数学理科试题参考答案及评分标准
高考理科数学试题及答案2024
高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
理科数学参考答案及评分标准
理科数学参考答案及评分标准参考答案1.C 解析:{}|22A x x x =<->或,则{}|22R C A x x =-≤≤,又{}|1B x x =>,∴()R C A B =I{}|12x x <≤,故选C.2.B解析:22|1||1(1)(1)||23|z z i i i ++=++++=+=,故选B.3.B 解析:等差数列{}n a 中,由11212()1802a a +=,得11230a a +=,∴5830a a +=,又512a =,∴818a =,故选B.4.D 解析:若//a b ,但a ⊂α,显然//a α不成立;若//a α,且b α⊂,则//a b 或a 与b 异面,∴“//a b ”是“//a α”的既不充分也不必要条件,故选D.5.A 解析:由θ的终边上一点P 的坐标为(1,2),得sin θ=,cos θ=,∴sin cos sin 2cos θθθθ⋅=+= A. 6.C 解析:“从4名男生和3名女生 选出的3人中至少有1名女生”的不同的选法共337431C C -=种,故选C.7.C 解析:设双曲线的方程为223x y -=λ,代入点的坐标,得6λ=-,∴该双曲线方程为2236x y -=-即22162y x -=,故选C.8.D 解析:()f x 的定义域为{}|1x x ≠±,且11()ln ||ln ||()11x xf x f x x x-+-==-=-+-,所以()f x 为奇函数,排除选项B ,又1x >时,12()ln ln(1)11x f x x x +==+--单调递减,且(3)ln 21f =<,所以排除选项A 及选项C ,故选D.9.B 解析:结合()2sin()4f x x πω=-的图象,若02x π≤≤时,()f x的值域为[2],则342322ππωππω⎧≤⎪⎪⎨⎪≥⎪⎩,∴332ω≤≤,故选B.10.D 解析:记AB ,AC 边的中点分别为点M ,N ,则OM AB ⊥,ON AC ⊥,则()AO BC AO AC AB ⋅=⋅-u u u r u u u r u u u r u r u u u r||||cos ||||cos ||||||||AO AC AO AB AO AC OAC AO AB OAB AC AN AB AM =⋅-⋅=∠-∠=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u r2211||||1022AC AB =-=u u ur u u u r ,故选D.11.D 解析:当[0,1]x ∈时,()sin f x x =π的图象关于直线12x =对称,结合(1)2()f x f x +=可得()f x 在 其它区间中的图象及对称轴,如图.由()0g x =,得()f x k =,考虑直线y k =与()f x 在区间[1,4]-内的图象的交点情况,结合四个选项中k 的取值范围,当1(0,)2k ∈时,所有的十个交点的横坐标之和为1135715-++++=;当(1,2)k ∈时,所有的六个交点的横坐标之和为135715+++=;当(4,8)k ∈时,所有的两个交点的横坐标之和为715≠. 综上,1(0,)(1,2)2k ∈U 时,函数()g x 在区间[1,4]-12.C 解析:记点P 在底面ABCD 内的射影为点H ,则PH⊥底面ABCD ,且H 为棱AD 的中点,记正方形ABCD 的中心为1O ,∵球心O 与1O 的连线与底面ABCD 垂直,且可求得1||AO =||2PH =,设球半径为R ,∴1||||EH OO ===,1||||1OE O H ==,∴||2PE =,在Rt PEO ∆中,由222||||||PO PE EO =+得222(21R =+,解得24116R =,∴该球的表面积为414π,故选C.ABCD H1O OPE13.1- 解析:满足约束条件的可行域为图中阴影部分,作出直线20x y +=并平移,当其移至过点(3,5)A -时 即当3x =-,5y =时,2z x y =+的最小值为1-.14.300解析:6(x 展开式的通项为136622166(2)(2)r r r r r r r T C x x C x ---+=-=-(0r =,1,2,L ,6),在36(1)(x x +-展开式中,3x 项为22334403661(2)(2)300C x x C x x ⋅-+⋅-=,∴3x 项的系数为300. 15.4e - 解析:()f x由12()()f x fx =可得12ln x x =,且1201x x e <≤<≤,∴214x x -可化为224ln x x -,2(1,]x e ∈. 令()4ln g x x x =-,(1,]x e ∈,则44()1x g x x x-'=-=,∵(1,]x e ∈,∴()0g x '<,∴()g x 在(1,]e 上单调递减,其最小值为()4g e e =-,故214x x -的最小值是4e -.16.12n n a n +=⋅,6 解析:由12(1)n n na n a +=+得,121n n a a n n +=⋅+,且141a =,∴n a n ⎧⎫⎨⎬⎩⎭成首项为4,公比为2的等比数列,∴142n n a n-=⋅,即12n n a n +=⋅. ∵121222(1)(2)(1)(2)21n n n n a n n n n n n n +++⋅==-++++++,∴n S =32432122222222()()()23243212n n n n n n +++-+-++-=-+++L . ∵3212232n n n n S S n n +++-=-++2(1)2(2)(3)n n n n ++⋅=++0>,∴n S 随n 的增大而增大,且630S =,∴n 的最小值为6.17.解:(Ⅰ)甲恰好答对两道题的概率为223113()(1)228C -=, 乙通过初试的概率为2233111311()(1)()222882C -+=+=. ……………………………6分(Ⅱ)依题意,甲、乙、丙三人是否通过初试彼此相互独立,且通过初试的概率均为12, 甲、乙、丙三人中通过初试的人数0X =,1,2,3,∴311(0)(1)28P X ==-=,123113(1)(1)228P X C ==-=, 223113(2)()(1)228P X C ==-=,311(3)()28P X ===,∴X 的分布列为X 的数学期望13313()012388882E X =⨯+⨯+⨯+⨯=. ……………………………12分18.解:(Ⅰ)由43sin 4cos c b A a B =+,得4sin 3sin sin 4sin cos C A B A B =+,又sin sin()sin()C A B A B π=--=+,∴4sin()3sin sin 4sin cos A B A B A B +=+,∴4sin cos 4cos sin 3sin sin 4sin cos A B A B A B A B +=+,整理得4cos sin 3sin sin A B A B =, ……………………………3分 ∵(0,)B π∈,∴sin 0B > ∴4cos 3sin A A =,∴4tan 3A =……………………………6分 (Ⅱ)∵4cos 3sin A A =,22sin cos 1A A +=,(0,)A π∈,∴3cos 5A =,4sin 5A =,又cos 5B =,(0,)B π∈,∴sin B =,∴sin sin()sin cos cos sin C A B A B A B =+=+= ……………………………9分 ∴sin sin C B =, ∴2b c ==, ∵D 为BC 边中点, ∴AD BC ⊥,∴sin AD c B ==AD. ……………………………12分 19.解:(Ⅰ)∵90BAD ∠=o,//AD BC ,∴90ABC ∠=o,即BC AB ⊥,∵PA ⊥底面ABCD ,BC ⊂平面ABCD ,∴PA BC ⊥,又PA AB A =I ,∴BC ⊥平面PAB ,又AE ⊂平面PAB , ∴BC AE ⊥, ∵PA AB =,点E 为棱PB 的中点,∴AE PB ⊥,又PB BC B =I ,∴AE ⊥平面PBC ……………………………6分(Ⅱ)以点A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图. 设22PA AB AD BC ====,则(0,0,0)A ,(2,0,0)B ,(2,1,0)C ,(0,2,0)D ,(0,0,2)P ,则(1,0,1)E ,(0,1,1)F设(,,)n x y z =r 为平面ACF 的法向量,由00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r得(,,)(2,1,0)(,,)(0,1,1)x y z x y z ⋅=⎧⎨⋅=⎩∴20x y y z +=⎧⎨+=⎩,取1x =,得(1,2,2)n =-r , FPABCDE又由(Ⅰ)得平面PBC 的一个法向量为(1,0,1)AE =u u u r,∴|||cos ,|2||||AE n AE n AE n ⋅<>===u u u r ru u u r r u u u r r 故平面PBC 与平面ACF 所成锐二面角的大小为45o. ……………………………12分 20.解:(Ⅰ)由(0)1f =-,得1b =-,∵()(cos sin )f x a x x x '=-,依题意,()22f a πππ'=-=-,∴2a =,∴()2cos 1f x x x =-,()()2(cos sin )g x f x x x x '==-, ∴()2(2sin cos )2(2sin cos )g x x x x x x x '=--=-+,∵(0,)2x π∈,∴()0g x '<,∴()g x 在区间(0,)2π内单调递减. ……………………………6分(Ⅱ)由(Ⅰ)知()f x '在区间(0,)2π内单调递减,又(0)20f '=>,()02f ππ'=-<,∴0(0,)2x π∈,使得0()0f x '=,当00x x <<时,()0f x '>;当02x x π<<时,()0f x '<,∴()f x 在0(0,)x 内单调递增,在0(,)2x π内单调递减, ∵(0)10f =-<,()1044f π=->,()102f π=-<, ∴()f x 在(0,)4π及(,)42ππ内各有一个零点,即()f x 在(0,)2π内有两个不同的零点. ………12分21.解:(Ⅰ)(0,1)F ,依题意,直线AB 与x 轴不垂直,设AB 的方程为1y kx =+,11(,)A x y ,22(,)B x y ,由214y kx x y=+⎧⎨=⎩ 得2440x kx --=, ∵216160k ∆=+>,∴124x x k +=,124x x =-,由24x y =得214y x =,∴12y x '= 则直线MA 的方程为1111()2y y x x x -=-,且21114y x =, ∴MA :2111124y x x x =-, 同理,直线MB 的方程为2221124y x x x =-, 由21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩ 消y 得2212121()()2x x x x x -=-,又12x x ≠∴121()22M x x x k =+=,21121121111()12244M y x x x x x x =⋅+-==- ∴(2,1)M k -在定直线 1y =-上 ……………………………6分(Ⅱ)∵点D 为AB 的中点,∴1222D M x x x k x +===, 2121212(1)(1)()221222D y y kx kx k x x y k ++++++====+,且DM x ⊥轴,∴2N D x x k ==,2214N N y x k ==, ∴ABM ∆的面积22112121211|||||||21(1)|(1)||22D M S x x y y x x k k x x =⋅-⋅-=⋅-⋅+--=+⋅-, AMN ∆的面积221221112111|2||||||(1)|(1)||2224N M x x S x k y y x k k x x +=⋅-⋅-=⋅-⋅--=⋅+⋅-,∴21122212(1)||=41(1)||4S k x x S k x x +⋅-=⋅+⋅-. ……………………………12分 22.解:(Ⅰ)由2222sin )sin )x y θθθθ+=-++,得曲线C 方程为224x y +=. ……………………………3分直线l的极坐标方程展开为1sin )22ρθθ-=, 故l40y --=. ……………………………5分(Ⅱ)(方法一)P 的坐标为(0,4)-,设直线m 方程为cos 4sin x t y t αα=⎧⎨=-+⎩(t 为参数),将其代入方程中224x y +=,得28sin 120t t α-+=, ……………………………8分 设A ,B 对应的参数为1t ,2t ,∴1212||||||||12||PA PB t t t t ⋅⋅===为定值. ……………………………10分 (方法二)P 的坐标为(0,4)-,曲线C 是以O 为圆心,半径为2的圆过点P 做与圆C 相切的直线,设切点为M , 则222||||212PM PO =-=,∴2||||||12PA PB PM ⋅==为定值. ……………………………10分23.解:(Ⅰ)2(1),031,0()2|||1|2(1),011,012(1),131,1x x x x x f x x x x x x x x x x x x x ---≤-+≤⎧⎧⎪⎪=+-=--<≤=+<≤⎨⎨⎪⎪+->->⎩⎩…………………………3分∴当0x ≤时,()1f x ≥;当01x <≤时,1()2f x <≤;当1x >时,()2f x > ∴()f x 的值域为[1,)+∞∴1m = ……………………………5分 (Ⅱ)∵a ,b ,c 均为正数,且1a b c ++=,∴111111()()a b c a b c a b c++=++++3()()()b a c b a c a b b c c a=++++++39≥+= ……………………………9分 (当且仅当b a a b =,c b b c =,a cc a=,即13a b c ===时取等号)……………………………10分。
高三理科数学试卷(含答案)
理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
高二数学试题(理科)参考答案及评分标准
高二数学试题(理科)参考答案及评分标准一、选择题:二、填空题: 13、 22y x = . 14、135-. 15、2212x y +=.16、 m 2≤-三、解答题:17、解: 如图建立空间直角坐标系, 不妨设正方体的棱长为1,则1A B =(0,1,-1),平面11BB D D 的法向量 n =(-1,1,0), ……3分cos θ〈n, 1A B 11n A B n AB〉==12, …………………………6分⇒〈n,AB 〉=60所以斜线1A B 和对角面11BB D D 所成的角为30. ……………… 10分 18、解:由题意得500CD =米,300DA =米,…………………2分 60CDO ∠=,则在△COD 中 2222cos60OC CD OD CD OD =+- …………………………………………… 7分而300OD OC =-代入上式(略)⇒490044511OC =≈米. 120ADOC1yCx……………………………………………12分(其它方法仿此酌情给分)19、解⑴当过点A 的直线没有斜率时,方程为0x =与抛物线22y x =-切于点(0,0)。
…………………………………………………3分 ⑵当过点A 的直线有斜率时设斜率为k ,方程为2y kx =+,代入22y x =-得:22(21)40kx k x +++=。
………………………………5分①当0k =时,直线为2y =,与抛物线22y x =-只交于一点(-2,2)…7分 ②当0k ≠时,△=0⇒14k =-,⇒ 直线:480x y +-=…………10分 综上所述:所求直线方程为0x =和2y =及480x y +-=。
…12分 20、解:(1)因为已知直三棱柱的 底面三边分别是3、4、5,所以1,,AC BC CC 两两互相垂直,。
如图以C 为坐标 原点,直线1,,CA CB CC 分别为x 轴、y 轴、z 轴建立空间直角标系, ……………………………2分则,1(0,0,0),(3,0,0),(0,0,4)C A C 13(0,4,0),(0,4,4),(,2,0)2B B D . ∴1(3,0,0),(0,4,4)AC BC =-=-∴10AC BC = ,∴ 1AC BC ⊥; ……………………………………… 4分(2)设1CB 与1C B 的交点为E ,连接DE ,则(0,2,2)E则1131(,0,2),(3,0,4),22DE AC DE AC =-=-⇒= …………… 6分∴DE ∥1AC , ∵DE ⊂平面1CDB 内,1AC ⊄平面1CDB∴1AC ∥平面1CDB ;…………………………………………… 8分 (3)∵11(3,0,4),(0,0,4),AC CB =-= ∴1116AC CB =,119165,16AC CB =+==+=………………… 10分∴1111112cos ,5AC CB AC CB AC CB <>==; ∴所求角的余弦值为5. ………………………………………12分 (其它方法仿此酌情给分)21、解(1)由已知,点(P 在椭圆上,所以有22211a b+=, 有因为2PM F M +=0,M 在y 轴上,所以M 为2PF 的中点,c ⇒= 3分 而222a b c =+,于是222,(1)b b ⇒==-舍去,于是24a ⇒=故所求的椭圆方程为22142x y += . …………………………… 6分 (2)00(,)M x y 关于直线2y x =的对称点为111(,)M x y ,∴0101010121222y y x x y y x x -⎧⨯=-⎪-⎪⎨++⎪=⨯⎪⎩ 解得001001435345y x x y x y -⎧=⎪⎪⎨+⎪=⎪⎩ 110345x y x ⇒-=-…………………………………………… 9分00(,)P x y 在椭圆:C 221(42x y a +=>b >0)上, ∴0022,10510x x -≤≤∴-≤-≤,则1134x y -的取值范围是[]10,10-.…………………………………………… 12分22、解:由1113,12(2,)5n n n a a a a n n N --+=+=≥∈可知112(2)n n a n a -=-≥,………………………………………… 2分 (1)1111111121n n n n n a b a a a ---===----, 又由条件可推出1111n n b a --=-,…………………………… 4分∴111111(2)11n n n n n a b b n a a -----=-=≥--,又由135a =可求1153215b ==-- ∴数列{}n b 是首项为52-,公差为1的等差数列; …………… 6分(2)由1()1n n b n N a +=∈-可求得11n n a b =+,57(1)122n b n n =-+-⨯=-,∴1172n a n =+-,………………………………………………… 8分考察函数17()722y x x =≠-在区间7(,)2+∞内为单调递减函数, 且0y >;在区间7(,)2-∞内为单调递减函数,且0y <;…… 10分 ∴11()72n a n N n +=+∈-中,当3n =时,1n a =-为最小值,当4n =时,43a =为最大值. ………………………………………… 12分。
高考全国卷数学理科试题及答案详解
2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。
高二数学试题参考答案及评分标准(理科)
高二数学试题参考答案及评分标准(理科)一、选择题:(每小题5分,满分50分)CDBAD CBDCA二、填空题:(每小题5分,满分25分)11.真 12.90 13.③④三、解答题(本大题共6小题,满分75分)16.解:∵直线3470x y +-=的斜率为34-,∴直线l 的斜率为34-. ………(3分) 设直线l 的方程为34y x b =-+,令0y =,得43x b =;令0x =,得y b =. ………(7分) 由于直线l 与两坐标轴围成的三角形的面积是24, ∴142423S b b =⋅||⋅||=,解得6b =±, ………(10分) ∴直线l 的方程是364y x =-±(或34240x y +±=). ………(12分) 17.证明:⑴(必要性)∵⊿ABC 三个内角成等差数列,不妨设这三个内角依次为B B B αα-+,,, 由()()180B B B αα-+++= ,得60B = ,∴⊿ABC 有一个内角等于60 . …………(5分) ⑵(充分性)若ABC ∆有一个内角为60 ,不妨设60B = ,则180601202A C B +=-== , ∴A B B C -=-,∴三个内角A B C ,,成等差数列. …………(10分) 综合⑴⑵得,⊿ABC 三个内角成等差数列的充要条件是有一个内角等于60 . …………(12分) (说明:混淆了必要性与充分性,或未注明必要性与充分性,扣4分)18.证明:⑴∵BC ABE ⊥平面,AE ABE ⊂平面,∴AE BC ⊥.又∵BF ACE ⊥平面,AE ACE ⊂平面,∴AE BF ⊥. …………(3分) ∵BF BC B = , ∴AE BCE ⊥平面.又∵BE BCE ⊂平面,∴AE BE ⊥. …………(6分) ⑵取DE 的中点P ,连接PA PN ,.∵点N 为线段CE 的中点,∴PN ∥DC ,且12PN DC =. …………(8分) 又∵四边形ABCD 是矩形,点M 为线段AB 的中点,∴AM ∥DC ,且12AM DC =, ∴PN ∥AM ,且PN AM =,∴四边形AM NP 是平行四边形,∴MN ∥AP . …………(10分) ∵AP ⊂平面DAE ,M N ⊄平面DAE ,∴MN ∥平面DAE . …………(12分)19.解:∵OM ON CM CN ==,,∴OC 垂直平分线段MN . ……………(4分)∵2MN k =-,∴12OC k =,∴直线OC 的方程是12y x =, ∴212t t =,解得2t =或2t =-. ……………(8分)⑴当2t =时,圆心C 的坐标为(2,1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==<C 相交,符合题意.⑵当2t =-时,圆心C 的坐标为(-2,-1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==>,直线与圆C 相离,不符合题意.………………(11分)综合⑴⑵得,圆C 的方程为22(2)(1)5x y -+-=. ………………(12分)20.解:⑴如图,取AB 的中点E ,则//DE BC .∵BC AC ⊥,∴DE AC ⊥.∵1A D ⊥平面ABC ,∴分别以1DE DC DA ,,所在直线为x y z ,,轴建立空间直角坐标系,得()01 0A -,,,()0 1 0C ,,,()2 1 0B ,,,()10 0 A t ,,,()10 2 C t ,,.由21130AC BA t ⋅=-+= ,得t =…………(3分)设平面1A AB 的法向量为()1111n x y z = ,,.∵(10 1AA = ,,()2 2 0AB = ,,,∴11111110220n AA y n AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩ . 设11z =,可得)1n = ……………(5分)∴点1C 到平面1A AB的距离111AC n d n ⋅= ||||. ……………(7分) (2)再设平面1A BC 的法向量为()2222n x y z = ,,.∵(10 1CA =- ,,()2 0 0CB = ,,,∴212222020n CA y n CB x ⎧⋅=-=⎪⎨⋅==⎪⎩ . 设21z =,可得()20n = , ……………(9分)∴121212cos ||||n n n n n n ⋅<>==⋅ ,……………(11分) 根据法向量的方向可知,二面角1A A B C --…………(13分) 21.解:⑴根据题意得22121914ab =⎨⎪+=⎪⎩,解得2243.a b ⎧=⎨=⎩,. …………(2分) ∴椭圆C 的方程为 22143x y +=. …………(5分) ⑵由22143x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 并整理,得 222(34)84120k x kmx m +++-=. ∵直线l 与椭圆C 交于两点,∴0∆>,得22430k m -+> (*) 设点A 、B 的坐标分别为1122()()A x y B x y ,,,, 则21212228412 3434km m x x x x k k -+=-⋅=++,. ………………(8分) ∵11A A A B ⊥,∴110A A A B ⋅= .又∵点1A 的坐标为1(2 0)A ,,∴1212(2)(2)0x x y y --+=, 即1212(2)(2)()()0x x kx m kx m --+++=,221212(1)(2)()40k x x km x x m ++-+++=, ∴222224128(1)(2)()403434m km k km m k k-+⋅+--++=++,化简并整理得2271640m km k ++=, 解得2m k =-,或27m k =-,均满足条件(*). ………………(12分) 当2m k =-时,:(2)l y k x =-,所过的定点为(2,0),与1A 重合,不合题意. 当27m k =-时,2:()7l y k x =-,所过的定点为(27,0),符合题意. 综上所述,直线l 经过定点(27,0). ………………(14分)命题人:和县一中 贾相伟含山二中 王 冲审题人:庐江中学 汪京怀。
高二数学试题参考答案及评分标准(理科)
高二数学试题参考答案及评分标准(理科)一、选择题:(每小题5分,满分50分)CDBAD CBDCA二、填空题:(每小题5分,满分25分)11.真 12.90 13.③④三、解答题(本大题共6小题,满分75分)16.解:∵直线3470x y +-=的斜率为34-,∴直线l 的斜率为34-. ………(3分)设直线l 的方程为34y x b =-+,令0y =,得43x b =;令0x =,得y b =. ………(7分)由于直线l 与两坐标轴围成的三角形的面积是24,∴142423S b b =⋅||⋅||=,解得6b =±, ………(10分)∴直线l 的方程是364y x =-±(或34240x y +±=). ………(12分)17.证明:⑴(必要性)∵⊿ABC 三个内角成等差数列,不妨设这三个内角依次为B B B αα-+,,,由()()180B B B αα-+++= ,得60B = ,∴⊿ABC 有一个内角等于60 . …………(5分)⑵(充分性)若ABC ∆有一个内角为60 ,不妨设60B = ,则180601202A C B +=-== , ∴A B B C -=-,∴三个内角A B C ,,成等差数列. …………(10分) 综合⑴⑵得,⊿ABC 三个内角成等差数列的充要条件是有一个内角等于60 . …………(12分) (说明:混淆了必要性与充分性,或未注明必要性与充分性,扣4分) 18.证明:⑴∵BC ABE ⊥平面,AE ABE ⊂平面,∴AE BC ⊥.又∵BF ACE ⊥平面,AE ACE ⊂平面,∴AE BF ⊥. …………(3分) ∵BF BC B = , ∴AE BCE ⊥平面.又∵BE BCE ⊂平面,∴AE BE ⊥. …………(6分) ⑵取DE 的中点P ,连接PA PN ,.∵点N 为线段CE 的中点,∴PN ∥DC ,且12P N D C =. …………(8分)又∵四边形A B C D 是矩形,点M 为线段AB 的中点,∴AM ∥DC ,且12AM DC =,∴PN ∥AM ,且P N A M =, ∴四边形A M N P 是平行四边形,∴MN ∥AP . …………(10分) ∵AP ⊂平面D A E ,M N ⊄平面D A E ,∴MN ∥平面D A E . …………(12分) 19.解:∵O M O N C M C N ==,,∴OC 垂直平分线段MN . ……………(4分)∵2MN k =-,∴12OC k =,∴直线OC 的方程是12y x =,∴212t t =,解得2t =或2t =-. ……………(8分)⑴当2t =时,圆心C 的坐标为(2,1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==<C 相交,符合题意.⑵当2t =-时,圆心C 的坐标为(-2,-1),半径OC =||此时圆心C 到直线24y x =-+的距离d ==>直线与圆C 相离,不符合题意.………………(11分)综合⑴⑵得,圆C 的方程为22(2)(1)5x y -+-=. ………………(12分) 20.解:⑴如图,取AB 的中点E ,则//DE BC . ∵BC AC ⊥,∴DE AC ⊥.∵1A D ⊥平面ABC ,∴分别以1DE DC DA ,,所在直线为x y z ,,轴建立空间直角坐标系,得()01 0A -,,,()0 1 0C ,,,()2 1 0B ,,,()10 0 A t ,,,()10 2 C t ,,.由21130AC BA t ⋅=-+=,得t =…………(3分)设平面1A AB 的法向量为()1111n x y z =,,.∵(10 1AA = ,,()2 2 0AB = ,,,∴11111110220n AA y n AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩. 设11z =,可得)1n =……………(5分)∴点1C 到平面1A AB的距离111AC n d n ⋅==||||. ……………(7分)(2)再设平面1ABC 的法向量为()2222n x y z =,,.∵(10 1CA =- ,,()2 0 0CB = ,,,∴212222020n CA y n CB x ⎧⋅=-=⎪⎨⋅==⎪⎩. 设21z =,可得()20n =, ……………(9分)∴121212cos ||||n n n n n n ⋅<>==⋅ ,……………(11分)根据法向量的方向可知,二面角1A ABC --. …………(13分) 21.解:⑴根据题意得22121914ab =⎨⎪+=⎪⎩,解得2243.a b ⎧=⎨=⎩,. …………(2分)∴椭圆C 的方程为 22143x y +=. …………(5分)⑵由22143x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 并整理,得 222(34)84120k x kmx m +++-=.∵直线l 与椭圆C 交于两点,∴0∆>,得22430k m -+> (*)设点A 、B 的坐标分别为1122()()A x y B x y ,,,, 则212122284123434km m x x x x k k -+=-⋅=++,. ………………(8分) ∵11A A AB ⊥,∴110A A A B ⋅=. 又∵点1A 的坐标为1(2 0)A ,,∴1212(2)(2)0x x y y --+=, 即1212(2)(2)()()0x x kx m kx m --+++=,221212(1)(2)()40k x x km x x m ++-+++=, ∴222224128(1)(2)()403434m km k km m k k-+⋅+--++=++,化简并整理得2271640m km k ++=, 解得2m k =-,或27m k =-,均满足条件(*). ………………(12分)当2m k =-时,:(2)l y k x =-,所过的定点为(2,0),与1A 重合,不合题意.当27m k=-时,2:()7l y k x=-,所过的定点为(27,0),符合题意.综上所述,直线l经过定点(27,0). ………………(14分)命题人:和县一中贾相伟含山二中王冲审题人:庐江中学汪京怀。
高三联考卷理科数学参考答案及评分标准
高三联考卷理科数学参考答案及评分标准命题、审题组教师 杨昆华 张宇甜 顾先成 李春宣 王海泉 莫利琴 蔺书琴 张远雄 崔锦 杨耕耘一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADCBBDCBACCD1. 解析:因为()31i 22i z =-=--,所以22i z =-+选A. 2. 解析:因为集合{}0,1A =,{}0,1AB =,则B A ⊆,所以集合B 可能的情况有{}0,{}1,{}0,1,∅,共有4个.选D.3. 解析:记每天走的里程数为{}n a ,易知{}n a 是以12为公比的等比数列,其前6项和6378S =,则166112378112a S ⎛⎫- ⎪⎝⎭==-,解得1192a =,所以341192()242a =⨯=.选C.4. 解析:该几何体是由一个底面半径为1,高为3的半圆锥,和一个底面为等腰直角三角形,高为3的三棱锥组成,所以该几何体的体积为:21111=(13(213132322V ππ⨯⋅⋅⨯+⨯⨯⨯⨯=+)),选B .5. 解析:画出可行域如下,可知当直线经过点()13,或者()0,4时取得最大值4,选B.6. 解析:发言的3人来自3家不同企业的概率为32162436164205C C C P C -===,选D . 7. 解析:对于A :()2222222222f x x x x x =+=++-++222≥-中,22222x x +=+的等号不成立,A 错;当0m =时210mx mx ++≥也成立,B 错;当13x =,2y =时1xy <也成立,又原命题与逆否命题真假性一致,所以D 错;选C.8. 解析:1i =时,()1021121S =+⨯+-=-;2i =时,()()()()2212212141S =-+⨯+-=-++;3i =时,()()()()()()32141231214161S =-+++⨯+-=-+++-; ……6i =时,()()()()214161121241242S =-+++-+++=+++=,所以输出42,选B.9. 解析:因为12PF PF -=22112224PF PF PF PF m -⋅+=,又因为12PF PF +=221122212PF PF PF PF +⋅+=, 所以221226PF PF m +=+,由12PF PF ⊥得:22128PF PF m +=, 所以826m m =+,所以1m =,选A .10. 解析:以O 为原点,以OA ,OB 所在的直线为x 轴,y 轴,建立平面直角坐标系,则A (1,0),B (0,3),由题意可设C ,)m ,由OC xOA yOB =+可得,,)=(1,0)(0,3)m x y +,所以xy=选C . 11. 解析: 设AB 的中点为E ,连结PE ,CE ,易知AB ⊥平面PEC ,所以AB PC ⊥, 又PC BD ⊥,所以PC ⊥平面PAB ,所以PC PA ⊥,PC PB ⊥,所以PA PB ⊥, 因此,以PA ,PB ,PC 为同一顶点出发的正方体的八个顶点在球O 的表面上, 所以2222412R PA PB PC =++=,所以球O 的表面积为12π,选C .12. 解析:2242312e 2e 2e (2)()()=0x x x x x x x f x a a x x x x x ---'=--=-,因为x ∈(0,2),e =xa x所以函数e =x y x 的图象与函数=y a 图象有两个不同的交点,所以a ∈2e e,2(),选D. 二、填空题13. 解析:(2)1(6)0.22P X P X ≤=-<=.14. 解析:因为(+)()632x x πππ--=,所以cos()cos()sin()3626x x x ππππ-=+-=+, 所以5()sin(+)66f x x π=,所以函数()f x 的最大值为56.15. 解析:因为12n n a a n +=+,所以12n n a a n +-=,从而2121a a -=⨯,3222a a -=⨯,…,12(1)(2)n n a a n n --=-≥, 累加可得21(1)2[12(1)]22n n na a n n n --=⨯++⋅⋅⋅+-=⨯=-,所以221n a n n =-+, 221211n a n n n n n n -+==+-,因为21()1f n n n=+-在(0,4]递减,在[5,)+∞递增 当4n =时,338.254n a n ==,当5n =时,418.25n a n ==,所以n a n 的最小值为415.16. 解析:双曲线的两个焦点分别为(4,0-),(4,0),则这两点刚好是两圆的圆心,由几何性质知,13PM PF ≤+,21PN PF ≥-,所以12316PM PN PF PF -≤+-+=,所以最大值为6.三、解答题 (一)必考题17. 解:(1)在△ABC 中,由cos A =sin A =由sin B C 得sin()A C C +=,sin cos cos sin A C A C C +=,C C C C C =,tan C . ………6分(2)因为tan C =,所以sin C =,cos C =sin 1B C =,由sin sin b cB C=得sin c b C =,因为△ABC2111sin sin sin 222bc A b b C A b =⋅⋅=26b =,b =. ………12分 18. 解:(1)由频率分布直方图,优质花苗的频率为(0.040.02)100.6+⨯=,即概率为0.6.设所抽取的花苗为优质花苗的株数为X ,则35~3,X B ⎛⎫⎪⎝⎭,于是3328(0)5125P X C ⎛⎫==⨯= ⎪⎝⎭;2133236(1)55125P X C ⎛⎫==⨯⨯= ⎪⎝⎭;2233254(2)55125P X C ⎛⎫==⨯⨯= ⎪⎝⎭;333327(3)5125P X C ⎛⎫==⨯= ⎪⎝⎭.其分布列为:所以,所抽取的花苗为优质花苗的数学期望39()355E X =⨯=.………6分 (2)频率分布直方图,优质花苗的频率为(0.040.02)100.6+⨯=,则样本中优质花苗的株数为60株,列联表如下表所示:可得22100(20103040)16.667 6.63560405050K ⨯-⨯=≈>⨯⨯⨯.所以,有99%的把握认为优质花苗与培育方法有关系.………12分119. (1)证明:因为111ABC A B C -为直三棱柱,所以BC ∥11B C ,且11BC B C =,又因为四边形ABCD 为平行四边形, 所以BC ∥AD ,且BC AD =,所以AD ∥11C B ,且11AD C B =, 所以四边形11ADC B 为平行四边形,所以A ,D ,1C ,1B 四点共面; 因为1AA AC =,又1AA ⊥平面ABCD , 所以1AA AC ⊥,所以四边形11A ACC 正方形,连接1AC 交1A C 于E ,所以11A C AC ⊥,在ADC ∆中,2CD AD =,60ADC ∠=,由余弦定理得2222cos60AC AD CD AD CD =+-⋅,所以AC ,所以222CD AC AD =+,所以AD AC ⊥,又1AA AD ⊥, 所以AD ⊥平面11A ACC ,所以1AD A C ⊥,又因为!ADAC A =,所以1A C ⊥平面11ADC B ;所以11A C DC ⊥. ………6分(2)解:由(1)知,可如图建立直角坐标系,则()0,0,0A ,()1,0,0D ,()C,()1A ,()1C, ()()111,0,3,DA DC λ∴=-=-,设平面11A C D 的法向量为()1111,,n x y z =,由 111100n DA nDC ⎧⋅=⎪⎨⋅=⎪⎩ 即1111100x z x z ⎧-=⎪⎨-+=⎪⎩,取()13,0,1n λ=设平面1AC D 的法向量为()2222,,n x y z = 由22100n AD nAC ⎧⋅=⎪⎨⋅=⎪⎩ 得22200x z =⎧+=,取()20,,1n λ=-, 由12212cos ||3n n n n θλ⋅===⋅21λ=,因为0λ>,所以1λ= 此时1AD =,1CC AC ==,所以四边形11A ACC 正方形,因为11A C AC ⊥,1A C AD ⊥,又因为!ADAC A =,所以1A C ⊥平面11ADC B ,所以1CC 与平面11ADC B 所成角为145EC C ∠=. .………12分20. 解:(1) 设(,)M x y2=,即22222(1)2(2)x y x y -+=-+, 所以曲线22:2E x y += .………4分(2)当PQ所在直线斜率不存在时,其方程为:x =此时PQ = 当PQ 所在直线斜率存在时,设其方程为:y kx m =+, 设11(,)P x y ,22(,)Q x y ,()0,0O 到直线PQ 的距离d r ==,所以2222m k =+.直线PQ 与椭圆C 联立22163x y y kx m ⎧+=⎪⎨⎪=+⎩,得()222214260k x kmx m +++-=,所以12221224212621mk x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩, 所以PQ ==2211t k =+≥,(]10,1t ∈ 22222224121112(1)2(21)k t t z k k t t t ++--=+==+++, 因为(]10,1t ∈,所以924z ⎡⎤∈⎢⎥⎣⎦,, 所以PQ ⎡⎤∈⎣⎦,所以OPQS PQ ⎡=∈⎢⎣⎦.………12分 21. 解:(1)因为()()e e 10x xf x ax =--≥,且e 0x >,所以e 10x ax --≥,构造函数()e 1x u x ax =--,则()'e x u x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去; 若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去; 若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去; 若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0x f x u x =⋅≥,满足题意;综上所述,1a =. ………6分 (2)由(1)可知()()2e 1e x x f x x =-+⋅,则()()'e 2e 2x x f x x =--, 构造函数()2e 2x g x x =--,则()'2e 1x g x =-, 又()'g x 在R 上单调递增,且()'ln 20g -=,故当ln2x <-时,'()0g x <,当ln2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =,当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,+∞单调递增, 故()f x 存在唯一极大值点0x ,因为()0002e 20x g x x =--=,所以00e 12x x =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+< ⎪⎝⎭. ………12分(二)选考题:第22、23题中任选一题做答。
人教A版选修2-2高二数学理科试题答案与评分标准.docx
高二数学理科试卷参考答案及评分标准二、填空题(本大题共4小题,每小题5分,共20分.)13. 充分不必要条件 14. (2) 15.2√5 三、解答题(本大题共6小题,满分70分) 17.(本小题满分10分)解:设椭圆的方程为1212212=+b y a x ,双曲线的方程为1222222=-b y a x ,半焦距c =13 ,由已知得:a 1-a 2=4,7:3:21=a ca c , …………………………4分 解得:a 1=7,a 2=3所以:b 12=36,b 22=4, …………………………8分所以两条曲线的方程分别为:1364922=+y x ,14922=-y x …………………………10分 18. (本小题满分12分)解:s=1n=2i=1 …………………………3分 WHILE i <=63 s=s+n ∧i i=i+1WEND …………………………10分 PRINT “1+2+2∧2+2∧3+…+2∧63=”;sEND …………………………12分 19.(本小题满分12分) 解、(1)∵222PB PC BC =+∴PC ⊥BC, 因为PA ⊥平面ABC ,所以PA ⊥BC , …………………………2分()000,AC BC AP PC BC AP BC PC BC •=+•=•+•=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r所以,AC ⊥BC …………………………5分(2)因为PA ⊥平面ABC ,所以PA ⊥AC ,0PA AC •=u u u r u u u r,设PA =x ,又异面直线PB 与AC 所成的角为600,则cos 3PB AC PB AC π•=⨯u u u r u u u r u u u r u u u r 。
而()PB AC PA AB AC PA AC ABAC AB AC •=+•=•+•=•u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r……………………8分 所以AB AC •=u u u r u u u r cos 3PB AC π⨯u u u r u u u r ,AB AC •=u u u r u u u r 34394⨯⨯=。
高考理科数学试题(带答案解析)
高考理科数学试题(带答案解析)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的(1)在等差数列{}n a 中,241,5a a ==,则{}n a 的前5项和5S =(A)7(B)15(C)20(D)25【答案】:B【解析】:422514,d a a =-=-=2d =,1252121,3167a a d a a d =-=-=-=+=+=155()5651522a a S +⨯⨯===【考点定位】本题考查等差数列的通项公式及前n 项和公式,解题时要认真审题,仔细解答.(2)不等式1021x x -≤+的解集为(A)1,12⎛⎤-⎥⎝⎦(B)1,12⎡⎤-⎢⎥⎣⎦(C)[)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭(D)[)1,1,2⎡⎤-∞-+∞⎢⎥⎣⎦(3)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是(A)相离(B)相切(C)相交但直线不过圆心(D)相交且直线过圆心(4)8+的展开式中常数项为(A)3516(B)358(C)354(D)105【答案】B【解析】:8821881()2rrr r r r r T C C --+==令820r -=解得4r =展开式中常数项为4458135()28T C ==【考点定位】本题考查利用二项展开式的通项公式求展开式的常数项(5)设tan ,tan αβ是方程2320x x -+=的两根,则tan()αβ+的值(A)-3(B)-1(C)1(D)3【答案】:A【解析】:tan tan 3,tan tan 2αβαβ+==,则tan tan 3tan()31tan tan 12αβαβαβ++===---【考点定位】本此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值.(6)设,,x y R ∈向量(,1),(1,),(2,4)a x b y c ===- ,且,//a c b c ⊥ ,则||a b +=(C)(D)10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A)既不充分也不必要的条件(B)充分而不必要的条件(C)必要而不充分的条件(D)充要条件【答案】:D【解析】:由()f x 是定义在R 上的偶函数及[0,1]上的增函数可知在[-1,0]减函数,又2为周期,所以[3,4]上的减函数【考点定位】本题主要通过常用逻辑用语来考查函数的奇偶性和对称性,进而来考查函数的周期性.根据图象分析出函数的性质及其经过的特殊点是解答本题的关键.(8)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是(A )(0,2)(B )(0,3)(C )(1,2)(D )(1,3)【答案】:A【解析】:2221()22BE =-=,BF BE <,22AB BF =<,【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题.(10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π(B )35π(C )47π(D )2π[【答案】:D【解析】:由对称性:221,,(1)(1)1y x y x y x≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤围成的面积即2122R ππ⨯=25115112lim lim 555n n n n nn n→∞→∞++++===【考点定位】本题考查极限的求法和应用,n 都没有极限,可先分母有理化再求极限;(13)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =【答案】:c =145【解析】:由35cos ,cos 513A B ==得412sin ,sin ,513A B ==由正弦定理sin sin a bA B=得43sin 13512sin 513b A a B ⨯===由余弦定理22a c =2+b -2cbcosA 得22590c -c+56=0则c =145【考点定位】利用同角三角函数间的基本关系求出sinB 的值本题的突破点,然后利用正弦定理建立已知和未知之间的关系.同时要求学生牢记特殊角的三角函数值.(14)过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF =。
2024 年高考全国甲卷数学(理科)真题卷含答案
2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )2.集合{}1,2,3,4,5,9,A BA ==,则∁AA (AA ∩BB )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y −−≥−−≤ +−≤ ,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A .2− B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A .16B .13C .12D .237.函数()()2e e sin x x f x x x −=−+−在区间[2.8,2.8]−的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=−πtan 4α+=( )A .1B .1−CD .19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =−”是“a b ⊥”的必要条件B .“3x =−”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =−”是“//a b”的充分条件是两个平面,是两条直线,且①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误; ③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ∩=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC D12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( ) A .2B .3C .4D .【答案】C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −= += 得12x y = =− ,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,故选C二、填空题13.1013x +的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r −和()213r r −,则两个圆台的体积之比=V V 甲乙.15.已知1a >,8115log log 42a a −=−,则=a . 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间26 24 0 50乙车间70 28 2 100总计96 52 2 150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能12.247≈)附:22()()()()()n ad bcKa b c d a c b d−=++++()2P K k≥0.050 0.010 0.001 k 3.841 6.635 10.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式;(2)设1(1)n n n b na −−,求数列{}n b 的前n 项和为n T .4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ;20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M 在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =−+−.(1)当2a =−时,求()f x 的极值; 0f x ≥恒成立,求a 的取值范围.中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为cos 1ρρθ+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a = =+(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.满足.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.。
2024年高考全国甲卷理科数学真题试卷及答案
2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. l.设5z i =+,则()i z z +=( ) A.10iB.2iC.10D.2-2.集合1,2,3,4,9{}5,A =,{|}B x A =,则()A C A B =( ) A.{1,4,9}B.{3,4,9}C.{1,2,3}D.{2,3,5}3.若实数,x y 满足约束条件4330,220,2690.x y x y x y --⎧⎪--⎨⎪+-≤⎩,则5z x y =-的最小值为( )A.12B.0C.52-D.72-4.等差数列{}n a 的前n 项和为n S ,若5105,1S S a ==,则1a =( ) A.2-B.73C.1D.25.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为21(0,4),(0,4)F F -,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A.135B.137C.2D.36.设函数22sin ()1x e xf x x+=+则曲线()y f x =在点(0,1)处的切线与两坐标轴所围成的三角形的面积为( ) A.16B.13C.12D.237.函数2(sin )x x y x e e x -=-+-在区间 2.8,[]2.8-的图像大致为( )A. B.C. D.8. 已知cos cos sin ααα=-则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1B. 1C.2D. 19.设向量(1,),(,2)a x x b x =+=,则( ) A.3x =-是a b ⊥的必要条件 B.3x =-是//a b 的必要条件 C.0x =是a b ⊥的充分条件D.1x =-+是//a b 的充分条件 10.设,αβ为两个平面,,m n 为两条直线,且.m αβ=下述四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则n α⊥或n β⊥ ③若//n α且//n β,则//m n④若n 与,αβ所成的角相等,则m n ⊥. 其中所有真命题的编号是( ) A.①③B.②④C.①②③D.①③④11.记ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知2960,4B b ac ︒==,则sin sin A C +=( ) A.32B.12.已知b 是a ,c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A.1B.2C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为21212(),3()r r r r --,则圆台甲与乙的体积之比=V V 甲乙____________. 15.已知1a >且8115log log 42a a -=-,则a =_______. 16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为_______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答. (一)必考题:共60分. 17.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下(1)填写如下列联表能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++18.(12分)记n S 为数列{}n a 的前n 项和,已知434n n S a =+ (1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T 19.(12分)如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//,4,2,EF AD BC AD AD AB BC EF ED =====FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求二面角F BM E --的正弦值.20.(12分)设椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在C 上,且MF x ⊥轴. (1)求C 的方程.(2)过点(4,0)P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 21.(12分)已知函数()(1)ln(1)f x ax x x =-+- (1)若2a =-,求()f x 的极值.(2)当0x 时,()0f x ,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1.ρρθ=+ (1)写出C 的直角坐标方程.(2)设直线,:(x t l t y t a =⎧⎨=+⎩为参数),若C 与l 相交于,A B 两点,且||2AB =,求a 的值. 23.[选修4—5:不等式选讲](10分) 已知实数,a b 满足 3.a b + (1)证明:2222a b a b +>+(2)证明:2222 6.a b b a -+-∣∣∣∣2024年全国甲卷理科数学参考答案 使用范围:陕西、宁夏、青海、内蒙古、四川一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. l.设5z i =+,则()i z z +=( ) A.10i B.2iC.10D.2-【答案】A【解析】因为5z i =+,所以()(55)10i z z i i i i +=-++=,故选A. 2.集合1,2,3,4,9{}5,A =,{|}B x A =,则()A C A B =( ) A.{1,4,9} B.{3,4,9}C.{1,2,3}D.{2,3,5}【答案】D【解析】因为1,2,3,4,9{}5,A =,{|}{1,4,9,16,25,81}B x A ==所以{}()2,3,5A C A B =,故选D.3.若实数,x y 满足约束条件4330,220,2690.x y x y x y --⎧⎪--⎨⎪+-≤⎩,则5z x y =-的最小值为( )A.12B.0C.52-D.72-【答案】D【解析】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图由5z x y =-可得1155y x z =- 即z 的几何意义为1155y x z =-的截距的15-则该直线截距取最大值时,z 有最小值 此时直线1155y x z =-过点A 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭ 则min 375122z =-⨯=-. 故选D.4.等差数列{}n a 的前n 项和为n S ,若5105,1S S a ==,则1a =( ) A.2- B.73C.1D.2【答案】B【解析】因为510S S =,所以788,0S S a ==,又因为51a =,所以公差1817,733d a a d =-=-=,故选B.5.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为21(0,4),(0,4)F F -,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A.135B.137C.2D.3【答案】C【解析】1221||82||||106F F c e a PF PF ====--,故选C. 6.设函数22sin ()1x e xf x x+=+则曲线()y f x =在点(0,1)处的切线与两坐标轴所围成的三角形的面积为( )A.16B.13C.12D.23【答案】A 【解析】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+即该切线方程为13y x -=,即31y x令0x =,则1y =,令0y =,则13x故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.函数2(sin )x x y x e e x -=-+-在区间 2.8,[]2.8-的图像大致为( )A. B.C. D.【答案】B 【解析】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭ 故可排除D. 故选:B.8. 已知cos cos sin ααα=-则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1B. 1C.D. 1【答案】B【解析】因为cos cos sin ααα=-所以11tan =-α,tan 1⇒α=所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭故选:B.9.设向量(1,),(,2)a x x b x =+=,则( ) A.3x =-是a b ⊥的必要条件 B.3x =-是//a b 的必要条件 C.0x =是a b ⊥的充分条件D.1x =-+是//a b 的充分条件 【答案】C【解析】对A,当a b ⊥时,则0a b ⋅=所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误; 对C,当0x =时,()()1,0,0,2a b ==,故0a b ⋅= 所以a b ⊥,即充分性成立,故C 正确;对B,当//a b 时,则22(1)x x +=,解得1x =±即必要性不成立,故B 错误;对D,当1x =-,不满足22(1)x x +=,所以//a b 不成立,即充分性不立,故D 错误. 故选:C.10.设,αβ为两个平面,,m n 为两条直线,且.m αβ=下述四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则n α⊥或n β⊥ ③若//n α且//n β,则//m n④若n 与,αβ所成的角相等,则m n ⊥. 其中所有真命题的编号是( ) A.①③ B.②④C.①②③D.①③④【答案】A对①,当n ⊂α,因为//m n ,m β⊂,则//n β 当n β⊂,因为//m n ,m α⊂,则//n α当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对①,若m n ⊥,则n 与,αβ不一定垂直,故①错误;对①,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β 因为s ⊂平面α,m αβ=,则//s m ,又因为//n s ,则//m n ,故①正确;对①,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故①错误; 综上只有①①正确 故选:A.11.记ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知2960,4B b ac ︒==,则sin sin A C +=( )A.32B.【答案】C 【解析】 因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +== 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=. 故选:C.12.已知b 是a ,c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A.1B.2C.4D.【答案】C因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c 得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩ 故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 【答案】5由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r = 所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭. 故答案为:5.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为21212(),3()r r r r --,则圆台甲与乙的体积之比=V V 甲乙____________.【解析】由题可得两个圆台的高分别为)12h r r ==-甲)12h r r ==-乙所以((21211313S S h r r V h V h S S h +-====++甲甲甲乙乙乙.故答案为15.已知1a >且8115log log 42a a -=-,则a =_______. 【答案】64【解析】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=2log 1a ⇒=-或2log 6a =,又1a >所以622log 6log 2a ==,故6264a == 故答案为:64.16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为_______. 【答案】715【解析】从6个不同的球中不放回地抽取3次,共有36A 120=种设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤ 故2()3c a b -+≤,故32()3c a b -≤-+≤ 故323a b c a b +-≤≤++若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4()()()()()3,1,4,1,5,1,6,1,4,3,故有10种当3c =,则39a b ≤+≤,则(),a b 为()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5 ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4故有16种当4c =,则511a b ≤+≤,同理有16种 当5c =,则713a b ≤+≤,同理有10种 当6c =,则915a b ≤+≤,同理有2种 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++= 故所求概率为56712015=. 故答案为:715三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答. (一)必考题:共60分. 17.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++【小问1详解】根据题意可得列联表:可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯因为3.841 4.6875 6.635<<所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150= 用频率估计概率可得0.64p =又因为升级改造前该工厂产品的优级品率0.5p = 则0.50.50.5 1.650.56812.247p +=+≈+⨯≈可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 18.(12分)记n S 为数列{}n a 的前n 项和,已知434n n S a =+ (1)求{}n a 的通项公式; 【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=- 而140a =≠,故0n a ≠,故13nn a a -=- ①数列{}n a 是以4为首项,3-为公比的等比数列 所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅所以123n n T b b b b =++++0211438312343n n -=⋅+⋅+⋅++⋅故1233438312343n n T n =⋅+⋅+⋅++⋅ 所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅()1313444313n nn --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-(21)31n n T n ∴=-⋅+.(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T 19.(12分)如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//,4,2,EF AD BC AD AD AB BC EF ED =====FB =M 为AD 的中点.(1)证明://BM 平面CDE (2)求二面角F BM E --的正弦值.【答案】(1)证明见详解 (2【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD = 四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDECD ⊂平面CDE ,所以//BM 平面CDE 【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD = 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM = 所以ABM 为等边三角形,O 为AM 中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD = 四边形EFMD 为平行四边形,FM ED AF ==所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系()0,0,3F,)()(),0,1,0,0,2,3BM E ,()()3,1,0,3,0,3BM BF =-=-()2,3BE =-,设平面BFM 的法向量为()111,,m x y z =平面EMB 的法向量为()222,,n x y z =则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =得113,1y z ==,即()3,3,1m =则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==- 即()3,3,1n =-,1111cos ,1313m n m n m n ⋅===⋅⋅,则43sin ,13m n = 故二面角F BM E --.20.(12分) 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点3(1,)2M 在C 上,且MF x ⊥轴. (1)求C 的方程(2)过点(4,0)P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线 MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)证明见解析【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=. 【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-= 故()()422Δ102443464120k k k =-+->,故1122k -<< 又22121222326412,3434k k x x x x k k-+==++ 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==-- 所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=-- ()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==-- 2222212824160243234025k k k k k x --+++==-故1Q y y =,即AQ y ⊥轴.21.(12分)已知函数()(1)ln(1)f x ax x x =-+-(1)若2a =-,求()f x 的极值(2)当0x 时,()0f x ,求a 的取值范围.【答案】(1)极小值为0,无极大值.(2)12a ≤- 【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++- 故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++ 因为12ln(1),11y x y x =+=-++在()1,∞-+上为增函数 故()f x '在()1,∞-+上为增函数,而(0)0f '=故当10x -<<时,()0f x '<,当0x >时,()0f x '>故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x ax f x a x a x x x x+-=-+'+-=-+->++ 设()()()1ln 1,01a x s x a x x x +=-+->+ 则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+ 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数 故()()00s x s >=,即()0f x '>所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=. 当102a -<<时,当210a x a+<<-时,()0s x '<故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s < 即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数 故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍. 当0a ≥,此时()0s x '<在()0,∞+上恒成立同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍综上,12a ≤-. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1.ρρθ=+(1)写出C 的直角坐标方程(2)设直线,:(x t l t y t a=⎧⎨=+⎩为参数),若C 与l 相交于,A B 两点,且||2AB =,求a 的值. 【答案】(1)221y x =+(2)34a = 【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4故直线的参数方程可设为22x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R . 将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s ,则)()212121,21s s a s s a +=--=-且()()22Δ818116160a a a =---=->,故<1a12AB s s ∴=-=2==,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-= ()22Δ(22)41880a a a =---=-+>,解得1a <设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-则AB ==2= 解得34a = 23.[选修4—5:不等式选讲](10分)已知实数,a b 满足 3.a b +(1)证明:2222a b a b +>+(2)证明:2222 6.a b b a -+-∣∣∣∣【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥ 当a b =时等号成立,则22222()a b a b +≥+因为3a b +≥,所以22222()a b a b a b +≥+>+【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
理科数学 参考答案与评分标准
2019届高三六校第三次联考理科数学参考答案与评分标准13. 4- 14.6π 15.2π- 16.666 17.解(1)由正弦定理得:225sin sin sin cos sin 3A B B A A += 即225sin (sin cos )sin 3B A A A +=, ……………………………………2分 所以5sin sin 3B A =, ……………………………………4分 即53b a =.……………………………………6分(2)设5,3(0)b k a k k ==>,代入原式得2249c k =,即7c k =. ……………………………………8分由余弦定理得:222925491cos 2352k k k C k k +-==-⋅⋅.……………………………………10分 因为0C π<<,所以23C π=. ……………………………………12分18.解:(1)证明: E 、F 分别为PC , PB 的中点,//,BC EF ∴又,EF EFA BC EFA ⊂⊄面面//BC EFA ∴平面. ……………………………………3分又,,BC ABC EFA ABC l ⊂⋂=平面平面平面//BC l ∴.……………………………4分 又,,BC AC PAC ABC AC ⊥⋂=平面平面PAC ABC ⊥平面平面,BC PAC l PAC ∴⊥∴⊥平面平面. ……………………………6分(2)以C 为坐标原点, CA 所在的直线为x 轴, CB所在的直线为y 轴,过C 垂直平面ABC 的直线为z 轴建立空间直角坐标系. 则(2,0,0)A ,(0,4,0)B ,(1,P ,1(,2E,1(,2F , 3(,2AE =-(0,2,0)EF =,……………………………7分设平面AEF 的一个法向量为(,,)m x y z =,则302220m AE xz m EF y ⎧⋅=-+=⎪⎨⎪⋅==⎩令z =(1,m =,……………………………8分设直线PQ 与平面AEF 所成的角为α, 则sin cos ,PQ m PQ m PQ mα⋅=<>=⋅…………9分设0(2,,0)Q y ,0(1,,PQ y =, 设直线PQ 与直线EF 所成的角为β, 则cos cos ,PQ EF PQ EF PQ EFβ⋅=<>=⋅……………………………10分依题意得sin α=cos β,即PQ m PQ EF PQ mPQ EF⋅⋅=⋅⋅,代入整理得:01y =,01y =±,即1AQ =……………………………12分 ∴在l 上存在点Q ,1AQ =使直线PQ 分别与平面AEF 、直线EF 所成的角互余.19.解:(1)依题意,从该大型公司员工中随机抽取1名员工,其手机月流量不超过300M 的概率为(0.00080.0022)1000.3p =+⨯=………………2分 设从该大型公司员工中随机抽取3名员工中手机月流量不超过300M 的人数为X ,则(3,0.3)X B ……………………………3分则“从该大型公司员工中随机抽取3人,求这3人中至多有1人手机月流量不超过300M”为(1)(0)(1)P X P X P X ≤==+=003112330.3(10.3)0.3(10.3)0.784C C =⨯⨯-+⨯⨯-=…………………5分(2)依题意,从公司中随机抽取一名员工的手机使用流量在(300,500]和(500,700]的概率分别为0.6,0.1……………………………6分①当订购A 套餐时,设公司为一位员工承担的月费用为Y ,则Y 的可能取值为20,35,50,且(20)0.3P Y ==,(35)0.6P Y ==,(50)0.1P Y ==,所以Y 的分布列为:且()200.3350.6500.132E Y =⨯+⨯+⨯=(元)……………………………8分 ②当订购B 套餐时,设公司为一位员工承担的月费用为Z ,则Z 的可能取值为30,45, 且(Z 30)0.30.60.9P ==+=,(Z 45)0.1P ==,所以Z 的分布列为:且(Z)300.9450.131.5E =⨯+⨯=(元)……………………………11分 ③当订购C 套餐时,设公司为一位员工承担的月费用为38元; 因为31.5<32<38,所以订购B 套餐最经济……………………………12分 20.解:(1)设点(,)P x y ,由题意知23AP BP k k ⋅==-,化简得点P 的轨迹方程为221(32x y x +=≠…………………………5分 (2)证明:由题意M 、N 是椭圆C 上不同于,A B 的两点, 由题意知,直线AP ,BP 斜率存在且不为0,又由已知23AP BP k k ⋅=-. 由//,//AP OM BP ON ,所以23OM ON k k ⋅=-…………………………6分 设直线MN 的方程为x my t =+,代入椭圆方程得222(23)4260m y mty t +++-=①…………………7分 设11(,)M x y ,22(,)N x y ,则122423mty y m +=-+,21222623t y y m -=+………………………………8分 又212122222121212262()363OM ONy y y y t k k x x m y y mt y y t t m -⋅====-+++-………………9分 得22223t m =+………………………………10分所以121112222MONS t y y ∆=-===即MON ∆12分21.(I )()()232cos sin 2g x a x x x x '=++-,……………1分 函数()g x 在0x =处的切线与x 轴平行,则()020g a '=+=……………2分 得2a =-.……………3分 (II )证明:①要证[]0,1x ∈时,()211xx e x -+≥-,只需证明()1(1)x x x e x e -+≥-记()()1(1)xx h x x ex e -=+--,[]0,1x ∈,则()()0x x h x x e e -'=-≥,所以()h x 在[]0,1上是增函数,故()(0)0h x h ≥=,所以()1f x x ≥-;……………5分 ②要证[]0,1x ∈时,()2111xx ex-+≤+,只需证明1xe x ≥+ 记()1xk x e x =--,[]0,1x ∈,则()10xk x e '=-≥所以()k x 在[]0,1上是增函数,故()(0)0k x h ≥=,所以1()1f x x≤+; 综上,()111x f x x-≤≤+,[]0,1x ∈……………7分(III )法一:()()3112cos 2x f x g x x ax x x ⎛⎫-≥--+++ ⎪⎝⎭2(12cos )2x x a x =-+++记2()2cos 2x G x x =+,[]0,1x ∈,则()2sin G x x x '=-,()12cos G x x ''=-, 当[]0,1x ∈时,()12cos 0G x x ''=-<,于是()G x '在[]0,1上单调递减, 从而()(0)0G x G ''≤=,所以()G x 在[]0,1上单调递减,有()(0)2G x G ≤=,212cos 32x a x a +++≤+,所以当3a ≤-时,()()f x g x ≥恒成立;…………………………9分 下证当3a >-时,()()f x g x ≥在[]0,1上不恒成立()()321112cos 2cos 1212x x f x g x ax x x x a x x x ⎛⎫⎛⎫-≤-+++=-+++ ⎪ ⎪++⎝⎭⎝⎭记211()2cos ()121x H x a x a G x x x=+++=++++, 则21()()0(1)H x G x x ''=-+<+,所以()H x 在[]0,1上单调递减,从而()H x 在[]0,1上的值域为[12cos 1,3]a a +++,当3a >-时,存在0(0,1)x ∈,使得0()0H x >,此时()()00f x g x <,即()()f x g x ≥在[]0,1上不恒成立.综上,实数a 的取值范围].3,(--∞………………………………12分 (III )法二:令()()()32()112cos 2xx h x f x g x x eax x x -⎛⎫=-=+-+++ ⎪⎝⎭,注意到(0)0h =,故存在0(0,1)x ∈,当0[0,)x x ∈时,()h x 递增,从而必有(0)0h '≥, 而()()223()122cos sin 2xh x x ea x x x x -⎛⎫'=-+-++- ⎪⎝⎭,故(0)303h a a '=--≥⇒≤-…………………………9分关于3a ≤-的充分性与法一同.22.解:(1)由22cos ,2sin x y ϕϕ=+⎧⎨=⎩消去参数ϕ可得1C 的普通方程为22(2)4x y -+=.4sin ρθ=, ∴24s i n ρρθ=,……………………………3分由cos sin x y ρθρθ=⎧⎨=⎩,得曲线2C 的直角坐标方程为22(2)4x y +-=;………………………5分 (2)由(1)得曲线1C :22(2)4x y -+=,其极坐标方程为4cos ρθ=,……………………………6分 由题意设1(,)A ρα,2(,)B ρα,则12||||4|sin cos |AB ρραα=-=-sin()|4πα=-=…………………8分∴sin()14πα-=±,∴42k ππαπ-=+()k Z ∈,0απ<<,∴34πα=.……………………………10分23. 解:(1)1a =,∴原不等式为2|1||1|4x x ++-<,∴12214x x x <-⎧⎨---+<⎩,或11,2214,x x x -≤≤⎧⎨+-+<⎩或1,2214,x x x >⎧⎨++-<⎩∴513x -<<-或11x -≤<或∅,∴原不等式的解集为5(,1)3-.……………………………5分(2)由题意得()()()g x f x f x =+-=112(||||)(||||)x a x a x x a a++-+++- 222|2|4||||||a a a a ≥+=+≥当且仅当12||||a a =,计2a =±,且22x -≤≤时,()g x 取最小值……………………………10分。
数学(理科)试题参考答案及评分标准
2019 年广州市高三年级调研测试数学(理科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 910.1- 11. ①②③ 12.3413. ()(),01,-∞+∞14.50 15.()1,1- 简答或提示:7.解1:设圆心为2,(0)a a a ⎛⎫> ⎪⎝⎭,则r =≥=1a =时等号成立.当r 最小时,圆的面积2S r π=最小,此时圆的方程为22(1)(2)5x y -+-=,选A .解2:画图可得,当直线20x y m ++=与曲线2(0)y x x=>相切时,以切点为圆心,切点到直线210x y ++=的距离为半径的圆为所求.设切点为000(,)(0)P x y x >,因为22'y x =-,所以222x -=-,解得001,2x y ==,r =22(1)(2)5x y -+-=为所求,选A . 8.将数列分组:1213214321,,,,,,,,,, (112)1231234⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.设2010a 位于第n 组,由(1)(1)201022n n n n -+<<,解得63n =,所以2010a 位于第63组中的第63622010572⨯-=项,故2010757a =,选B .12.22012132()4(2)P A x x dx ⨯⨯==-+⎰. 14.由FP BC ⊥,FQ AC ⊥,得C 、Q 、F 、P 四点共圆,所以CQP CFP B ∠=∠=∠()180A C =-∠+∠()180607050=-+=.15.即求直线20x y -+=与抛物线段2y x =(02y ≤≤)的交点,交点的直角坐标为()1,1-.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(1)解:依题意得,(cos 3,sin AB OB OA θθ=-=-,……………………………2分 所以()(222cos 3sin ABθθ=-+136cos 13θθ=-+=,……………………………………………………4分3cos θθ=.因为cos 0θ≠,所以tan θ=. ……………………………………………………………6分 (2)解:由02πθ≤≤,得6AOB πθ∠=+. ………………………………………………8分所以1sin 2AOB S OA OB AOB∆=∠ 11sin 266ππθθ⎛⎫⎛⎫=⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭,…………………………………10分所以当3πθ=时,△AOB …………………………………………12分17.(本小题满分12分)(1)解:ξ的所有可能取值为0,1,2.………………………………………………………1分依题意,得3436C 1(0)C 5P ξ===, 214236C C 3(1)C 5P ξ===, 124236C C 1(2)C 5P ξ===. ∴ξ的分布列为∴ 0121555E ξ=⨯+⨯+⨯=. ……………………………………………………………6分 (2)解法1:设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,则()2536C 1C 2P A ==,()1436C 1C 5P AB ==, ……………………………………………………10分∴()()()25P AB P B A P A ==.故在男生甲被选中的情况下,女生乙也被选中的概率为25.…………………………………12分 解法2:设“男生甲被选中的情况下,女生乙也被选中”为事件C ,从4个男生、2个女生中选3人,男生甲被选中的种数为25C 10=,…………………………8分 男生甲被选中,女生乙也被选中的种数为14C 4=,……………………………………………10分∴()1425C 42C 105P C ===. 故在男生甲被选中的情况下,女生乙也被选中的概率为25.…………………………………12分18.(本小题满分14分) 方法1:以D 为原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则()0,0,0D ,()0,2,0C ,()11,0,1A ,()10,0,1D .xyz…………………………………………………………………1分 设0(1,,0)E y ()002y ≤≤.………………………………2分 (1)证明:∵()101,,1D E y =-,()11,0,1A D =--. 则()()1101,,11,0,10D E A D y =---=, ∴11D E A D ⊥,即11D E A D ⊥. ……………………………4分 (2)解:当2AE =-1D EC D --的平面角为4π.…………………………5分 ∵0(1,2,0)EC y =--,()10,2,1D C =-, …………………………………………………6分 设平面1D EC 的法向量为1(,,)x y z =n ,则10110(2)0200EC x y y y z D C ⎧=-+-=⎧⎪⇒⎨⎨-==⎩⎪⎩n n , ………………………………………………………8分取1y =,则()102,1,2y =-n 是平面1D EC 的一个法向量.…………………………………9分 而平面ECD 的一个法向量为()20,0,1=n , ………………………………………………10分 要使二面角1D EC D --的平面角为4π,则121212coscos 42π=<>===⋅n n n ,nn n ,………………………12分 解得02y =()002y ≤≤.∴当2AE =-时,二面角1D EC D --的平面角为4π.………………………………14分方法2:(1)证明:连结1AD ,在长方体1111ABCD A B C D -中,∵BA ⊥平面11ADD A ,1AD ⊂平面11ADD A ,∴1A D AE ⊥.……………………………1分 ∵11AD AA ==,则四边形11ADD A 是正方形,∴11A D AD ⊥.…………………………2分1A 1B11D∵1AEAD A =,∴1A D ⊥平面1AD E .………3分∵1D E ⊂平面1AD E ,∴11D E A D ⊥. …………4分(2)解:当23AE =-时,二面角1D EC D --的平面角为6π. …………………………………………………………5分 连结DE ,过D 作DH EC ⊥交EC 于点H ,连结1D H .………………………………6分 在长方体1111ABCD A B C D -中,1D D ⊥平面ABCD ,EC ⊂平面ABCD ,∴1D D ⊥EC .…………………………………………………………………………………7分 ∵1DHD D D =,∴EC ⊥平面1D DH .…………………………………………………8分∵1D H ⊂平面1D DH ,∴EC ⊥1D H .……………………………………………………9分 ∴1D HD ∠为二面角1D EC D --的平面角,即16D HD π∠=.…………………………10分设AE x =()02x ≤≤,则2EB x =-,进而EC = ……………………11分 在△DEC 中,利用面积相等的关系有,EC DH CD AD ⨯=⨯, ∴DH =. ……………………………………………………………12分在Rt △1D DH 中,∵16D HD π∠=,∴1tan6D DDHπ=. ………………………………13分=,解得2x =-()02x ≤≤.故当2AE =时,二面角1D EC D --的平面角为6π.………………………………14分19.(本小题满分14分)(1)解:设(,)P x y ,则(2,0)MN =,(1,)NP x y =-,(1,)MP x y =+.……………2分 由||||MN NP MN MP ⋅=⋅,得2(1)x =+,…………………………………………………………………4分化简得24y x =.所以动点P 的轨迹方程为24y x =.……………………………………………………………5分(2)解:由点(),4A t 在轨迹24y x =上,则244t =,解得4t =,即()4,4A . ………6分当4m =时,直线AK 的方程为4x =,此时直线AK 与圆22(2)4x y +-=相离.………7分 当4m ≠时,直线AK 的方程为4()4y x m m=--,即4(4)40x m y m +--=,…………8分 圆心(0,2)到直线AK的距离d =令2d =<,解得1m <;令2d ==,解得1m =;令2d =>,解得1m >.综上所述,当1m <时,直线AK 与圆22(2)4x y +-=相交;当1m =时,直线AK 与圆22(2)4x y +-=相切;当1m >时,直线AK 与圆22(2)4x y +-=相离.…………………………………14分20.(本小题满分14分)(1)解:∵()32f x x ax =-,∴()2'32f x x ax =-.…………………………………………1分∵函数()x f 在区间20,3⎛⎫ ⎪⎝⎭内是减函数,∴()2'320f x x ax =-≤在20,3⎛⎫ ⎪⎝⎭上恒成立.……2分即32x a ≥在20,3⎛⎫⎪⎝⎭上恒成立,……………………………………………………………………3分3321223x <⨯=,∴1a ≥.故实数a 的取值范围为[)1,+∞.……………………………4分 (2)解:∵()2'33f x x x a ⎛⎫=-⎪⎝⎭,令()'0f x =得203x a =或.…………………………5分 ①若0a ≤,则当12x ≤≤时,()'0f x >,所以()f x 在区间[]1,2上是增函数,所以()()11h a f a ==-.………………………………………………………………………6分 ②若302a <<,即2013a <<,则当12x ≤≤时,()'0f x >,所以()f x 在区间[]1,2上是 增函数,所以()()11h a f a ==-.……………………………………………………………7分 ③若332a ≤<,即2123a ≤<,则当213x a <<时,()'0f x <;当223a x <<时,()'0f x >.∴()f x 在21,3a ⎡⎤⎢⎥⎣⎦上是减函数,在2,23a ⎡⎤⎢⎥⎣⎦上是增函数.∴()324327h a f a a ⎛⎫==- ⎪⎝⎭.…8分④若3a ≥,即223a ≥,则当12x <<时,()'0f x <,所以()f x 在区间[]1,2上是减函数. 所以()()284h a f a ==-.………………9分综上()331,,243,3,27284, 3.a a h a a a a a ⎧-<⎪⎪⎪=-≤<⎨⎪-≥⎪⎪⎩…………10分 (3)解:由题意()12h a m a ⎛⎫=+⎪⎝⎭即(2)中函数()h a 的图像与直线12y m a ⎛⎫=+⎪⎝⎭有两个 不同的交点.……………………………………………11分 而直线12y m a ⎛⎫=+⎪⎝⎭恒过定点1,02⎛⎫- ⎪⎝⎭,由右图知实数m 的取值范围是()4,1--.……14分21.(本小题满分14分)(1)证明:当1=n 时,()1111a S m ma ==+-,解得11=a .……………………………1分 当2n ≥时,11n n n n n a S S ma ma --=-=-.…………………………………………………2分 即()11n n m a ma -+=.1∵m 为常数,且0m >,∴11n n a ma m-=+()2n ≥.…………………………………………3分 ∴数列}{n a 是首项为1,公比为1mm+的等比数列.………………………………………4分 (2)解:由(1)得,()m f q =1mm=+,1122b a ==. ………………………………5分∵()1111n n n n b b f b b ---==+,…………………………………………………………………6分∴1111n n b b -=+,即1111=--n n b b ()2n ≥.………………………………………………7分 ∴⎭⎬⎫⎩⎨⎧n b 1是首项为12,公差为1的等差数列.………………………………………………8分∴()11211122n n n b -=+-⋅=,即221n b n =-(∈n N *).………………………………9分 (3)证明:由(2)知221n b n =-,则()22421n b n =-.…………………………………10分 所以2222123n n T b b b b =++++ ()2444492521n =++++-,………………………11分当2n ≥时,()()24411222121n n n n n <=----, ………………………………………12分所以()2444492521n T n =++++-41111114923341n n ⎛⎫⎛⎫⎛⎫<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭4011899218n =+-<.…………………………………………………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学理科试题参考答案及评分标准Prepared on 24 November 20202010 年广州市高三年级调研测试数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 9.1- 11. ①②③ 12.3413. ()(),01,-∞+∞14.50 15.()1,1- 简答或提示:7.解1:设圆心为2,(0)a a a ⎛⎫> ⎪⎝⎭,则r =≥=1a =时等号成立.当r 最小时,圆的面积2S r π=最小,此时圆的方程为22(1)(2)5x y -+-=,选A .解2:画图可得,当直线20x y m ++=与曲线2(0)y x x=>相切时,以切点为圆心,切点到直线210x y ++=的距离为半径的圆为所求.设切点为000(,)(0)P x y x >,因为22'y x=-,所以2022x -=-,解得001,2x y ==,r =22(1)(2)5x y -+-=为所求,选A .8.将数列分组:1213214321,,,,,,,,,,...1121231234⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.设2010a 位于第n 组,由(1)(1)201022n n n n -+<<,解得63n =,所以2010a 位于第63组中的第63622010572⨯-=项,故2010757a =,选B .12.22012132()4(2)P A x x dx ⨯⨯==-+⎰. 14.由FP BC ⊥,FQ AC ⊥,得C 、Q 、F 、P 四点共圆,所以CQP CFP B ∠=∠=∠()180A C =-∠+∠()180607050=-+=.15.即求直线20x y -+=与抛物线段2y x =(02y ≤≤)的交点,交点的直角坐标为()1,1-.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(1)解:依题意得,(cos 3,sin AB OB OA θθ=-=-+,……………………………2分 所以()(222cos 3sin ABθθ=-++136cos 13θθ=-+=,……………………………………………………4分3cos θθ=.因为cos 0θ≠,所以tan θ=. ……………………………………………………………6分 (2)解:由02πθ≤≤,得6AOB πθ∠=+. ………………………………………………8分所以1sin 2AOB S OA OB AOB ∆=∠11sin 266ππθθ⎛⎫⎛⎫=⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭,…………………………………10分所以当3πθ=时,△AOB . …………………………………………12分17.(本小题满分12分)(1)解:ξ的所有可能取值为0,1,2.………………………………………………………1分依题意,得3436C 1(0)C 5P ξ===, 214236C C 3(1)C 5P ξ===, 124236C C 1(2)C 5P ξ===.∴ξ的分布列为∴ 10121555E ξ=⨯+⨯+⨯=. ……………………………………………………………6分(2)解法1:设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,则()2536C 1C 2P A ==,()1436C 1C 5P AB ==, ……………………………………………………10分……………4分∴()()()25P AB P B A P A ==. 故在男生甲被选中的情况下,女生乙也被选中的概率为25.…………………………………12分解法2:设“男生甲被选中的情况下,女生乙也被选中”为事件C ,从4个男生、2个女生中选3人,男生甲被选中的种数为25C 10=,…………………………8分男生甲被选中,女生乙也被选中的种数为14C 4=,……………………………………………10分∴()1425C 42C 105P C ===. 故在男生甲被选中的情况下,女生乙也被选中的概率为25.…………………………………12分18.(本小题满分14分) 方法1:以D 为原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则()0,0,0D ,()0,2,0C ,()11,0,1A ,()10,0,1D .…………………………………………………………………1分xyz设0(1,,0)E y ()002y ≤≤.………………………………2分 (1)证明:∵()101,,1D E y =-,()11,0,1A D =--. 则()()1101,,11,0,10D E A D y =---=,∴11D E A D ⊥,即11D E A D ⊥. ……………………………4分 (2)解:当2AE =1D EC D --的平面角为4π.…………………………5分 ∵0(1,2,0)EC y =--,()10,2,1D C =-, …………………………………………………6分 设平面1D EC 的法向量为1(,,)x y z =n ,则10110(2)0200EC x y y y z D C ⎧=-+-=⎧⎪⇒⎨⎨-==⎩⎪⎩n n , ………………………………………………………8分取1y =,则()102,1,2y =-n 是平面1D EC 的一个法向量.…………………………………9分 而平面ECD 的一个法向量为()20,0,1=n , ………………………………………………10分 要使二面角1D EC D --的平面角为4π,则121212coscos 42(2π=<>===⋅n n n ,nn n 12分 解得02y =()002y ≤≤.∴当2AE =1D EC D --的平面角为4π.………………………………14分 方法2:(1)证明:连结1AD ,在长方体1111ABCD A B C D -中,∵BA ⊥平面11ADD A ,1AD ⊂平面11ADD A ,∴1A D AE ⊥.……………………………1分∵11AD AA ==,则四边形11ADD A 是正方形,∴11A D AD ⊥.…………………………2分∵1AEAD A =,∴1A D ⊥平面1AD E .………3分∵1D E ⊂平面1AD E ,∴11D E A D ⊥. …………4分(2)解:当23AE =-时,二面角1D EC D --的平面角为6π. …………………………………………………………5分连结DE ,过D 作DH EC ⊥交EC 于点H ,连结1D H .………………………………6分 在长方体1111ABCD A B C D -中,1D D ⊥平面ABCD ,EC ⊂平面ABCD , ∴1D D ⊥EC .…………………………………………………………………………………7分 ∵1DHD D D =,∴EC ⊥平面1D DH .…………………………………………………8分∵1D H ⊂平面1D DH ,∴EC ⊥1D H .……………………………………………………9分 ∴1D HD ∠为二面角1D EC D --的平面角,即16D HD π∠=.…………………………10分设AE x =()02x ≤≤,则2EB x =-,进而EC =. ……………………11分 在△DEC 中,利用面积相等的关系有,EC DH CD AD ⨯=⨯, ∴DH =……………………………………………………………12分在Rt △1D DH 中,∵16D HD π∠=,∴1tan6D DDHπ=. ………………………………13分=,解得23x =-()02x ≤≤. 故当2AE =时,二面角1D EC D --的平面角为6π.………………………………14分19.(本小题满分14分)(1)解:设(,)P x y ,则(2,0)MN =,(1,)NP x y =-,(1,)MP x y =+.……………2分1由||||MN NP MN MP ⋅=⋅,得2(1)x =+,…………………………………………………………………4分 化简得24y x =.所以动点P 的轨迹方程为24y x =.……………………………………………………………5分 (2)解:由点(),4A t 在轨迹24y x =上,则244t =,解得4t =,即()4,4A . ………6分当4m =时,直线AK 的方程为4x =,此时直线AK 与圆22(2)4x y +-=相离.………7分当4m ≠时,直线AK 的方程为4()4y x m m=--,即4(4)40x m y m +--=,…………8分圆心(0,2)到直线AK的距离d =令2d =<,解得1m <;令2d ==,解得1m =;令2d =>,解得1m >.综上所述,当1m <时,直线AK 与圆22(2)4x y +-=相交;当1m =时,直线AK 与圆22(2)4x y +-=相切;当1m >时,直线AK 与圆22(2)4x y +-=相离. (14)分20.(本小题满分14分)(1)解:∵()32f x x ax =-,∴()2'32f x x ax =-.…………………………………………1分∵函数()x f 在区间20,3⎛⎫ ⎪⎝⎭内是减函数,∴()2'320f x x ax =-≤在20,3⎛⎫⎪⎝⎭上恒成立.……2分 即32x a ≥在20,3⎛⎫⎪⎝⎭上恒成立,……………………………………………………………………3分 3321223x <⨯=,∴1a ≥.故实数a 的取值范围为[)1,+∞.……………………………4分 (2)解:∵()2'33f x x x a ⎛⎫=- ⎪⎝⎭,令()'0f x =得203x a =或.…………………………5分①若0a ≤,则当12x ≤≤时,()'0f x >,所以()f x 在区间[]1,2上是增函数, 所以()()11h a f a ==-.………………………………………………………………………6分 ②若302a <<,即2013a <<,则当12x ≤≤时,()'0f x >,所以()f x 在区间[]1,2上是增函数,所以()()11h a f a ==-.……………………………………………………………7分 ③若332a ≤<,即2123a ≤<,则当213x a <<时,()'0f x <;当223a x <<时,()'0f x >.∴()f x 在21,3a ⎡⎤⎢⎥⎣⎦上是减函数,在2,23a ⎡⎤⎢⎥⎣⎦上是增函数.∴()324327h a f a a ⎛⎫==- ⎪⎝⎭.…8分④若3a ≥,即223a ≥,则当12x <<时,()'0f x <,所以()f x 在区间[]1,2上是减函数.所以()()284h a f a ==-.………………9分综上()331,,243,3,27284, 3.a a h a a a a a ⎧-<⎪⎪⎪=-≤<⎨⎪-≥⎪⎪⎩…………10分 (3)解:由题意()12h a m a ⎛⎫=+ ⎪⎝⎭有两个不相等的实数解,即(2)中函数()h a 的图像与直线12y m a ⎛⎫=+ ⎪⎝⎭有两个不同的交点.……………………………………………11分而直线12y m a ⎛⎫=+ ⎪⎝⎭恒过定点1,02⎛⎫- ⎪⎝⎭,由右图知实数m 的取值范围是()4,1--.……14分21.(本小题满分14分)(1)证明:当1=n 时,()1111a S m ma ==+-,解得11=a .……………………………1分 当2n ≥时,11n n n n n a S S ma ma --=-=-.…………………………………………………2分 即()11n n m a ma -+=. ∵m 为常数,且0m >,∴11n n a ma m-=+()2n ≥.…………………………………………3分 ∴数列}{n a 是首项为1,公比为1mm+的等比数列.………………………………………4分 (2)解:由(1)得,()m f q =1mm=+,1122b a ==. ………………………………5分∵()1111n n n n b b f b b ---==+,…………………………………………………………………6分 ∴1111n n b b -=+,即1111=--n n b b ()2n ≥.………………………………………………7分 ∴⎭⎬⎫⎩⎨⎧n b 1是首项为12,公差为1的等差数列.………………………………………………8分∴()11211122n n n b -=+-⋅=,即221n b n =-(∈n N *).………………………………9分(3)证明:由(2)知221n b n =-,则()22421n b n =-.…………………………………10分 所以2222123n n T b b b b =++++ ()2444492521n =++++-,………………………11分当2n ≥时,()()24411222121n n n nn <=----, ………………………………………12分 所以()2444492521n T n =++++-41111114923341n n ⎛⎫⎛⎫⎛⎫<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 4011899218n =+-<.…………………………………………………………………14分。