格方法制作土壤有机质 含量变化图。
41
2020/1/1
42
35
在弹出的对话框中进行设置。
一般不进行 设置,以默 认网格大小
进行分析
选择保 存路径
36
1982年土壤TN含量插值图转换为栅格图 层。并按照以上方法将2002年土壤TN含 量插值图转换为栅格图层。
37
(2)制作动态变化图。
38
在栅格计算器中进行两个图层的代数 运算。
39
动态变化图制作成功,并按以上方法进行 图例修改、比例尺和指北针的插入等。
选择裁 减边界
19
7.插值图的裁减
20
2020/1/1
21
8.初步插值图
22
9.插值图的调整 (1)图例调整
23
9.插值图的调整
输入级
(1)图例调整
别间距
选择分 级数目
选择手工 输入方式
最后点 OK
24
9.插值图的调整 (1)图例调整
调整分级后 的插值图
25
由于打印中经常采用黑白打印,故需调 整图例颜色,使对比度明显。
趋势。绿线表示东西方向,呈倒"U"形,可用二阶曲 线拟合,在后面进行表面预测时将会去除。
点击Rotete右 边的方向旋转 箭头(横向箭 头),可旋转 趋势图,更明 显地显示某一 个方向的趋势。
9
(4)半变异函数/协方差函数。 该图可以反应数据的空间
相关程度,只有数据空间相关,才有必要进行空间插值法。图表 的横坐标表示任两点的空间距离,纵标表示该两点的半变异函数 值。根据距离越近越相似的原理,因而x值越小,y值应该越小。
ArcGIS地统计分析介绍
ArcGIS 10的新特性
• 在地统计分析工具箱中, 新增了11个GP工具
– 新增功能 – 之前版本中仅限地统计 分析向导或者地统计分 析工具条
地统计分析中的IDW工具
含障碍的核插值
?
含障碍的扩散插值
采样网络设计
•创建空间平衡点
- 基于预先得到的概率结果
- 输出的结果样本点是空间平衡的
预测值的 概率> 1
百分之95的值
概率图和分位数图需要数据满足正态分布
交叉验证
预测表面的准确性?
|观测值– 预测值|
交叉验证
• 地统计提供了测量值与预测值的散点图和统计信 息。
模型预测值
实际采样值
Optimize Help
子类要素
…通过从一个在[0,1]区间均匀分布的随机值来分割数据
地统计分析GP工具
反距离权重插值
• 表面经过所有的已知样本点 • 使用先入为主的空间相关性 • 根据周围样本值的加权平均来进行预 测 • 权重随着距离增大而递减,越高级数 递减越快
Weight
Power = 1 Power = 2 Distance
Inverse Distance Weights
• 模型参数: 样本点个数和领域搜索参数.
2010 Esri 中国区域用户大会
ArcGIS 地统计分析介绍
张文
概要
• 什么是地统计?
• 如何使用地统计分析模块?
数据分析(Explore Data) 地统计分析向导(Geostatistical Wizard) 创建数据子集(Create Subset) 地统计分析工具(Tools)
• 局部多项式
ArcGIS地理信息系统空间分析实验教程PPT-第10章-地统计分析解读
地统计分析向导(Geostatistical Wizard)
地统计分析模块提供了一系列利用已知样点进行内 插生成研究对象表面图的内插技术。地统计分析向 导通过完善的图形用户界面,引导用户逐步了解数 据、选择内插模型、评估内插精度,完成表面预测 (模拟)和误差建模。
图10.14 离群值的直方图查找和图面显示
用半变异/协方差函数云识别离群值
如果数据集中有一个异常高值的离群值,则与这个离群值形 成的样点对,无论距离远近,在半变异/协方差函数云图中都具有 很高的值。如下图所示,这些点可大致分为上下两层,对于上层 的点,无论位于横坐标的左端或右端(即无论距离远近)都具有 较高的值。刷光上层的一些点,右图是对应刷光的样点对。可以 看到,这些高值都是由同一个离群值的样点对引起的,因此,需 要对该点进行剔除或改正。
r(x, h) 1 Var[Z (x) Z (x h)] 2
变异分析
2.半变异函数
半变异函数又称半变差函数、半变异矩,是地统计分析的特 有函数。区域化变量Z(x)在点x和x+h处的值Z(x)与Z(x+h)差 的方差的一半称为区域化变量Z(x)的半变异函数,记为r(h), 2r(h)称为变异函数。 根据定义有:
析取克里格插值
协同克里格插值
图10.5 空间插值分类体系(表面是否经过所有的采 样点)
ArcGIS地统计分析
探索性数据分析(Explore Data) 地统计分析向导(Geostatistical Wizard) 生成数据子集(Create Subsets)
探索性数据分析(Explore Data)
2024版《ArcGIS教程》PPT课件
01 ArcGISChapter软件背景及功能01020304用于城市空间布局、交通规划、公共设施选址等。
城市规划应用于环境监测、生态评估、自然保护区规划等。
环境保护支持灾害风险评估、应急响应、灾后重建等。
灾害管理用于精准农业、农业资源管理、农业气候分析等。
农业领域应用领域与案例01ArcGIS界面包括菜单栏、工具栏、图层窗口、属性窗口等部分。
020304常用操作习惯包括使用快捷键、定制工具栏、保存工作空间等。
图层管理是关键操作之一,涉及添加、删除、调整图层顺序和透明度等。
属性表编辑也是常用操作,用于查看和编辑空间数据的属性信息。
界面布局及操作习惯02数据管理与处理Chapter数据类型及格式支持栅格数据矢量数据以像素为单位的图像数据,支持GeoTIFF、ERDAS Imagine式。
属性数据导入数据导出数据数据转换030201数据导入与导出方法数据编辑与整理技巧编辑工具属性表编辑拓扑处理数据裁剪与合并03地图制作与可视化Chapter图层操作包括图层的添加、删除、重命名、调整顺序、设置可见性等基本操作,以及图层的属性设置、符号化、标注等高级操作。
图层概念图层是地图的基本组成单元,用于组织和管理空间数据,每个图层代表一种地理要素或现象。
图层属性图层属性包括空间范围、坐标系统、数据格式、字段信息等,可以通过图层属性窗口进行查看和修改。
地图图层概念及操作符号化表达方法符号类型ArcGIS提供了丰富的符号库,包括点符号、线符号、面符号等,用于表达不同地理要素的形状、颜色、大小等特征。
符号设置可以通过符号选择器选择合适的符号,也可以通过符号属性编辑器自定义符号的样式、颜色、大小等参数。
动态符号化根据地理要素的属性值动态设置符号的样式和颜色,实现地图的交互式表达。
01020304数据准备专题图设置专题图类型选择地图整饰专题图制作流程04空间分析功能介绍Chapter空间查询与统计方法空间查询空间统计空间插值缓冲区分析原理及应用缓冲区分析原理应用示例4. 结果分析与解释对叠加结果进行分析和解释,提取有用信息并应用于实际问题中。
《地理信息系统应用》空间数据地统计分析PPT课件
不同透视面选择的全局趋势分析对比图 趋势分析过程中,透视面的选择应尽可能采样数据在透视面上的 投影点分布比较集中,通过投影点拟合的趋势方程才具有代表性, 才能有效反映采样数据集全局趋势。左图反映的趋势显然要比右图 要更为准确。
23
空间自相关及方向变异
空间自相关及方向变异分析和图面显示
左图所示,jsJDP2中 GDP采样值在空间基本不具有空间相
,再根据数据特点选择合适的模型。可用来揭 示数据对于常见模型的意想不到的偏离。
6
探索阶段基本分析工具
1. 直方图 2. Voronoi地图 3. QQPlot分布图 4. 趋势分析 5. 方差变异分析
7
1.直方图
直方图指对采样数据按一 定的分级方案(等间隔分级 、标准差分,等等)进行分 级,统计采样点落入各个级 别中的个数或占总采样数的 百分比,并通过条带图或柱 状图表现出来。
离群值的半变异/协方差函数云查找和图面显示
19
-Voronoi图查找局部离群值
用聚类和熵的方法生成的 Voronoi图可用来帮助识 别可能的离群值。熵值是 量度相邻单元相异性的指 标。通常,距离近的事物 比距离远的事物具有更大 的相似性。因此,局部离 群值可以通过高熵值的区 域识别出来。同样的原理, 聚类方法也可将那些与它 们周围单元不相同的单元 识别出来。
值包围,直方图上最右边被选中的一个柱状条即是该数据的 离群值,相应地,数据点层面上对应的样点也被刷光。但需 注意的是,在直方图中孤立存在或被一群显著不同的值包围 的样点不一定是离群值。
离群值的直方图查找和图面显示
18
-半变异/协方差函数云识别离群值
如果数据集中有一个异常高值的离群值,则与这个离群值形 成的样点对,无论距离远近,在半变异/协方差函数云图中都具 有很高的值。如下图所示,这些点可大致分为上下两层,对于上 层的点,无论位于横坐标的左端或右端(即无论距离远近)都具 有较高的值。刷光上层的一些点,右图是对应刷光的样点对。可 以看到,这些高值都是由同一个离群值的样点对引起的,因此, 需要对该点进行剔除或改正。
ARCGIS_地统计分析
第八章地理信息系统:空间统计与空间数据挖掘8. 2 地统计分析地统计是统计的一类,用于分析和预测与空间或时空现象相关的值。
它将数据的空间坐标纳入分析中,以变异函数为主要工具,研究那些分布于空间上既有随机性又有结构性的自然或社会现象的科学(秦昆,GIS空间分析理论与方法,2004)。
最初,地统计工具作为使用方法进行开发,用于描述空间模式和采样位置的插值。
现在这些工具和方法均得到了改进,不仅能够提供插值,还可以衡量所插入的值的不确定性。
通过对变异函数、克里格估计以及随机模拟方法的深入扩展,地统计已经成为空间统计学的核心内容,学科的主要内容包括区域化变量的变异函数模型、克里格估计、随机模拟三方面(秦昆,GIS空间分析理论与方法,2004)。
相对于物理机制建模,地统计是一种分析空间位置相关地学信息的经验性方法(赵鹏大,2004)。
接下来将介绍地统计研究的工作流程和主要步骤,并结合ArcGIS Geostatistical Analyst 工具进行实践演示。
地统计是用于分析和预测与空间或时空现象相关联的值得统计数据类。
利用GIS工具可以构建使用空间坐标的模型。
这些模型可以应用于各种情况并通常用于生成未采样位置的预测,也可以用于生成这些预测的不确定性的度量值。
一般情况下,地统计研究的流程为:第一步仔细检查数据。
第二步构建地统计模型,根据研究目的和数据集要素的不同,建模过程的步骤会有些差异。
在这一阶段,对数据集进行严密地探索并收集信息,扩增对所研究对象的先验知识,这将决定模型的复杂程度和内插值的准确性,以及不确定性的度量值的准确性。
第三步将所建模型与数据集结合来生成感兴趣区域内所有未采样位置的内插值。
最后模型的输出应该经过检查,确保内插值和相关的不确定性的度量值是合理的并与预期相匹配。
我们继续以上文中提到的某市区垃圾站数据为例,结合GIS工具具体介绍如何利用地统计建模插值。
8.2.1 探索性空间数据分析19世纪60年代的Tukey面向数据分析的主题,提出了探索性数据分析(EDA,exploratory data analysis)的新思路,解决了传统统计分析中数据不能满足正态假设,基于均值、方差的模型在实际数据分析中缺乏稳定性的问题,并且满足了对海量数据进行分析的要求。
ArcGIS空间分析与空间统计学精品课件
• 探索性时空数据分析
– Exploratory Spatio-Temporal Data Analysis ,ESTDA
• 数据分
布的对
称性
• 集中性
• 分散性
• 异常数
据的存
在性
• 异常值
• 中位数
分位数
极差
均值
异常数
据和极
端数据
散点图
•
•
•
•
•
茎叶图和直方图
箱线图
自然界物质的分布
空间概率的标尺
随机的就别分析了吧
零假设的作用
随机
空间关系概念化
ArcGIS中的空间关系
•
•
•
•
•
•
•
1、反距离、反距离平方
2、距离范围(影响的范围)
3、无差别的区域(Zone of indifference)
4、面邻接(一阶面邻接)(Polygon contiguity (first order))
平滑和锐化
一阶和二阶过程
空间统计与分析的分类
•
•
•
•
•
•
•
•
空间数据操作
(Spatial data manipulation)
空间数据分析
(Spatial data analysis)
空间统计分析
(Spatial statistical analysis)
空间建模
(Spatial modeling)。
主要针对栅格数据
ArcGIS空间统计模块
• ArcGIS提供了一系列的空间统计工具
– 分析模式:评估要素是形成一个聚类、离散,随机空间模式
ARCGIS基本操作及在土地调查中的应用PPT教学课件
• (5)声学定位(水声定位):采用水下声学技术利用水下声标作为海底控制点。通过精 确联测其坐标,可直接为船舶、潜艇和各种海洋工程提供导航定位服务,对水下工程具有 重要的应用价值。
• 下面详述水下声学定位的原理和方法。
第15页/共67页
• 水下定位主要采用声学定位手段。光线在海水中传播的距离不远,通常只有几米到几十米。 而声波在水中的表现要比光波优秀得多,通过频率的变换,无论是几米、几十米的浅海、 还是几千上万米的深海,声波都可以穿透,因此海洋中以声信号为主。声速同水的状况 (温度、盐度和压力)有关,在海水中为1500m/s左右。在传播过程中,声波速在介质 常数不相同的两个水层界面处将产生反射、折射和某种程度的反向散射,并导致声线弯曲 和传播速度发生改变,折射遵循Snell法则。
那样在全国范围内实行统一。 • (4)、测量内容的综合性 • 海洋测量工作需要同时完成多种观测项目,需要多种仪器设备配合施测,与陆地
测量相比,具有综的目的,可将海洋测绘任务划分为两类: • (1)科学性任务 • 其目的包括为研究地球形状提供更多的数据资料,为研究海底地质的构造运动提供必要
有前方交会、后方交会、侧方交会和极坐标法。 • (3)无线电定位:通过在岸上控制点安置无线电收发机(电台),在船上设置无线电
收发
第14页/共67页
• 、测距、控制、显示,测量出无线电波的相位差,求出船台至岸台的距离差,从而计算船 位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.2.5 Voronoi Map(Voronoi地图)
Voronoi地图是由样点以及样点周围的一系列多边形所 组成。多边形生成的要求就是多边形内任何位置距这一样点 的距离都,比该多边形到其他样点的距离要近。Voronoi 多 边形生成之后,相邻的点就被定义为其Voronoi多边形,与 选择样点的Voronoi多边形具有公共边的其他样点。
1.Normal QQPlot分布图(正态QQPlot分布图)
2.General QQPlot分布图(普通QQPlot分布图)
15.2.4 Trend Analysis(趋势分析)
趋势分析可以利用样点数据生成以数据某一属性值为高 度的三维透视图,从而帮助用户从不同视角分析采样数据集 的全局趋势。
样点的位置由X、Y和Z3个值来决定。X、Y确定样点 平面坐标,Z值则是样点数据的某一属性值。三维透视图中 的每个黑线就代表了样点的位置和高度,位置就是样点X、 Y平面坐标,高度即样点数据的某一属性值的大小。
15.1.2 地统计分析基础简介
地统计(Geostatistics)又称地质统计,也可以称为空 间统计分析,其是统计学的一个分支。地统计于20世纪50年 代初开始形成,60年代在法国著名统计学家G. Matheron的 大量理论研究工作基础上,形成一门新的统计学分支。
地统计学是以区域化变量理论(theory of regionalized variable)为基础,以变异函数(variogram)为基本工具来 研究分布于空间,并呈现出一定的随机性和结构性的自然现 象的科学。
15.2.6 Semivariogram/Covariance Cloud (半变异/协方差函数云)
半变异/协方差函数云表示的是数间距离的函数来表 示,用此函数作图来表示。
15.2.7 Crosscovariance Cloud(正交协方 差函数云)
Histogram(直方图)指对采样数据按一定的分级方案 进行分级,统计采样点落入各个级别中的个数或占总采样数 的百分比,并通过条带图或柱状图表现出来。直方图可以直 观的反映采样数据分布特征与规律。
15.2.3 正态QQPlot分布图)和普通QQPlot 分布图
QQPlot分布图是可以将现有数据的分布与标准正态分 布对比,从而来分析和评价现有数据。其是利用分布的分位 数而作出的图形,如果数据图形越接近一条直线,则它越接 近于服从正态分布。
探索性数据分析需要借助于ArcGIS的探索性数据分析 工具。
15.2.1 添加探索性数据分析工具
通常,ArcGIS的探索性数据分析模块并没有打开,在 默认界面上没有探索性数据分析工具,需要手动添加。添加 方法如下。
(1)开启地统计分析扩展模块:单击ArcMAP界面上 “工具” ︱“扩展”命令,弹出“扩展”对话框,确保 Geostatistical Analyst的复选框被选中。
15.2 探索性数据分析工具
探索性数据分析可以让用户更清楚地了解所用的探索性 数据,包括数据的属性、分布以及空间数据的变异性和相关 性,并以此来分析数据的变化趋势,从而利用已知的数据来 推测拟合未知的数据。探索性数据分析也可以让用户更深入 地认识研究对象,从而对与其数据相关的问题做出更好的分 析与决策。
1.利用直方图查找离群值 2.利用半变异/协方差函数云识别离群值 3.利用Voronoi图查找局部离群值
15.3.3 全局趋势分析
全局趋势分析可以通过Trend Analysis(趋势分析)工具 来实现。地物的空间趋势反映了空间物体在空间区域上变化 的主体特征。
正交协方差函数云表示的是两个数据集中所有样点对的 理论正交协方差,并把它们用两点间距离的函数来表示。
15.3 探索性数据分析
对于一组模式未知的数据,可以有很多方法来处理,当数 据偏离严格假定所描述的理想模型,古典统计技术可能不适用。 探索性数据分析技术——新开发的稳健、高效的数据分析方法, 可以让用户更全面地了解自己使用的数据。可以借助其来查看数 据是否服从正态分布,是否存在某种趋势效应、各向异性等。
1.通过直方图检验数据分布
2.通过QQplot图检验数据分布
15.3.2 寻找数据离群值
在一组平行测定数据中,有时会出现个别值与其他值相 差较远,这种值叫离群值。数据离群值分为全局离群值和局部 离群值两大类。全局离群值是指对于数据集中所有点来讲,具 有很高或很低的值的观测样点。局部离群值对于整个数据集来 讲,观测样点的值处于正常范围,但与其相邻测量点比较,它 又偏高或偏低。
(2)添加Geostatistical Analyst工具条。选择ArcMAP 界面上的“视图”菜单︱ “工具条”命令,确保 Geostatistical Analyst工具条被选中。之后,在ArcMAP工具 栏将出现Geostatistical Analyst工具条。
15.2.2 Histogram(直方图)
探索性数据分析主要利用ArcGIS 提供的工具和插值方法, 可以确定统计数据属性,探测数据分布、全局和局部异常值、寻 求全局的变化趋势、研究空间自相关和理解多种数据集之间相关 性。
15.3.1 检验数据分布
在地统计分析中,克里格方法建立在一定的假设基础上, 其在一定程度上要求所有数据值具有相同的变异性。另外,普通 克里格法、简单克里格法和泛克里格法等都假设数据服从正态分 布。如果数据不服从正态分布,需要进行一定的数据变换,从而 使其服从正态分布。因此,在进行地统计分析前,检验数据分布 特征,了解和认识数据具有非常重要的意义。数据的检验可以通 过直方图和正态QQPlot分布图完成。
15.1 ArcGIS地统计分析概述
很长时间以来,地统计分析一直没能很好的和GIS分析 模型紧密地结合在一起,而ArcGIS地统计分析模块则在地 统计学与GIS之间架起了一座桥梁。
15.1.1 ArcGIS地统计分析模块介绍
ArcGIS地统计分析模块(ArcGIS Geostatistical Analyst)是一个完整的工具包,它带有为默认模型设计的 稳定性参数。这样可以帮助初学者快速的掌握地统计分析。