二维频率域声波方程正演模拟
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Open Journal of Natural Science 自然科学, 2020, 8(4), 258-263
Published Online July 2020 in Hans. /journal/ojns
https:///10.12677/ojns.2020.84034
2D Acoustic Wave Equation Forward
Modeling in the Frequency Domain
Kun Han, Xiangchun Wang*
School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing
Received: Jun. 23rd, 2020; accepted: Jul. 6th, 2020; published: Jul. 13th, 2020
Abstract
Forward modeling in frequency domain plays an important role in the numerical simulation of seismic waves. Compared with time domain forward modeling, frequency domain forward mod-eling has many advantages, such as suitable multi shot parallel operation, no time dispersion, flexible frequency band selection and small error. The coefficient matrix of different frequencies is relatively independent in the frequency domain forward modeling, which is suitable for the acce-leration of parallel computing and greatly improves the computing efficiency. In this paper, for the optimal 9-point difference scheme of frequency domain acoustic equation, the implicit expression and sparse matrix solution are studied, and the seismic wave field is simulated forward. The ac-curacy and validity of the method are verified by model calculation.
Keywords
Frequency Domain, Forward Modeling, Acoustic Equation, Parallel Computing
二维频率域声波方程正演模拟
韩坤,王祥春*
中国地质大学(北京),地球物理与信息技术学院,北京
收稿日期:2020年6月23日;录用日期:2020年7月6日;发布日期:2020年7月13日
摘要
频率域正演在地震波数值模拟中占有十分重要的地位。相比于时间域正演,频率域正演具有适合多炮并*通讯作者。
韩坤,王祥春
行运算、无时间频散、频带选取灵活、误差小等优点。频率域正演时,不同频率的系数矩阵相对独立,适合并行计算加速处理,大大提高计算效率。这里针对频率域声波方程的最优化9点差分格式,开展了隐式表达方式和稀疏矩阵的求解研究,正演模拟了地震波场。模型计算验证了方法技术的准确性和有效性。
关键词
频率域,正演模拟,声波方程,并行计算
Copyright © 2020 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
/licenses/by/4.0/
1. 概述
频率域波场正演相对于时间域数值模拟来说,有其自身的优势。首先,在多炮数值模拟情况下,频率域相对于时间域效率更高,每个频率成分的阻抗矩阵只需要计算一次,加入并行计算后可以极大地提高计算效率;其次,就方程本身而言,频率域的衰减项更容易添加;另外,频率域模拟方法是计算区域所有网格点上的全部时间上的频率切片解,误差将分配到所有参与计算的每一个网格点上,因此不存在类似时间域模拟的累计误差,可以考虑长时间的地震波数值模拟。
Lysmer和Drake用有限元方法实现了地震波的数值模拟,初次提出了频率域正演模拟[1]。Marfurt 指出频率域模拟地震波,能够非常有效地模拟出各向异性介质中波的传播及其衰减效应,而且适合大量炮点的同时模拟[2]。Pratt和Worthington将频率域正演引入到波形反演中,应用常规二阶差分法(5点有限差分格式)对声波方程进行了离散化处理,结果表明当每个波长取至少13个网格点时,相速度误差就可以控制在1%以内,研究过程中详细推导了频率域声波方程和弹性波方程差分格式,构建了阻抗矩阵,指出频率域正演模拟适合多炮计算(每个频率成分共用一个阻抗矩阵),便于模拟衰减效应,为频率域波场正演奠定了基础[3]。由于频散严重和巨大的计算量等问题,频率域波场正演模拟没有得到广泛地应用,Jo和Shin等人在研究频率空间域声波波场正演模拟过程中,首次引入旋转坐标算子,将常规网格需要的5个网格点扩充到9个网格点,实现了频率域粘滞声波的正演模拟,频散得到了很好的压制,每个波长只需求4个网格就可以得到1%的精度要求,这使得频率域正演得到了极大地发展[4]。Shin在Jo的基础上,由9点差分格式扩充到25点,相对提高了精度,这样在正演过程中单个波长内的网格点可以减少到2.5个,得到了理想的结果[5]。
进入21世纪后,频率域正演方法上有了更大的提高。Min等人在Shin和Sohn研究的基础上做了进一步的研究,首先提出了一种新的25点有限差分加权最优化差分算子,通过Gauss-Newton法求出最优化加权系数,最后将频率空间域弹性波正演结果和方程的解析解进行了对比,从结果看出,利用新的差分算子计算的结果对于复杂介质来说结果比较理想,随后他又优化了25点算子的频散系数,通过最优化原理确定了新的加权系数,频散效应得到了更大限度的压制,并且减少了单位波长内所需的网格点数[6]。高精度的时间域正演非常依赖于交错网格法,而频率域方法主要是基于混合网格法,Hustedt等人研究对比了频率域地震波模拟中交错网格法和混合网格法,指出对于二维模拟来说,交错网格法在内存需求和计算效率远不及混合网格法[7]。Xu等从CPU计算时间、内存需求和硬盘读写速度三个方面研究了频率域声波模拟结果,并对比了LU分解和迭代法的优劣[8]。