份考试离散数学第一次作业精选文档
电大 离散数学 形成性考核册 作业(一)答案
离散数学形成性考核作业(一)集合论部分本课程形成性考核作业共4次,内容由中央电大确定、统一布置。
本次形考作业是第一次作业,大家要认真及时地完成集合论部分的形考作业,字迹工整,抄写题目,解答题有解答过程。
第1章 集合及其运算1.用列举法表示 “大于2而小于等于9的整数” 集合.解:{3,4,5,6,7,8,9}2.用描述法表示 “小于5的非负整数集合” 集合.解:}50{N n n n ∈<<且3.写出集合B ={1, {2, 3 }}的全部子集.解:集合B ={1, {2, 3 }}的全部子集为:}}.3,2{,1{}},3,2{{},1{,φ4.求集合A ={∅∅,{}}的幂集.解:A ={∅∅,{}}的幂集为,是子集的集合。
题是求集合的幂集,,应把子集列举出来;题是求集合的全部子集:注意43][}}}{,{}},{{},{,{2)(φφφφφ==A A P5.设集合A ={{a }, a },命题:{a }⊆P (A ) 是否正确,说明理由.解:{a }⊆P (A ) 不正确。
因为P (A )是A 的幂集,是由A 的子集组成的集合。
{a }既是 A 的元素又是A 的子集,应有{a }∈P (A ) 。
6.设A B C ==={,,},{,,},{,,},123135246求(1)A B ⋂ (2)A B C ⋃⋃(3)C - A (4)A B ⊕解:(1)A B ⋂={1,3}; (2)A B C ⋃⋃={1,2,3,4,5,6};(3)C -A ={4,6}; (4)A B ⊕={2,5}7.化简集合表示式:((A ⋃B )⋂B ) - A ⋃B .解:φ=⋃-=⋃-⋂⋃B A B B A B B A ))((8.设A , B , C 是三个任意集合,试证: A - (B ⋃C ) = (A - B ) - C .C B A C A B A A C A B A A C B A A C B A --=⋂-⋂-=⋂⋃⋂-=⋃⋂-=⋃-)()()())()(()()(解:9.填写集合{4, 9 }⊂{9, 10, 4}之间的关系.10.设集合A = {2, a , {3}, 4},那么下列命题中错误的是( A ).A .{a }∈AB .{ a , 4, {3}}⊆AC .{a }⊆AD .∅⊆A11.设B = { {a }, 3, 4, 2},那么下列命题中错误的是( C 、D ).A .{a }∈B B .{2, {a }, 3, 4}⊆BC .{a }⊆BD .{∅}⊆B第2章 关系与函数1.设集合A = {a , b },B = {1, 2, 3},C = {3, 4},求 A ⨯(B ⋂C ),(A ⨯B )⋂(A ⨯C ) ,并验证A ⨯(B ⋂C ) = (A ⨯B )⋂(A ⨯C ).)()(}3,,3,{}4,,3,,4,,3,{}3,,2,,1,,3,,2,,1,{)()(};3,,3,{}3{},{C A B A C B A b a b b a a b b b a a a C A B A b a b a C B A ⨯⋂⨯=⋂⨯〉〈〉〈=〉〈〉〈〉〈〉〈⋂〉〈〉〈〉〈〉〈〉〈〉〈=⨯⋂⨯〉〈〉〈=⨯=⋂⨯)(由上面可知,)(解:2.对任意三个集合A , B 和C ,若A ⨯B ⊆A ⨯C ,是否一定有B ⊆C ?为什么?。
最新国家开放大学电大《离散数学》形考任务1试题及答案
最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
离散数学第1次作业参考答案
甲对一半:
乙对一半:
丙对一半: ,
根据题意,只需要求出下列公式的成真赋值:
,
根据已知条件, , , , ,并且根据已知有三位同学入围,因此, , , 。
所以,归结为 的成真赋值,可得李强为生活委员,丁金为班长,王小红为学习委员。
5 (20分)在某班班委成员的选举中,已知王小红、李强、丁金生三位同学被选进了班委会。该班的甲,乙,丙三名同学预言如下:
甲说:王小红为班长,李强为生活委员。
乙说:丁金生为班长,王小红为生活委员。
丙说:李强为班长,王小红为学习委员。
班委分工名单公布后发现,甲、乙、丙三人都恰好猜对了一半。
问:王小红、李强、丁金生各任何职(用等值演算法求解)?
离散数学第1次作业注:交纸质版作业
学号:姓名:班级:总分:
1 (5分)将下列命题符号化。
小李只能从筐里拿一个苹果或者一个梨。
1解:
设p:小李拿一个苹果,q:小李拿一个梨
原命题符号化为:
2 (25分,每题5分)将下列命题符号化,并指出各命题的真值。(1Fra bibliotek只要 ,就有 。
(2)只有 ,才有 。
(3)除非 ,才有 。
3解:
(1)原子命题符号化:
q: 3是无理数;r: 是无理数;s: 6能被2整除,t: 6能被4整除.
(2)整个论述符号化为:
(3)真值:1
4 (共30分,每题15分)求下列公式的主析取范式和主合取范式,并判断公式的类型(用等值演算法)
(1) ;
(2)
4解:
(1)
主析取范式
国开电大《离散数学》形考任务1和4试题及答案
国开电大《离散数学》形考任务一参考答案单项选择题试题1若集合A的元素个数为10,则其幕集的元素个数为().选择一项:A.lB.100C.1024D.10正确答案是:1024试题2集合A={l,2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y> I x+y=lO且x,yA}, 则R 的性质为().选择一项:A反自反且传递的B对称的C自反的D传递且对称的正确答案是:对称的试题3设集合A={l,2, 3}, 8={3, 4, S}, C={S, 6, 7}, 则AU B -C =( ).一、公式翻译题(每小题4分,共16分)1.将语句 “我会英语, 并且会德语. “翻译成命题公式.答: 设P : 我会头语Q: 我会德语则命题公式为P/\Q 2.将语句 “ 如果今天是周三, 则昨天是周二. “翻译成命题公式.答: 设P: 今天是周三Q: 昨天是周二则命题公式为: PQ 3.将语句"C3次列车每天上午9点发车或者10点发车” 翻译成命题公式.答: 设P : C 3次列车每天卜午9点发车Q : C3次列车每天上午10点发车则命题公式为: -, C P 仁 Q )4.将语句 “小王是个学生, 小李是个职员, 而小张是个军人. “翻译成命题公式. 答: 设: P : 小王是个学生Q : 小李是个职员R : 小张是个军人则命题公式为: p/\Q /\R 二、计算题(每小题12 分, 共 84 分)1.设集合A={{a},a, b ), B ={a, {b)}, 试计算(1)AnB;(2)AU 8;(3)A-(AnB)答:C I )炉B ={a}(2)A u B ={ {a},a,b {b}}(3)A -(A n B)={ { a },a ,b }-{a}={a ,b}2设集合A={2,3, 6, 12, 24, 36}, B为A 的子集,其中B={6,12}, R是A 上的整除关系,试Cl)写出R 的关系表达式;(2)画出关系R 的哈斯图;(3)求出B 的最大元、极大元、最小上界.。
国家开放大学电大本科《离散数学》网络课形考任务1作业及答案
国家开放大学电大本科《离散数学》网络课形考任务1作业及答案形考任务1单项选择题题目1若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:A. 传递B. 对称C. 自反和传递D. 自反题目4设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).选择一项:A. {1, 2, 3, 5}B. {4, 5, 6, 7}C. {2, 3, 4, 5}D. {1, 2, 3, 4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A. 1B. 3C. 2D. 0题目6集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:A. 不是对称的B. 反自反C. 不是自反的D. 传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A. 3B. 2C. 8D. 6题目9设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:A. 6、2、6、2B. 无、2、无、2C. 8、1、6、1D. 8、2、8、2题目10设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().选择一项:A. f◦fB. g◦fC. g◦gD. f◦g判断题题目11设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:对错题目14设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>, <3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对错题目18设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )= {{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:对错题目20设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对错。
电大离散数学作业精编WORD版
电大离散数学作业精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 },A B{2,3}} ,A? B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<x∈>x,,,2{BAy那么R-1= {<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c> ,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x?A,y?A, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>, <2, 2>, <3, 3> 等元素.10.设A={1,2},B={a,b},C={3,4,5},从A到B的函数f ={<1, a>, <2,b>},从B到C的函数g={< a,4>, < b,3>},则Ran(g? f)= {3,4} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R 是自反的关系; (2) R 是对称的关系.解:(1)错误,R 不是自反关系,因为没有有序对<3,3>.(2)错误,R 不是对称关系,因为没有有序对<2,1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:错误, 即R 不是等价关系.因为等价关系要求有自反性x R x, 但<3, 3>不在R 中.3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在. 解:错误.集合A 的最大元不存在,a 是极大元.4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A ,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2) f ={<1, 6>, <3, 4>, <2, 2>};(3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1) f 不能构成函数.因为A 中的元素3在f 中没有出现.(2) f 不能构成函数. ? ? ? ? a b c d 图一 ?? ? g e fh ?因为A中的元素4在f中没有出现.(3) f可以构成函数.因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.三、计算题1.设}4=,3,2,1{=E,求:5,4AB=C=5,2},,2{},,1{,1{4},(1) (A?B)?~C; (2) (A?B)-(B?A) (3) P(A)-P(C); (4) A?B.解:(1)因为A∩B={1,4}∩{1,2,5}={1},~C={1,2,3,4,5}-{2,4}={1,3,5}所以 (A∩B ) ?~C={1}?{1,3,5}={1,3,5}(2)(A?B)-(B?A)= {1,2,4,5}-{1}={2,4,5}(3)因为P(A)={?,{1}, {4}, {1,4}}P(C)={?,{2},{4},{2,4}}所以 P(A)-P(C)={ ?,{ 1},{ 4},{ 1,4}}-{?,{ 2},{ 4},{2,4 }}(4) 因为 A?B={ 1,2,4,5}, A?B={ 1}所以 A?B=A?B-A?B={1,2,4,5}-{1}={2,4,5}2.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(A?B);(2)(A∩B);(3)A×B.解:(1)A?B ={{1},{2}}(2)A∩B ={1,2}(3)A×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,<2, {1,2}>}3.设A={1,2,3,4,5},R={<x,y>|x?A,y?A且x+y?4},S={<x,y>|x?A,y?A且x+y<0},试求R,S,R?S,S?R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}, \R-1={<1,1>,<2,1>,<3,1>,<1,2 >,<2,2>,<1, 3>}S=φ, S-1 =φr(S)={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)= {<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}R?S=φS?R=φ4.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1) 写出关系R的表示式; (2 )画出关系R的哈斯图;(3) 求出集合B 的最大元、最小元.解:R={<1,1>,<1,2>,<1,3>,<1,4,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2)关系R 的哈斯图如图(3)集合B 没有最大元,最小元是:2 四、证明题1.试证明集合等式:A ? (B ?C )=(A ?B ) ? (A ?C ).证明:设,若x ∈A ? (B ?C ),则x ∈A 或x ∈B ?C ,即 x ∈A 或x ∈B 且 x ∈A 或x ∈C .即x ∈A ?B 且 x ∈A ?C ,即 x ∈T =(A ?B ) ? (A ?C ),所以A ? (B ?C )? (A ?B ) ? (A ?C ).反之,若x ∈(A ?B ) ? (A ?C ),则x ∈A ?B 且 x ∈A ?C ,即x ∈A 或x ∈B 且 x ∈A 或x ∈C ,即x ∈A 或x ∈B ?C ,即x ∈A ? (B ?C ),3 7所以(A?B) ? (A?C)? A? (B?C).因此.A? (B?C)=(A?B) ? (A?C).2.试证明集合等式A? (B?C)=(A?B) ? (A?C).证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x∈A且x∈B或 x∈A且x∈C,也即x∈A∩B或x∈A∩C,即x∈T,所以S?T.反之,若x∈T,则x∈A∩B或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以T?S.因此T=S.3.对任意三个集合A, B和C,试证明:若A B = A C,且A,则B = C.证明:设x?A,y?B,则<x,y>?A?B,因为A?B = A?C,故<x,y>? A?C,则有y?C,所以B ? C.设x?A,z?C,则<x,z>? A?C,因为A?B = A?C,故<x,z>?A?B,则有z?B,所以C?B.故得B=C.4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:R1和R2是自反的,?x ?A,<x, x> ? R1,<x, x> ?R2,则<x, x> ?R∩R2,1所以R1∩R2是自反的.。
离散数学第一次作业
题号:1 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2设P:天下大雨,Q:他乘公共汽车上班。
命题“只有天下雨,他才乘公共汽车上班”符号化为()•A、P→Q•B、Q→P•C、P<->Q•D、┑P→Q。
学员答案:b说明:本题得分:2题号:2 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2设P:我将去镇上,Q:我有时间,命题“我将去镇上,仅当我有时间”,符号化为()•A、P→Q•B、Q→P•C、P<->Q•D、┑P→┑Q。
学员答案:a说明:本题得分:2题号:3 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2令P:今天下雪了,Q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为()•A、P→┑Q•B、P∨┑Q•C、P∧Q•D、P∧┑Q学员答案:d说明:本题得分:2题号:4 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2设P:天下钉子,Q:我去B城。
命题“除非天下钉子,否则我去B城”符号化为()•A、P→Q•B、Q→P•C、┑P→Q•D、Q→┑P。
学员答案:c说明:本题得分:2题号:5 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2设P:我们划船,Q:我们跳舞,命题“我们不能计划船又跳舞”符号化为()•A、P∨Q•B、┑(P∧Q)•C、┑P∧┑Q•D、┑P∧Q。
学员答案:b说明:本题得分:2题号:6 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2设A,B为集合,A∩B=A∪B成立的充分必要条件是()•A、A=B=φ•B、A=φ•C、B=φ•D、A=B学员答案:d说明:本题得分:2题号:7 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2一个公式在等价意义下,下面哪一个写法是唯一的()•A、析取范式•B、合取范式•C、主析取范式•D、以上答案都不对。
学员答案:c说明:本题得分:2题号:8 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2 设集合A={1,a},则A的幂集P(A)=()•A、{{1},{a}}•B、{φ,{1],{a}•C、{φ,{1],{a},{1,a}•D、{{1],{a},{1,a}学员答案:c说明:本题得分:2题号:9 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2 设A=φ,B={φ,{φ}},则B-A是()•A、{{φ}}•B、{φ}•C、{φ,{φ}}•D、φ学员答案:c说明:本题得分:2题号:10 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2 下列命题公式是可满足(可真可假)公式的是()•A、P∧┑P•B、P∨┑P•C、(Q→P)∧(┑P∧Q)•D、(P∧Q)∨(┑P∧R)学员答案:d说明:本题得分:2题号:11 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2 设A={a,b},则A的幂集P(A)为()•A、{a,b}•B、{φ,{a},{b}}•C、{φ,{a}}•D、{φ,{a},{b},{a,b}}学员答案:d说明:本题得分:2题号:12 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2 下列命题与B-A为同一集合的是()•A、(A的补集)∪B•B、(A∪B)∩B•C、B∩(A的补集)•D、((A∩B)的补集)∪B学员答案:c说明:本题得分:2题号:13 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2 下面哪一组命题公式不是等价的()•A、(P→Q)∧(Q→P),P<->Q•B、┑(P<->Q),(P∧┑Q)∨(┑P∧Q)•C、P→(Q∨R),┑P∧(Q∨R)•D、P→(Q∨R),(P∧┑Q)→R学员答案:c说明:本题得分:2题号:14 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2 下列命题公式是主析取范式的是()•A、P∧(P→Q)→Q)•B、P<->Q•C、P∨Q•D、(P∧Q)∨(P∧┑Q)学员答案:d说明:本题得分:2题号:15 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2 下面哪个联接词运算不可交换()•A、∧•B、→•C、∨•D、<->学员答案:b说明:本题得分:2题号:16 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:2 下列语句,哪一个是真命题().•A、我正在说谎•B、如果1+1=0,那么雪是黑的•C、9+5>18•D、存在最大的质数。
离散数学第一次作业题及答案.doc
第1次作业一、单项选择题(本大题共40分,共20小题,每小题2分)1.表达式FA (PV (QA-i S))的对偶式为 ___________ oA.FV(PA(QV-i S))B.T-(PV(QVn S))C.TV(PA(QV-| S))D.TV(PA(QAS))2.公式VxF(x) —3xG(x),下面给出的前束范式等价式中,哪一个是对的()OA.3x(F(x) V^G(x))B.VxF (x) VG(x)C.3x(-F(x) VG(x))Vx (「F(x) VG(X))3.设两个群<乙+>和V,•>,,其中Z为整数集,Z x= {•••,10-3/10~2,10_1,10°,101,102,103,'-}, + 为普通加法,为普通乘法。
设(p: Z-»Z\屮(n)-io”。
则V乙+>和<Z-,•> ()A.是同构B.是单一同态C.是满同态D.不是同态4.不是命题的是()。
A.5大于3B.11是质数C.他是优秀学牛k是太阳5.对任意的公式P、Q、R,若P=>Q、Q=>R,则有A.R=>PB.P=>RC.Q=>PD.RnQ6.下列代数系统中, _________ 是群。
A.S={0, 1,3, 5}, *是模7 加法B.S=Q (有理数集),*是普通乘法C.S=Z (整数集合),*是普通减法D.S={1,3, 4, 5, 9}, *是模11 乘法7.P:今天下雨。
Q:明天下雨。
上述命题的合取为____________ o (符号表示)A.-1 PA-i QB.-I PVQC.n PV-i QD.PAQ&A.B.C.6D.39.他虽聪明单不用功。
设P:他聪明。
Q:他用功。
则命题符号化为_______ oA.PA-i QB.-I PVQC.n PVQD.QAP10.设G为至少有三个结点的连通平面图,则G中必有一个结点u,使得deg(u)<5B.deg(u)=5C.deg(u)>5D.deg(u) W511.下列关系中哪些能构成函数?()A.{ <x, y) |x, ye N, x+y<10}B.{ <x, y) |x, ye N, x+y二10}C.{ <x, y) |x, ye R, |x|=y}D.{ <x,y) |x,yG R, x=|y|}12.联结词一可以转化为由「和V表示,P-Qon PAn QB.-i PVQC.-1 PV-i QD.PAQ13.连通图G有6个顶点9条边,从G中删去___________ 条边才可能得到G的一•棵生成树T。
《离散数学》第1次作业
《离散数学》第1次作业一、填空题1. 若n B m A ==||,||,则=⨯||B A (mn ),A 到B 的2元关系共有(mn 2)个,A 上的2元关系共有(22m )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则(g )是单射,(g )是满射,(g )是双射.3. 下列5个命题公式中,是永真式的有(1,2,4)(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元(8),4的补元(不存在),6的补元(不存在).5. 设G 是(7, 15)简单平面图,则G 一定是(连通)图,且其每个面恰由(3)条边围成,G 的面数为(10).二、单选题1. 设A , B , C 是集合,则下述论断正确的是( C ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( A ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是(B ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为(A ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为(D ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.证 (1) 显然,B A A B A ⊆⇔=⋂.(2)可以证明:B A A B B A =⇔-=-.(⇐)当A = B 时,A – B = ∅且B – A = ∅, 于是A B B A -=-.(⇒)假定A B B A -=-,先证明B A ⊆: 对于任意A x ∈,若B x ∉,则B A x -∈,进而A B x -∈,根据差运算定义知B x ∈,与B x ∉矛盾. 所以B x ∈,因此B A ⊆. 同理可证A B ⊆. 故A = B .(3)容易证明:=⇔=-⋃-B A A B B A )()(∅.(⇐)显然.(⇒)(反证)若B ≠ ∅,则存在B x ∈. 分两种情况讨论:若A x ∉,则A B x -∈,由于A A B B A =-⋃-)()(,于是A x ∈,矛盾;若A x ∈,则B A x -∉且A B x -∉, 进而A x ∉,矛盾. 证毕.四、设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 证 1. 对于任意x ∈ R , 因为03=-x x 是整数,所以(x , x ) ∈ S ,即S 是R 上的自反关系. 2. 对于任意x , y ∈ R , 若(x , y ) ∈ S ,则3y x -是整数,而33y x x y --=-也是整数,于是(y , x ) ∈ S .3. 对于任意x , y , z ∈ R , 若(x , y ) ∈ S 且(y , z ) ∈ S ,则3y x -是整数且3z y -是整数. 由于333z y y x z x -+-=-是整数,由此得出(x , z ) ∈ S . 综上所述,知S 是R 上的等价关系.五、求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.解 )))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃= )))()(()(()(x xD y yC y B x xA ∀∨⌝∃⌝→→∃= )))()(()(()(x xD y yC y B x xA ∀∨⌝∃⌝∨⌝→∃= )))()(()(()(x xD y yC y B x xA ∀∨⌝∃⌝∨⌝∨⌝∃= )))()(()(()(x xD y yC y B x xA ⌝∀∧∃∨⌝∨⌝∃= )))()(()(()(x D x y yC y B x A x ⌝∃∧∃∨⌝∨⌝∀= )))()(()(()(z D z y yC t B x A x ⌝∃∧∃∨⌝∨⌝∀= ))))()(()(()((z D z y yC t B x A x ⌝∃∧∃∨⌝∨⌝∀= ))))()(()(()((z D z y C t B x A y x ⌝∃∧∨⌝∨⌝∃∀= )))()(()()((z D y C t B x A z y x ⌝∧∨⌝∨⌝∃∃∀.六、若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.证 用n 个节点代表n 个人,两个人是朋友则在相应的两个节点之间连一条无向边,于是得到一个n 阶图, 其中每个节点的度数均为3.由于每个节点度数为3, 根据握手定理知m n v Vv 23)deg(==∑∈, 其中m 为G 的边数. 于是n 必为偶数. 证毕.。
最新电大离散数学形考作业任务0107网考试题及答案
最新电大《离散数学》形考作业任务01-07网考试题及答案100%通过考试说明:《离散数学》形考共有7个任务。
任务3、任务五、任务7是主观题,任务二、任务4、任务6是客观题,任务二、任务4、任务6需在考试中多次抽取试卷,直到显现02任务_0001或02任务_0009、04任务_0001或04任务_0009、06任务_0001或06任务_0009试卷,就能够够依照该套试卷答案答题。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他教学考一体化答案,敬请查看。
01任务一、单项选择题(共 8 道试题,共 80 分。
)1. 本课程的教学内容分为三个单元,其中第三单元的名称是().A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑2. 本课程的教学内容按知识点将各类学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是().A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系3. 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有()讲.A. 18B. 20C. 19D. 174. 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是().A. 集合恒等式与等价关系的判定B. 图论部份书面作业C. 集合论部份书面作业D. 网上学习问答5. 课程学习平台左侧第1个版块名称是:().A. 课程导学B. 课程公告C. 课程信息D. 利用帮忙6. 课程学习平台右边第5个版块名称是:().A. 典型例题B. 视频课堂C. VOD点播D. 常见问题7. “教学活动资料”版块是课程学习平台右边的第()个版块.A. 6B. 7C. 8D. 98. 课程学习平台中“课程温习”版块下,放有本课程历年考试试卷的栏目名称是:().A. 温习指导B. 视频C. 课件D. 自测。
离散数学第一次作业——参考答案
离散数学第一次作业——参考答案(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)14.在自然推理系统P中构造下面推理的证明:(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:②t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(t→q)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理○11p∧q ⑧⑩合取P59. 18. 在自然推理系统P中构造下面推理证明(1)如果今天是星期六,我们就要到颐和园或圆明园去玩,如果颐和园游人太多,我们就不去颐和园玩,今天是周末颐和园游人太多,所以我们去圆明园玩。
证明:设p:今天是星期六,q:我们到颐和园玩,r:我们到圆明园玩,s:颐和园游人太多前提:p → (q∨r), s →⌝q ,p ,s结论:r推理:①s →⌝q 前提引入②s 前提引入③⌝q ①②假言推理④ p 前提引入⑤ p → (q∨r) 前提引入⑥ q∨r ④⑤假言推理⑦ r ③⑥析取三段论P86. 22. 在自然推理系统N中,构造下列推理的证明。
£(1)偶数都能被2整除。
6是偶数。
所以6能被2整除。
设:F(x):x为偶数,G(x):x能被2整除,a:6前提: x(F(x) →G(x)), F(a)结论:G(a)证明:①任意x(F(x)—>G(x))前提引入②F(a)—>G(a)①全称量词消去规则③F(a)前提引入④G(a)假言推理。
(完整版)《离散数学》试题及答案解析,推荐文档
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
份考试离散数学第一次作业
2014年9月份考试离散数学第一次作业一、单项选择题(本大题共42分,共 21 小题,每小题 2 分)1. 下列语句中是命题的只有()A. 在实数范围内,x2+y2>=0B. 在实数范围内,x+yC. 请回答这个问题D. 真正有学问的人怎么回不关心政治呢?2. 设R为实数集,R+={x|x∈R∧x>0},*是数的乘法运算,<R+,*>是一个群,则下列集合关于数的乘法运算构成该群的子群的是()。
A. {R+中的有理数}B. {R+中的无理数}C. {R+中的自然数}D. {1,2,3}3. 下列语句中不是命题的只有()。
A. 鸡毛也能飞上天? B. 人的死或重于泰山,或轻于鸿毛。
C. 不经一事,不长一智。
D. 牙好,胃口就好。
4. 下述是命题且真值为真的是()A. 下个月8日是晴天B. 他真年轻啊!C. 长方形面积等于长乘以宽D. 每个月至少有29天5. 2.设G是n个顶点的无向简单图,则下列说法不正确的是()A. 若G是树,则其边数等于n-1B. 若G是欧拉图,则G中必有割边C. 若G中有欧拉路,则G是连通图,且有零个或两个奇度数顶点D. 若G中任意一对顶点的度数之和大于等于n-1,则G中有汉密尔顿路6. .以下命题公式中,为永假式的是()A. .p→(p∨q∨r)B. (p→┐p)→┐pC. ┐(q→q)∧pD. ┐(q∨┐p)→(p∧┐p)7. 设A={Φ},B=P(P(A)),以下不正确的式子是()。
A. {{Φ},{{Φ}},{Φ,{Φ}}}包含于BB. {{{Φ}}}包含于BC. {{Φ,{Φ}}}包含于BD. {{Φ},{{Φ,{Φ}}}}包含于B8. 无向图结点之间的连通性,是结点集之间的一个()A. 连通关系B. 偏序关系C. 等价关系D. 函数关系9. 设R为实数集,函数f:R→R,f(x)=2x,则f是()A. 满射函数B. 入射函数C. 双射函数D. 非入射非满射10. 设T是具有n个结点的完全二叉树,则T的叶子数是()A. n-1B. 2n-1C. (n+1)/2D. (n+2)/311. 设A={1,2,3}以下集合中哪个是A集合的划分( )A. {{1,2},{2,3}}B. {{1},{1,2},{1,3}}C. {{1},{1,2,3}}D. {{1},{2,3}}12. 令R(x):x是实数,Q(x):x是有理数。
2016年4月考试离散数学第一次作业
2013年4月考试离散数学第一次作业一、单项选择题(本大题共50分,共 25 小题,每小题 2 分)1. 下列关系中为等价关系的是()A. 朋友关系B. 父子关系C. 住在同一街区的邻居关系D. 买卖关系2. 集合A上的相容关系所得关系矩阵M(R)的对角线元素()。
A. 全为1B. 全为0C. 有的是1,有的是0D. 有的是23. 完全图的结点数目为()时,有欧拉回路。
A. 3B. 为奇数C. 为偶数D. 104. 下面哪一个图是树()?A.B.C.D.5. 任何无向图中结点间的连通关系是()A. 偏序关系B. 等价关系C. 相容关系D. 拟序关系6. 若集合A的基数为7,则其幂集的基数|P(A)|是多少?()A. 107B. 70C. 27D. 177. 若R和S是集合A上的两个关系,则下述结论正确的是()A. 若R和S是自反的,则RoS是自反的。
B. 若R和S是对称的,则RoS是对称的。
C. 若R和S是反自反对称的,则RoS是反自反的。
D. 若R和S是传递的,则RoS是传递的。
8. 设A是整数集,下列说法正确的是()。
A. B.C. D.9. 设P:我去踢球,Q:明天下雨,命题“如果我踢球,当且仅当明天不下雨”的符号化表示为()。
A. P→QB. Q→PC.D. P Q10. 以下哪个不是最小联结词组?()A. { ∧,⎤}B. { ∨,⎤}C. { ∧,∨,→}D. {⎤,→ }11. 集合A={1,2,… ,10}上的关系R={|x+y=10,x∈A,y∈A},则R的性质为()。
A. 自反的B. 对称的C. 传递的、对称的D. 反自反的、传递的12. 下面哪一个命题是命题“2是偶数或-3是负数”的否定?()A. 2是偶数或-3不是负数B. 2是奇数或-3不是负数C. 2不是偶数且-3不是负数D. 2是奇数且-3不是负数13. 对于下面某个偏序集的哈斯图,其中集合{a,b,c,e}的最大元是()A. cB.dC.eD.无14. 下述集合对所给的二元运算封闭的是()。
(完整版)《离散数学》试题及答案解析,推荐文档
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设 G、H 是一阶逻辑公式,P 是一个谓词,G=xP(x), H=xP(x),则一阶逻辑公式
(A)下界 (B)上界 (C)最小上界
(D)以上答案都不对
6
4 下列语句中,( )是命题。
5
(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗?
3
4
2
5 设 I 是如下一个解释:D={a,b}, P(a, a) P(a, b) P(b, a) P(b, b)
1
1010
AB=_________________________;A-B= _____________________ . 7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________. 8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
(1)
1
4
2
3
1 0 0 0
(2)
MR
1 1
1 1
0 1
0 0
1 1 1 1
3. (1)•=((x))=(x)+3=2x+3=2x+3.
离散数学形考任务1_7试题和答案完整版
2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元.其中第三单元的名称是( A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合.其中第2章关系与函数中的第3个知识点的名称是( D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中.VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业.第3次形成性考核作业的名称是(C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下.放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划.学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式.以及自己的学习安排.字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学.使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理.掌握计算机中常用的科学论证方法.为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中.培养自学能力、抽象思维能力和逻辑推理能力.解决实际问题的能力.以提高专业理论水平。
离散数学 ( 第1次 )
第1次作业一、单项选择题〔本大题共30分,共 15 小题,每一小题 2 分〕1.图G所示平面图deg(R3)为A.4B.5C.6D.32. 在完全m叉树中,假如树叶数为t,分枝点数为i,如此有〔〕。
A.(m-1)i<t-1B.(m-1)i>t-1C.(m-1)i=t-1D.(m-1)i≤t-13.命题a〕:如果天下雨,我不去。
写出命题a〕的逆换式。
A.如果我不去,天下雨。
B.如果我去,天下雨。
C.如果天下雨,我去。
D.如果天不下雨,我去。
4. 设无向图中有6条边,3度与5度顶点各1个,其余顶点都是2度点,问该图有多少个顶点〔〕A.5B.4C.2D.65. 假设A={a,b,c,d},考虑子集S={{a,b},{b,c},{d}},如此如下选项正确的答案是〔〕。
A.S是A的覆盖B.S是A的划分C.S既不是划分也不是覆盖D.以上选项都不正确6. 没有不犯错误的人。
M(x):x为人。
F〔x〕:x犯错误。
如此命题可表示为〔〕。
A.(∀x)(M(x)→F(x)B.(∃x)(M(x)⋀F(x)C.〔∀x〕(M(x)⋀F(x))D.(∃x)(M(x)→F(x)7. 命题逻辑演绎的CP规如此为〔〕A.在推演过程中可随便使用前提B.在推演过程中可随便使用前面演绎出的某些公式的逻辑结果C.如果要演绎出的公式为B→C形式,那么将B作为前提,演绎出CD.设∅(A)是含公式A的命题公式,B<=>A,如此可以用B替换∅(A)中的A8. 设G是有6个结点的完全图,从G中删去〔〕条边,如此得到树。
A.6B.9C.10D.9. 设A、B两个集合,当〔〕时A-B=B。
A.A=BB.A⊆BC.B⊆AD.A=B=ϕ10. 设U={1,2,3,4,5},A={2,4},B={4,3,5},C={2,5,3},确定集合(A-C)-B = 〔〕。
A.{1,4}B.{2,3,4,5}C.{4}D.ϕ11. 如下图的最小生成树的权为〔〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
份考试离散数学第一次作业精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2014年9月份考试离散数学第一次作业一、单项选择题(本大题共42分,共 21 小题,每小题 2 分)1. 下列语句中是命题的只有()A. 在实数范围内,x2+y2>=0B. 在实数范围内,x+yC. 请回答这个问题D. 真正有学问的人怎么回不关心政治呢?2. 设R为实数集,R+={x|x∈R∧x>0},*是数的乘法运算,<R+,*>是一个群,则下列集合关于数的乘法运算构成该群的子群的是()。
A. {R+中的有理数}B. {R+中的无理数}C. {R+中的自然数}D. {1,2,3}3. 下列语句中不是命题的只有()。
A. 鸡毛也能飞上天? B. 人的死或重于泰山,或轻于鸿毛。
C. 不经一事,不长一智。
D. 牙好,胃口就好。
4. 下述是命题且真值为真的是()A. 下个月8日是晴天B. 他真年轻啊!C. 长方形面积等于长乘以宽D. 每个月至少有29天5. 2.设G是n个顶点的无向简单图,则下列说法不正确的是()A. 若G是树,则其边数等于n-1B. 若G是欧拉图,则G中必有割边C. 若G中有欧拉路,则G是连通图,且有零个或两个奇度数顶点D. 若G中任意一对顶点的度数之和大于等于n-1,则G中有汉密尔顿路6. .以下命题公式中,为永假式的是()A. .p→(p∨q∨r)B. (p→┐p)→┐pC. ┐(q→q)∧pD. ┐(q∨┐p)→(p∧┐p)7. 设A={Φ},B=P(P(A)),以下不正确的式子是()。
A. {{Φ},{{Φ}},{Φ,{Φ}}}包含于BB. {{{Φ}}}包含于BC. {{Φ,{Φ}}}包含于BD. {{Φ},{{Φ,{Φ}}}}包含于B8. 无向图结点之间的连通性,是结点集之间的一个()A. 连通关系B. 偏序关系C. 等价关系D. 函数关系9. 设R为实数集,函数f:R→R,f(x)=2x,则f是()A. 满射函数B. 入射函数C. 双射函数D. 非入射非满射10. 设T是具有n个结点的完全二叉树,则T的叶子数是()A. n-1B. 2n-1C. (n+1)/2D. (n+2)/311. 设A={1,2,3}以下集合中哪个是A集合的划分( )A. {{1,2},{2,3}}B. {{1},{1,2},{1,3}}C. {{1},{1,2,3}}D. {{1},{2,3}}12. 令R(x):x是实数,Q(x):x是有理数。
命题“并非每个实数都是有理数”,其符号化为( )。
A. ? ? x(R(x) ? Q(x))B. ? x( ? R(x) ? Q(x))C. ? x(R(x) ? Q(x)) ? ? ? x(R(x) ? Q(x))D. ? x(R(x) ? Q(x)) ? ? ? x(R(x) ? Q(x))E. ? x(R(x) ? Q(x)) ? ? ? x(R(x) ? Q(x)13. 下述*运算为实数集上的运算,其中可交换且可结合的运算是()。
A. a*b=a+2b B. a*b=a+b-ab C. a*b=a D. a*b=|a+b|14. 若G为(n,m)连通图,要确定G的一棵生成树必删掉G的()条边。
A. m-n+1B. m-nC. mD. 以上均不对15. Z是整数集合,函数f定义为:Z→Z,f(x)=|x|-2x,则f是()。
A. 入射B. 满射C. 双射D. 既不是入射也不是满射16. 若集合A={1,2,3,4},B={x,y,z},则以下哪个是A→B的函数关系?()A. {,,,}B. {,,}C. {,,,,}D. 以上都不是17. 设某二叉树的高度为k,则该树的最大结点数为()。
A. 2k+1B. 2k+1+1C. 2k-1D. 2k+1-118. 下列各图是平面图的是()。
A. B.C. D.19. 以下叙述正确的是()A. {b, c, a, aa, ac, abb}是前缀码。
B. 在有界格中,若有一个元素有补元,则补元必唯一。
C. 在有向图中,结点间的可达关系是等价关系。
D. 连通图的最小生成树不一定是唯一的。
20. 若一个平面图的边数为8,则该图中所有面的次数之和为()A. 10B. 4C. 16D. 2421. 在实数集合R上,下列定义的运算中不可结合的是()。
A. a*b=a+b+2ab B. a*b=a+b C. a*b=a+b+ab D. a*b=a-b二、多项选择题(本大题共18分,共 6 小题,每小题 3 分)1. 以下命题哪几个是真的?()A. 地球是一个覆盖了大气层的蓝色星球。
B. x+5>6C. 如果雪是黑的,当且仅当桌子会走路。
D. 高校应该以教书育人为本。
2. 下图中是连通图的是()A.B.C.D.3. 以下关系中哪些是 A ? B 的函数,其中 A={a,b,c} B={1,2,3}( )A. {<a,1>,<a,2>,<b,3>}B. {<a,3>,<b,1>,<c,1>}C. {<a,3>,<b,1>,<c,2>}D. {<b,3>,<a,2>,<b,1>4. 设Z是整数集合,+是一般加法,则下述函数中哪些是群(Z,+)的自同态?()A. f(x)=2xB. f(x)=1000xC. f(x)=|x|D. f(x)=05. 以下表达方式正确的是:()A. 小明打开箱子并拿出一件衣服。
设P:小明打开箱子; Q:小明拿出一件衣服。
原命题表示为:P QB. 如果骑自行车,我就没法按时到校。
设P:我骑自行车; Q:我按时到校;原命题可表示为:P→QC. 我打开门,走了进来。
设M:我打开门; N:我走进来。
原命题为:M→ND. 小红和小华是好朋友。
设H:小红是好朋友; J:小华是好朋友;原命题为:H J6. 设集合A={1,2,3,…10},下面定义的哪种运算关于集合A是封闭的()A. x*y=max{x,y}B. x*y=min{x,y}C. x*y=GCD(x,y) 即x,y的最大公约数D. x*y=LCM(x,y) 即x,y的最小公倍数三、判断题(本大题共40分,共 20 小题,每小题 2 分)1. 关系是对称的,当且仅当关系矩阵中的主对角线上的元素都为1。
()2. 连通图的最小生成树不一定是唯一的。
()3. 设人的集合A上的朋友关系为R,则R是A上的相容关系()4. 同一谓词公式,指定不同的论域,其真值不一定相同。
()5. 任何一棵非平凡树至少有两片树叶()6. 设(G,*)是一个半群,若存在幺元且每个元素都有右幺元,则(G,*)是群。
()7. 设G={2m*3n|m,n∈Z},*是普通乘法,则(G,*)不是群()8. {b, c, a, aa, ac, abb}是前缀码。
()9. 自然数集合N到N上的函数:f(n)=n+1是入射但不是满射函数。
()10. 欧拉定理的具体内容是:若一个连通图存在0个或2个奇数度结点,则该图中存在欧拉路。
()11. 设A={a,{a}},则{a}?P(A) ()12. 一个不是自反的关系,一定是反自反的。
()13. 设(N,*)是代数系统,其中N是自然数集合,*为二元运算,定义为:对任何的a,b∈N, 有a*b=a ,则*是可结合的。
()14. 判断一个图是否可以一笔画的实质就是寻找该图的一个欧拉路。
()15. 语句“x+y=4”是个命题。
()16. 任何合式公式的主析取范式都是唯一的(如果存在的话)()。
17. R是A上的二元关系,当R是反自反关系时,R的传递闭包也是反自反关系。
()18. 交换群必是循环群。
()19. 设S={0,1},S是关于普通的加法和乘法运算,则S上的加法与乘法运算满足封闭性、结合性。
()20. 设e为无向连通图G中的一条边,e在G的任何生成树中,则e是桥。
()答案:一、单项选择题(42分,共 21 题,每小题 2 分)1. A2. A3. A4. C5. B6. C7. D8. C9. B 10. C 11. D 12. A 13. B 14.A 15. A 16. A 17. D 18. A 19. D 20. C 21. D二、多项选择题(18分,共 6 题,每小题 3 分)1. AC2. A3. BC4. ABD5. BC6. ABC三、判断题(40分,共 20 题,每小题 2 分)1. ×2. √3. √4. √5. √6. √7. ×8. ×9. √ 10. × 11. × 12. × 13. √ 14. √ 15. × 16. √ 17. × 18. × 19. × 20. √。