江苏高考数学附加题

合集下载

江苏省数学高考附加题强化练习10套带答案

江苏省数学高考附加题强化练习10套带答案

江苏省数学高考附加题强化试题1班级 姓名 得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .选修4—2:矩阵与变换若点A (2,2)在矩阵cos sin sin cos αααα-⎡⎤=⎢⎥⎣⎦M 对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.C.选修4 - 4:坐标系与参数方程在极坐标系中,直线的极坐标方程为()3πθρ=∈R ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为2cos ,1cos 2αα=⎧⎨=+⎩x y (α为参数),求直线与曲线C 的交点P 的直角坐标.[必做题] 第22、23题,每小题10分,计20分.22、如图,正四棱锥P ABCD -中,2,AB PA ==AC 、BD 相交于点O ,求:(1)直线BD 与直线PC 所成的角;(2)平面PAC 与平面PBC 所成的角23、某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为P 2,在射击比武活动中每人射击发两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”; (1)若,求该小组在一次检测中荣获“先进和谐组”的概率;(2)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数ξ,如果Eξ≥5,求P 2的取值范围.江苏省数学高考附加题强化试题2班级 姓名 得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .选修4—2:矩阵与变换二阶矩阵M 对应的变换将点(1,1)-与(2,1)-分别变换成点(1,1)--与(0,2)-.求矩阵M ;C .选修4—4:坐标系与参数方程若两条曲线的极坐标方程分别为ρ =l 与ρ =2cos(θ+π3),它们相交于A ,B 两点,求线段AB 的长.22.(本小题10分)口袋中有)(*N ∈n n 个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若307)2(==X P ,求(1)n 的值;(2)X 的概率分布与数学期望.23.已知抛物线和抛物线在交点处的两条切线互相垂直,求实数a 的值.江苏省数学高考附加题强化试题3班级 姓名 得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .(选修4—2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2.求矩阵A ,并写出A 的逆矩阵.C .(选修4—4:坐标系与参数方程)已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线的参数方程为121x t y ⎧=⎪⎪⎨⎪=+⎪⎩(为参数),求直线被曲线C 截得的线段长度.[必做题] 第22、23题,每小题10分,计20分. 22.(本小题满分10分)某中学选派40名同学参加上海世博会青年志愿者服务队(简称“青志队”),他们参加活动的次数统计如表所示. (Ⅰ)从“青志队”中任意选3名学生,求这3名同学中至少有2名同学参加活动次数恰好相等的概率; (Ⅱ)从“青志队”中任选两名学生,用ξ表示这两人参加活动次数之差的绝 对值,求随机变量ξ的分布列及数学期望ξE .23.如图,已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 交于A (x 1,y 1)(y 1>0),B (x 2,y 2)两点,T 为抛物线的准线与x 轴的交点. (1)若,求直线l 的斜率;(2)求∠ATF 的最大值.江苏省数学高考附加题强化试题4班级 姓名 得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .(选修4—2:矩阵与变换)已知在二阶矩阵M 对应变换的作用下,四边形ABCD 变成四边形''''A B C D ,其中(1,1)A ,(1,1)B -,(1,1)C --,'(3,3)A -,'(1,1)B ,'(1,1)D --.(1)求出矩阵M ;(2)确定点D 及点'C 的坐标.C .(选修4—4:坐标系与参数方程){(,),,A x y x y m ααα===+为参数,{(,)3,3,B x y x t y t t ==+=-为参数,且A B ≠∅ ,求实数m 的取值范围.[必做题] 第22、23题,每小题10分,计20分.22.(本小题满分10分)如图所示,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且垂直于底面ABCD ,底面ABCD 是边长为2的菱形,︒=∠60BAD ,M 为PC 上一点,且PA ∥平面BDM . ⑴求证:M 为PC 中点;⑵求平面ABCD 与平面PBC 所成的锐二面角的大小.23.(本小题满分10分) 已知抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB .⑴求p 的值;⑵抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.若存在,求出点C 的坐标;若不存在,请说明理由.江苏省数学高考附加题强化试题5班级 姓名 得分AP B CD M第22题图21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .(选修4—2:矩阵与变换) 求将曲线2y x =绕原点逆时针旋转90︒后所得的曲线方程.C .(选修4—4:坐标系与参数方程)求圆心为36C π⎛⎫⎪⎝⎭,,半径为3的圆的极坐标方程.【必做题】第22题,23题,每题10分,共20分;解答时应写出文字说明,证明过程或演算步骤.22.如图,平面ABDE ⊥平面ABC ,ABC ∆是等腰直角三角形,AC =BC = 4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,122BD AE ==,O M CE AB 、分别为、的中点,求直线CD 和平面ODM 所成角的正弦值.23,已知数列{a n }满足,且a 1=3.(1)计算a 2,a 3,a 4的值,由此猜想数列{a n }的通项公式,并给出证明;A MBCO DE(2)求证:当n≥2时,.江苏省数学高考附加题强化试题6班级 姓名 得分21.[选做题]在B 、C 、D 三小题中只能选做2题,每小题10分,计20分. B .选修4—2:矩阵与变换求关于直线y=3x 的对称的反射变换对应的矩阵A .C .选修4—4:坐标系与参数方程在极坐标系中,过曲线)0(cos 2sin :2>=a a L θθρ外的一点),52(θπ+A (其中,2tan =θθ为锐角)作平行于)(4R ∈=ρπθ的直线与曲线分别交于C B ,.(1)写出曲线L 和直线的普通方程(以极点为原点,极轴为x 轴的正半轴建直角坐标系); (2)若|||,||,|AC BC AB 成等比数列,求a 的值.[必做题] 第22、23题,每小题10分,计20分.22.(本小题10分)如图,已知四棱柱ABCD —A 1B 1C 1D 1中,A 1D ⊥底面ABCD ,底面ABCD 是边长为1的正方形,侧棱AA 1=2。

2021高考江苏版(理)数学一轮复习讲义: 附加题部分 第1章 第59课 二项式定理

2021高考江苏版(理)数学一轮复习讲义: 附加题部分 第1章 第59课 二项式定理

第59课二项式定理[最新考纲]内容要求A B C二项式定理√1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N+);(2)通项公式:T r+1=C r n a n-r b r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质性质性质描述对称性与首末等距离的两个二项式系数相等,即C k n=C n-kn增减性二项式系数C k n当k<n+12(n∈N+)时,是递增的当k>n+12(n∈N+)时,是递减的二项式系数最大值当n为偶数时,中间的一项取得最大值当n为奇数时,中间的两项取最大值3.各二项式系数和(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C n n=2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n +…=C1n+C3n+C5n+…=2n-1.1.(思考辨析)判断以下结论的正误.(正确的打“√〞,错误的打“×〞)(1)C k n an -k b k是(a +b )n 的展开式中的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)假设(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,那么a 7+a 6+…+a 1的值为128.( )[解析] (1)错误.应为第k +1项.(2)错误.当n 为偶数时,为中间一项;n 为奇数时,为中间的两项. (3)正确.二项式系数只与n 和项数有关.(4)错误.令x =1,可得a 7+a 6+…+a 1+a 0=27=128. [答案] (1)× (2)× (3)√ (4)×2.(教材改编)二项式(x +1)n (n ∈N +)的展开式中x 2的系数为15,那么n =________.6 [(x +1)n =(1+x )n =1+C 1n +C 2n x 2+…+C n n x n .依题意,得C 2n =15,解得n=6(n =-5舍去).]3.在⎝ ⎛⎭⎪⎪⎫x 2-13x n 的展开式中,只有第5项的二项式系数最大,那么展开式中常数项是________.7 [由题意知n 2+1=5,解得n =8,⎝ ⎛⎭⎪⎪⎫x 2-13x 8的展开式的通项T k +1=C k 8⎝ ⎛⎭⎪⎫x 28-k ⎝⎛⎭⎪⎪⎫-13x k =(-1)k 2k -8C k 8.令8-4k3=0得k =6,那么展开式中的常数项为(-1)626-8C 68=7.]4.(2021·北京高考)在(1-2x )6的展开式中,x 2的系数为________.(用数字作答)60 [依二项式定理,含x 2的项为展开式的第3项.∴展开式中T 3=C 26(-2x )2=60x 2,那么x 2的系数为60.]5.(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =________.-1 [(1+x )5=1+C 15x +C 25x 2+C 35x 3+C 45x 4+C 55x 5. ∴(1+ax )(1+x )5的展开式中x 2的项为(C 25+C 15a )x 2,依题意得10+5a =5,解得a =-1.]通项公式及其应用(1)(x 2+x +y )5的展开式中,x 5y 2的系数为________. 【导学号:62172322】(2)(2021·山东高考)假设⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,那么实数a=________.(1)30 (2)-2 [(1)法一:(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.法二:(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.(2)T r +1=C r 5·(ax 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5·a 5-r r .令10-52r =5,解得rx 5的系数为-80,那么有C 25·a 3=-80,解得a =-2.] [规律方法] 1.二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.2.求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.[变式训练1] (1)假设⎝⎛⎭⎪⎫x 6+1x x n 的展开式中含有常数项,那么正整数n 的最小值等于________.(2)(2021·全国卷Ⅰ)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案)(1)5 (2)10 [(1)二项展开式的通项T r +1=C r n (x 6)n -r ⎝ ⎛⎭⎪⎫1x x r=C r n ,假设T r +1是常数项,那么6n -15r 2=0,即n =54r . 又n ∈N +,故n 的最小值为5.(2)(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r(x )r =25-r ·C r 5·.令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.]二项式系数与各项系数和(1)(1+x )n 的展开式中第4项与第8项的二项式系数相等,那么奇数项的二项式系数和为________.(2)假设(1-2x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,那么a 1+a 2+a 3+a 4=________.【导学号:62172323】(1)29 (2)0 [(1)∵(1+x )n 的展开式中第4项与第8项的二项式系数相等,∴C 3n =C 7n ,解得n =10.从而C 010+C 110+C 210+…+C 1010=210,∴奇数项的二项式系数和为C010+C210+…+C1010=29.(2)令x=1,得a0+a1+a2+a3+a4=(1-2)4=1.又令x=0,得a0=(1-0)4=1.因此a1+a2+a3+a4=0.][迁移探究1]假设本例(2)中条件不变,问题变为“求a0+a2+a4的值〞,那么结果如何?[解]在(1-2x)4=a0+a1x+a2x2+a3x3+a4x4中,令x=1,得a0+a1+a2+a3+a4=1.①令x=-1,得a0-a1+a2-a3+a4=34.②由①+②,可得a0+a2+a4=12(34+1)=41.[迁移探究2]假设将本例(2)变为“假设(1-2x)2 016=a0+a1x+a2x2+…+a2016x2 016(x∈R),那么a12+a222+…+a2 01622 016的值为________.〞-1[令x=0,得a0=(1-0)2 016=1.令x=12,那么a0+a12+a222+…+a2 01622 016=0,∴a12+a222+…+a2 01622 016=-1.][规律方法] 1.第(1)小题求解的关键在于求n,此题常因把“n的等量关系表示为C4n=C8n〞,错求n=12;第(2)小题主要是“赋值〞求出a0与各项系数的和.2.求解这类问题要注意:(1)区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;(2)根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为1,-1.[变式训练2](a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,那么a=________.3[设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5. 令x=1,得(a+1)×24=a0+a1+a2+a3+a4+a5.①令x=-1,得0=a0-a1+a2-a3+a4-a5.②①-②,得16(a+1)=2(a1+a3+a5)=2×32,∴a=3.]二项式定理的应用(1)设复数x=2i1-i(i是虚数单位),那么C12 017x+C22 017x2+C32 017x3+…+C2 0172 017x2 017=________.(2)设a∈Z,且0≤a<13,假设512 012+a能被13整除,那么a=________.(1)-1+i(2)12[(1)x=2i1-i=-1+i,C12 017x+C22 017x2+C32 017x3+…+C2 0172 017x2 017=(1+x)2 017-1=i2 017-1=-1+i.(2)512 012+a=(52-1)2 012+a=C02 012·522 012-C12021·522 011+…+C2 0112 012·52·(-1)2 011+C2 0122 012·(-1)2 012+a,∵C02 012·522 012-C12021·522 011+…+C2 0112 012·52·(-1)2 011能被13整除.且512 012+a能被13整除,∴C20212021·(-1)2 012+a=1+a也能被13整除.因此a可取值12.][规律方法] 1.第(1)题将二项式定理的应用与坐标系中图象点的坐标交汇渗透,命题角度新颖;将图表信息转化为运用二项展开式的系数求待定字母参数,表达数形结合和方程思想的应用.2.第(2)题求解的关键在于将512 012变形为(52-1)2 012,使得展开式中的每一项与除数13建立联系.(2)运用二项式定理要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数;②二项式定理的逆用.[变式训练3] 设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x+a 2x 2+…+a n x n .假设点A i (i ,a i )(i =0,1,2)的位置如图59-1所示,那么a =________.图59-13 [由题意知A 0(0,1),A 1(1,3),A 2(2,4). 故a 0=1,a 1=3,a 2=4.又⎝ ⎛⎭⎪⎫1+x a n 的通项公式T r +1=C r n ⎝ ⎛⎭⎪⎫x a r(r =0,1,2,…,n ). 故C 1n a =3,C 2na 2=4,解得a =3.][思想与方法]1.二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N+)提醒二项展开式的规律,一定要牢记通项T r+1=C r n a n-r b r是展开式的第r+1项,不是第r项.2.通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等(常用待定系数法).3.展开式的应用:(1)可求解与二项式系数有关的求值问题,常采用赋值法.(2)可证明整除问题(或求余数).(3)有关组合式的求值证明,常采用构造法.[易错与防范]1.二项式的通项易误认为是第k项,实质上是第k+1项.2.(a+b)n与(b+a)n虽然一样,但具体到它们展开式的某一项时是不一样的,所以公式中的第一个量a与第二个量b的位置不能颠倒.3.易混淆二项式中的“项〞“项的系数〞“项的二项式系数〞等概念,注意项的系数是指非字母因数所有局部,包含符号,二项式系数仅指C k n (k =0,1,…,n ).课时分层训练(三)A 组 根底达标 (建议用时:30分钟)1.设(5x -x )n 的展开式的各项系数之和为M ,二项式系数之和为N ,假设M -N =240,求展开式中二项式系数最大的项. 【导学号:62172324】[解] 依题意得,M =4n =(2n )2,N =2n , 于是有(2n )2-2n =240,(2n +15)(2n -16)=0, ∴2n =16=24, 解得n =4.要使二项式系数C r 4最大,只有r =2, 故展开式中二项式系数最大的项为T 3=C 24(5x )2·(-x )2=150x 3. 2.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .假设13a =7b ,求m 的值.[解] (x +y )2m 展开式中二项式系数的最大值为C m 2m ,∴a =C m 2m ,同理,b =C m +12m +1. ∵13a =7b ,∴13·C m 2m =7·C m +12m +1.∴13·(2m )!m ! m !=7·(2m +1)!(m +1)!m !.∴m =63.(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|. 【导学号:62172325】[解] 令x =1,那么a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,那么a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2, 得a 1+a 3+a 5+a 7 =-1-372=-1 094. (3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)法一:∵(1-2x )7展开式中,a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零,∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.法二:|a 0|+|a 1|+|a 2|+…+|a 7|,即(1+2x )7展开式中各项的系数和,令x =1, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2 187.4.二项式⎝⎛⎭⎪⎫3x +1x n的展开式中各项的系数和为256.(1)求n ;(2)求展开式中的常数项.[解] (1)由题意得C 0n +C 1n +C 2n +…+C n n =256,∴2n=256,解得n =8.(2)该二项展开式中的第r +1项为 T r +1=C r 8(3x )8-r·⎝ ⎛⎭⎪⎫1x r =C r 8·x 8-4r3, 令8-4r3=0,得r =2,此时,常数项为T 3=C 28=28.5.假设⎝⎛⎭⎪⎪⎫x +124x n 展开式中前三项的系数成等差数列,求: (1)展开式中所有x 的有理项; (2)展开式中系数最大的项.[解] 易求得展开式前三项的系数为1,12C 1n,14C 2n . 据题意得2×12C 1n =1+14C 2n ⇒n =8. (1)设展开式中的有理项为T r +1, 由T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎪⎫124x r =⎝ ⎛⎭⎪⎫12r C r8x 16-3r 4,∴r 为4的倍数, 又0≤r ≤8,∴r =0,4,8. 故有理项为T 1=⎝ ⎛⎭⎪⎫120C 08x16-3×04=x 4,T 5=⎝ ⎛⎭⎪⎫124C 48x16-3×44=358x , T 9=⎝ ⎛⎭⎪⎫128C 88x16-3×84=1256x 2.(2)设展开式中T r +1项的系数最大,那么:⎝ ⎛⎭⎪⎫12r C r 8≥⎝ ⎛⎭⎪⎫12r +1C r +18且⎝ ⎛⎭⎪⎫12r C r 8≥⎝ ⎛⎭⎪⎫12r -1C r -18⇒r =2或r =3. 故展开式中系数最大的项为T 3=⎝ ⎛⎭⎪⎫122C 28x16-3×24=7x 52,T 4=⎝ ⎛⎭⎪⎫123C 38x16-3×34=7x 74.6.(1)2n +2·3n +5n -a 能被25整除,求正整数a 的最小值;8的近似值.(准确到小数点后三位)[解] (1)原式=4·6n +5n -a =4(5+1)n +5n -a=4(C 0n 5n +C 1n 5n -1+…+C n -2n 52+C n -1n 5+C n n )+5n -a =4(C 0n 5n +C 1n 5n -1+…+C n -2n 52)+25n +4-a ,显然正整数a 的最小值为4.8=(1+0.02)8≈C 08+C 18·0.02+C 282+C 383≈1.172.B 组 能力提升 (建议用时:15分钟)1.(2021·苏州期中)设f (x ,n )=(1+x )n ,n ∈N +. (1)求f (x,6)的展开式中系数最大的项;(2)n ∈N +,化简C 0n 4n -1+C 1n 4n -2+C 2n 4n -3+…+C n -1n 40+C n n 4-1;(3)求证:C 1n +2C 2n +3C 3n +…+n C n n =n ×2n -1.[解] (1)展开式中系数最大的项是第4项为C 3n x 3=20x 3. (2)C 0n 4n -1+C 1n 4n -2+C 2n 4n -3+…+C n -1n 40+C n n 4-1=14[C 0n 4n +C 1n 4n -1+C 2n 4n -2+…+C n -1n 4+C n n ]=14(4+1)n=5n 4. (3)证明:因为k C k n =n C k -1n -1,所以C 1n +2C 2n +3C 3n +…+n C n n =n (C 0n -1+C 1n -1+C 2n -1+…C n -1n -1)=n ×2n -1. 2.f (x )=(1+x )m +(1+2x )n (m ,n ∈N +)的展开式中x 的系数为11. (1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.[解] (1)由得C 1m +2C 1n =11,∴m +2n =11,x 2的系数为C 2m +22C 2n =m (m -1)2+2n (n -1) =m 2-m 2+(11-m )⎝ ⎛⎭⎪⎫11-m 2-1=⎝ ⎛⎭⎪⎫m -2142+35116. ∵m ∈N +,∴m =5时,x 2的系数取得最小值22,此时n =3. (2)由(1)知,当x 2的系数取得最小值时, m =5,n =3,∴f (x )=(1+x )5+(1+2x )3. 设这时f (x )的展开式为f (x )=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33=59, 令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1, 两式相减得2(a 1+a 3+a 5)=60,故展开式中x 的奇次幂项的系数之和为30.3.(2021·南京模拟)设集合S ={1,2,3,…,n }(n ∈N +,n ≥2),A ,B 是S 的两个非空子集,且满足集合A 中的最大数小于集合B 中的最小数,记满足条件的集合对(A ,B )的个数为P n .(1)求P 2,P 3的值; (2)求P n 的表达式.[解] (1)当n =2时,即S ={1,2},此时A ={1},B ={2},所以P 2=1. 当n =3时,即S ={1,2,3}.假设A ={1},那么B ={2},或B ={3},或B={2,3};假设A ={2}或A ={1,2},那么B ={3}.所以P 3=5.(2)当集合A 中的最大元素为“k 〞时,集合A 的其余元素可在1,2,…,k -1中任取假设干个(包含不取),所以集合A 共有C 0k -1+C 1k -1+C 2k -1+…+C k -1k -1=2k-1种情况.此时,集合B 的元素只能在k +1,k +2,…,n 中任取假设干个(至少取1个),所以集合B 共有C 1n -k +C 2n -k +C 3n -k +…+C n -k n -k =2n -k -1种情况, 所以,当集合A 中的最大元素为“k 〞时, 集合对(A ,B )共有2k -1(2n -k -1)=2n -1-2k -1对.当k 依次取1,2,3,…,n -1时,可分别得到集合对(A ,B )的个数,求和可得P n =(n -1)·2n -1-(20+21+22+…+2n -2)=(n -2)·2n -1+1.4.(2021·苏锡常镇调研一)在杨辉三角形中,从第3行开场,除1以外,其它每一个数值是它上面的二个数值之和,其它每一个数值是它上面的二个数值之和,这三角形数阵开头几行如图59-2所示.图59-2(1)在杨辉三角形中是否存在某一行,且该行中三个相邻的数之比为3∶4∶5?假设存在,试求出是第几行;假设不存在,请说明理由;(2)n 、r 为正整数,且n ≥r +3.求证:任何四个相邻的组合数C r n ,C r +1n ,C r +2n ,C r +3n 不能构成等差数列.[解] (1)杨辉三角形的第n 行由二项式系数C k n ,k =0,1,2,…,n 组成.如果第n 行中有C k -1n C k n =k n -k +1=34,C k nC k +1n =k +1n -k=45,那么3n -7k =-3,4n -9k =5, 解这个联立方程组,得k =27,n =62.即第62行有三个相邻的数C 2662,C 2762,C 2862的比为3∶4∶5.(2)假设有n ,r (n ≥r +3),使得C r n ,C r +1n ,C r +2n ,C r +3n 成等差数列, 那么2C r +1n =C r n +C r +2n ,2C r +2n =C r +1n +C r +3n ,即2·n !(r +1)!(n -r -1)!=n !r !(n -r )!+n !(r +2)!(n -r -2)!,2·n !(r +2)!(n -r -2)!=n !(r +1)!(n -r -1)!+n !(r +3)!(n -r -3)!.所以有2(r +1)(n -r -1)=1(n -r -1)(n -r )+1(r +1)( r +2),2(r +2)(n -r -2)=1(n -r -2)(n -r -1)+1(r +2)(r +3),经整理得到n 2-(4r +5)n +4r (r +2)+2=0,n 2-(4r +9)n +4(r +1)(r +3)+2=0.两式相减可得n =2r +3,于是C r 2r +3,C r +12r +3,C r +22r +3,C r +32r +3成等差数列,而由二项式系数的性质可知C r 2r +3=C r +32r +3<C r +12r +3=C r +22r +3,这与等差数列性质矛盾,从而要证明的结论成立.。

江苏高考数学附加题卷例题及答案

江苏高考数学附加题卷例题及答案

B .附加题部分三、附加题部分(本大题共6小题,其中第21~24题为选做题,请考生在第21~24题中任选2个小题作答,如果多做,则按所选做的前两题记分。

第25和第26题为必做题.解答应写出文字说明,证明过程或演算步骤.)21.(本小题为选做题,满分10分) 如图,AB 是O 的直径,M 为圆上一点,ME AB ⊥,垂足为E ,点C 为O 上任一点,,AC EM 交于点D ,BC 交DE 于点F . 求证:(1)AE ED FE EB =::;(2)2EM ED EF =⋅.22.(本小题为选做题,满分10分)已知点(,)P x y 是圆222x y y +=上的动点. (1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围.23.(本小题为选做题,满分10分)求使等式 2 4 2 0 1 03 50 10 -1M ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦成立的矩阵M .24.(本小题为选做题,满分10分)已知(0,)2x π∈,求函数2sin y x =+的最小值以及取最小值时所对应的x 值.25.(本小题为必做题,满分10分) 如图,直三棱柱111A B C ABC -中,12C C CB CA ===,AC CB ⊥. D E 、分别为棱111C C B C 、的中点.(1)求点E 到平面ADB 的距离; (2)求二面角1E A D B --的平面角的余弦值;(3)在线段AC 上是否存在一点F ,使得EF ⊥平面1A DB ?若存在,确定其位置;若不存在,说明理由.26.(本小题为必做题,满分10分)1,2,3,,9这9个自然数中,任取3个不同的在数.(1)求这3个数中至少有1个是偶数的概率; (2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望E ξ.B .附加题部分 三、附加题部分:21.(选做题)(本小题满分10分) 证明:(1)∵MN AB ⊥,∴90B BFE D ∠=-∠=∠, ∴AED ∆∽FEB ∆,∴EB FE ED AE ::=;(5分)(2)延长ME 与⊙O 交于点N ,由相交弦定理,得EM EN EA EB ⋅=⋅,且EM EN =, ∴2EM EA EB =⋅,由(1) ∴2EM ED EF =⋅。

江苏高考附加题数学知识点

江苏高考附加题数学知识点

江苏高考附加题数学知识点作为中国国内各省份高考中的一颗明珠,江苏高考备受广大考生和家长的关注。

江苏省高考数学试卷中附加题是考察学生对于数学知识理解的一个重要环节。

本文将对江苏高考附加题中涉及的数学知识点进行分析和解读,以帮助广大考生更好地备考。

一、初等数论初等数论是江苏高考附加题中经常出现的考察点之一。

其中包括整数的性质、整数的因数分解、最大公约数和最小公倍数等。

考生首先需要掌握素数与合数、奇数与偶数的特点,并能够灵活运用整数的有序性和整除性进行解题。

此外,还需要熟悉最大公约数和最小公倍数的计算方法以及相关的性质,例如辗转相除法和质数分解法等。

对于初等数论的掌握,既可以通过多做题来提高技巧,也可以通过深入理解数学原理来应对更复杂的情况。

二、坐标系与函数附加题中经常涉及到的另一个数学知识点是坐标系与函数。

考生需要熟悉直角坐标系的构造和基本性质,能够根据给定函数的表达式绘制函数图像,并理解各类函数的特点。

在解题过程中,还需要掌握函数的平移、伸缩和反转等变换方式的特点,以便做出准确的判断。

此外,对于带参数的函数或隐函数的解析,考生需要学会通过图像直观地理解其特点,从而找到解答问题的关键。

三、概率与统计学概率与统计学是江苏高考附加题中的另一个重要知识点。

考生需要掌握随机事件的概念、样本空间的构建以及事件的概率计算等基本内容。

在统计学方面,需要熟悉常用的统计指标如均值、中位数和众数等,以及频率分布图和累积分布图的绘制方法。

在解题过程中,考生还需要灵活运用条件概率、排列组合和概率分布等概念,以解决实际问题。

同时,了解基本的抽样调查和假设检验方法,能够应对更复杂的统计学问题。

四、向量与几何附加题中还经常涉及到向量与几何的知识点。

考生需要理解向量的基本概念和运算规则,能够求解向量的模、夹角和坐标。

在几何学方面,需要熟练掌握平面几何和空间几何中的基本定理和性质,例如三点共线、平行线与垂直线的判定等。

此外,对于曲线的参数方程以及空间曲线的类型和特点,考生也需要进行积极的学习和思考。

2021高考江苏版(理)数学一轮复习讲义: 附加题部分 第1章 第62课 离散型随机变量的均值与方差

2021高考江苏版(理)数学一轮复习讲义: 附加题部分 第1章 第62课 离散型随机变量的均值与方差

第62课离散型随机变量的均值与方差[最新考纲]内容要求A B C离散型随机变量的均值与方差√1.离散型随机变量的均值与方差一般地,假设离散型随机变量X的概率分布为X x1x2…x i…x nP p1p2…p i…p n(1)均值称E(X)=μ=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差称V(X)=σ2=∑ni=1(x i-E(X))2p i=∑ni=1x2i p i-μ2为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根σ=V(X)为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b.(2)V(aX+b)=a2V(X).(a,b为常数)3.两点分布与二项分布的均值、方差(1)假设X服从两点分布,那么E(X)=p,V(X)=p(1-p).(2)假设X~B(n,p),那么E(X)=np,V(X)=np(1-p).1.(思考辨析)判断以下结论的正误.(正确的打“√〞,错误的打“×〞) (1)期望是算术平均数概念的推广,与概率无关.( ) (2)随机变量的均值是常数,样本的平均值是随机变量.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,那么偏离均值的平均程度越小. ( )(4)在篮球比赛中,罚球命中1次得1分,不中得0分,如果某运发动罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.( )[答案] (1)× (2)√ (3)√ (4)√ 2.(教材改编)X 的概率分布为设73 [E (X )=-1×12+0×13+1×16=-13, 那么E (Y )=2E (X )+3=3-23=73.]3.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),那么V (ξ)等于________.8 [∵E (ξ)=15(2+4+6+8+10)=6, ∴V (ξ)=15[(-4)2+(-2)2+02+22+42]=8.]4.(2021·四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,那么在2次试验中成功次数X 的均值是________.32 [同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率P =1-⎝ ⎛⎭⎪⎫122=34. 又X ~B ⎝ ⎛⎭⎪⎫2,34,∴成功次数X 的均值E (X )=2×34=32.]5.假设X ~B (n ,p ),且E (X )=6,V (X )=3,那么P (X =1)=________. 31 024[∵E (X )=np =6, V (X )=np (1-p )=3, ∴p =12,n =12,那么P (X =1)=C 112×12×⎝ ⎛⎭⎪⎫1211=3×2-10=31 024.]离散型随机变量的均值、方差设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的时机均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的概率分布;(2)从该袋子中任取(每球取到的时机均等)1个球,记随机变量η为取出此球所得分数.假设Eη=53,Dη=59,求a ∶b ∶c . 【导学号:62172334】[解] (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19, P (ξ=6)=1×16×6=136.所以ξ的概率分布为(2)由题意知η的概率分布为所以E (η)=a a +b +c +2b a +b +c +3c a +b +c=53,D (η)=⎝ ⎛⎭⎪⎫1-532·a a +b +c +⎝ ⎛⎭⎪⎫2-532·b a +b +c +⎝ ⎛⎭⎪⎫3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0.解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.[规律方法] 1.求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进展计算.2.注意E (aX +b )=aE (X )+b ,V (aX +b )=a 2V (X )的应用.[变式训练1] (2021·苏北四市摸底)某校有甲、乙两个兴趣小组,其中甲组有2名男生、3名女生,乙组有3名男生、1名女生,学校方案从两兴趣小组中随机各选2名成员参加某项活动.(1)求选出的4名选手中恰好有一名女生的选派方法数;(2)记X 为选出的4名选手中女选手的人数,求X 的概率分布和数学期望.[解] (1)选出的4名选手中恰好有一名女生的选派方法数为C 12·C 13·C 23+C 13=21种.(2)X 的可能取值为0,1,2,3.P(X=0)=C23C25C24=310×6=120,P(X=1)=C12C13C23+C13C25C24=2×3×3+310×6=720,P(X=3)=C23C13C25C24=3×310×6=320,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)=9 20.X的概率分布为X 012 3P 120720920320E(X)=0×120+1×720+2×920+3×320=1710.与二项分布有关的均值、方差某商场举行有奖促销活动,顾客购置一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,假设都是红球,那么获一等奖;假设只有1个红球,那么获二等奖;假设没有红球,那么不获奖.(1)求顾客抽奖1次能获奖的概率;(2)假设某顾客有3次抽奖时机,记该顾客在3次抽奖中获一等奖的次数为X,求X的概率分布和数学期望及方差. 【导学号:62172335】[解](1)记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.由题意知A1与A2相互独立,A1A2与A1A2互斥,B1与B2互斥,且B1=A1A2,B2=A1A2+A1A2,C=B1+B2.因为P (A 1)=410=25,P (A 2)=510=12, 所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15, P (B 2)=P (A 1A 2+A 1A 2)=P (A 1A 2)+P (A 1A 2) =P (A 1)P (A 2)+P (A 1)P (A 2) =P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12. 故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125, P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的概率分布为X 的数学期望为E (X )=3×15=35.随机变量X 的方差V (X )=3×15⎝ ⎛⎭⎪⎫1-15=1225.[规律方法]ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B (n ,p ),那么用公式E (ξ)=np ,V (ξ)=np (1-p )求解,可大大减少计算量.2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,此时,可以综合应用E (aξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (aξ+b ).同样还可求出V (aξ+b ).[变式训练2] 空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录2021 年某地某月10天的AQI 的茎叶图如图62-1所示.图62-1(1)利用该样本估计该地本月空气质量优良(AQI ≤100)的天数;(按这个月总共30天计算)(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列、数学期望和方差.[解] (1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为610=35,从而估计该月空气质量优良的天数为30×35=18. (2)由(1)估计某天空气质量优良的概率为35, ξ的所有可能取值为0,1,2,3.P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 1335⎝ ⎛⎭⎪⎫252=36125,P (ξ=2)=C 23⎝ ⎛⎭⎪⎫35225=54125,P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125.故ξ的分布列为ξ 0 1 2 3 P8125361255412527125显然ξ~B ⎝ ⎛⎭⎪⎫3,35,E (ξ)=3×35=1.8,随机变量ξ的方差V (ξ)=3×35⎝ ⎛⎭⎪⎫1-35=1825.均值与方差在决策中的应用有甲、乙两种棉花,从中各抽取等量的样品进展质量检验,结果如下:X 甲 28 29 30 31 32 PX 乙 28 29 30 31 32 P花的质量.[解] 由题意,得E (X 甲)=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30,E (X 乙)=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30. 又V (X甲)=(28-30)2×0.1+(29-30)2×0.15+(30-30)2×0.5+(31-30)2×0.15+(32-30)2×0.1=1.1,V (X乙)=(28-30)2×0.13+(29-30)2×0.17+(30-30)2×0.4+(31-30)2×0.17+(32-30)2×0.13=1.38,所以E (X 甲)=E (X 乙),V (X 甲)<V (X 乙),故甲种棉花的质量较好. [规律方法] 1.依据均值与方差的定义、公式求出相应的均值与方差. 2.依据均值与方差的意义对实际问题作出决策或给出合理的解释.[变式训练3] (2021·扬州期末)某商场举办“迎新年摸球〞活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球、乙箱中有三个球(每个球的大小、形状完全一样),每一个箱子中只有一个红球,其余都是黑球.假设摸中甲箱中的红球,那么可获奖金m 元,假设摸中乙箱中的红球,那么可获奖金n 元.活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,那么可继续在第二个箱子中摸球,否那么活动终止.(1)如果参与者先在乙箱中摸球,求其恰好获得奖金n 元的概率;(2)假设要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.[解] (1)设参与者先在乙箱中摸球,且恰好获得奖金n 元为事件M . 那么P (M )=13×34=14,即参与者先在乙箱中摸球,且恰好获得奖金n 元的概率为14.(2)参与者摸球的顺序有两种,分别讨论如下:①先在甲箱中摸球,参与者获奖金x 可取0,m ,m +n , 那么P (x =0)=34,P (x =m )=14×23=16,P (x =m +n )=14×13=112; E (X )=0×34+m ×16+(m +n )×112=m 4+n12;②先在乙箱中摸球,参与者获奖金η可取0,n ,m +n , 那么P (η=0)=23,P (η=n )=13 ×34=14,P (η=m +n )=13×14=112, E (η)=0×23+n ×14+(m +n )×112=m 12+n3, E (X )-E (η)=2m -3n12,当m n >32时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大;当m n =32时,两种顺序参与者获奖金期望值相等;当m n <32时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大. 即当m n >32时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大;当m n =32时,两种顺序参与者获奖金期望值相等;当m n <32时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大.[思想与方法] 1.均值与方差的性质(1)E (aX +b )=aE (X )+b ,V (aX +b )=a 2V (X )(a ,b 为常数). (2)假设X 服从两点分布,那么E (X )=p ,V (X )=p (1-p ).(3)假设X 服从二项分布,即X ~B (n ,p ),那么E (X )=np ,V (X )=np (1-p ). 2.求离散型随机变量的均值与方差的根本方法(1)随机变量的概率分布求它的均值、方差,按定义求解.(2)随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差,可直接用ξ的均值、方差的性质求解.(3)如果所给随机变量是服从二项分布,利用均值、方差公式求解.[易错与防范]1.理解均值E(X)易失误,均值E(X)是一个实数,由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值的取值平均状态.2.注意E(aX+b)=aE(X)+b,V(aX+b)=a2V(X)易错易混.3.对于应用问题,必须对实际问题进展具体分析,一般要将问题中的随机变量设出来,再进展分析,求出随机变量的概率分布,然后按定义计算出随机变量的均值、方差.课时分层训练(六)A组根底达标(建议用时:30分钟)1.某班从4名男生、2名女生中选出3人参加志愿者效劳,假设选出的男生人数为ξ,求ξ的方差.[解]依题意,随机变量ξ服从超几何分布,ξ可能的取值为1,2,3.P(ξ=k)=C k4C3-k2C36,k=1,2,3.ξ的概率分布为E(ξ)=1×15+2×35+3×15=2.V (ξ)=15×(1-2)2+35×(2-2)2+15×(3-2)2=0.4.2.现有一游戏装置如图62-2,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规那么为:假设小球最终落入A 槽,得10张奖票,假设落入B 槽,得5张奖票;假设落入C 槽,得重投一次的时机,但投球的总次数不超过3次.图62-2(1)求投球一次,小球落入B 槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X ,求X 的概率分布及均值.【导学号:62172336】[解] (1)由题意可知投一次小球,落入B 槽的概率为⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=12.(2)落入A 槽的概率为⎝ ⎛⎭⎪⎫122=14,落入B 槽的概率为12, 落入C 槽的概率为⎝ ⎛⎭⎪⎫122=14.X 的所有可能取值为0,5,10, P (X =0)=⎝ ⎛⎭⎪⎫143=164,P (X =5)=12+14×12+⎝ ⎛⎭⎪⎫142×12=2132.P (X =10)=14+14×14+⎝ ⎛⎭⎪⎫142×14=2164.所以X 的概率分布为X510E (X )=0×164+5×2132+10×2164=10516.3.(2021·南通二调)一个摸球游戏,规那么如下:在一不透明的纸盒中,装有6个大小一样、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k 倍的奖励(k ∈N +),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X 元.(1)求概率P (X =0)的值;(2)为使收益X 的数学期望不小于0元,求k 的最小值.(注:概率学源于赌博,请自觉远离不正当的游戏!) 【导学号:62172337】 [解] (1)事件“X =0〞表示“有放回的摸球3回,所指定的玻璃球只出现1次〞,那么P (X =0)=3×16×⎝ ⎛⎭⎪⎫562=2572.(2)依题意,X 的可能值为k ,-1,1,0,且P (X =k )=⎝ ⎛⎭⎪⎫163=1216,P (X =-1)=⎝ ⎛⎭⎪⎫563=125216,P (X =1)=3×⎝ ⎛⎭⎪⎫162×56=572,P (X =0)=2572,结合(1)知,参加游戏者的收益X 的数学期望为 E (X )=k ×1216+(-1)×125216+1×572=k -110216(元).为使收益X 的数学期望不小于0元,所以k ≥110,即k min =110.4.(2021·山东高考)甲、乙两人组成“星队〞参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,那么“星队〞得3分;如果只有一人猜对,那么“星队〞得1分;如果两人都没猜对,那么“星队〞得0分.甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队〞参加两轮活动,求:(1)“星队〞至少猜对3个成语的概率;(2)“星队〞两轮得分之和X 的概率分布和数学期望E (X ). [解] (1)记事件A :“甲第一轮猜对〞, 记事件B :“乙第一轮猜对〞, 记事件C :“甲第二轮猜对〞, 记事件D :“乙第二轮猜对〞,记事件E :“‘星队’至少猜对3个成语〞.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D , 由事件的独立性与互斥性,P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A)P (B )P (C )P (D )+P (A )P (B)P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23, 所以“星队〞至少猜对3个成语的概率为23. (2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144, P (X =3)=34×23×14×13+14×13×34×23=12144=112, P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的概率分布为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236.B 组 能力提升 (建议用时:15分钟)1.(2021·南京盐城二模)甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛完毕后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛完毕后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E (ξ).[解] (1)比赛完毕后甲的进球数比乙的进球数多1个有以下几种情况: 甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 所以比赛完毕后甲的进球数比乙的进球数多1个的概率 P =C 1323⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫123+C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫13C 13⎝ ⎛⎭⎪⎫123+C 33⎝ ⎛⎭⎪⎫233C 23⎝ ⎛⎭⎪⎫123=1136. (2)ξ的取值为0,1,2,3,所以ξ的概率分布列为所以数学期望E (ξ)=0×724+1×1124+2×524+3×124=1.2.方案在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量....X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,缺乏80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多..有1年的年入流量超过120的概率; (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:行,那么该台年亏损800万元.欲使水电站年总利润的均值到达最大,应安装发电机多少台?[解] (1)依题意,p 1=P (40<X <80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布知,在未来4年中至多有1年的年入流量超过120的概率为 p =C 04(1-p 3)4+C 14(1-p 3)3p 3=⎝ ⎛⎭⎪⎫9104+4×⎝ ⎛⎭⎪⎫9103×⎝ ⎛⎭⎪⎫110=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5 000,E (Y )=5 000×1=5 000.②安装2台发电机的情形.依题意知,当40<X <80时,一台发电机运行,此时Y =5 000-800=4 200,因此P (Y =4 200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5 000×2=10 000,因此P (Y =10 000)=P (X ≥80)=p 2+p 3Y 的分布列如下:所以,E (Y )=4 200×0.2+10 000×0.8=8 840. ③安装3台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-1 600=3 400,因此P (Y =3 400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5 000×2-800=9 200,因此P (Y =9 200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5 000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1,由此得Y 的分布列如下:所以,E (Y )=3 4008 620. 综上,欲使水电站年总利润的均值到达最大,应安装发电机2台. 3.(2021·南通模拟)一位网民在网上光临某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购置意向.该网民购置A 种商品的概率为34,购置B 种商品的概率为23,购置C 种商品的概率为12.假设该网民是否购置这三种商品相互独立.(1)求该网民至少购置2种商品的概率;(2)用随机变量h 表示该网民购置商品的种数,求h 的概率分布和数学期望. [解] (1)记“该网民购置i 种商品〞为事件A i ,i =2,3,那么:P (A 3)=34×23×12=14,P (A 2)=34×23×⎝ ⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124,所以该网民至少购置2种商品的概率为P (A 3)+P (A 2)=14+1124=1724. 该网民至少购置2种商品的概率为1724. (2)随机变量h 的可能取值为0,1,2,3, P (h =0)=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12=124,又P (h =2)=P (A 2)=1124,P (h =3)=P (A 3)=14,所以P (h =1)=1-124-1124-14=14.所以随机变量h 的概率分布为:故数学期望E (h )=0×124+1×14+2×1124+3×14=2312.4.(2021·苏州市期中)某公司对新招聘的员工张某进展综合能力测式,共设置了A ,B ,C 三个测试工程.假定张某通过工程A 的概率为12,通过工程B ,C 的概率均为a (0<a <1),且这三个测试工程能否通过相互独立.(1)用随机变量X 表示张某在测试中通过的工程个数,求X 的概率分布和数学期望E (X )(用a 表示);(2)假设张某通过一个工程的概率最大,求实数a 的取值范围. [解] (1)随机变量X 的可能取值为0,1,2,3. P (X =0)=⎝ ⎛⎭⎪⎫1-12C 02(1-a )2=12(1-a )2;P (X =1)=12C 02(1-a )2+⎝ ⎛⎭⎪⎫1-12C 12a (1-a )=12(1-a 2);P (X =2)=12C 12a (1-a )+⎝ ⎛⎭⎪⎫1-12C 22a 2=12(2a -a 2); P (X =3)=12C 22a 2=12a 2. 从而X 的概率分布为X 的数学期望为E (X )=0×12(1-a )2+1×12(1-a 2)+2×12(2a -a 2)+3×a 22=4a +12. (2)P (X =1)-P (X =0)=12[(1-a 2)-(1-a )2]=a (1-a ), P (X =1)-P (X =2)=12[(1-a 2)-(2a -a 2)]=1-2a 2, P (X =1)-P (X =3)=12[(1-a 2)-a 2]=1-2a 22.由⎩⎪⎨⎪⎧0<a <1,a (1-a )≥0,1-2a2≥0,1-2a22≥0,得0<a ≤12,即a 的取值范围是⎝ ⎛⎦⎥⎤0,12.。

2020年高考(江苏卷)数学附加题训练七(含答案)

2020年高考(江苏卷)数学附加题训练七(含答案)

2020年高考(江苏卷)数学附加题训练七21.已知矩阵11a A b ⎡⎤=⎢⎥-⎣⎦的一个特征值为2,其对应的一个特征向量为21α⎡⎤=⎢⎥⎣⎦.若x a A y b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求x ,y 的值.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线sin()()4l m m R πθ-=∈,圆C 的参数方程为13cos 23sin x t y t =+⎧⎨=-+⎩(t 为参数).当圆心C 到直线l 的距离为时,求m 的值。

1111ABCD -A B C D 中,P 是侧棱1CC 上23.如图,在底面边长为1,侧棱长为2的正四棱柱的一点,CP =m .(1)若m =1,求异面直线AP 与BD 1所成角的余弦;11所成角的正弦值是13?若存在,请求出m (2)是否存在实数m ,使直线AP 与平面AB D 的值;若不存在,请说明理由.24.已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点,点A 关于y 轴的对称点为A ',连接A 'B .(1)求抛物线C 标准方程;(2)问直线A 'B 是否过定点?若是,求出定点坐标;若不是,请说明理由.数学附加题训练七答案21.【答案】x ,y 的值分别为0 ,1.【解析】试题分析:利用矩阵的乘法法则列出方程,解方程可得x ,y 的值分别为0 , 1.试题解析:由条件知,2A αα=,即][1222111a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,即][2422a b +⎡⎤=⎢⎥-+⎣⎦,所以24,{22,a b +=-+=解得2,{ 4.a b ==所以1214A ⎡⎤=⎢⎥-⎣⎦.则][][][12221444x x x y A y y x y +⎡⎤⎡⎤===⎢⎥⎢⎥--+⎣⎦⎣⎦,所以22,{44,x y x y +=-+=解得0,{ 1.x y ==所以x ,y 的值分别为0 ,1.22.【答案】m − =1或m − =5 .【解析】根据曲线的极坐标方程、参数方程与普通方程的互化求出曲线的普通方程,利用点到直线的距离公式进行求解,即可得到答案.【详解】直线l 的直角坐标方程为x −y +m =0 ,圆C 的普通方程为(x −1)2 +(y +2)2 =9 ,圆心C 到直线l =1m =-或5m =-.【点睛】本题主要考查了主要考查了参数方程、极坐标方程和普通方程的互化,其中解答中结合点到直线的距离公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.23.【答案】(1)3(2)存在,74m =【解析】(1)采用建系法进行求解;(2)假设存在实数m ,使得直线AP 与平面11AB D 所成角的正弦值是13,则用向量法表示出(1,1,)AP m =- ,再求得平面11AB D 的法向量为(2,2,1)n =- ,结合夹角公式即可求得;【详解】解:(1)建立空间直角坐标系,则(1,0,0)A ,(1,1,0)B ,(0,1,)P m ,(0,1,0)C ,(0,0,0)D ,1(1,1,2)B ,1(0,0,2)D .所以1(1,1,2)BD =-- ,(1,1,1)AP =-.111cos ,3||BD AP BD AP BD AP ⋅==⨯ ,即异面直线AP 与1BD所成角的余弦是3.(2)假设存在实数m ,使直线AP 与平面11AB D 所成的角的正弦值等于13,则11(1,1,0)D B = ,1(1,0,2)AD =- ,(1,1,)AP m =- .设平面11AB D 的法向量为(),,n x y z =r ,则由111n D B n AD ⎧⊥⎨⊥⎩ ,得020x y x z +=⎧⎨-+=⎩,取2x =,得平面11AB D 的法向量为(2,2,1)n =- .由直线AP 与平面11AB D 所成的角的正弦值等于13,得13=,解得74m =,因为02m ≤≤,所以74m =满足条件,所以当74m =时,直线AP 与平面11AB D 所成的角的正弦值等于13.【点睛】本题考查建系法在立体几何中的应用,异面直线所成的夹角,由线面角的正弦值反求参数的问题,能正确表示出各向量和平面的法向量是解题的关键,属于中档题24.【答案】(1)x 2 =4y ;(2)(0,1)【解析】试题分析:(1)将点(2,1 )代入抛物线 C 的方程解得 p 即可得到抛物线C 标准方程;(2)设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,利用点斜式写出直线A B '的方程()2221244x x x y x x --=-,再将直线AB 方程与抛物线方程联立方程组,利用韦达定理化简直线A B '的方程得2114x x y x -=+,即证得直线A B '是否过定点()0,1.试题解析:(1)将点()2,1代入抛物线C 的方程得,2p =,所以,抛物线C 的标准方程为24x y =.(2)设直线l 的方程为1y kx =-,又设()()1122,,,A x y B x y ,则()11,A x y '-,由21,41,y x y kx ⎧=⎪⎨⎪=-⎩得2440x kx -+=,则2121216160,4,4k x x x x k ∆=->⋅=+=,所以()222121212112444A Bx x y y x x k x x x x '---===--+,于是直线A B '的方程为()2221244x x x y x x --=-,所以,()22122121444x x x x x y x x x --=-+=+,当0x =时,1y =,所以直线A B '过定点()0,1.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.。

高考数学试题及答案 (1)

高考数学试题及答案 (1)

普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =, 其中S 为底面积, h 为高. 一、填空题:本大题共14小题, 每小题5分, 共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{124}A =,,, {246}B =,,, 则A B = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本, 则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,, 117ii 12ia b -+=-(i 为虚数单位), 则a b +的值 为 ▲ .4.右图是一个算法流程图, 则输出的k 的值是 ▲ . 5.函数6()12log f x x =-的定义域为 ▲ .6.现有10个数, 它们能构成一个以1为首项, 3-为公比的 等比数列, 若从这10个数中随机抽取一个数, 则它小于8 的概率是 ▲ .7.如图, 在长方体1111ABCD A B C D -中, 3cm AB AD ==, 12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中, 若双曲线22214x y m m -=+的离心率5 则m 的值为 ▲ .9.如图, 在矩形ABCD 中, 22AB BC ==,点E 为BC 的中点, 点F 在边CD 上, 若2AB AF =, 则AE BF 的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数, 在区间[11]-,上,开始 结束k ←1k 2-5k +4>0输出k k ←k +1NY (第4题)FD DABC 1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角, 若4cos 65απ⎛⎫+= ⎪⎝⎭, 则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中, 圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点, 使得以该点为圆心,1为半径的圆与圆C 有公共点, 则k 的最大值是 ▲ . 13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,, 则实数c 的值为 ▲ . 14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题, 共计90分.请在答题卡指定区域.......内作答, 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中, 已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若5cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中, 1111A B AC =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ), 且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C FDCAE1B17.(本小题满分14分) 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小), 其飞行高度为3.2千米,试问它的横坐标a 不超过多少时, 炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a , b 是实数, 1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+, 求()g x 的极值点;(3)设()(())h x f f x c =-, 其中[22]c ∈-,, 求函数()y h x =的零点个数.19.(本小题满分16分)如图, 在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和3e ⎛ ⎝⎭,都在椭圆上, 其中e(第16题)x (千米y (千米)O(第17题)(1)求椭圆的离心率;(2)设A , B 是椭圆上位于x 轴上方的两点, 且直线1AF与直线2BF 平行, 2AF 与1BF 交于点P .(i )若126AF BF -=, 求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a n a b *+=∈+N .(1)设11n n nb b n a *+=+∈N ,, 求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设12nn nb b n a *+=∈N ,, 且{}n a 是等比数列, 求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题, 请选定其中两题.......,. 并在相应的答题区域内作...........答...若多做, 则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图, AB 是圆O 的直径, D , E 为圆上位于AB 异侧的两点, 连结BD 并延长至点C , 使BD= DC , 连结AC , AE , DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A , 求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分)(第21-A 题)AED CO在极坐标中,已知圆C 经过点()24Pπ,,圆心为直线()3sin 32ρθπ-=-与极轴的交点, 求圆C 的极坐标方程. D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x , y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题, 每题10分, 共计20分.请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量, 从棱长为1的正方体的12条棱中任取两条, 当两条棱相交时, 0ξ=;当两条棱平行时, ξ的值为两条棱之间的距离;当两条棱异面时, 1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列, 并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…, n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈, 则2x A ∉;③若nP x A ∈, 则2nP x A ∉.(1)求(4)f ;(2)求()f n 的解析式(用n 表示).江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则 A∪B= {1,2,4,6} .考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中,令y=0,得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.:(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx,得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根 x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:( i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5个零点.( i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.点评本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.数列递推式;等差关系的确定;等比数列的性质.考点:等差数列与等比数列.专题:分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求解答:解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若m∈A,则x∈A,⇔k为偶数若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,。

高考江苏数学试卷含附加题详细解答(全word版)080619

高考江苏数学试卷含附加题详细解答(全word版)080619

绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式: 样本数据1x ,2x ,,n x 的标准差s =其中x 为样本平均数柱体体积公式V Sh =其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分. 1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= ▲ .【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒= 【答案】102.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ . 【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 【答案】1123.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ .锥体体积公式13V Sh =其中S S 为底面积,h 为高 球的表面积、体积公式24S R π=,343V R π=【解析】本小题考查复数的除法运算.∵()21112i i i i ++==- ,∴a =0,b =1,因此1a b += 【答案】14.若集合2{|(1)37,}A x x x x R =-<+∈,则AZ 中有 ▲ 个元素【解析】本小题考查集合的运算和解一元二次不等式.由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5A Z =,共有6个元素.【答案】65.已知向量a 和b 的夹角为0120,||1,||3a b ==,则|5|a b -= ▲ . 【解析】本小题考查向量的线性运算.()2222552510a b a b a a b b -=-=-+=22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -=7 【答案】76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域 E 表示单位圆及其内部,因此.214416P ππ⨯==⨯【答案】16π 7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲ 【解析】由流程图1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42= 【答案】6.428.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲ 【解析】本小题考查导数的几何意义、切线的求法.'1y x = ,令112x =得2x =,故切点(2,ln2),代入直线方程,得,所以b =ln2-1.【答案】ln2-19.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程: ( ▲ )011=⎪⎪⎭⎫⎝⎛-+y a p x 。

2020年高考(江苏卷)数学附加题训练一 (含答案)

2020年高考(江苏卷)数学附加题训练一 (含答案)

2020年高考(江苏卷)数学附加题训练一21、(本小题满分10分)已知线性变换1T 是顺时针方向选择90°的旋转变换,其对应的矩阵为M ,线性变换⎩⎨⎧=+=yy y x x T '2'2:对应的矩阵为N ,列向量a X b ⎡⎤=⎢⎥⎣⎦.(1)写出矩阵M ,N ;(2)已知⎥⎦⎤⎢⎣⎡=--2411X M N ,试求b a ,的值.22、(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为,3x t y ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=-+⎩,(ϕ为参数).(1)求曲线1C 的直角坐标方程和2C 的标准方程;(2)点,P Q 分别为曲线1C ,2C 上的动点,当PQ 长度最小时,试求点Q 的坐标..23、(本小题满分10分)在四棱锥P-ABCD中,CD⊥平面PAD,∆PAD是正三角形,DC∥AB,DA=DC=2AB=2.(1)求平面PAB与平面PCD所成的锐二面角的大小;(2)点E为线段CD上的一动点,设异面直线BE与直线PA所成角的大小为θ,当cosθ=5时,试5确定点E的位置.24、(本小题满分10分)在直角坐标系xOy中,已知抛物线C:y2=2px(p>0)上一点P(4,m)到焦点F的距离为6,点Q为其准线l上的任意-一点,过点Q作抛物线C的两条切线,切点分别为A,B.(1)求抛物线C的方程;(2)当点Q在x轴上时,证明:∆QAB为等腰直角三角形.(3)证明:∆QAB为直角三角形.数学附加题训练一参考答案21.已知线性变换1T 是顺时针方向选择90°的旋转变换,其对应的矩阵为M ,线性变换⎩⎨⎧=+=y y y x x T '2'2:对应的矩阵为N ,列向量a X b ⎡⎤=⎢⎥⎣⎦.(1)写出矩阵M ,N ;(2)已知⎥⎦⎤⎢⎣⎡=--2411X M N ,试求b a ,的值.22在平面直角坐标系xOy 中,曲线1C 的参数方程为,3x t y ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=-+⎩,(ϕ为参数).(1)求曲线1C 的直角坐标方程和2C 的标准方程;(2)点,P Q 分别为曲线1C ,2C 上的动点,当PQ 长度最小时,试求点Q 的坐标.23、(本小题满分10分)在四棱锥ABCD P -中,⊥CD 平面PAD ,PAD ∆是正三角形,AB DC ∥,22===AB DC DA .(1)求平面PAB 与平面PCD 所成的锐二面角的大小;(2)点E 为线段CD 上的一动点,设异面直线BE 与直线PA 所成角的大小为θ,当55cos =θ时,试确定点E 的位置.24、(本小题满分10分)在直角坐标系xOy 中,已知抛物线px y C 2:2=)0(>p 上一点),4(m P 到焦点F 的距离为6,点Q 为其准线l 上的任意-一点,过点Q 作抛物线C 的两条切线,切点分别为B A ,.(1)求抛物线C 的方程;(2)当点Q 在x 轴上时,证明:QAB ∆为等腰直角三角形.(3)证明:QAB ∆为直角三角形.。

江苏省高考数学总复习练习:高考附加题加分练(一)几何证明选讲

江苏省高考数学总复习练习:高考附加题加分练(一)几何证明选讲

(一)几何证明选讲1.如图,O 是△ABC 外接圆的圆心,∠ACB =54°,求∠ABO 的值.解 连结OA ,因为O 是圆心,所以∠AOB =2∠ACB ,所以∠ABO =12(180°-∠AOB ) =12(180°-2∠ACB ) =90°-∠ACB =90°-54°=36°.2.如图,已知A ,B ,C 是圆O 上的三点,BE 切圆O 于点B ,D 是CE 与圆O 的交点,若∠BAC =60°,BE =2,BC =4,求线段CD 的长.解 因为BE 切圆O 于点B ,所以∠CBE =∠BAC =60°.因为BE =2,BC =4,由余弦定理得EC =2 3.又BE 2=EC ·ED ,所以DE =233, 所以CD =EC -ED =23-233=433. 3.如图,已知点C 在圆O 的直径AB 的延长线上,CD 是圆O 的一条切线,D 为切点,点D 在AB 上的射影是点E ,CB =3BE .求证:(1)DB 是∠CDE 的平分线;(2)AE =2EB .证明 (1)连结AD ,∵AB 是圆O 的直径,∴∠DAB +∠DBA =90°,∵DE ⊥AB ,∴∠BDE +∠DBA =90°,∴∠DAB =∠BDE ,∵CD 切圆O 于点D ,∴∠CDB =∠DAB ,∴∠BDE =∠CDB ,∴DB 是∠CDE 的平分线.(2)由(1)可得DB 是∠CDE 的平分线,∴CD DE =CB BE=3,即CD =3DE .设BE =m (m >0),DE =x (x >0),则CB =3m ,CD =3x ,在Rt△CDE 中,由勾股定理可得(3x )2=x 2+(4m )2,则x =2m ,由切割线定理得CD 2=CB ·CA ,(32m )2=3m ·CA , CA =6m ,AB =3m ,AE =2m ,则AE =2EB .4.(2018·江苏海安中学质检)如图,在Rt△ABC 中,∠B =90°,它的内切圆分别与边BC ,CA ,AB 相切于点D ,E ,F ,连结AD ,与内切圆相交于另一点P ,连结PC ,PE ,PF ,已知PC ⊥PF ,求证:(1)PF FD =PD DC ;(2)PE ∥BC .证明 (1)连结DE ,则△BDF 是等腰直角三角形,于是∠FPD =∠FDB =45°,故∠DPC =45°.又∠PDC =∠PFD ,则△PFD ∽△PDC ,所以PF FD =PD DC.① (2)由∠AFP =∠ADF ,∠AEP =∠ADE ,知△AFP ∽△ADF ,△AEP ∽△ADE .于是,EP DE =AP AE =AP AF =FP DF . 故由①得EP DE =PD DC,②由∠EPD=∠EDC,结合②得,△EPD∽△EDC,从而△EPD也是等腰三角形.于是,∠PED=∠EPD=∠EDC,所以PE∥BC.。

2020年江苏高考数学试卷及答案(含附加题)

2020年江苏高考数学试卷及答案(含附加题)

2020年江苏高考数学试卷及答案(含附加题)一、填空题:本大题共14小题,每题5分,共计70分,请把答案填写在答题卡相应位置上。

1.已知集合{}1,0,1,2A =-,{}0,2,3B =,则A B = __________。

2.已知i 是虚数单位,则复数()()12z i i =+-的实部是__________。

3.已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是__________。

4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是。

5.右图是一个算法流程图,若输出y的值为-2,则输入x的值为。

6.在平面直角坐标系xOy中22y =,若双曲线()222105x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是。

7.已知()y f x =是奇函数,当0x >时,23()f x x =,则(8)f -的值是。

8.已知22sin +=43πα(),则sin 2α的值是。

9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是3cm 。

10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图像向右平移6π个单位长度,则平移后的图像与y 轴最近的对称轴方程是。

11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知数列{}+n n a b 的前项和()221n n S n n n N *=-+-∈,则d q +的值是。

12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是。

13.在△ABC 中,4AB =,=3AC ,∠=90BAC °,D 在边AC 上,延长AD P 到,使得=9AP ,若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是。

【真题】2019年江苏省高考数学试题(含附加题+答案)

【真题】2019年江苏省高考数学试题(含附加题+答案)

15.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
(1)若 a=3c,b=
2
,cosB=
2
,求
c
的值;(2)若
sin
A
cos
B
,求
sin(B
)
的值.
3
a 2b
2
第 3 页 共 18 页
16.(本小题满分 14 分) 如图,在直三棱柱 ABC-A1B1C1 中,D,E 分别为 BC,AC 的中点,AB=BC. 求证:(1)A1B1∥平面 DEC1; (2)BE⊥C1E.
sin A sin B
2b b
从而 cos2 B (2sin B)2 ,即 cos2 B 4 1 cos2 B ,故 cos2 B 4 . 5
因为 sin B 0 ,所以 cos B 2sin B 0 ,从而 cos B 2 5 . 5
因此 sin
B
π 2
cos
B
25 5
.
16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间 想象能力和推理论证能力.满分 14 分.
10.在平面直角坐标系 xOy 中,P 是曲线 y x 4 (x 0) 上的一个动点,则点 P 到直线 x+y=0 的距离的 x
最小值是 ▲ .
11.在平面直角坐标系 xOy 中,点 A 在曲线 y=lnx 上,且该曲线在点 A 处的切线经过点(-e,-1)(e 为自
然对数的底数),则点 A 的坐标是 ▲ .
置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:

2014年江苏高考数学试题及详细答案(含附加题)

2014年江苏高考数学试题及详细答案(含附加题)

2014年江苏高考数学试题数学Ⅰ试题参考公式:圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高.答题卡相应位置上......... 1.已知集合{2134}A =--,,,,{123}B =-,,,则A B = .【答案】{13}-,2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为 . 【答案】213.右图是一个算法流程图,则输出的n 的值是 . 【答案】54.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是 . 【答案】135.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为 3π的交点,则ϕ的值是 . 【答案】6π 6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】247.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+, 则6a 的值是 . 【答案】48.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12V V 的值是 . 【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 . 25510.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 . 【答案】202⎛⎫ ⎪⎝⎭11.在平面直角坐标系xOy 中,若曲线2by ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是 . 【答案】3-12.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的 值是 . 【答案】2213.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a=-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是 . 【答案】()102,14.若ABC ∆的内角满足sin 22sin A B C =,则cos C 的最小值是 . 62- 二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)已知()2απ∈π,,5sin 5α= (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能 力. 满分14分.(1)∵()5sin 2ααπ∈π=,,,∴225cos 1sin αα=--=()210sin sin cos cos sin sin )444210αααααπππ+=+=+=;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=16.(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA ==∵E F ,为AC AB ,中点 ∴142EF BC ==∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF ∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵ACEF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(本小题满分14 分)如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =(2)若1FC AB ⊥,求椭圆离心率e 的值.【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力. 满分14分.(1)∵()4133C ,,∴22161999a b+=∵22222BF b c a =+=,∴22(2)2a ==,∴21b = ∴椭圆方程为2212x y +=(2)设焦点12(0)(0)()F c F c C x y -,,,,,∵A C ,关于x 轴对称,∴()A x y -,∵2B F A ,,三点共线,∴b y b c x +=--,即0bx cy bc --=① ∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, ∵C 在椭圆上,∴()()222222222221a cbc b c b c a b --+=,化简得225c a =,∴5c a = 518.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=--k AB =603,04b a -=-解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.19.(本小题满分16分)已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤∵(0)x ∈+∞,,∴e e 10x x-+->,即e 1e e 1xx x m ---+-≤对(0)x ∈+∞,恒成立令e (1)x t t =>,则211tm t t --+≤对任意(1)t ∈+∞,恒成立∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立 ∴13m -≤(3)'()e e x x f x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =--∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2e a >+∵e-1e 111ln ln ln e (e 1)ln 1ea a aa a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2ea m a a a a ---=-=>+,当()11e e 12e a +<<-时,'()0m a >,()m a 单调增; 当e 1a >-时,'()0m a <,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2e a +<<时,()0m a <,e 11e a a -->; 当e a =时,()0m a =,e 11e a a --=.20.(本小题满分16分)设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分. (1)当2n ≥时,111222n n n n n n a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}n a 是“H 数列” (2)1(1)(1)22n n n n n S na d n d --=+=+ 对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d=+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =- (3)设{}n a 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”. {}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列” 因此命题得证.数学Ⅱ(附加题)21.【选做题】本题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点 证明:∠OCB =∠D .本小题主要考查圆的基本性质,考查推理论证能力.满分10分. 证明:因为B , C 是圆O 上的两点,所以OB =OC . 故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D . 因此∠OCB =∠D .B.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值. 【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分.222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为12x y ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分.直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||AB =D.【选修4-5:不等式选讲】(本小题满分10分) 已知x >0, y >0,证明:(1+x +y 2)( 1+x 2+y )≥9xy.本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分. 证明:因为x >0, y >0, 所以1+x +y 2≥0>,1+x 2+y≥0>, 所以(1+x +y 2)( 1+x 2+y )≥=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率分布和数学期望()E X .22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况 ∴取出的2个球颜色相同的概率1053618P ==(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X === 3131453639C C C C 13(3)C 63P X +=== 11(2)1(3)(4)14P X P X P X ==-=-==∴X 的概率分布列为故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=23.(本小题满分10分)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除----完整版学习资料分享---- (1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+. 下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+. 因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++ (1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+, 所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立. 综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+=(n ∈*N ).。

高考数学试卷(含答案解析)

高考数学试卷(含答案解析)

江苏省高考数学试卷一.填空题1.(5分)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为, 则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.8.(5分)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=.10.(5分)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=.13.(5分)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD 上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx, sinx), =(3, ﹣), x ∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.18.(16分)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l没入水中部分的长度.19.(16分)对于给定的正整数k, 若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立, 则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”, 又是“P(3)数列”, 证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a 的取值范围.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP ⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【必做题】25.如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k 次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2020•江苏)已知集合A={1, 2}, B={a, a2+3}.若A ∩B={1}, 则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1, 2}, B={a, a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法, 是基础题, 解题时要认真审题, 注意交集定义及性质的合理运用.2.(5分)(2020•江苏)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式, 考查了推理能力与计算能力, 属于基础题.3.(5分)(2020•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为, 再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件, 而抽取60辆进行检验, 抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致, 按照一定的比例, 即样本容量和总体容量的比值, 在各层中进行抽取.4.(5分)(2020•江苏)如图是一个算法流程图:若输入x的值为, 则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=, 不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图, 模拟程序是解决此类问题的常用方法, 注意解题方法的积累, 属于基础题.5.(5分)(2020•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式, 属于基础题6.(5分)(2020•江苏)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.【分析】设出球的半径, 求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R, 则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法, 考查空间想象能力以及计算能力.7.(5分)(2020•江苏)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.【分析】求出函数的定义域, 结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0, 得﹣2≤x≤3,则D=[﹣2, 3],则在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率P==, 故答案为:【点评】本题主要考查几何概型的概率公式的计算, 结合函数的定义域求出D, 以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2020•江苏)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程, 得到P, Q坐标, 求出焦点坐标, 然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=, 双曲线渐近线方程为:y=x, 所以P(, ), Q(, ﹣), F1(﹣2, 0).F2(2, 0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用, 考查计算能力.9.(5分)(2020•江苏)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=32.【分析】设等比数列{a n}的公比为q≠1, S3=, S6=, 可得=, =, 联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=, S6=, ∴=, =,解得a1=, q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式, 考查了推理能力与计算能力, 属于中档题.10.(5分)(2020•江苏)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x, 利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用, 考查了推理能力与计算能力, 属于基础题.11.(5分)(2020•江苏)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1, ] .【分析】求出f(x)的导数, 由基本不等式和二次函数的性质, 可得f(x)在R上递增;再由奇偶性的定义, 可得f(x)为奇函数, 原不等式即为2a2≤1﹣a, 运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1, ].【点评】本题考查函数的单调性和奇偶性的判断和应用, 注意运用导数和定义法, 考查转化思想的运用和二次不等式的解法, 考查运算能力, 属于中档题.12.(5分)(2020•江苏)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=3.【分析】如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.可得cosα=, sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m, n ∈R), 即可得出.【解答】解:如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.∴cosα=, sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m, n∈R),∴=m﹣n, =0+n,解得n=, m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式, 考查了推理能力与计算能力, 属于中档题.13.(5分)(2020•江苏)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是[﹣5, 1] .【分析】根据题意, 设P(x0, y0), 由数量积的坐标计算公式化简变形可得2x0+y0+5≤0, 分析可得其表示表示直线2x+y+5≤0以及直线下方的区域, 联立直线与圆的方程可得交点的横坐标, 结合图形分析可得答案.【解答】解:根据题意, 设P(x0, y0), 则有x02+y02=50, =(﹣12﹣x0, ﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0, 表示直线2x+y+5≤0以及直线下方的区域,联立, 解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5, 1],故答案为:[﹣5, 1].【点评】本题考查数量积的运算以及直线与圆的位置关系, 关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2020•江苏)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n ∈N*}, 则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 分析f(x)的图象与y=lgx图象交点的个数, 进而可得答案.【解答】解:∵在区间[0, 1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1, 2)上, f(x)=, 此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2, 3)上, f(x)的图象与y=lgx有且只有一个交点;区间[3, 4)上, f(x)的图象与y=lgx有且只有一个交点;区间[4, 5)上, f(x)的图象与y=lgx有且只有一个交点;区间[5, 6)上, f(x)的图象与y=lgx有且只有一个交点;区间[6, 7)上, f(x)的图象与y=lgx有且只有一个交点;区间[7, 8)上, f(x)的图象与y=lgx有且只有一个交点;区间[8, 9)上, f(x)的图象与y=lgx有且只有一个交点;在区间[9, +∞)上, f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断, 函数的图象和性质, 转化思想, 难度中档.二.解答题15.(14分)(2020•江苏)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G, 连结FG、EG使得FG∥BC, 则EG∥AC, 利用线面垂直的性质定理可知FG⊥AD, 结合线面垂直的判定定理可知AD ⊥平面EFG, 从而可得结论.【解答】证明:(1)因为AB⊥AD, EF⊥AD, 且A、B、E、F四点共面, 所以AB∥EF,又因为EF⊊平面ABC, AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G, 连结FG、EG使得FG∥BC, 则EG∥AC,因为BC⊥BD, 所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD, 所以FG⊥AD,又因为AD⊥EF, 且EF∩FG=F,所以AD⊥平面EFG, 所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定, 考查空间想象能力, 考查转化思想, 涉及线面平行判定定理, 线面垂直的性质及判定定理, 注意解题方法的积累, 属于中档题.16.(14分)(2020•江苏)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣, 问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx, sinx), =(3, ﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0, π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0, π],∴x+∈[, ],∴﹣1≤cos(x+)≤,当x=0时, f(x)有最大值, 最大值3,当x=时, f(x)有最小值, 最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质, 属于基础题17.(14分)(2020•江苏)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为,两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c, 由椭圆的准线方程x=±, 则2×=8, 即可求得a和c的值, 则b2=a2﹣c2=3, 即可求得椭圆方程;(2)设P点坐标, 分别求得直线PF2的斜率及直线PF1的斜率, 则即可求得l2及l1的斜率及方程, 联立求得Q点坐标, 由Q在椭圆方程, 求得y02=x02﹣1, 联立即可求得P点坐标;方法二:设P(m, n), 当m≠1时, =, =, 求得直线l1及l1的方程, 联立求得Q点坐标, 根据对称性可得=±n2, 联立椭圆方程, 即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==, 则a=2c, ①椭圆的准线方程x=±, 由2×=8, ②由①②解得:a=2, c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0, y0), 则直线PF2的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x+1),联立, 解得:, 则Q(﹣x0, ), 由P, Q在椭圆上, P, Q的横坐标互为相反数, 纵坐标应相等, 则y0=,∴y02=x02﹣1,则, 解得:, 则,又P在第一象限, 所以P的坐标为:P(, ).方法二:设P(m, n), 由P在第一象限, 则m>0, n>0,当m=1时, 不存在, 解得:Q与F 1重合, 不满足题意,当m≠1时, =, =,由l 1⊥PF1, l2⊥PF2, 则=﹣, =﹣,直线l1的方程y=﹣(x+1), ①直线l2的方程y=﹣(x﹣1), ②联立解得:x=﹣m, 则Q(﹣m, ),由Q在椭圆方程, 由对称性可得:=±n2,即m2﹣n2=1, 或m2+n2=1,由P(m, n), 在椭圆方程, , 解得:, 或, 无解,又P在第一象限, 所以P的坐标为:P(, ).【点评】本题考查椭圆的标准方程, 直线与椭圆的位置关系, 考查直线的斜率公式, 考查数形结合思想, 考查计算能力, 属于中档题.18.(16分)(2020•江苏)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 过N作NP∥MC, 交AC于点P, 推导出CC1⊥平面ABCD, CC1⊥AC, NP⊥AC, 求出MC=30cm, 推导出△ANP∽△AMC, 由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N, 过点N 作NP⊥EG, 交EG于点P, 过点E作EQ⊥E1G1, 交E1G1于点Q, 推导出EE1G1G为等腰梯形, 求出E1Q=24cm, E1E=40cm, 由正弦定理求出sin∠GEM=, 由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 在平面ACM中, 过N作NP∥MC, 交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱, ∴CC1⊥平面ABCD,又∵AC⊂平面ABCD, ∴CC1⊥AC, ∴NP⊥AC,∴NP=12cm, 且AM2=AC2+MC2, 解得MC=30cm,∵NP∥MC, ∴△ANP∽△AMC,∴=, , 得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N,在平面E1EGG1中, 过点N作NP⊥EG, 交EG于点P,过点E作EQ⊥E1G1, 交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台, ∴EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形, 画出平面E1EGG1的平面图,∵E1G1=62cm, EG=14cm, EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=, sin∠EGM=sin∠EE1G1=, cos,根据正弦定理得:=, ∴sin, cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=, ∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法, 考查空间中线线、线面、面面间的位置关系等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.19.(16分)(2020•江苏)对于给定的正整数k, 若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立, 则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.【分析】(1)由题意可知根据等差数列的性质, a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n , 根据“P (k )数列”的定义, 可得数列{a n }是“P (3)数列”;(2)由“P (k )数列”的定义, 则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , 变形整理即可求得2a n =a n ﹣1+a n +1, 即可证明数列{a n }是等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1, 公差为d, 则a n =a 1+(n ﹣1)d,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:由数列{a n }是“P (2)数列”则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , ① 数列{a n }是“P (3)数列”a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , ②由①可知:a n ﹣3+a n ﹣2+a n +a n +1=4a n ﹣1, ③a n ﹣1+a n +a n +2+a n +3=4a n +1, ④由②﹣(③+④):﹣2a n =6a n ﹣4a n ﹣1﹣4a n +1,整理得:2a n =a n ﹣1+a n +1,∴数列{a n }是等差数列.【点评】本题考查等差数列的性质, 考查数列的新定义的性质, 考查数列的运算, 考查转化思想, 属于中档题.20.(16分)(2020•江苏)已知函数f (x )=x 3+ax 2+bx +1(a >0, b ∈R )有极值, 且导函数f′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a 的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b, 进而再求导可知g′(x)=6x+2a, 通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣, 从而f(﹣)=0, 整理可知b=+(a>0), 结合f(x)=x3+ax2+bx+1(a>0, b∈R)有极值可知f′(x)=0有两个不等的实根, 进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27), 结合a>3可知h(a)>0, 从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣, 利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2, 进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣, 因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b, g′(x)=6x+2a,令g′(x)=0, 解得x=﹣.由于当x>﹣时g′(x)>0, g(x)=f′(x)单调递增;当x<﹣时g′(x)<0, g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0, 即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0, b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0, 即a2﹣+>0, 解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3, 所以h(a)>0, 即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点, 则x1+x2=, x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x), f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3, 所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0, 解得a≤6,所以a的取值范围是(3, 6].【点评】本题考查利用导数研究函数的单调性、极值, 考查运算求解能力, 考查转化思想, 注意解题方法的积累, 属于难题.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2020•江苏)如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB, 即可证明.【解答】证明:(1)∵直线PC切半圆O于点C, ∴∠ACP=∠ABC.∵AB为半圆O的直径, ∴∠ACB=90°.∵AP⊥PC, ∴∠APC=90°.∴∠PAC=90°﹣∠ACP, ∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理, 考查了推理能力与计算能力, 属于中档题.[选修4-2:矩阵与变换]22.(2020•江苏)已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律, 代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x, y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0, y0),则=, 即x0=2y, y0=x,∴x=y0, y=,∴, 即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换, 属于中档题.[选修4-4:坐标系与参数方程]23.(2020•江苏)在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程, 代入距离公式化简得出距离d关于参数s的函数, 从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时, d取得最小值=.【点评】本题考查了参数方程的应用, 属于基础题.[选修4-5:不等式选讲]24.(2020•江苏)已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【分析】a2+b2=4, c2+d2=16, 令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.代入ac+bd化简, 利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2), 即可得出.【解答】证明:∵a2+b2=4, c2+d2=16,令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64, 当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质, 考查了推理能力与计算能力, 属于中档题.【必做题】26.(2020•江苏)已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球, 则p=p(A2)=P (A 2|A1)P(A1)+P(A2|)P(), 由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为, …, , P(x=)=,k=n, n+1, n+2, …, n+m, 从而E(X)=()=, 由此能证明E(X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为, …, ,P(x=)=, k=n, n+1, n+2, …, n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法, 考查离散型随机变量的分布列、数学期望等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.25.(2020•江苏)如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内, 过A作Ax⊥AD, 由AA1⊥平面ABCD, 可得AA1⊥Ax, AA1⊥AD, 以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A, B, C, D, A1, C1的坐标, 进一步求出, , , 的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量, 再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值, 进一步得到正弦值.【解答】解:在平面ABCD内, 过A作Ax⊥AD,∵AA1⊥平面ABCD, AD、Ax⊂平面ABCD,∴AA1⊥Ax, AA1⊥AD,以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2, AA1=, ∠BAD=120°,∴A(0, 0, 0), B(), C(, 1, 0), D(0, 2, 0),A1(0, 0, ), C1().=(), =(), , .(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由, 得, 取x=, 得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为, 则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角, 训练了利用空间向量求空间角, 是中档题.。

2020届江苏高考数学附加题专题复习

2020届江苏高考数学附加题专题复习

高三数学附加题专题(含解析)-----概率
1. (本小题满分10分)
甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.
(1)若在一局中甲先摸,求甲在该局获胜的概率;
(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X 的概率分布及数学期望.
2.
为了丰富学生的课余生活,某校决定在每周的同一时间开设舞蹈、美术、声乐、棋类四门校本活动课程,甲、乙、丙三位同学每人均在四门校本活动课程中随机选一门进行学习,假设三人选择课程时互不影响,且每人选择每一课程都是等可能的.
(1)求甲、乙、丙三人均不选择舞蹈课程的概率;
(2)设X为甲、乙、丙三人中选择舞蹈课程的人数,求X的概率分布和数学期望E(X).
3. 已知知正四棱锥S-ABCD的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围成的三角形的面积为ξ。

(1)求概率P(ξ=2);
(2)求ξ的分布列和数学期望。

4. 在某次活动中,有5名幸运之星.这5名幸运之星可获得A、B两种奖品
中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得A奖品,抛掷点数不小于3的获得B奖品.
(1)求这5名幸运之星中获得A奖品的人数大于获得B奖品的人数的概率;
ξ=-,求随(2)设X、Y分别为获得A、B两种奖品的人数,并记X Y
机变量ξ的分布列及数学期望.。

数学附加必做题题型分类探索

数学附加必做题题型分类探索

数学附加必做题题型分类探索江苏高考数学试卷附加题部分由解答题组成,共6题,其中必做题2题,考查选修系列2(不含选修系列1)中的内容.本文就这两道必做题做一些探究,首先按照不同的内容分类,结合实例说明常见的题型.最后给老师们提一些自己不成熟的建议,供参考.一.计数原理与概率、统计(Ⅰ)二项式定理的运用1.已知(n x 的展开式中前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.说明:本题考查二项式定理,侧重于展开式的通项以及含有组合数的数列的大小比较.2.已知等式252910012910(22)(1)(1)(1)(1)x x a a x a x a x a x ++=+++++++++L ,其中a i (i =0,1,2,…,10)为实常数.求:(1)101n n a =∑的值;(2)101n n na =∑的值.说明:本题考查二项式定理的运用,侧重于体现二项式定理是一个恒等式,可以通过赋值特殊化,本题借助于导数巧妙地构造出101n n na=∑,挺有创意.(Ⅱ)古典概型基础的离散型随机变量的分布列3.某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)用X 表示抽检的6件产品中二等品的件数,求X 的分布列及X 的数学期望;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.说明:本题考查古典概型的概率计算,以及进一步求分布列与期望.古典基础的概率问题应该是考查的重点,而且兼考查了排列组合.4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为27.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X 表示取球终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量X 的概率分布及数学期望()E X ;(3)求甲取到白球的概率.说明:第一问中,含有一个待定的参数,可以通过解方程求出.4X =指前三次都是黑球,第4次为白球.这时看作有序地取4个球,3134471(4)35A C P X A ⋅===.本题X 取不同值时,事件的实验是不同的,求概率时一定要看清事件的试验是什么,是否有序,是否可重复等要点.(Ⅲ)独立、独立重复基础上的离散随机变量的分布列关于独立,一般只要求学生掌握两个独立事件的合成,同时通过独立事件来理解独立重复试验.5.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23. (1)求恰好比赛三局甲获胜的概率;(2)求甲获胜的概率;(3)设甲比赛的次数为X ,求X 的数学期望.说明:本题简洁明了,考查独立事件的概率与独立重复试验,而且要求对这两种模型深刻理解,如甲4场胜,指的是前三场2胜1负且第4场胜,系数是23C 而不是34C .6.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为X ,求随机变量X 的期望.说明:本题涉及三个事件的相互独立问题(略有点过,不过对掌握这种类型有利),第二问中因为三个概率相等,巧妙地过渡到了独立重复试验.解这类问题时,要养成用字母表示事件的习惯.注意,不是说独立重复试验中的变量就一定是二项概型.(Ⅳ)离散随机变量综合问题7.已知方程b a b ax x ,,02=++为常数.(1)若{}2,1,0∈a ,{}2,1,0∈b ,求方程的解的个数X 的期望;(2)若[]2,0,在b a 内等可能取值,求此方程有实根的概率.说明:第一问是一古典概型问题,而第二问是一个几何概型问题,问题的背景基本一致,一个是离散的,一个是连续的,通过比较可以帮助学生理解离散与连续既对立又统一的关系,是一道好题,与去年广东题接近.二.空间向量与立体几何(Ⅰ)直接与间接建立坐标系初中时,学生学过数轴知道数轴的三要素是原点、方向、单位长度,作为由三条数轴组成的空间直角坐标系,在建立时也要求说明原点、彼此垂直的三个方向以及单位长度.三条轴的方向必须是两两垂直的,如果两两垂直不直观,则需要说明.直接就能够建系的,参考(Ⅱ)中第1题.不能够直接建系的,参考((Ⅲ))中第3题.(Ⅱ)运用空间向量求空间角(考查的重点方向) 我们常常用直线的方向向量(直线上的任意非零向量)来表现直线的方向,用法向量(任意与平面垂直的非零向量)来表现平面的方向. 1.在正方体ABCD —A 1B 1C 1D 1中,F 是BC 的中点,点E在D 1C 1上,且D 1E=14D 1C 1, 试求直线EF 与平面D 1AC 所成角的正弦值. 说明:因为是正方体,所以建系非常方便.本题求斜线与平面所成的角,一般先求平面的法向量,再求斜线与法向量的夹角的余角,俗称“小角的余角”.求平面的法向量是重要的基本功,有现成垂线的时候一定要利用,一般利用垂直于平面A B C D FA 1B 1C 1 ED 1内的两条互相垂直的直线来求解法向量.2.如图,四棱锥P ABCD -中,底面ABCD 是矩形,PD ⊥平面ABCD ,且1PD AD ==,2AB =,点E 是AB 上一点,AE 等于何值时,二面角P EC D --的平面角为4π. 说明:向量的方法可以通过计算确定点、线的位置,以算代证.本题运用了方程的思想. (Ⅲ)运用空间向量证明(平行与垂直),求距离 注意把空间中的线面之间的关系转化为向量的语言,如线面平行(直线的向量与平面内一条直线的向量共线,或与法向量垂直,且说明线在面外),线面垂直(直线的向量与平面内的两条相交直线的向量垂直,或与法向量平行),面面平行(于同一条直线垂直或法向量平行),面面垂直(法向量垂直)等,注意说清楚一些要点,如线面平行要强调线在面外.3.已知斜三棱柱111ABC A B C -,90BCA ∠=o ,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;(2)求1CC 到平面1A AB 的距离.(2009年大丰市高三年级调研考试)说明:本题中没有现成的三条两两垂直的直线(“墙角”),需要先构造再建系.在各种距离中最重要的是点面距离,设平面外一点与平面内一点连线(斜线)的向量为m u r ,平面的法向量为n r ,m u r 与n r 所夹的角为θ,m u r 与平面所成的角为α,则sin |cos |αθ=,点到平面的距离||||sin |||cos |||||||||||m n m n d m m m m n n αθ⋅⋅=⋅=⋅=⋅=⋅u r r u r r u r u r u r u r r r .(m u r 在n r 上的投影的绝对值)三.圆锥曲线与方程(Ⅰ)求轨迹方程1.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围.(Ⅱ)抛物线的几何性质探索2.如图,设PQ 是过抛物线y 2 = 2px (p >0)的焦点F PQ 为直径的圆与抛物线的准线相切.(Ⅲ)点、直线与抛物线3.如图,过抛物线y 2 = 4x 的焦点F 作直线l 与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点(其中y 1<y 2),且满足 2AF BF =-u u u r u u u r ,试求直线l的方程.四.数学归纳法(Ⅰ)数学归纳法证明不等式C D PE A x PQ R y OF M N S 1B 1A l A B O F x y C1.已知m n ,为正整数,用数学归纳法证明:当1x >-时,(1)1m x mx ++≥.说明:这是贝努利不等式,课本上的题.(Ⅱ)数学归纳法与数列数学归纳法常用来证明与自然数有关的问题,而数列实际上就是建立在自然数数集上的特殊函数,通过不完全归纳法作出猜想,再用数学归纳法证明.当然也可以根据猜想,有意识地构造新数列求解.2.已知数列{}n a 满足11a =.且92411=+-++n n n n a a a a ,(1)求234,,a a a 的值;(2)由⑴猜想{}n a 的通项公式,并给出证明.(镇江市2009届高三第三次调研测试)说明:运用数学归纳法证明时,一定要严格按照要求格式书写.而证明的关键是由n k =推证1n k =+.五.导数与积分(Ⅰ)简单复合函数的导数1.已知两曲线x x f cos )(=,x x g 2sin )(=,)2,0(π∈x .(1)求两曲线的交点坐标;(2)设两曲线在交点处的切线分别与x 轴交于,A B 两点,求AB 的长.(Ⅱ)定积分2.求曲线x x x y 223++-=与x 轴所围成的图形的面积.(江苏省沛县2009年高考数学全真模拟试卷)六.给老师们的一些建议,仅供参考,欢迎指正.(Ⅰ)对数学附加题一定要充分重视,估计不同层次的学生附加分的差距会超过语文、外语中的任何一门.(Ⅱ)重点复习概率与空间向量,概率内容在高中数学中占了较多的课时,去年没有考,今年再不考的可能性是非常微小的.相比较而言,空间向量倒不是非考不可(赌不起啊).(Ⅲ)复习附加题可以采取专题与考试、讲评相结合的方法.建议在每一块内容最终要形成整体的知识结构.(Ⅳ)注意把握难度,考虑只有30分钟要做4道大题,除一问有点难度外,其余题应该都是基础题,要比上手快(速度),解法标准(规范),不追求难度.很多学生最后常常是很简单的问题做错了,或者不熟练,来不及做完.不到之处请谅解,欢迎指正.。

最新浅谈08至13年江苏高考附加题最后一题

最新浅谈08至13年江苏高考附加题最后一题

08-13江苏高考数学附加题最后一题解析点评(08年23题) 23.【必做题】.请先阅读:在等式2cos 22cos 1x x =-(x ∈R )的两边求导,得:2(cos 2)(2cos 1) x x ''=-, 由求导法则,得(sin 2)24cos (sin )x x x -=-g g ,化简得等式:sin 22cos sin x x x =g . (1)利用上题的想法(或其他方法),结合等式0122(1+x)=C C C C n n n n n n n x x x ++++L(x ∈R ,正整数2n ≥),证明:112[(1)1]C nn k k n k n x k x--=+-=∑. (2)对于正整数3n ≥,求证:(i )1(1)C 0nkknk k =-=∑; (ii )21(1)C 0nkk nk k =-=∑; (iii )10121C 11n nkn k k n +=-=++∑. 证明:(1)在等式0122(1+x)=C C C C n n nn n n n x x x ++++L 两边对x 求导得112121(1)2(1)n n n n n n n n n n x C C x n C x nC x ----+=+++-+L移项得 112[(1)1]nn k k n k n x kC x --=+-=∑ (*)(2)(i )在(*)式中,令1x =-,把-n 移过去整理得11(1)0nk kn k kC -=-=∑所以111(1)(1)(1)nnkkk knn k k kC kC -==-=-⋅-∑∑=0 (ii )看到2k 项,首先想到的就是升次,所以必定是求两次导 由(1)知112121(1)2(1),3n n n n n n n n n n x C C x n C x nC x n ----+=+++-+≥L继续两边对x 求导,得2232(1)(1)232(1)n n n n n n n n x C C x n n C x ---+=+++-g L在上式中,令1x =-23220232(1)(1)(1)n n n n C C n n C -=+-++--gL 即22(1)(1)0nkk nk k k C-=--=∑,亦即22(1)()0nkkn k k k C =--=∑又1k =时,2(1)()C 0k kn k k --=21(1)()0nk kn k k k C =∴--=∑ (1) 又由(i )知1(1)0nkkn k kC =-=∑ (2)由(1)+(2)得21(1)C 0nkk n k k =-=∑(iii )(官方解答)第三问中含有1k +,而且是在分母上的,有种逆求导的感觉,所以想到跟积分有关,故将等式0122(1+x)=C C C C n n nn n n n x x x ++++L 两边在[0,1]上对x 积分1101220(1)(C C C C )nn nn n n n x dx x x x dx +=++++⎰⎰L由微积分基本定理,得11110011(1)()11nn k k n k x C x n k ++=+=++∑所以 1012111n nk n k C k n +=-=++∑ 第(iii )问别解:搞过数学竞赛的同学很容易就想到一个组合恒等式1111k k n n n C C k +++=+,所以10121C 11n nk n k k n +=-=++∑等价于证111021nk n n k C +++==-∑,即证123111111 (2)1n n n n n n C C C C ++++++++++=- 而这时显然的。

历届高考数学附加题(江苏卷)及答案解析

历届高考数学附加题(江苏卷)及答案解析

历届高考数学附加题(江苏卷)(2018.江苏)21.【选做题】本题包括A ,B ,C ,D 四小题,请选定其中两小题并作答...........,若多做,则按作答的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。

A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过点P 作圆O 的切线,切点为C ,若PC =,求BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分) 已知矩阵2312A ⎡⎤=⎢⎥⎦⎣(I)求A 的逆矩阵1A -;(Ⅱ)若点P 在矩阵A 对应的变换作用下得到点'31P (,),求点P 的坐标。

C .[选修4—4:坐标系与参数方程](本小题满分10分) 在极坐标系中,直线l 的方程为26psin πθ-=(),曲线C 的方程为4p cos θ=,求直线被曲线C 截得的弦长.D .[选修4-5:不等式选讲](本小题满分10分)若x y z ,,为实数,且226x y z ++=,求222x y z ++的最小值.(2018.江苏)【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P Q ,分别为11,A B BC 的中点.(I)求异面直线BP 与1AC 所成角的余弦值; (Ⅱ)求直线1CC ,与平面1AQC 所成角的正弦值.(2018.江苏)23.(本小题满分10分) 设*N n ∈,对1,2,…,n 的一个排列12n i i i ,如果当s t <时,有s t i i >,则称s t i i (,)是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序()()2,13,1,,则排列231的逆序数为2.记n f k ()为1,2,n ,的所有排列中逆序数为k 的全部排列的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012数学Ⅱ(附加题)
B .[选修4 - 2:矩阵与变换](本小题满分10分)
已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦
A ,求矩阵A 的特征值.
C .[选修4 - 4:坐标系与参数方程](本小题满分10分)
在极坐标中,已知圆C 经过点()4P
π,,圆心为直线(
)
sin 3ρθπ-=与极轴的交点,求圆C 的极坐标方程.
22.(本小题满分10分)
设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=.
(1)求概率(0)P ξ=;
(2)求ξ的分布列,并求其数学期望()E ξ.
23.(本小题满分10分) 设集合{12}n P n =,,,
…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð.
(1)求(4)f ;
(2)求()f n 的解析式(用n 表示).
(第21-A 题)。

相关文档
最新文档