二元一次方程组经典应用题及答案

合集下载

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米解:设甲,乙速度分别为x,y千米/时,依题意得:+2)x+=363x+(3+2)y=36解得:x=6,y=答:甲的速度是6千米/每小时,乙的速度是千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)12001000售价(元/件)13801200(注:获利= 售价—进价)求该商场购进A、B两种商品各多少件;解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息%;第二种,三年期整存整取,这种存款银行年利率为%.三年后同时取出共得利息元(不计利息税),问小敏的爸爸两种存款各存入了多少元解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * %* 3 + Y * %* 3 =解得:X = 1500,Y = 2500。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组解应用题专项练习50题(有答案)ok1、已知某铁路桥长800m,火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度。

解:设火车的速度为v,长度为l,则有:l + 800 = vt (火车在桥上的时间)l = v(t-10) (火车在桥上外的时间)联立得:v = 80m/s,l = 2400m。

2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮制盒身,y张铁皮制盒底,则有:8x = 22y (每张铁皮做8个盒身或做22个盒底)x = 2y/7190 = 9x + 11y (总共用了190张铁皮)代入得:x = 60,y = 35.3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,一个桶身一个桶底正好配套做一个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?解:设用x张铁皮做桶身,y张铁皮做桶底,则有:x + y/8 = 63 (每张铁皮能做1个桶身或8个桶底)代入得:x = 35,y = 224.4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:货车种类 | 货车辆数(辆) | 累计运货吨数(吨) |甲。

| 2.| 15.5.|乙。

| 5.| 35.|现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?解:设甲、乙两种货车每辆运输的吨数分别为x、y,则有:2x + 5y = 50 (过去两次租用的情况)3x + 5y = 70 (现在租用的情况)联立得:x = 10,y = 8.应付运费为:(15.5+35) * 30 = 1650元。

5、某工厂第一季度生产甲、乙两种机器共480台,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?解:设第一季度甲、乙两种机器分别生产x、y台,则有:x + y = 4801.1x + 1.2y = 554 (第二季度计划生产的情况)联立得:x = 280,y = 200.6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设种茄子的亩数为x,种西红柿的亩数为y,则有:x + y = 252600x + 2600y = - 1700x - 1800y (总花费为元)联立得:x = 10,y = 15.总获纯利为:2600 * 10 + 2600 * 15 = 元。

二元一次方程组应用题及答案

二元一次方程组应用题及答案

二元一次方程组应用题1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。

两人原来各有多少钱?书多少钱?设丽丽有x元钱家家有y元钱得出:3/5x=2/3y2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)解2元一次方程得x=50 y=45 即丽丽50元家家45元书30元一本2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?8除4/5=10(km/)4/5除8=0.1(kg)3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?30÷1/2=60千米1÷60=1/60小时4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23 求出x=285.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?62-24=38(只)3/5红=2/3黄9红=10黄红:黄=10:938/(10+9)=2红:2*10=20黄:20*9=186.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?原有女生:36×4/9=16(人)原有男生:36-16=20(人)后有总人数:20÷(1-3/5)=50(人)后有女生:50×3/5=30(人)来女生人数:30-16=14(人)7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?2.16/(1+1/11)=1.98(立方米)8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?现在甲乙各有560÷2=280吨原来甲有280÷(1-2/9)=360吨原来乙有560-360=200吨9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?原价是200÷2/11=2200元现价是2200-200=2000元10。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。

二元一次方程(组)解应用题(含答案)

二元一次方程(组)解应用题(含答案)

第八章二元一次方程(组)解应用题(含答案)1.缉私艇与走私艇相距120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?时才能追上.问走私艇与缉私艇的速度分别是多少?1.解:设走私艇的速度是x海里/时,缉私艇的速度是y海里/时,由题意得:时,由题意得:,解得,答:走私艇的速度是25海里/时,缉私艇的速度是35海里/时2.甲、乙两人从A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1地.小时乙到达A地.)问甲、乙行驶的速度分别是多少?(1)问甲、乙行驶的速度分别是多少?千米?(2)甲、乙行驶多少小时,两车相距30千米?2.解:(1)设甲、乙行驶的速度分别是每小时x千米、y千米,千米,根据题意,得,解得.所以甲、乙行驶的速度分别是每小时15千米、45千米;千米;(2)由第(1)小题,可得A,B两地相距45×(3+1)=180(千米).千米,设甲、乙行驶x小时,两车相距30千米,)千米,根据题意,得两车行驶的总路程是(180﹣30)千米或(180+30)千米,则:(45+15)x=180﹣30或(45+15)x=180+30.解得:或.千米所以甲、乙行驶或小时,两车相距30千米3.小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32平均速度为3千米/时,时,而在下坡路上的平均速度为分钟.求小明上坡、下坡各用了多长时间?分钟.求小明上坡、下坡各用了多长时间?3.解:32分钟=小时,小时,)小时,由题意,得设小明上坡用了x小时,下坡用了(﹣x)小时,由题意,得3x+5(﹣x)=1.8,解得:x=,则下坡所用时间为:﹣==.答:小明上坡用了小时,下坡用了小时小时4.A 、B 两地相距20千米.甲乙两人同时从A 、B 两地相向而行,经过2小时后两人相遇,相遇时甲比乙多行4千米.根据题意,列出两元一次方程组,求出甲乙两人的速度.千米.根据题意,列出两元一次方程组,求出甲乙两人的速度. 4.解:(1)设甲的速度为x 千米/时,乙的速度为y 千米/小时,由题意得,小时,由题意得,,解得:.答:甲的速度为6千米/时,乙的速度为4千米/小时小时5.长春至吉林现有铁路长为128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米.开通后,城际列车的平均速度将为现有列车平均速度的2.25倍,运行时间将比现有列车运行时间缩短小时.求城际列车的平均速度.列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.小时.,解得.64×2.25=144千米/小时.小时.城际列车的平均速度144千米/小时小时6.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留汽车在相遇处停留1小时后原速返回,小时后原速返回,在汽车再次出发在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米? 6.解:设汽车的速度是x 千米每小时,拖拉机速度y 千米每小时,根据题意得:千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:(+)×90=165(千米),拖拉机行驶的路程是:(+)×30=85(千米).千米答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两,问两车每秒各行驶多少米?车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?7.解:设客车的速度是每秒x米,货车的速度是每秒x米.米.由题意得(x+x)×16=200+280,解得x=18.答:两车的速度是客车18m/s,货车12m/s8.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人倍.求两人的速度. 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度.8.解:设甲的速度是x千米/时,乙的速度是y千米/时.时.由题意得:解得:答:甲的速度是4千米/时,乙的速度是5千米/时9.从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少?乙地的全程是多少?9.解:设从甲地到乙地的上坡路为xkm,平路为ykm,依题意得,解之得,∴x+y=3.1km,答:甲地到乙地的全程是3.1km10.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻.解:设甲的速度为x千米/时,乙的速度为由题意可得:.由题意得,,解得:,则解得答:甲,乙二人的速度是1414、在某条高速公路上依次排列着、在某条高速公路上依次排列着A 、B 、C 三个加油站,三个加油站,A A 到B 的距离为120千米,千米,B B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?1414、解:设巡逻车、犯罪团伙的车的速度分别为、解:设巡逻车、犯罪团伙的车的速度分别为x 、y 千米千米//时,则()3120120x y x y -=ìïí+=ïî,整理,得40120x y x y -=ìí+=î,解得8040x y =ìí=î, 答:巡逻车的速度是80千米千米//时,犯罪团伙的车的速度是40千米千米//时.1515、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟. .归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄? ?1515、解:设悟空飞行速度是每分钟、解:设悟空飞行速度是每分钟x 里,风速是每分钟y 里,依题意得依题意得依题意得 4(x+y)=1000 4(x+y)=10004(x-y)=600 x=200 y=5016.16.某列火车通过某列火车通过450米的铁桥,从车头上桥到车尾下桥,从车头上桥到车尾下桥,共共33秒,同一列火车以同样的速度穿过760米长的隧道时,整列火车都在隧道里的时间是22秒,问这列火车的长度和速度分别是多少分别是多少? ?16. 16. 解解:设火车长为x 米,火车的速度为y 米/秒,33y=x 33y=x++45022y=760 22y=760--xX=276解方程组得:解方程组得:解方程组得: y=22 y=22答:火车长答:火车长276米,速度为22米/秒.。

二元一次方程(组)解应用题(含答案)

二元一次方程(组)解应用题(含答案)

第八章二元一次方程(组)解应用题(含答案)1缉私艇与走私艇相距 120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?1. 解:设走私艇的速度是 x海里/时,缉私艇的速度是 y海里/时,由题意得:[2(x+y)=120[12 (y- K)-120,解得卜,辽(y=35答:走私艇的速度是 25海里/时,缉私艇的速度是 35海里/时2. 甲、乙两人从 A , B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经 3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地.(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米?2. 解:(1)设甲、乙行驶的速度分别是每小时 x 千米、y千米,根据题意,得’,ir v-i & 解得….(y=45所以甲、乙行驶的速度分别是每小时15千米、45千米;(2)由第(1)小题,可得 A , B两地相距45X( 3+1) =180 (千米).设甲、乙行驶x小时,两车相距 30千米,根据题意,得两车行驶的总路程是(180- 30)千米或(180+30)千米,则:(45+15) x=180 - 30 或(45+15) x=180+30 .解得:戸|或疋所以甲、乙行驶"或—小时,两车相距 30千米2 23. 小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的平均速度为3千米/时,而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32 分钟.求小明上坡、下坡各用了多长时间?3. 解:32分钟小时,15设小明上坡用了 x小时,下坡用了(亠-x)小时,由题意,得15]3x+5 (一-x) =1.8,解得:x=90 y=304. A 、B 两地相距20千米.甲乙两人同时从 A 、B 两地相向而行,经过 2小时后两人相遇, 相遇时甲比乙多行 4千米•根据题意,列出两元一次方程组,求出甲乙两人的速度. 4•解:(1设甲的速度为 x 千米/时,乙的速度为 y 千米/小时,由题意得,(2s+2y=20(2K - 2y=4,解得:|{二.答:甲的速度为6千米/时,乙的速度为4千米/小时5.长春至吉林现有铁路长为 128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米•开通后,城际列车的平均速度将为现有列车平均速度的 2.25倍,运行时间将比现有列车运行时间缩短 芒小时.求城际3列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.xy=1282.药小(y- -|) =96,卜二內4解得 :.64X2.25=144 千米 /小时.城际列车的平均速度 144千米/小时6•甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行, 1小时20分后相遇•相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?[解得:x=「,则下坡所用时间为:答:小明上坡用了 鱼左』=丄15 30"10'小时1CI—小时,下坡用了306. 解:设汽车的速度是[■| (x+y) =160丄』 ,x 千米每小时,拖拉机速度 y 千米每小时,根据题意得:则汽车汽车行驶的路程是: (一+_) >90=165 (千米),3 2拖拉机行驶的路程是:(一+卫)>30=85 (千米).冈2答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.—列客车长200 m ,一列货车长280 m ,在平行的轨道上相向行驶,从两车头相遇到两 车尾相离经过16s,已知客车与货车的速度之比是 3: 2,问两车每秒各行驶多少米? 7.解:设客车的速度是每秒x 米,货车的速度是每秒 -x 米.由题意得(x+Zx ) >6=200+280 ,3解得x=18.答:两车的速度是客车 18m/s ,货车12m/s& A 、B 两地相距36千米•甲从A 地出发步行到B 地,乙从B 地出发步行到 A 地•两人 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的 2倍•求两人的速度.&解:设甲的速度是 x 千米/时,乙的速度是y 千米/时. 「4 (x+yj =36 (36-內0 二2 (36-6y)解得: 答:甲的速度是4千米/时,乙的速度是5千米/时9•从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走 3km ,平路每小时走4km ,下坡每小时走 5km ,那么从甲地到乙地用 54分钟,从乙地到甲地用 42分钟,甲地到 乙地的全程是多少?xkm ,平路为ykm ,/• x+y=3.1km ,答:甲地到乙地的全程是 3.1km 10•甲、乙分别自 A 、B 两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速 度都提高了 1千米/小时,当甲到达B 地后立刻按原路向 A 地返行,当乙到达A 地后也立刻由题意得:9•解:设从甲地到乙地的上坡路为解之得宙1・5 ]尸1花按原路向B 地返行,甲、乙二人在第一次相遇后 3小时36分又再次相遇,则 A 、B 两地的距离是多少?10•解:设甲的速度为 x 千米/时,乙的速度为y 千米/时, 可得:x+y=18 A 、B 两地的距离=2 (x+y) =2 XI8=36 答:A 、B 两地的距离是36千米11 •某班同学,从学校出发步行到某地搞军训活动,如果每小时走 6km ,则可提前10min到达目的地;如果每小时走 5km ,则比预定时间迟到 18min ,问:学校到某地有多远预定到达时间是多少?11 •解:设学校到某地 x 千米•预定到达时间是 y 小时.$(厂”I 5吨)=/解得.*1° •故学校到某地14千米•预定到达时间是 2.5小时 12.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km ,那么甲用1小时就能追上乙;如果乙先走 1小时,那么甲只用15分钟就能追上乙,求甲、乙二人 的速度.12 •解:设甲的速度是 x 千米/时,乙的速度为y 千米/时, 答:甲的速度是25千米/时,乙的速度为5千米/时13.甲,乙两人相距15千米,如果两人同时相向而行,过 1小时30分相遇;如果乙向相反方向走,甲同时追赶,经过 7小时30分可以追上,求甲,乙二人的速度各是多少.13.解:设甲,乙二人的速度是 x 千米/小时和y 千米/小时.fl. 5K +1. 5y=157.由题意得,x=20+y0.25s= (141X25)y由题意可得:答:甲,乙二人的速度是 6千米/小时和4千米/小时14、在某条高速公路上依次排列着A B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米•分别在A C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A C两个加油站驶去,结果往 B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上. 问巡逻车和犯罪团伙的车的速度各是多少?14、解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则3 x y 120 x y 40 x 80,整理,得y ,解得,x y 120 x y 120 y 40答:巡逻车的速度是 80千米/时,犯罪团伙的车的速度是 40千米/时.15、悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄?15、解:设悟空飞行速度是每分钟x里,风速是每分钟 y里,依题意得 4(x+y)=10004(x-y)=600 x=200 y=5016. 某列火车通过450米的铁桥,从车头上桥到车尾下桥, 度穿过760米长的隧道时,整列火车都在隧道里的时间是分别是多少?16. 解:设火车长为x米,火车的速度为 y米/秒,33y=x + 45022y=760 — xX=276 「解方程组得:[y=22答:火车长276米,速度为22米/秒. 共33秒,同一列火车以同样的速22秒,问这列火车的长度和速度。

二元一次方程组应用题33道及答案

二元一次方程组应用题33道及答案

第五章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。

”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。

已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。

(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决 ------ 行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发 2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x, y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由解:设甲.乙两公司毎周完成工程的爼和^则1 L丄H X +得! 10故1 + 1=10(1)11^—= UH 』n ’ I 1 10 15即甲、乙完成这项工程分别需山周[沾周又设需忖甲、乙毎周的工犠分别为击元,右万元则出较知■从节约开支轴度考虑I选乙公司划宜三:列二元一次方程组解决一一商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价一进价)求该商场购进A、B两种商品各多少件; 解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略四:列二元一次方程组解决 ----- 银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息 2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25 % * 3 + Y * 2.7 % * 3 = 303.75解得:X = 1500,Y = 2500。

10道二元一次方程组应用题及答案(精品文档)

10道二元一次方程组应用题及答案(精品文档)

1:某校为同学们安排宿舍。

若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。

求该年级同学人数和宿舍间数。

(解:设年级人数是x人,宿舍是y人)解:设年级人数是x人,宿舍是y人)5y-x=-46(y-2)-x=2解这个方程组得:y=18x=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48.6元,求A、B两种原料每千克的价格分别是多少元。

(解:设A种原料每千克x元,B种原料每千克y元)5÷9×x+4÷9×y=503÷5×x+2÷5×y=48.6化简方程组得:5x+4y=4503x+2y=243解这个方程组得:x=36y=67.53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。

有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。

(解:设直达快车每小时x千米,公共汽车每小时y千米)7÷60×x+7÷60×y=2413÷60×y+5÷60×x=244.要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水x千克,含药75%的药水y千克)x+y=1830%有效成分=x×30%75%有效成分=y×75%50%有效×成分=18×50%所以30%x+7×5%=18×50%0.3x+0.75y=9x+y=180.3x+0.3y=5.4所以0.75y-0.3y=9-5.40.45x=3.6x=8y=10所以30%取8千克,75%取10千克5.一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。

二元一次方程组经典练习题+答案解析100道(可编辑修改word版)

二元一次方程组经典练习题+答案解析100道(可编辑修改word版)


4
二、选择:
1、任何一个二元一次方程都有( )
(A)一个解;
(B)两个解;
(C)三个解;
(D)无数多个解;
2、如果
x y 3x 2 y
a
4
的解都是正数,那么
a
的取值范围是(

(A)a<2;
(B) a 4 ; (C) 2 a 4 ; (D) a 4 ;
3
3
3
3、关于
x、y
的方程组
x
y
பைடு நூலகம்
81 76 17 19
,若两人的计算都准确无误,请写出这个方程组,并求
出此方程组的解;
2、使 x+4y=|a|成立的 x、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求 a 的值;
3、要使下列三个方程组成的方程组有解,求常数 a 的值。 2x+3y=6-6a,3x+7y=6-15a,4x+4y=9a+9
2、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生 一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐 68 个, 扁担 40 根,问这个班的男女生各有多少人?
3、甲、乙两人练习赛跑,如果甲让乙先跑 10 米,那么甲跑 5 秒钟就可以追上乙;如果甲让乙先跑 2 秒钟,那么甲跑 4 秒钟就能追上乙,求两人每秒钟各跑多少米?
x x
2 y
y 3m 9m
的解是方程
3x+2y=34
的一组解,那么
m
的值是(

(A)2;
(B)-1;

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案二元一次方程组是初中数学中的重要内容,也是日常生活中实际问题求解的基础。

下面介绍几个经典的二元一次方程组应用题及其答案。

1. 根据题意列方程:若三只公鸡一只大于一只小鸡,则五只公鸡一只大于一只小鸡。

问笼中各有几只公鸡和小鸡?解法:设笼中有x只公鸡和y只小鸡,则根据题意可列出以下方程组:3x - y > 05x - y > 0将方程组化为矩阵形式:3 -1 | 05 -1 | 0利用消元法,得到x=3,y=8,即笼中有3只公鸡和8只小鸡。

2. 根据题意列方程:影片在两家影院上映,第一家影院每张票售价10元,第二家影院每张票售价8元。

当两家影院共售出350张票,总收入为3220元。

问这两家影院各售出多少张票?(不考虑打折等情况)解法:同样设第一家影院售出x张票,第二家影院售出y张票,根据题意可列出以下方程组:x + y = 35010x + 8y = 3220将方程组化为矩阵形式:1 1 | 35010 8 | 3220利用消元法,得到x=200,y=150,即第一家影院售出200张票,第二家影院售出150张票。

3. 根据题意列方程:现有5元、2元、1元硬币各若干枚,若总共有50枚硬币,总额为70元。

问各种类型硬币分别多少枚?解法:设5元硬币有x枚,2元硬币有y枚,1元硬币有z枚,这样就可以列出以下方程组:x + y + z = 505x + 2y + z = 70将方程组化为矩阵形式:1 1 1 | 505 2 1 | 70利用消元法,得到x=10,y=15,z=25,即5元硬币有10枚,2元硬币有15枚,1元硬币有25枚。

以上是三个经典的二元一次方程组应用题及其解法。

在解题过程中,我们需要仔细思考题意,确定未知量,列出方程组,最后通过消元法求解。

通过这些例题的练习,可以提高自己的数学应用能力,也可以为日常生活问题的解决提供思路和方法。

二元一次方程组应用题及答案

二元一次方程组应用题及答案

二元一次方程组应用题及答案题目:某工厂生产两种产品A和B,已知生产一件产品A需要3小时,生产一件产品B需要2小时。

如果工厂每天有24小时的生产时间,且生产一件产品A的利润是100元,生产一件产品B的利润是150元。

现在工厂希望在有限的生产时间内最大化利润,问工厂每天应该生产多少件产品A和B?解答:设工厂每天生产x件产品A和y件产品B。

根据题意,我们可以得到以下两个方程:1. 3x + 2y ≤ 24 (生产时间限制)2. 100x + 150y (利润最大化)我们需要找到x和y的值,使得利润最大化。

首先,我们可以将第一个方程变形为:y ≤ (24 - 3x) / 2由于x和y都必须是非负整数,我们可以列出以下可能的组合:1. 当x = 0时,y ≤ 12,即y可以取0到12之间的任意整数。

2. 当x = 1时,y ≤ 10.5,向下取整得y ≤ 10。

3. 当x = 2时,y ≤ 9。

4. ...5. 当x = 8时,y ≤ 0。

接下来,我们计算每种组合下的利润:1. 当x = 0,y = 12时,利润 = 100 * 0 + 150 * 12 = 1800元。

2. 当x = 1,y = 10时,利润 = 100 * 1 + 150 * 10 = 1650元。

3. ...4. 当x = 8,y = 0时,利润 = 100 * 8 + 150 * 0 = 800元。

通过比较,我们发现当x = 0,y = 12时,利润最大,为1800元。

因此,工厂每天应该生产0件产品A和12件产品B,以最大化利润。

答案:工厂每天应该生产0件产品A和12件产品B。

二元一次方程组(应用题一)(人教版)(含答案)

二元一次方程组(应用题一)(人教版)(含答案)

二元一次方程组(应用题一)(人教版)一、单选题(共6道,每道16分)1.某景区门票价格为:成人票每张70元,儿童票每张35元.小明买了20张门票共花费了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是(根据题意借助下面表格梳理条件,请先把表格填写完整,再列方程组)( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二元一次方程组应用题2.明明买了7本数学书和2本语文书共花了100元,亮亮买了4本语文书和3本数学书共花了90元.若设买一本语文书x元,买一本数学书y元,根据题意列表如下,补全表中的信息,则可列二元一次方程组为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二元一次方程组应用题3.第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有一人只取2支,则其余每人恰好各得6支.若设第一小组同学有x人,铅笔有y支,根据题意列表如下,补全表中的信息,则可列二元一次方程组为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:二元一次方程组应用题4.如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.设制成x吨产品,购买y吨原料,根据题意列表如下,补全表中的信息,则可列二元一次方程组为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二元一次方程组应用题5.原来甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数是乙车间人数的2倍.若设原来甲车间x人,乙车间y人,根据题意列表如下,补全表中的信息,则可列二元一次方程组为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二元一次方程组应用题6.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁了”.若设甲现在的岁数为x岁,乙现在的岁数为y岁.根据题意列表如下,补全表中的信息,并计算甲现在的岁数是( )A.42岁B.24岁C.36岁D.23岁答案:A解题思路:试题难度:三颗星知识点:二元一次方程组的应用。

二元一次方程组应用题及答案

二元一次方程组应用题及答案

二元一次方程组应用题1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。

两人原来各有多少钱?书多少钱?2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,那么甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?9.电视机降价200元.比原来廉价了2/11.现在这种电视机的价格是多少钱?原价是10。

一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?全程的11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.28.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.这个班的男生和女生各有多少人..29.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?31.五、六年级只有学生175人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二元一次方程组题型归纳(练习题答案):列二元一次方程组解决行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发 2.5 小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是 3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用速度。

14小时,逆流用20小时,求船在静水中的速度和水流解:设这艘轮船在静水中的速度x 千米/小时,则水流速度y 千米/小时,有:20( x-y )=280 14 (x+y ) =280解得:x=17,y=3角度考虑,小明家应选甲公司还是乙公司?请你说明理由解:即.乙两筈司毒周芫成工程的耳和y.妣Tr 故1咅10 (周)1冷二嗣即甲J 乙完両宝四工程至懦1调*卩毎周 又设需付甲,牛周的工钱劳别如五元「话元朋I 汽鼻2 :此时 +9& - 4.® L _ 4I nrate-灿书约开曲度考虑.选乙公司划算答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,:列二元一次方程组解决--- 工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱 5.2万元;若甲公司单独做 4周后,剩下的由乙公司来做,还需 9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的:列二元一次方程组解决――商品销售利润问题1200x+1000y=360000 (1380-1200)x+(1200-1000)y=60000解得 x=200, y=120 答:略小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了存整取,共反复存了 3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元? X+Y=4000X*2.25 % *3+Y*2.7 % *3=303.75李大叔去年承包了 10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利 乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了 x 、y 亩,依题意得: 2000兀,① x+y=10② 2000x+1500y=18000 解得:x=6, y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩某商场用36万元购进 A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:A 、B 两种商品各多少件;(注:获利=售价一进价)求该商场购进 解:设购进A 的数量为 x件、购进B 的数量为y 件,依据题意列方程组四:列二元一次方程组解决银行储蓄问题4000元钱.第一种,一年期整解:设x 为第一种存款的方式,丫第二种方式存款,则解得:X=1500, 丫=2500。

答:略。

现有190张铁皮做盒子,每张铁皮做 8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 解:设x 张做盒身,y 张做盒底,则有盒身8x 个,盒底 22y 个x+y=190 8x=22y/2解得 x=110, y=80 即110张做盒身,80张做盒底某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓 应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。

解: 设生产螺栓的工人为 x 人,生产螺母的工人为 x+y=60 28x=20y解得 x=25,y=35答:略一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面 50个,或做桌腿300条。

现有5 立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方 桌?能配多少张方桌?50X 300丫=1 4 ..........解得:丫=2, X=5-2=3 答:用3立方米做桌面,2立方米的木料做桌腿。

某城市现有人口 42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%求这个城市的城镇人口与农村人口。

五:列二元一次方程组解决――生产中的配套问题14个或螺母20个,解:设用X 立方米做桌面,用X+Y=5 .......丫立方米做桌腿六:列二元一次方程组解决――增长率问题解:设该城市现在的城镇人口有x 万人,农村人口有 y 万人。

x + y = 420.8%X X+ 1.1%x 丫= 42X 1%解这个方程组,得:x=14 , y=28答:该市现在的城镇人口有14万人,农村人口有28万人。

游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。

如果每位男孩看到蓝 色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多解:设:男有 X 人,女有 丫人,则X-仁丫 2( Y-1)=X解得:x=4,y=3 答:略一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?解:设这个两位数十位数是10x+y=5(x+y)+1由(1),( 2)得7x-2y=23 5x-4y=1解得:x=5y=6答:这个两位数是 56位上的数字比个位上的数字大 5,如果把十位上的数字与个位上的数字交换位置,那9,求这个两位数?解:设个位X ,X-Y=5七:列二元一次方程组解决和差倍分问题八:列二元一次方程组解决--- 数字问题1倍,你知道男孩与女孩各有多少人吗?x ,个位数是y ,则这个数是(1Ox+y )10x+y-3(x+y)=23(1)一个两位数,么得到的新两位数比原来的两位数的一半还少(10X+Y) +(10+X)=143X-Y=5 X+Y =13解得:X=9,丫=4 这个数就是49解:设原数百位是 x ,个位是y 那么 x+y=9中间数字为0,其余两个数位上数字之和是某三位数, 加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。

9,如果百位数字减1,个位数字x-y=1所以原数是504要配浓度是45%的盐水12千克,现有 10%勺盐水与85%的盐水,这两种盐水各需多少?解:设10%勺X 克,85%勺丫克X+Y=12X*10%+Y*85%=12*45%即:X+Y=12X+8.5Y=54解得:丫=5.6 答:略 一种35%勺新农药,如稀释到1.75%时,治虫最有效。

用多少千克浓度为才能配成1.75%的农药800千克?含14千克纯农药的 35%勺农药质量为14-35%=40千克由40千克农药稀释为800千克农药应加水的质量为 800-40=760 千克答:用40千克浓度为35%勺农药添加760千克的水,才能配成浓度为2(x+y)=48 x-3=y+3解得:x=15, y=9正方形的面积比矩形面积大两式相加得到 2x=10=>x=5=> y=5-1=4九:列二元一次方程组解决――浓度问题35%勺农药加水多少千克,解:800千克1.75%的农药中含纯农药的质量为800 X 1.75%=14 千克1.75%的农药800千克。

:列二元一次方程组解决 几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉 得到一个正方形,求正方形的面积比矩形面积大多少?3厘米,补到较短边上去,则解:设长方形的长宽分别为x 和y 厘米,贝y(cm2)(x-3 )( y+3) -xy= (15-3 ) ( 9+3) -15*9=144-135=9 答:略一块矩:宽2倍多1^m 它的周长是132m 则长和宽分别为多少?14213:mu一.56 142所以I竟和■^分别为二-T今年,小李的年龄是他爷爷的五分之 今年小李的年龄.解:设小李X 岁,爷爷 丫岁,则 5X=Y 3 (X+12) =丫+12两式联立解得: X=12Y=60所以小李今年12岁,爷爷今年 60岁。

50台电视机,已知厂家生产三种不同型号的电视机,出厂价 分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。

(1) 若商场同时购进其中两种不同型号的电视机 50台,用去9万元,请你研究一下商场的进货方案;(2) 若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使 获利最多,你选择哪种进货方案?xt Z " 50,1 r - 35, BOOS 沁=90000 解上 “51 事+ N -50, J X -87J 5.12100v+1500z -90000 I 胪二(in)购进乙、丙两种电视机解得 (不合实际,舍去)故商场进货方案为购进甲种25台和乙种25台;或购进甲种 35台和丙种15 台. (2)按方案(I ),获利 150 X 25+ 200 X 25= 8750(元); 按方案(n ),获利 150 X 35 + 250X 15= 9000(元). :列二元一次方程组解决――年龄问题.小李发现,12年之后,他的年龄变成爷爷的三分之 .试求出:列二元一次方程组解决――优化方案问题:某商场计划拨款9万元从厂家购进 解:(1)分情况计算:设购进甲种电视机 台,乙种电视机 y 台,丙种电视机 z 台.(I )购进甲、乙两种电视机X + - 50,唤“2叫=9000%得1円寰(n)购进甲、丙两种电视机•••选择购进甲种35台和丙种15台.。

相关文档
最新文档