安徽省滁州高二数学《231 数学归纳法》教案 新人教A版选修2-2

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省滁州二中高二数学《231 数学归纳法》教案新人教A版选修

2-2

【教学目标】

1、知识与技能:

(1)了解归纳法,理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤。(2)会证明简单的与正整数有关的命题。

2、过程与方法:

努力创设课堂愉悦的情境,使学生处于积极思考,大胆质疑的氛围,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会类比的数学思想。

3、情感、态度与价值观:

通过本节课的教学,使学生领悟数学思想和辩证唯物主义观点,激发学生学习热情,提高学生数学学习的兴趣,培养学生大胆猜想,小心求证的辩证思维素质,以及发现问题、提出问题的意见和数学交流能力。

【教学重点】

借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些简单的与正整数n(n取无限多个值)有关的数学命题。

【教学难点】

(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明。

(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。

【教学方法】运用类比启发探究的数学方法进行教学;

【教学手段】借助多媒体呈现多米诺骨牌等生活素材辅助课堂教学;

【教学程序】

第一阶段:创设问题情境,启动学生思维

情境1、法国数学家费马观察到:

归纳猜想:任何形如(n∈)的数都是质数,这就是著名的费马猜想。

半个世纪以后,数学家欧拉发现,第5个费马数不是质数,从而推翻了费马的猜想。——“不完全归纳有时是错误的”

(培养学生大胆猜想的意识和数学概括能力.概括能力是思维能力的核心.鲁宾斯坦指出:思维都是在概括中完成的.心理学认为“迁移就是概括”,这里知识、技能、思维方法、数学原理的迁移,我找的突破口就是学生的概括过程.)

情境2 、数列通过对前4项归纳,

猜想——可以让学生通过数列的知识加以验证——“不完全归纳有时是正确的”。

通过对上述两个情况的探究可以发现用“不完全归纳法”得到的结论不一定可靠。

为了寻求一种能够证明与正整数有关的数学问题的方法,从而引入本节课的新课内容一数学归纳法。

第二阶段:搜索生活实例,激发学习兴趣

1、“多米诺骨牌”游戏动画演示:

探究“多米诺骨牌”全部倒下的条件

引导学生思考并分析“多米诺骨牌”全部倒下的两个条件;

①第一块骨牌倒下;

②任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。

强调条件②的作用:是一种递推关系(第k块倒下,使第k+1块倒下)。

2、类比“多米诺骨牌”的原理来验证情境2中对于通项公式的猜想。

“多米诺骨牌”原理

①第一块骨牌倒下;②若第k块倒下,则使得第k+1块倒下

验证猜想↓↓

①验证猜想成立②如果时,猜想成立。即,则

当时,即时猜想成立

3、引导学生概括, 形成科学方法

证明一个与正整数有关的命题关键步骤如下:

(1) 证明当n取第一个值时结论正确;(归纳奠基)

(2) 假设当n=k (k∈,k≥) 时结论正确, 证明当n=k+1时结论也正确.(归纳递推)

完成这两个步骤后, 就可以断定命题对从开始的所有正整数n都正确.

这种证明方法叫做数学归纳法.

第三阶段:巩固认知结构,充实认知过程

例1.用数学归纳法证明

证明:(1)当n=1时,左边,右边,等式成立。

(2

)假设当n=k时,等式成立,即

则当n=k+1时,左边=

=右边

由(1)、(2)可知,n∈时,等式成立。

即当n=k+1时等式也成立。

相关文档
最新文档