吉林省长春市普通高中2020届高三数学一模考试试题 理(含解析)
2020-2021长春市高三数学下期末一模试卷(附答案)
转化为 xex a 0 在 (1, ) 上有不等于 2 的解,令 g x xex ,利用奥数求得函数的单
调性,得到 a g 1 e 且 a g 2 2e2 ,又由 f (x) 在 (1, 2) 上单调递增,得到
f x 0 在 (1, 2) 上恒成立,进而得到 a xex 在 (1, 2) 上恒成立,借助函数 g x xex 在
25.如图,在四面体 ABCD 中,△ABC 是等边三角形,平面 ABC⊥平面 ABD,点 M 为棱
AB 的中点,AB=2,AD= 2 3 ,∠BAD=90°.
(Ⅰ)求证:AD⊥BC; (Ⅱ)求异面直线 BC 与 MD 所成角的余弦值; (Ⅲ)求直线 CD 与平面 ABD 所成角的正弦值.
26.已知椭圆
式 an ____;
14.若正数 a, b 满足 ab a b 3,则 a b 的取值范围_______________。
15.若三点 A(2,3), B(3, 2),C(1 , m) 共线,则 m的值为
.
2
16.在 ABC 中,角 A, B,C 的对边分别为 a,b, c , c 4 , a 4 2 sin A ,且 C 为锐 角,则 ABC 面积的最大值为________.
即 a xex 在 (1, 2) 上恒成立,
又由函数 g x xex 在 (1, ) 为单调递增函数,所以 a g(2) 2e2 ,
综上所述,可得实数 a 的取值范围是 a 2e2 ,即 a (2e2, ) ,故选 C.
【点睛】 本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计 算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲 线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参 数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合 思想的应用.
吉林省长春市2024届高三质量监测(一)数学试题
一、单选题二、多选题1. 已知数列满足:,,其中为的前项和.若对任意的均有恒成立,则的最大整数值为( )A .2B .3C .4D .52. 设函数f (x )=则=( )A .-1B .1C.-D.3. 据调查,目前对于已经近视的小学生,有两种佩戴眼镜的方式可供选择,一种是佩戴传统的框架眼镜;另一种是佩戴角膜塑形镜,这种眼镜是晚上睡觉时佩戴的一种特殊的隐形眼镜(因其在一定程度上可以减缓近视的发展程度,越来越多的小学生家长选择角膜塑形镜控制孩子的近视发展).A 市从当地小学生中随机抽取容量为100的样本,因近视佩戴眼镜的有24人,其中佩戴角膜塑形镜的有8人.若从样本中随机选取一名小学生,已知这名小学生佩戴眼镜,那么,他佩戴的是角膜塑形镜的概率是( )A.B.C.D.4.过点的直线经过圆的圆心,则直线的倾斜角大小为A .150°B .60°C .30°D .120°5. 已知复数为纯虚数(其中为虚数单位),则实数a =( )A .1B .-1C .2D .-26. 某运动队由足球运动员18人,篮球运动员12人,乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为 的样本,若分别采用系统抽样法和分层抽样法,都不用删除个体,那么样本容量 的最小值为A .6B .12C .18D .247.已知是关于的方程的一个根,则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.设且,则( )A.B.C .12D.9. 下列说法:①对于回归分析,相关系数的绝对值越小,说明拟合效果越好;②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则,的值分别是和;③已知随机变量,若,则的值为;④通过回归直线及回归系数,可以精确反映变量的取值和变化趋势.其中正确的选项是( )A .①B .②C .③D .④10. 已知棱长为的正方体的所有顶点均在体积为的球上,动点在正方形内运动(包含边界),若直线与直线所成角的正弦值为,则( )A.B.点运动轨迹的长度为C.三棱锥体积的取值范围为吉林省长春市2024届高三质量监测(一)数学试题三、填空题四、填空题五、填空题六、解答题七、解答题D.线段长度的最小值为11. 已知圆柱的上、下底面的中心分别为O ,,其高为2,为圆O的内接三角形,且,P 为圆上的动点,则( )A .若平面,则三棱锥外接球的表面积为B.若,则C.三棱锥体积的最大值为D .点A 到平面距离的最大值为12.设函数________.13. 若椭圆上一点到两个焦点的距离之和为,则此椭圆的离心率为__________.14. 已知圆与抛物线的准线相切,则的值为________.15. 已知抛物线,弦过抛物线的焦点,过两点分别作准线的垂线,垂足分别为、,设的中点为,线段的垂直平分线交轴于,则______;若的中点为,则______.16. 用表示不超过的最大整数,已知数列满足:,,.若,,则________;若,则________.17. 直线与轴交于点,交圆于,两点,过点作圆的切线,轴上方的切点为,则__________;的面积为__________.18. 化简或求值:(1);(2).19. 已知函数,.(1)在给出的坐标系中画出函数的图像;(2)若关于的不等式恒成立,求实数的取值范围.八、解答题九、解答题十、解答题20. 如图,已知平面平面,平面平面,,,,.(1)求证:;(2)若是线段上的动点,求直线与平面所成角正弦值的取值范围.21.年月日,神舟十三号载人飞船返回舱成功着陆,航天员翟志刚、王亚平、叶光富完成在轨驻留半年的太空飞行任务,标志着中国空间站关键技术验证阶段圆满完成.并将进入建造阶段某地区为了激发人们对天文学的兴趣,开展了天文知识比赛,满分分(分及以上为认知程度高),结果认知程度高的有人,这人按年龄分成组,其中第一组:,第二组:,第三组:,第四组:,第五组:,得到如图所示的频率分布直方图,已知第一组有人.(1)根据频率分布直方图,估计这人的第百分位数(中位数第百分位数);(2)现从以上各组中用分层随机抽样的方法抽取人,担任“党章党史”的宣传使者.①若有甲(年龄),乙(年龄)两人已确定入选宣传使者,现计划从第四组和第五组被抽到的使者中,再随机抽取名作为组长,求甲、乙两人至少有一人被选上的概率;②若第四组宣传使者的年龄的平均数与方差分别为和,第五组宣传使者的年龄的平均数与方差分别为和,据此估计这人中岁所有人的年龄的平均数和方差.22. 为迎接2020年国庆节的到来,某电视台举办爱国知识问答竞赛,每个人随机抽取五个问题依次回答,回答每个问题相互独立.若答对一题可以上升两个等级,回答错误可以上升一个等级,最后看哪位选手的等级高即可获胜.甲答对每个问题的概率为,答错的概率为.(1)若甲回答完5个问题后,甲上的台阶等级数为,求的分布列及数学期望;(2)若甲在回答过程中出现在第个等级的概率为,证明:为等比数列.。
长春普通高中2020届高三质量检测数学文理(一)
长春市普通高中2019届高三质量监测(一) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. D3. A4. B5.C6. C7. D8. B9. D 10. D 11. C12. A简答与提示:1. 【命题意图】本题考查复数的运算. 【试题解析】C (13)(3)10i i i -+-=.故选C.2. 【命题意图】本题考查集合运算. 【试题解析】D M N M =U 有N M ⊆.故选D.3. 【命题意图】本题考查三角函数的相关知识.【试题解析】A . 故选A. 4. 【命题意图】本题主要考查函数的性质. 【试题解析】B 由函数是偶函数,排除C ,在(0,)+∞上是减函数,排除A ,D.故 选B.5. 【命题意图】本题考查平面向量的相关知识.【试题解析】C 由题意知2120,cos ,2⋅-=<>=a b b a b .故选C. 6. 【命题意图】本题主要考查等差数列的相关知识.【试题解析】C 9475S S a -=.故选C 7. 【命题意图】本题考查线面成角.【试题解析】D 由题意知成角为6π.故选D. 8. 【命题意图】本题主要考查计数原理的相关知识.【试题解析】B 由题意可分两类,第一类,甲与另一人一同分到A ,有6种;第二类,甲单独在A ,有6种,共12种.故选B.9. 【命题意图】本题主要考查统计相关知识.【试题解析】D 由统计学常识可知,D 选项正确.故选D. 10. 【命题意图】本题主要考查中华传统文化.【试题解析】D 由题可知10k =.故选D. 11. 【命题意图】本题考查双曲线的相关知识.【试题解析】C 由题意可知22222223,13y x y x a a a =-=-,从而渐近线方程为 y =.故选C. 12. 【命题意图】本题是考查导数在研究函数单调性上的应用.【试题解析】A 令()(),()(()())0xxg x e f x g x e f x f x ''==+>,所以()g x 在定义域内单调递增,从而(0)(ln 2)(1)g g g <<,得(0)2(ln 2)(1)f f ef <<,即a b c <<. 故选A. 二、填空题(本大题共4小题,每小题5分,共20分)13.5214.1215. 10 16. 简答与提示:13. 【命题意图】本题考查对数运算.【试题解析】由题意可知值为52. 14. 【命题意图】本题考查椭圆的相关知识.【试题解析】12,1,2a b c e ====. 15. 【命题意图】本题考查等比数列的相关知识.【试题解析】由题意可得263396()()S S S S S -=-,得310S =. 16. 【命题意图】本题考查球的相关知识.【试题解析】由题意可知其2142S =⨯⨯=.三、解答题17. (本小题满分12分)【命题意图】本题考查解三角形的基本方法. 【试题解析】解:(1)由c C a b 21cos +=可得1sin sin cos sin 2B A C C =+,所以1cos ,23A A π== .(2)由(1)及3=⋅得6bc =,所以222222cos 6a b c bc A b c =+-=+-266bc ≥-=,当且仅当=b c 时取等号,所以a.18. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1)连接BD ,由2PA PD ==,E 是AD 的中点,得PE AD ⊥, 由平面⊥PAD 平面ABCD ,可得PE ⊥平面ABCD ,PE BE ⊥,又由于四边形 ABCD 是边长为2的菱形,ο60=∠A ,所以BE AD ⊥,从而⊥BE 平面PAD .(2)以E 为原点,,,EA EB EP 为,,x y z 轴,建立空间直角坐标系,P,(1,0,0),(A B C -,有(1,0,PA PB ==u u u r u u u r,(PC =-u u u r,令平面PAB 的法向量为n r ,由00PA n PB n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r r ,可得一个n =r ,同理可得平面PBC 的一个法向量为(0,1,1)m =u r ,所以平面PAB 与平面PBC所成锐二面角的余弦值为||5||||m n m n ⋅=u r ru r r .19. (本小题满分12分)【命题意图】本小题考查抛物线的相关知识. 【试题解析】答案:(1)设00000(,),(,0),||||,||,Q x y H x QH y OH x ==||2AB p =,从而2200||2||||QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C ,有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设1122(,),(,)M x y N x y ,由OM ON ⊥有12120x x y y +=,有1212(4)(4)0y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =.20. (本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望. 【试题解析】(1)由题意知,X 所有可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X(2200,因此只需考虑 200500n ≤≤. 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=; 若最高气温位于区间[)20,25,则()63002300412002Y n n n =⨯+--=-; 若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.4120020.480020.26400.4EY n n n n =⨯+-⨯+-⨯=-. 当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.40.480020.2160 1.2EY n n n =⨯++-⨯=+.所以n =300时,Y 的数学期望达到最大值,最大值为520元. 21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e x a '=-+,设()()x g x f x e x a '==-+,则()1x g x e '=-, 所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增, 当0x <时()0g x '<,()f x '在(),0-∞上单调递减, 所以()()01f x f a ''≥=+,因为1a >-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増.(4分) (2)由(1)知()f x '在[)1,+∞上单调递増,因为 1a e <-,所以()1 10f e a '=-+<, 所以存在()1,t ∈+∞,使得()0f t '=,即0t e t a -+=,即t a t e =-, 所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増,所以当[)1,x ∈+∞时,()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+.令()()2111,2x h x e x x x =-+>,则()1()0x x x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122t e t t -+<,即当[)1,x ∈+∞时()min 12f x <,故函数()f x 在[)1,+∞上的最小值小于12. (8分)(3)()212x f x e bx ax =-+,()x f x e bx a '=-+由()f x 为R 上的单调函数,可知()f x 一定为单调增函数因此()0x f x e bx a '=-+≥,令()()xg x f x e bx a '==-+,()x g x e b '=-当0b =时,0ab =;当0b <时,()0xg x e b '=->,()y g x =在R 上为增函数 x →-∞时,()g x →-∞与()0g x ≥矛盾当0b >时,()0ln ,()0ln g x x b g x x b ''>⇔><⇔<当ln x b =时,min ()ln 0g x b b b a =-+≥,22ln (0)ab b b b b - >≥令22()ln (0)F x x x x x =->,则()(2ln 1)F x x x '=-()0()00F x x F x x ''>⇔><⇔<<当x =,min ()2e F x =-,ab 的最小值为2e-.(12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】 (1)圆C 的直角坐标方程为222410x y x y +--+=.(2)将直线l 的参数方程代入到圆C 的直角坐标方程中,有24sin 0t t α-=,由32=AB 得sin α=,所以3πα=或23πα=. 23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容. 本小题重点考查化归与转化思想.【试题解析】(1)2221()22a b a b +≥+=.(2)2212133(2()22224a b b a a b a b a b +++=⨯+=++≥+=,12≥+. 长春市普通高中2019届高三质量监测(一)数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. D3. A4. B5.C6. C7. D8. B9. D 10. D 11. C12. A简答与提示:17. 【命题意图】本题考查复数的运算. 【试题解析】C (13)(3)10i i i -+-=.故选C. 18. 【命题意图】本题考查集合运算. 【试题解析】D M N M =U 有N M ⊆.故选D. 19. 【命题意图】本题考查三角函数的相关知识.【试题解析】A . 故选A. 20. 【命题意图】本题主要考查函数的性质. 【试题解析】B 由函数是偶函数,排除C ,在(0,)+∞上是减函数,排除A ,D.故 选B.21. 【命题意图】本题考查平面向量的相关知识.【试题解析】C 由题意知2120,cos ,2⋅-=<>=a b b a b .故选C. 22. 【命题意图】本题主要考查等差数列的相关知识.【试题解析】C 9475S S a -=.故选C 23. 【命题意图】本题考查线面成角.【试题解析】D 由题意知成角为6π.故选D. 24. 【命题意图】本题主要考查计数原理的相关知识.【试题解析】B 由题意可分两类,第一类,甲与另一人一同分到A ,有6种;第二类,甲单独在A ,有6种,共12种.故选B.25. 【命题意图】本题主要考查统计相关知识.【试题解析】D 由统计学常识可知,D 选项正确.故选D. 26. 【命题意图】本题主要考查中华传统文化.【试题解析】D 由题可知10k =.故选D. 27. 【命题意图】本题考查双曲线的相关知识.【试题解析】C 由题意可知22222223,13y x y x a a a =-=-,从而渐近线方程为 y =.故选C. 28. 【命题意图】本题是考查导数在研究函数单调性上的应用.【试题解析】A 令()(),()(()())0xxg x e f x g x e f x f x ''==+>,所以()g x 在定义域内单调递增,从而(0)(ln 2)(1)g g g <<,得(0)2(ln 2)(1)f f ef <<,即a b c <<. 故选A. 二、填空题(本大题共4小题,每小题5分,共20分)13.5214.1215. 10 16. 简答与提示:29. 【命题意图】本题考查对数运算.【试题解析】由题意可知值为52. 30. 【命题意图】本题考查椭圆的相关知识.【试题解析】12,1,2a b c e ====.31. 【命题意图】本题考查等比数列的相关知识.【试题解析】由题意可得263396()()S S S S S -=-,得310S =. 32. 【命题意图】本题考查球的相关知识.【试题解析】由题意可知其21422S =⨯⨯⨯=. 三、解答题24. (本小题满分12分)【命题意图】本题考查解三角形的基本方法. 【试题解析】解:(1)由c C a b 21cos +=可得1sin sin cos sin 2B A C C =+,所以1cos ,23A A π== .(2)由(1)及3=⋅AC AB 得6bc =,所以222222cos 6a b c bc A b c =+-=+-266bc ≥-=,当且仅当=b c 时取等号,所以a.25. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1)连接BD ,由2PA PD ==,E 是AD 的中点,得PE AD ⊥, 由平面⊥PAD 平面ABCD ,可得PE ⊥平面ABCD ,PE BE ⊥,又由于四边形 ABCD 是边长为2的菱形,ο60=∠A ,所以BE AD ⊥,从而⊥BE 平面PAD .(2)以E 为原点,,,EA EB EP 为,,x y z 轴,建立空间直角坐标系,P,(1,0,0),(A B C -,有(1,0,PA PB ==u u u r u u u r,(PC =-u u u r,令平面PAB 的法向量为n r ,由0PA n PB n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur r ,可得一个n =r ,同理可得平面PBC 的一个法向量为(0,1,1)m =u r ,所以平面PAB 与平面PBC所成锐二面角的余弦值为||5||||m n m n ⋅=u r ru r r .26. (本小题满分12分)【命题意图】本小题考查抛物线的相关知识. 【试题解析】答案:(1)设00000(,),(,0),||||,||,Q x y H x QH y OH x ==||2AB p =,从而2200||2||||QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C , 有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设1122(,),(,)M x y N x y ,由OM ON ⊥有12120x x y y +=,有1212(4)(4)0y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =.27. (本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望. 【试题解析】(1)由题意知,X 所有可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X(2200,因此只需考虑 200500n ≤≤. 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=; 若最高气温位于区间[)20,25,则()63002300412002Y n n n =⨯+--=-; 若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.4120020.480020.26400.4EY n n n n =⨯+-⨯+-⨯=-.当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.40.480020.2160 1.2EY n n n =⨯++-⨯=+.所以n =300时,Y 的数学期望达到最大值,最大值为520元. 28. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e x a '=-+,设()()x g x f x e x a '==-+,则()1x g x e '=-, 所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增, 当0x <时()0g x '<,()f x '在(),0-∞上单调递减, 所以()()01f x f a ''≥=+,因为1a >-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増.(4分) (2)由(1)知()f x '在[)1,+∞上单调递増,因为 1a e <-,所以()1 10f e a '=-+<, 所以存在()1,t ∈+∞,使得()0f t '=,即0t e t a -+=,即t a t e =-, 所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増,所以当[)1,x ∈+∞时,()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+.令()()2111,2x h x e x x x =-+>,则()1()0x x x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122t e t t -+<,即当[)1,x ∈+∞时()min 12f x <,故函数()f x 在[)1,+∞上的最小值小于12. (8分)(3)()212x f x e bx ax =-+,()x f x e bx a '=-+由()f x 为R 上的单调函数,可知()f x 一定为单调增函数因此()0x f x e bx a '=-+≥,令()()xg x f x e bx a '==-+,()x g x e b '=-当0b =时,0ab =;当0b <时,()0xg x e b '=->,()y g x =在R 上为增函数 x →-∞时,()g x →-∞与()0g x ≥矛盾当0b >时,()0ln ,()0ln g x x b g x x b ''>⇔><⇔<当ln x b =时,min ()ln 0g x b b b a =-+≥,22ln (0)ab b b b b - >≥令22()ln (0)F x x x x x =->,则()(2ln 1)F x x x '=-()0()00F x x F x x ''>⇔><⇔<<当x =,min ()2e F x =-,ab 的最小值为2e-.(12分)29. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】 (1)圆C 的直角坐标方程为222410x y x y +--+=.(2)将直线l 的参数方程代入到圆C 的直角坐标方程中,有24sin 0t t α-=,由32=AB 得sin 2α=,所以3πα=或23πα=. 30. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容. 本小题重点考查化归与转化思想.【试题解析】(1)2221()22a b a b +≥+=.(2)2212133(2()22224a b b a a b a b a b +++=⨯+=++≥+=,1≥+.长春市2019高三第一次质量检测题【数学文科】2018-9-12长春市普通高中2019届高三质量监测(一)数学(文科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. D3. C4. B5.C6. A7. B8. A9. D 10. D 11. C12. D简答与提示:33. 【命题意图】本题考查复数的运算.【试题解析】C (13)(3)10i i i -+-=.故选C.34. 【命题意图】本题考查集合运算.【试题解析】D M N M =U 有N M ⊆.故选D.35. 【命题意图】本题考查三角函数的相关知识.【试题解析】C 由题意可知函数最大值为故选C.36. 【命题意图】本题主要考查函数的性质.【试题解析】B 由函数是偶函数,排除C ,在(0,)+∞上是减函数,排除A ,D.故选B. 37. 【命题意图】本题考查平面向量的相关知识.【试题解析】C 由题意知2120,cos ,2⋅-=<>=a b b a b .故选C. 38. 【命题意图】本题主要考查等比数列的相关知识.【试题解析】A 由条件可知,所求算式等于13.故选A 39. 【命题意图】本题考查线面成角.【试题解析】B 由题意知成角为3π,余弦值为12.故选B. 40. 【命题意图】本题主要考查解三角形的相关知识. 【试题解析】A 由正弦定理可知1cos ,602A A ==︒.故选A. 41. 【命题意图】本题主要考查统计相关知识.【试题解析】D 由统计学常识可知,D 选项正确.故选D.42. 【命题意图】本题主要考查中华传统文化.【试题解析】D 由题可知10k =.故选D.43. 【命题意图】本题考查双曲线的相关知识.【试题解析】C 由题意可知22222223,13y x y x a a a=-=-,从而渐近线方程为 y =.故选C. 44. 【命题意图】本题是考查函数图象的对称性.【试题解析】D 函数()()g x f x ,的图象关于(2,1)点对称,则()0F x =共有8个零点,其和为16. 故选D.二、填空题(本大题共4小题,每小题5分,共20分) 13. 52 14. 12 15. 21y x =- 16. 13简答与提示:45. 【命题意图】本题考查对数运算.【试题解析】由题意可知值为52. 46. 【命题意图】本题考查椭圆的相关知识.【试题解析】12,1,2a b c e ====. 47. 【命题意图】本题考查导数的几何意义的相关知识.【试题解析】由题意可得1()1,(1)2,(1)1,21f x f f y x x''=+===-.48. 【命题意图】本题考查三棱锥的相关知识.【试题解析】由题意可知其211132233V =⨯⨯⨯=. 三、解答题31. (本小题满分12分)【命题意图】本题考查数列的相关知识.【试题解析】解:(1)由1127,3327a d a d +=+=,解得111,2a d ==-,可得132n a n =-.(2)由(1)2n b n =,111111()4(1)41n n b b n n n n +==-++,所求式等于 1223341111111(1)41n n b b b b b b b b n ++++⋅⋅⋅+=-+. 32. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)连接BD ,由2PA PD ==,E 是AD 的中点,得PE AD ⊥, 由平面⊥PAD 平面ABCD ,可得PE ⊥平面ABCD ,PE BE ⊥,又由于四边形 ABCD 是边长为2的菱形,ο60=∠A ,所以BE AD ⊥,从而⊥BE 平面PAD .(2)在PAB ∆中,2,PAB PA AB PB S ∆====,1111322P ABE V -=⨯=,所以点E 到平面PAB的距离为5. 33. (本小题满分12分)【命题意图】本小题考查抛物线的相关知识.【试题解析】答案:(1)设00000(,),(,0),||||,||,Q x y H x QH y OH x ==||2AB p =,从而2200||2||||QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C ,有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设1122(,),(,)M x y N x y ,由OM ON ⊥有12120x x y y +=,有1212(4)(4)0y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =.34. (本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望.【试题解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=, 所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6450-4450=900;若最高气温位于区间 [20,25),则Y =6300+2(450-300)-4450=300;若最高气温低于20,则Y =6200+2(450-200)-4450= -100.所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为0.8.35. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e x a '=-+,设()()x g x f x e x a '==-+,则()1x g x e '=-,所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增,当0x <时()0g x '<,()f x '在(),0-∞上单调递减,所以()()01f x f a ''≥=+,因为1a >-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増. (6分)(2)由(1)知()f x '在[)1,+∞上单调递増,因为 1a e <-,所以()1 10f e a '=-+<,所以存在()1,t ∈+∞,使得()0f t '=,即0t e t a -+=,即t a t e =-, 所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増,所以当[)1,x ∈+∞时()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+, 令()()2111,2x h x e x x x =-+>,则()1()0x x x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122t e t t -+<,即当[)1,x ∈+∞时()min 12f x <, 故函数()f x 在[)1,+∞上的最小值小于12. (12分)36. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识.【试题解析】 (1)圆C 的直角坐标方程为222410x y x y +--+=.(2)将直线l 的参数方程代入到圆C 的直角坐标方程中,有24sin 0t t α-=,由32=AB 得sin α=,所以3πα=或23πα=. 37. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容. 本小题重点考查化归与转化思想.【试题解析】(1)2221()22a b a b +≥+=.(2)212133()2222a b b a a b a b a b ++=⨯+=++≥+= 12≥+.。
吉林省长春市2020届高三数学一模考试试题文(含解析)
【分析】
分析每个数的正负以及与中间值1的大小关系.
【详解】因为 a
(1)3 3
(1)0 3
1
,
1
33
30
1
,
log
1 3
3
log1 1
3
0
,
所以 0 a 1,b 1, c 0 ,∴ c a b ,
故选:C. 【点睛】指数、对数、幂的式子的大小比较,首先确定数的正负,其次确定数的大小(很多
C. 充要条件
D. 既不充分也不必要条件
【答案】B
【解析】
【分析】
利用集合间的关系推出 p、q 之间的关系.
【详解】{x | x 1} Ý {x | x 2} ,则 p 是 q的必要不充分条件,
故选:B.
【点睛】 p 成立的对象构成的集合为 A , q成立的对象构成的集合为 B : p 是 q的充分不必要条件则有: A Ü B ;
故选:D. 【点睛】对于用符号语言描述的问题,最好能通过一个具体模型或者是能够画出相应的示意 图,这样在判断的时候能更加直观.
9.函数 y 2 sin( x ) ( 0,| | ) 的图象(部分图象如图所示) ,则其解析式为( ) 2
A.
f
(x)
2
sin(2x
)
6
C. f (x) 2sin(4x ) 6
∴ A B {x | x 3, 或 x ≤ -2}
故选:B. 【点睛】本题考查集合间的基本运算,难度容易,求解的时候注意等号是否能取到的问题.
3.已知等差数列{an} 的前 n 项和为 Sn , S5 15 , a4 5 ,则 S9 ( )
A. 45
B. 63
C. 54
吉林省长春市市第一中学2020年高三数学理上学期期末试卷含解析
吉林省长春市市第一中学2020年高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知双曲线的焦距为,双曲线C的渐近线为,则双曲线C的方程为()A. B. C. D.参考答案:C略2. 已知两个向量集合M={︱=(cos,),∈R},N={︱=(cos,+sin)∈R},若M∩N≠,则的取值范围是A.(-3,5]B.[,5]C.[2,5]D.[5,+∞)参考答案:B3. 的展开式中常数项为A.-30B.30C. -25D.25参考答案:C的展开式中常数项为,答案选C.4. 执行如图1所示的程序框图,如果输入的,则输出的属于()A. B. C. D.参考答案:D5. 已知复数则= ()A. B. C. D.参考答案:B6. 已知双曲线右支上的一点到左焦点的距离与到右焦点的距离之差为8,且到两渐近线的距离之积为,则双曲线的离心率为()ks5uA. B. C. D.参考答案:A7. 已知函数在R上单调递减,则实数a的取值范围是A.a>一2 B.一2<a<一1 C.a≤一2 D.a≤一参考答案:C8. 已知函数的周期为4,且当时,其中.若方程恰有5个实数解,则的取值范围为 ( )A. B. C. D.参考答案:B9. 在某次乒乓球单打比赛中,原计划每两名选手都进行一场比赛,但有3名选手各比赛了2场之后就退出了比赛,这样全部比赛只进行了50场,那么在上述3名选手之间比赛的场数是()A.0 B.1 C.2D.3参考答案:B试题分析:设一共有个选手,故总场次,其中为上述名选手之间比赛的场数,则,经验证,当时,.考点:排列组合.10. 已知是函数的图象与轴的两个不同交点,其图象的顶点为,则面积的最小值是()A.1B.C.D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 在平面四边形中,已知,则的值为.参考答案:1012. 若,且,则.参考答案:因为,所以为第三象限,所以,即。
吉林省长春市普通高中2020届高三质量监测(一)理数参考答案
长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分)1. B2. C3. C4. C5. D6. A7. D8. A9. C 10. B 11. C 12. C二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分)13. 112 14. 215. 20π16.221n n +,1(1)(1)nn n -++三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10)4L A π=++,由a b >可知,42A ππ<<sin()14A π<+<,即2010S <<+(12分)18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面.(6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴,建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-,(2,0,2)CE =-,平面CDE 的法向量为1(1,0,1)n =; 平面ABCD 的法向量为2(0,0,1)n =;因此1212||cos ||||n n n n θ⋅==⋅ 即平面CDE 与平面ABCD 所成的锐二面角为4π. (12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=. (4分)(Ⅱ)设直线l 的方程为x ty =-与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得 22(34)30t y +--=,即12y y+=,122334y y t -=+. AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t ==+u =,则1u ≥,上式可化为26633u u u u=++当且仅当u =3t =±因此AOB ∆l 的方程为3x y =±. (12分)21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识. 【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=. 则12||||||2PA PB t t ⋅==. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--. (5分) (Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2. (10分)。
吉林省长春市普通高中2020届高三质量监测理科数学试卷(含答案)
所以 an+1
−
an
=
3n ,
an
=
(an
− an−1)
+
(an−1
− an−2 )
+ ......+ (a2
−
a1) +
a1
=
3n −1 2
.
.
(6 分)
(Ⅱ)由(Ⅰ)得: bn = n 3n − n ,
Tn = 1 31 + 2 32 + ...... + n 3n , ①
3Tn = 1 32 + 2 33 + ...... + (n −1) 3n + n 3n+1 , ②
①-②可得
−2Tn
=
31
+
32
+
...... +
3n
−
n 3n+1
=
3n+1 − 2
3
−
n
3n+1
,
则 Tn
=
−
3n+1 − 3 4
+
n 3n+1 2
=
(2n
−1) 3n+1 4
+
3
即
Sn
=
(2n
−1) 3n+1 4
+
3
−
n(n +1) 2
.
20. (本小题满分 12 分)
(12 分)
【参考答案与评分细则】解:(Ⅰ)已知点 P 在椭圆 C :
(4 分)
(Ⅱ)设直线 AP 的方程为: y = k(x + 2) ,则直线 OM 的方程为 y = kx .
2020届长春地区高三一模(理数)答案
长春市 2020 届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12 小题,每小题 5 分,共 60 分)1. B2. C3. C4. C5. D6. A7. D8. A9. C10. B 11. C 12. C二、填空题(本大题共 4 小题,每小题5 分, 16 题第一空 2 分,第二空 3 分,共 20 分)13. 11214. 215. 20 16. 2 n ,( 1) n 1 2n n n1)1 ( 三、解答题17. (本小题满分 12 分 )【命题意图】 本题考查三角函数的相关知识,特别是三角函数中的取值范围问题.【试题解析】 解:(Ⅰ)由题可知 sin A sin Bsin A,即 sin Bcos A ,cos A由 ab ,可得 A B,即 △ ABC 是直角三角形 . (6 分)2(Ⅱ)ABC 的周长 L10 10sin A 10cos A , L10 10 2 sin( A) ,4由 ab 可知,A,因此2 sin( A ) 1,即 20 S 1010 2 .2424(12 分)18. (本小题满分 12 分 )【命题意图】 本题考查立体几何相关知识 .【试题解析】 解:(Ⅰ)取 PA 中点 M ,连结 EM 、 DM ,EM // CD CE // DMEM CD(6 分)CE //平面PAD .DM 平面PAD(Ⅱ)以 A 为原点,以 AD 方面为 x 轴,以 AB 方向为 y 轴,以 AP 方向为 z 轴,建立坐标系 .可得 D (2,0,0) , C (2,1,0) , P(0,0,4) , B(0,2,0), E(0,1,2) ,CD (0, 1,0) , CE( 2,0,2) ,平面 CDE 的法向量为 n 1 (1,0,1) ;平面 ABCD 的法向量为 n 2 (0,0,1) ;| n 1 n 2 |2因此cos.| n 1 | | n 2 |2即平面 CDE 与平面 ABCD 所成的锐二面角为.(12 分)4数学(理科)试题参考答案及评分标准 第 1页(共 4页)19.( 本小题满分 12 分) 【命题意图】 本题考查概率的相关知识 .【试题解析】解:(Ⅰ)该考生本次测验选择题得50 分即为将其余 4 道题无法确定正确选项的题目全部答对,其概率为P( X50) 1 1 1 1 1 . (4 分)X ,2 23 336(Ⅱ)设该考生本次测验选择题所得分数为则 X 的可能取值为30, 35, 40, 45, 50.P( X30) 1 1 2 242 23 336P( X35)1 12 2 1 1 2 21 1 12 1 1 2 1 122 23 32 23 32 23 32 23 3 36P(X40) 1 1 2 2 1 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 132 23 3 2 2 3 32 23 32 23 3 2 2 3 3 2 2 3 3 36P(X45)1 1 1 11 1 1 1 1 12 1 1 1 1 2 62 23 32 23 32 23 32 23 336P(X50)1 1 1 1 12 23 336X 的分布列为该考生本次测验选择题所得分数为X 30 35 4045 50P412 13613636363636选择题所得分数为X 的数学期望为 EX115. ( 12 分)320. (本小题满分 12 分 )【命题意图】 本小题考查圆锥曲线中的最值问题等知识.【试题解析】 解:( Ⅰ)由定义法可得, P 点的轨迹为椭圆且 2a 4 , c 1 .因此椭圆的方程为x 2y 2(4 分)41 .322( Ⅱ)设直线 l 的方程为 xty3 与椭圆xy1交于点 A( x 1, y 1) ,4 3B(x 2 , y 2 ) ,联立直线与椭圆的方程消去 x 可得226 3ty 3 0 ,即 y 1y 26 3t ,y 1y 2 3.(3t4) yt 2t 243 43AOB 面积可表示为 S △ AOB1| OQ | | y 1y 2 | 1 3 ( y 1 y 2 )24 y 1 y 22213 ( 6 3 24 33 2 39t 23t26 2122 t ) 2224 4 23t3t 4 3t 4 3t3t4令3t 2u ,则 u ≥ 1 ,上式可化为6u6≤,12 333u uu数学(理科)试题参考答案及评分标准 第 2页(共 4页)当且仅当 u3 ,即 t6时等号成立,3因此 AOB 面积的最大值为3 ,此时直线 l 的方程为 x6y3 . ( 12 分)321. (本小题满分 12 分 )【命题意图】 本小题考查函数与导数的相关知识.【试题解析】 解:(Ⅰ)由题可知 f ( x)ln x1 1 ,f ( x) 单调递增,且f (1) 0 ,x当 0 x 1 时, f (x) 0 ,当 x ≥ 1时, f ( x) ≥ 0 ;因此 f ( x) 在 (0,1) 上单调递减,在 [1, ) 上单调递增 .(4 分)(Ⅱ)由 h( x) m(x 1)ln xx ln x3有两个零点可知1) 11e由 h ( x) m(1 ln x且 m 0 可知,x x当 0 x 1 时, h ( x) 0 ,当 x ≥ 1时, h (x) ≥ 0 ;即 h( x) 的最小值为 h(1) 1 30 ,em ee因此当 x1时, h(1) m(11)( 1) 1( 1) 1)2 0 ,3(e eeee e可知 h( x) 在 ( 1,1) 上存在一个零点;e当 x e 时, h(e) m(e 1) e 13 0 ,e可知 h( x) 在 (1,e) 上也存在一个零点;因此 x 2 x 1 e1,即 x 1 e x 2 1 . (12 分)ee22.(本小题满分 10 分 )【命题意图】 本小题主要考查极坐标与参数方程的相关知识. 【试题解析】 解:(Ⅰ)直线 l 的普通方程为 x y 3 0 ,圆 C 的直角坐标方程为 x 2y 2 4x 3 0 .(5 分)(Ⅱ)联立直线 l 的参数方程与圆 C 的直角坐标方程可得(12t)2(22t)24(12t ) 30 ,化简可得 t 2 3 2t 2 0 .22 2则| PA | | PB | |t 1t 2 | 2 .(10 分)数学(理科)试题参考答案及评分标准第 3页(共 4页)23. (本小题满分 10 分 )【命题意图】 本小题主要考查不等式的相关知识 . 【试题解析】( Ⅰ)由题意( x 3) (1 x),x 34, x 3 f (x)( x 3) (1 x),3 ≤ x ≤12x2,3 ≤ x ≤1(x 3) (x 1), x 14, x 1 当 x 3 时, 4 ≥ x 1,可得 x ≤ 5 ,即 x ≤ 5 . 当 3 ≤ x ≤ 1时, 2x 2 ≥ x 1,可得 x ≥ 1,即 1 ≤ x ≤ 1 . 当 x 1 时, 4 ≥ x 1 ,可得 x ≤ 3 ,即 1 x ≤ 3 . 综上,不等式 f (x) ≥ x 1的解集为 ( , 5] [ 1,3] .(5 分)( Ⅱ)由( Ⅰ)可得函数 f ( x) 的最大值 M 4 ,且 ab a b 1 4 ,即 3 (ab)ab ≤ (ab ) 2 ,当且仅当 a b 时“ =”成立,2) 22可得 ( a b ≥ 16 ,即 ab ≥ 2 ,因此 a b 的最小值为2. (10 分)数学(理科)试题参考答案及评分标准 第 4页(共 4页)。
吉林省长春市普通高中2020届高三上学期质量监测试题(一) 数学(理) 含答案
吉林省长春市普通高中2020届高三上学期质量监测试题(一)数学(理)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x||x|>2},B={x|x2-3x>0},则A∩B=A.ΦB. {x|x>3或x≤-2}C. {x| x>3或x<0}D. {x| x>3或x<0}2.复数z=2i2+i5的共轭复数z在复平面上对应的点在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知133131(),3,log33a b c===,则A.a<b<cB.c<b<aC.c<a<bD.b<c<a.4.己知直线x+y=0与圆(x-1)2+(y-b)2=2相切,则b=A.-3B.1C.-3或1D.5 25.2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013年到2018年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将2013年编号为1,2014年编号为22018年编号为6,把每年的公共图书馆业机构个数作为因变量,把年份编号从1到6作为自变量进行回归分析),得到回归直线ˆ13.7433095.7y x=+,其相关指数R2=0.9817,给出下列结论,其中正确的个数是①公共图书馆业机构数与年份的正相关性较强②公共图书馆业机构数平均每年增加13.743个③可预测2019年公共图书馆业机构数约为3192个 A.0 B.1 C.2 D.36.中国传统扇文化有着极其深厚的底蕴。
一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为S 1,圆面中剩余部分的面积为S 2,当S 1与S 2的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为A.(35)π-B.(51)π-C.(51)π+D.(52)π- 7.己知a ,b ,c 为直线,α,β,γ平面,则下列说法正确的是 ①a⊥α,b ⊥α,则a ∥b ;②α⊥γ,β⊥γ,则α⊥β; ③a∥α,b ∥α,则a ∥b ;④α∥γ,β∥γ,则α∥β。
长春市2020届高三质量监测数学理科(一)
长春市 2020 届高三质量监测(一) 理科数学一、选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的.1. 已知集合{|||2}A x x =≥,2{|30}B x x x =-> ,则A B =A. ∅B. {|3,x x >或x ≤2}-C. {|3,x x >或0}x <D. {|3,x x >或2}x ≤ 2. 复数252i +i z =的共轭复数z 在复平面上对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知31()3a =,133b =,13log 3c =,则A. a b c <<B. c b a <<C. c a b <<D. b c a << 4. 已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b = A. 3- B. 1 C. 3-或1 D.525. 2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是①公共图书馆业机构数与年份的正相关性较强 ②公共图书馆业机构数平均每年增加 个③可预测 2019 年公共图书馆业机构数约为 3192 个A. 0B. 1C. 2D. 36. 中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为A. (35)π-B. 51)πC. 51)πD. 52)π 7. 已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是 ① ,a b αα⊥⊥,则//a b ② ,αγβγ⊥⊥,则αβ⊥ ③ //,//a b αα,则//a b ④ //,//αγβγ,则//αβA. ① ② ③B. ② ③ ④C. ① ③D. ① ④8. 已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b = ,则11S =A. 44B. 44-C. 88D. 88-9. 把函数()y f x =图象上所有点的横坐标伸长到原来的2倍,得到2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则()y f x =的解析式为A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+ D. ()2sin()6f x x π=-10. 已知函数()y f x =是定义在R 上的奇函数,且满足(2)()0f x f x ++=,当[2,0]x ∈-时,2()2f x x x =--,则当[4,6]x ∈时,()y f x =的最小值为A. 8-B. 1-C. 0D. 111. 已知椭圆22143x y +=的右焦点F 是抛物线22(0)y px p =>的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为 32 C. 3 D. 412. 已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为A. m ≤1B. m <-1C. m >-1D. m ≥1 二、填空题:本题共4小题,每小题5分. 13. 381(2)x x-展开式中常数项为___________.14.边长为2正三角形ABC 中,点P 满足1()3AP AB AC =+,则BP BC ⋅=_________. 15.平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C --大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为________.16.已知数列{}n a 的前项n 和为n S ,满足112a =-,且1222n n a a n n++=+,则2n S = __________,n a = __________.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考 题,每个试题考生都必须作答. 第 22~23 题为选考题,考生根据要求作答.(一)必考题:共 60 分. 17.(本小题满分 12 分)△ABC 的内角,,A B C 的对边分别为,,a b c ,tan ()a b A a b => . (Ⅰ)求证:△ABC 是直角三角形;(Ⅱ)若10c=,求△ABC的周长的取值范围.18. (本小题满分 12 分)如图,在四棱锥P ABCD⊥,AB CD,AD DC-中,PA⊥底面ABCD,//===,E为PB中点.AB AD DC22(Ⅰ)求证://CE平面PAD;(Ⅱ)若4PA=,求平面CDE与平面ABCD所成锐二面角的大小.19.(本小题满分 12 分)某次数学测验共有 10 道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对 1 道题得 5 分;不选或选错得 0 分. 某考生每道题都选并能确定其中有 6 道题能选对,其余 4 道题无法确定正确选项,但这 4 道题中有 2 道题能排除两个错误选项,另 2 道只能排除一个错误选项,于是该生做这 4 道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(Ⅰ)求该考生本次测验选择题得 50 分的概率;(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望.20.(本小题满分 12 分)已知点(1,0),(1,0)M N -若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程. 21.(本小题满分 12 分)已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x < ,证明:121ex e x +>+. (二)选考题:共 10 分,请考生在 22、23 题中任选一题作答,如果多做则按所做的第一题计分.22.(本小题满分 10 分)选修 4-4 坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为122x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=.(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l与圆C交于,A B两点,点(1,2)⋅的值.P,求||||PA PB23. (本小题满分 10 分)选修 4-5 不等式选讲已知函数()|3||1|=+-- .f x x x(Ⅰ)解关于x的不等式()1≥;f x x+(Ⅱ)若函数()>>,且(1)(1)++=,求a ba b Mf x的最大值为M,设0,0a b+的最小值.长春市2020届高三质量监测(一)数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分) 1. B 【解析】{|||2}{|2,2}A x x x x x =≥=-或≤≥,2{|30}{|0,3}B x x x x x x =->=<>或,∴A B ={|3,x x >或x ≤2}-2. C 【解析】252i +i 2i z ==-+,则z 2i =--,其对应点为(2,1)--,在第三象限3. C 【解析】01,1,0a b c <<><,∴c a b <<4. C 【解析】=∴|1|2b +=∴13b b ==-或5. D 【解析】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确;由回归方程,当7x =时,得估计值为≈3192,故③正确.6. A 【解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则12αβ=,又2αβπ+=,解得(3απ=- 7. D 【解析】①正确; ② 错误;③错误;④正确 8. A 【解析】2210661164a a a a =⨯==∴,∴664b a ==,1161144S b ==9. C 【解析】由2sin(0)1ωϕϕ⋅+=π∴=6,由112sin()0212ωπϕω⋅+==∴即2sin(2)6y x π=+,横坐标缩短到原来的12倍,得2sin(4)6y x π=+,即为()f x 解析式. 10. B 【解析】由(2)()0f x f x ++=得函数的周期为4,又当[2,0]x ∈-时,2()2f x x x =--,且()f x 是定义在R 上的奇函数∴[0,2]x ∈时,2()2f x x x =-,∴当[4,6]x ∈时,22()(4)(4)2(4)1024f x f x x x x x =-=---=-+此时()f x 的最小值为(5)1f =-.[法2:由周期为4,()f x 在[0,2]上的最小值即为()f x 在[4,6]上的最小值] 11. C 【解析】椭圆的右焦点为(1,0),∴12p =∴2p =,||1cos60pAF =-︒,||1cos60pBF =+︒,∴||10.53||10.5AF BF +==-.12. C 【解析】21()(2)e x f x x -'=-∴()f x 在上递减,在)+∞上递增,当2x >时,()0f x >,又(1)1f =-,1f <-,(2)0f =∵(1)1f '=-∴m >-1二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分) 13. 112【解析】由3883(8)1881(2)()2(1)r r r r r r r r r T C x C x x----+=-=-有3(8)0r r --=得6r =∴6866782(1)112T C -=-=14. 2【解析】112(())()()()333BP BC AB AC AB AC AB AC AB AC AB ⋅=+-⋅-=-⋅-221248122233332AC AB AC AB =+-⋅=+-⨯⨯= 15. 20π【解析】 取AD,BC 的中点分别为12,O O ,过1O 作面ABD 的垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结12,O E O E ,则12O EO ∠即为二面角A BD C --的平面角,121O E O E ==,连OE ,在Rt △1O OE 中,13OO =,在Rt △1O OA 中,12O A =得5OA =,即球半径为5,所以球面积为20π.16.221n n +,1(1)(1)n n n -++【解析】由1222n n a a n n ++=+得21222(21)2(21)n n a a n n -+=-+- 211(21)(21)2121n n n n ==--+-+∴2nS =1113-+1135-+…+112121n n --+1121n =-+. 由111212a =-=-⨯递推得277623a ==⨯,311111234a =-=-⨯,421212045a ==⨯,归纳可得1(1)(1)n n n -++.【法2:】122111111=()()22112n n a a n n n n n n n n ++=-=-+-+++++∴11111()[()]112n n a a nn n n +--=---+++∴11{()}1n a n n --+为首项为1-,公比为1-的等比数列,11111()=(1)=(1)+()=(1)+11(1)n n n n n a a nn n n n n ------+++∴三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题.【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形. (6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10)4L A π=++,由a b >可知,42A ππ<<sin()14A π<+<,即2010L <<+(12分) 18. (本小题满分12分)【命题意图】本题考查立体几何相关知识.【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面. (6分)(Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴, 建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-,(2,0,2)CE =-, 平面CDE 的法向量为1(1,0,1)n =; 平面ABCD 的法向量为2(0,0,1)n =;因此1212||cos ||||n n n n θ⋅==⋅. 即平面CDE 与平面ABCD 所成的锐二面角为4π.(12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=.(4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=该考生本次测验选择题所得分数为X 的分布列为选择题所得分数为X 的数学期望为1153EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识.【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=.(4分)(Ⅱ)设直线l 的方程为x ty =与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得22(34)30t y +--=,即12234y y t +=+,122334y y t -=+. AOB ∆面积可表示为1211||||22AOB S OQ y y =⋅-=△216234t ==+令u =,则1u ≥,上式可化为26633u u u u=++当且仅当u =3t =±时等号成立, 因此AOB ∆此时直线l的方程为3x y =±-. (12分) 21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识. 【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-,()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分) (Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知 由11()(1ln )1h x m x xx'=+-+-且0m >可知, 当01x <<时,()0h x '<,当1x ≥时,()0h x '≥; 即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e-+-=--+---=>,可知()h x 在1(,1)e上存在一个零点; 当x e =时,3()(1)10h e m e e e=-+-->, 可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=,圆C 的直角坐标方程为22430x y x +--=. (5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=. 则12||||||2PA PB t t ⋅==. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意(3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--. (5分) (Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立, 可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2. (10分)。
2020-2021长春市高三数学上期末一模试卷(附答案)
2020-2021长春市高三数学上期末一模试卷(附答案)一、选择题1.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭2.若函数y =f (x )满足:集合A ={f (n )|n ∈N *}中至少有三个不同的数成等差数列,则称函数f (x )是“等差源函数”,则下列四个函数中,“等差源函数”的个数是( ) ①y =2x +1;②y =log 2x ;③y =2x+1;④y =sin44x ππ+()A .1B .2C .3D .43.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2014.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,a =7cos 8A =,则ABC ∆的面积为( ) AB .3CD5.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1166.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 7.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .788.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .139.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A .32B .5C .5D .9210.在中,,,,则A .B .C .D .11.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( ) A .20B .24C .28D .3212.在直角梯形ABCD 中,//AB CD ,90ABC ∠=o ,22AB BC CD ==,则cos DAC ∠=( )A 25B 5C 310D 10二、填空题13.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.14.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________;15.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .16.已知递增等比数列{}n a 的前n 项和为n S ,且满足:11a =,45234a a a a +=+,则144S S a +=______. 17.设,x y 满足约束条件0{2321x y x y x y -≥+≤-≤,则4z x y =+的最大值为 .18.已知等比数列{}n a 满足232,1a a ==,则12231lim ()n n n a a a a a a +→+∞+++=L ________________.19.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积623S =+,则该三角形的外接圆半径是______ 20.设()32()lg 1f x x x x =+++,则对任意实数,a b ,“0a b +≥”是“()()0f a f b +≥”的_________条件.(填“充分不必要”.“必要不充分”.“充要”.“既不充分又不必要”之一)三、解答题21.设数列{}n a 满足()*164n n n a a n a +-=∈-N ,其中11a =. (Ⅰ)证明:32n n a a ⎧⎫-⎨⎬-⎩⎭是等比数列;(Ⅱ)令112n n b a =--,设数列{}(21)n n b -⋅的前n 项和为n S ,求使2019n S <成立的最大自然数n 的值.22.在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a 的正三角形ABC 绕其中心O 逆时针旋转θ到三角形A 1B 1C 1,且20,3πθ⎛⎫∈ ⎪⎝⎭.顺次连结A ,A 1,B ,B 1,C ,C 1,A ,得到六边形徽标AA 1BB 1CC 1 .(1)当θ=6π时,求六边形徽标的面积; (2)求六边形徽标的周长的最大值.23.已知等比数列{a n }的前n 项和为S n ,a 114=,公比q >0,S 1+a 1,S 3+a 3,S 2+a 2成等差数列.(1)求{a n };(2)设b n ()()22212n n n n c n b b log a +==+,,求数列{c n }的前n 项和T n .24.如图,在ABC ∆中,45B ︒∠=,10AC =,25cos 5C ∠=点D 是AB 的中点, 求(1)边AB 的长;(2)cos A 的值和中线CD 的长 25.已知0a >,0b >,且1a b +=. (1)若ab m ≤恒成立,求m 的取值范围; (2))若41212x x a b+≥--+恒成立,求x 的取值范围. 26.设n S 为等差数列{}n a 的前n 项和,公差d ∈N ,25a =,且53545S <<. (1)求{}n a 的通项公式;(2)设数列{}237n S n -的前n 项和为n T ,若m n T T ≤,对n *∈N 恒成立,求m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】11111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nnn n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()143n p S n ≤-≤Q即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立,当1n =时,13p ≤≤ 当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果2.C解析:C 【解析】①y =2x +1,n ∈N *,是等差源函数;②因为log 21,log 22,log 24构成等差数列,所以y =log 2x 是等差源函数;③y =2x +1不是等差源函数,因为若是,则2(2p +1)=(2m +1)+(2n +1),则2p +1=2m +2n ,所以2p +1-n =2m -n +1,左边是偶数,右边是奇数,故y =2x +1不是等差源函数; ④y =sin 44x ππ⎛⎫+⎪⎝⎭是周期函数,显然是等差源函数.答案:C.3.A解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.4.D解析:D 【解析】 【分析】三角形的面积公式为1sin 2ABC S bc A ∆=,故需要求出边b 与c ,由余弦定理可以解得b 与c . 【详解】解:在ABC ∆中,2227cos 28b c a A bc +-==将2b c =,a =22246748c c c +-=, 解得:2c =由7cos 8A =得sin A ==所以,11sin 242282ABC S bc A ∆==⨯⨯⨯=故选D. 【点睛】三角形的面积公式常见形式有两种:一是12(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.5.A解析:A 【解析】依题意,113713113713132412226132a a a S b b b T +⋅===+⋅. 6.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A.【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-=∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.7.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.8.C解析:C 【解析】 【分析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果. 【详解】由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯=故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.9.C解析:C 【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.10.D解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.11.A解析:A 【解析】分析:由已知条件构造基本不等式模型()()224x y x y +=+++-即可得出. 详解:,x y Q 均为正实数,且111226x y +=++,则116122x y ⎛⎫+= ⎪++⎝⎭(2)(2)4x y x y ∴+=+++-116()[(2)(2)]422x y x y =++++-++ 22226(2)46(22)4202222y x y x x y x y ++++=++-≥+⋅-=++++ 当且仅当10x y ==时取等号.x y ∴+的最小值为20. 故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.12.C解析:C 【解析】 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=, 在Rt ADE ∆中,222AD AE DE =+=225AC AB BC +在ACD ∆中,由余弦定理得2222521310cos 210252AC AD CD DAC AC AD +-+-∠===⋅⨯⨯, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.二、填空题13.【解析】【分析】【详解】试题分析:由题意知满足条件的线性区域如图所示:点而目标函数仅在点处取得最大值所以考点:线性规划最值问题解析:1(,)3+∞【解析】 【分析】 【详解】试题分析:由题意知满足条件的线性区域如图所示:,点(22)A ,,而目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,所以1133AB k a a ->=-∴> 考点:线性规划、最值问题.14.【解析】【分析】由余弦定理得结合条件将式子通分化简得再由辅助角公式得出当时取得最大值从而求出结果【详解】在中由余弦定理可得所以其中当取得最大值时∴故答案为:【点睛】本题考查解三角形及三角函数辅助角公 解析:1313【解析】由余弦定理得2222cos c a b ab C =+-,结合条件23sin c ab C =,将式子b aa b+通分化简得3sin 2cos C C +,再由辅助角公式得出b aa b +()13sin C ϕ=+,当2C πϕ+=时,b aa b +取得最大值,从而求出结果. 【详解】在ABC ∆中由余弦定理可得2222cos c a b ab C =+-,所以2222cos 3sin 2cos 3sin 2cos b a a b c ab C ab C ab C C C a b ab ab ab++++====+()13sin C ϕ=+,其中213sin ϕ=,313cos ϕ=, 当b a a b +132C πϕ+=,∴213cos cos sin 2C πϕϕ⎛⎫=-== ⎪⎝⎭.故答案为:21313. 【点睛】本题考查解三角形及三角函数辅助角公式,考查逻辑思维能力和运算能力,属于常考题.15.【解析】【分析】【详解】考查等价转化能力和分析问题的能力等比数列的通项有连续四项在集合四项成等比数列公比为=-9 解析:9-【解析】 【分析】 【详解】考查等价转化能力和分析问题的能力,等比数列的通项,{}n a 有连续四项在集合{}54,24,18,36,81--,四项24,36,54,81--成等比数列,公比为32q =-,6q = -9. 16.2【解析】【分析】利用已知条件求出公比再求出后可得结论【详解】设等比数列公比为则又数列是递增的∴∴故答案为:2【点睛】本题考查等比数列的通项公式和前项和公式属于基础题【解析】 【分析】利用已知条件求出公比q ,再求出144,,S S a 后可得结论. 【详解】设等比数列{}n a 公比为q ,则2454232(1)4(1)a a a q q a a a q ++===++,又数列{}n a 是递增的,∴2q =,∴44121512S -==-,111S a ==,3428a ==,14411528S S a ++==. 故答案为:2. 【点睛】本题考查等比数列的通项公式和前n 项和公式,属于基础题.17.【解析】试题分析:约束条件的可行域如图△ABC 所示当目标函数过点A(11)时z 取最大值最大值为1+4×1=5【考点】线性规划及其最优解解析:【解析】 .试题分析:约束条件的可行域如图△ABC 所示.当目标函数过点A(1,1)时,z 取最大值,最大值为1+4×1=5.【考点】线性规划及其最优解.18.【解析】【分析】求出数列的公比并得出等比数列的公比与首项然后利用等比数列求和公式求出即可计算出所求极限值【详解】由已知所以数列是首项为公比为的等比数列故答案为【点睛】本题考查等比数列基本量的计算同时 解析:323【解析】 【分析】求出数列{}n a 的公比,并得出等比数列{}1n n a a +的公比与首项,然后利用等比数列求和公式求出12231n n a a a a a a ++++L ,即可计算出所求极限值. 【详解】由已知3212a q a ==,23112()()22n n n a --=⨯=,3225211111()()()2()2224n n n n n n a a ----+=⋅==⋅,所以数列{}1n n a a +是首项为128a a =,公比为1'4q =的等比数列, 11223118[(1()]3214[1()]13414n n n n a a a a a a -+-+++==--L ,1223132132lim ()lim [1()]343n n n n n a a a a a a +→+∞→∞+++=-=L . 故答案为323. 【点睛】本题考查等比数列基本量的计算,同时也考查了利用定义判定等比数列、等比数列求和以及数列极限的计算,考查推理能力与计算能力,属于中等题.19.【解析】【分析】设三角形外接圆半径R 由三角形面积公式解方程即可得解【详解】由题:设三角形外接圆半径为R ()根据正弦定理和三角形面积公式:即解得:故答案为:【点睛】此题考查三角形面积公式和正弦定理的应解析:【解析】 【分析】设三角形外接圆半径R ,由三角形面积公式21sin 2sin sin sin 2S ab C R A B C ==解方程即可得解. 【详解】由题:1sin sin 75sin(4530)222B =︒=︒+︒=+=设三角形外接圆半径为R (0R >),根据正弦定理和三角形面积公式:211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅=即262R +=,解得:R =故答案为:【点睛】此题考查三角形面积公式和正弦定理的应用,利用正弦定理对面积公式进行转化求出相关量,需要对相关公式十分熟练.20.充要【解析】所以为奇函数又为单调递增函数所以即是的充要条件点睛:充分必要条件的三种判断方法1定义法:直接判断若则若则的真假并注意和图示相结合例如⇒为真则是的充分条件2等价法:利用⇒与非⇒非⇒与非⇒非解析:充要 【解析】33()()lg(()lg(lg10f x f x x x x x +-=++-+-== ,所以()f x 为奇函数,又()f x 为单调递增函数,所以0()()()()()()0a b a b f a f b f a f b f a f b +≥⇔≥-⇔≥-⇔≥-⇔+≥ ,即“0a b +≥”是“()()0f a f b +≥”的充要条件点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.三、解答题21.(Ⅰ)证明见解析(Ⅱ)6 【解析】 【分析】(Ⅰ)由递推公式凑出1132n n a a ++--与32n n a a --的关系,即可得证(Ⅱ)由(Ⅰ)可得2111222n n n n n a b a a --=-==--,即可得到{}(21)n n b -⋅的通项公式,再用错位相减法求和,证明其单调性,可得得解. 【详解】 解:(Ⅰ)()*164n n n a a n a +-=∈-N Q 1163346224n n n n n n a a a a a a ++----∴=---- 6312628n n n n a a a a --+=--+2(3)(2)n n a a --=--322n n a a -=- 32n n a a ⎧⎫-∴⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列 (Ⅱ)由(Ⅰ)知,322n n n a a -=-, 即2111222n n n n n a b a a --=-==--, 21212n n n b n ∴-⋅=-⋅()()123S 123252...(21)2n n n =⋅+⋅+⋅++-⋅① 23412S 123252...(21)2n n n +=⋅+⋅+⋅++-⋅②,①减②得11231142S 122(22...2)(21)222(21)212n n n n n n n +++--=⋅+++--⋅=+⋅--⋅-1(32)26n n +=-⋅-. 1S (23)26n n n +∴=-⋅+2111S S (21)2(23)22210n n n n n n n n ++++∴-=-⋅--⋅=+>(),S n ∴单调递增.76S 92611582019=⨯+=<Q , 87S 112628222019=⨯+=>.故使S 2019n <成立的最大自然数6n =. 【点睛】本题考查利用递推公式证明函数是等比数列,以及错位相减法求和,属于中档题.22.(1)234a ;(2) 【解析】 【分析】(1)连接OB ,则123AOB πθ∠=-,由等边三角形ABC 的边长为a ,可得OA OB ==,再利用三角形面积公式求解即可; (2)根据三角形的对称性可得12sin sin 22AA OA θθ==,112sin sin 32222A B OB πθθθ⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎝⎭,则周长为关于θ的函数,进而求得最值即可 【详解】(1)Q 等边三角形ABC 的边长为a ,3OA OB a ∴==, 连接OB ,123AOB πθ∴∠=-,2123sin sin 236S OA ππθθθ⎡⎤⎛⎫⎛⎫∴=⨯+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴当6πθ=时,六边形徽标的面积为234S a =(2)在1AOA V 中,12sinsin 232AA OA a θθ==,在1BOA V 中,112sin sin 32222A B OB πθθθ⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎝⎭,设周长为()f q ,则()()113sin 23f AA A B θπθ⎛⎫=+=+ ⎪⎝⎭,20,3θπ⎛⎫∈ ⎪⎝⎭,当且仅当232θππ+=,即3πθ=时,()max fθ=【点睛】本题考查三角形面积的应用,考查正弦型函数的最值问题,考查三角函数在几何中的应用,考查数形结合思想 23.(1)a n 11()2n +=;(2)T n 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦. 【解析】 【分析】(1)根据等差中项的性质列方程,并转化为1,a q 的形式,由此求得q 的值,进而求得数列{}n a 的通项公式.(2)利用裂项求和法求得数列{}n c 的前n 项和n T . 【详解】(1)由S 1+a 1,S 3+a 3,S 2+a 2成等差数列, 可得2(S 3+a 3)=S 2+a 2+S 1+a 1, 即有2a 1(1+q +2q 2)=3a 1+2a 1q , 化为4q 2=1,公比q >0,解得q 12=. 则a n 14=⋅(12)n ﹣111()2n +=; (2)b n 212222111()(2)(1)n n log a log n --===+,c n =(n +2)b n b n +2=(n +2)⋅22221111(1)(3)4(1)(3)n n n n ⎡⎤=-⎢⎥++++⎣⎦, 则前n 项和T n =c 1+c 2+c 3+…+c n ﹣1+c n14=[22222222221111111111243546(2)(1)(3)n n n n -+-+-++-+-+++L ]2211111449(2)(3)n n ⎡⎤=+--⎢⎥++⎣⎦ 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦. 【点睛】本小题主要考查等差中项的性质,考查等比数列通项公式的基本量计算,考查裂项求和法,属于中档题. 24.(1)2 (2【解析】 【分析】 【详解】((1)由cos 0ACB ∠=>可知,ACB ∠是锐角,所以,sin 5ACB ∠=== 由正弦定理sin sin AC AB B ACB=∠,sin 2sin 5AC AB ACB B =∠== (2)cos cos(18045)cos(135)A C C ︒︒︒=--=-cos sin )C C =-+= 由余弦定理:CD === 考点:1正弦定理;2余弦定理.25.(1)14m ≥(2)[]6,12- 【解析】 【分析】(1)由已知根据基本不等式得2124a b ab +⎛⎫≤=⎪⎝⎭,再由不等式的恒成立的思想:ab m ≤恒成立,则需()max m ab ≥得所求范围;(2)根据基本不等式得()41419a b a b a b ⎛⎫+=++≥ ⎪⎝⎭,再根据不等式恒成立的思想得到绝对值不等式2129x x --+≤,运用分类讨论法可求出不等式的解集. 【详解】(1)0a >,0b >,且1a b +=,∴2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时“=”成立,由ab m ≤恒成立,故14m ≥. (2)∵(),0,a b ∈+∞,1a b +=,∴()41414559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,故若41212x x a b+≥--+恒成立,则2129x x --+≤, 当2x -≤时,不等式化为1229x x -++≤,解得62x -≤≤-,当122x -<<,不等式化为1229x x ---≤,解得122x -<<, 当12x ≥时,不等式化为2129x x ---≤,解得1122x ≤≤. 综上所述,x 的取值范围为[]6,12-. 【点睛】本题综合考查运用基本不等式求得最值,利用不等式的恒成立的思想建立相应的不等关系,分类讨论求解绝对值不等式,属于中档题. 26.(1)31n a n =-;(2)11m =或12m = 【解析】 【分析】(1)由5335545S a <=<可解得3d =,进而求出1a ,得到31n a n =-;(2)由(1)可求出n S ,进而求出237n S n -,即可求出其前n 项和的最小值,从而得出结论. 【详解】(1)()()5325555S a a d d ==+=+Q ,()355545d <∴+<,即24d <<, d ∈N Q ,3d ∴=,则122a a d =-=,故()21331n a n n =+-⨯=-; (2)由(1)知,()()2313122n n n n n S +-+==, 则2237336n S n n n -=-,令2370n S n -≤,解得012n ≤≤, 则()1211min n T T T ==, 故11m =或12m =. 【点睛】本题考查求等差数列的通项公式及其性质的应用,属于中档题.。
2020届吉林省长春市2017级高三第一次质量检测数学(理)试卷及解析
2020届吉林省长春市2017级高三第一次质量检测数学(理)试卷★祝考试顺利★(解析版)本试卷共4页,考试结束后,将答题卡交回.注意事项:1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2A x x =≥,{}230B x x x =->,则A B =( ) A. φ B. {}3,2x x x >≤-或 C. {}3,0x x x ><或 D. {}3,1x x x ><或【答案】B【解析】 分别求出集合(,2][2,)A =-∞-+∞ ,=(,0)(3,)B -∞+∞,然后再求A B 【详解】由集合{}2A x x =≥得(,2][2,)A =-∞-+∞. 由集合{}230B x x x =->得=(,0)(3,)B -∞+∞. 所以(,2](3,)A B =-∞-+∞.故选:B.2.复数252i +i z =的共轭复数z 在复平面上对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】 根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+, 则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C .3.已知31()3a =,133b =,13log 3c =,则( ) A. a b c <<B. c b a <<C. c a b <<D. b c a <<【答案】C【解析】 分析每个数的正负以及与中间值1的大小关系. 【详解】因为3011()()133a <<=,103331>=,1133log 3log 10<=, 所以01,1,0abc <<><,∴c a b <<,故选C.4.已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b =( )A. 3-B. 1C. 3-或1D. 52 【答案】C【解析】根据直线与圆相切,则圆心到直线的距离等于半径来求解.【详解】由圆心到切线的距离等于半径,= ∴|1|2b +=∴13b b ==-或故选C.5.2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆。
吉林省长春市2020届高三文数一模试卷
吉林省长春市2020届高三文数一模试卷一、单选题 (共12题;共24分)1.(2分)复数z=−2+i,则它的共轭复数z̅在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(2分)已知集合A={x| x≥2,或x≤−2},B={x|x2−3x>0},则A∩B=() A.∅B.{x| x>3,或x≤ −2}C.{x| x>3,或x<0}D.{x| x>3,或x≤2}3.(2分)已知等差数列{a n}的前n项和为S n,S5=15,a4=5,则S9=() A.45B.63C.54D.814.(2分)已知条件p:x>1,条件q:x≥2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2分)2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将2013 年编号为1,2014 年编号为2,…,2018年编号为6,把每年的公共图书馆业机构个数作为因变量,把年份编号从1 到6 作为自变量进行回归分析),得到回归直线ŷ=13.743x+3095.7,其相关指数R2=0.9817,给出下列结论,其中正确的个数是()①公共图书馆业机构数与年份的正相关性较强②公共图书馆业机构数平均每年增加13.743个③可预测2019 年公共图书馆业机构数约为3192个A.0B.1C.2D.36.(2分)已知直线x+y=0与圆(x−1)2+(y−b)2=2相切,则b=()A .−3B .1C .−3 或 1D .527.(2分)已知 a =(13)3 , b =313 , c =log 133 ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a8.(2分)已知 a,b,c 为直线, α,β,γ 平面,则下列说法正确的是( )①a ⊥α,b ⊥α ,则 a//b ②α⊥γ,β⊥γ ,则 α⊥β③a//α,b//α ,则 a//b ④α∥γ,β∥γ ,则 α//β A .①②③B .②③④C .①③D .①④9.(2分)函数 y =2sin(ωx +φ) (ω>0,|φ|<π2) 的图象(部分图象如图所示) ,则其解析式为( )A .f(x)=2sin(2x +π6)B .f(x)=2sin(x +π6) C .f(x)=2sin(4x +π6)D .f(x)=2sin(x −π6)10.(2分)中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为 S 1 ,圆面中剩余部分的面积为 S 2 ,当 S 1 与 S 2 的比值为 √5−12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3−√5)πB .(√5−1)πC .(√5+1)πD .(√5−2)π11.(2分)已知 F 是抛物线 y 2=4x 的焦点,则过 F 作倾斜角为 60° 的直线分别交抛物线于 A,B ( A 在 x 轴上方)两点,则 |AF||BF| 的值为( )A .√3B .2C .3D .412.(2分)已知函数 f(x)={e −x −1(x ≤0)√x (x >0) ,若存在 x 0∈R 使得 f(x 0)≤m(x 0−1)−1 成立,则实数 m 的取值范围为( )A.(0,+∞)B.[−1,0)∪(0,+∞) C.(−∞,−1]∪[1,+∞)D.(−∞,−1]∪(0,+∞)二、填空题 (共4题;共5分)13.(1分)已知sinα2−cosα2=15,则sinα=.14.(1分)设变量x,y满足约束条件{x−y≤0x+3y≤4x+2≥0,则z=x−3y的最小值等于.15.(1分)三棱锥P−ABC中,PA⊥平面ABC,AB⊥AC, PA=√10, AB=2,AC=√2,则三棱锥P−ABC的外接球的表面积为.16.(2分)已知△ABC的内角A,B,C的对边分别为a,b,c,若m⇀=(b−c,a−b), n⇀= (sinC,sinA+sinB),且m⇀⊥n⇀,则A=;若△ABC的面积为√3,则△ABC的周长的最小值为.三、解答题 (共7题;共35分)17.(5分)已知数列{a n}中,a1=2,a n+1=2a n+2n+1,设b n=a n 2n.(Ⅰ)求证:数列{b n}是等差数列;(Ⅱ)求数列{1b n b n+1}的前n项和S n.18.(5分)环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,右表是对100 辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.(Ⅰ)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;(Ⅱ)用分层抽样的方法从行车里程在区间[38,40)与[40,42)的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[40,42)内的概率.19.(5分)在三棱柱ABC−A1B1C1中,平面ABC、平面ACC1A、平面BCC1B1两两垂直.(Ⅰ)求证:CA,CB,CC1两两垂直;(Ⅱ)若CA=CB=CC1=a,求三棱锥B1−A1BC的体积.20.(5分)已知点M(−1,0),N(1,0),若点P(x,y)满足|PM|+|PN|=4.(Ⅰ)求点P的轨迹方程;(Ⅱ)过点Q(−√3,0)的直线l与(Ⅰ)中曲线相交于A,B两点,O为坐标原点,求△AOB 面积的最大值及此时直线l的方程.21.(5分)设函数f(x)=lnx+x+1x.(Ⅰ)求函数f(x)的极值;(Ⅱ)若x∈(0,1)时,不等式1+xa(1−x)lnx<−2恒成立,求实数a的取值范围.22.(5分)在平面直角坐标系xOy中,直线l的参数方程为{x=1−√22ty=2+√22t(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2−4ρcosθ=3.(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)直线l与圆C交于A,B两点,点P(1,2),求|PA|⋅|PB|的值.23.(5分)已知函数f(x)=|x+3|−|x−1|.(Ⅰ)解关于x的不等式f(x)≥x+1;(Ⅱ)若函数f(x)的最大值为M,设a>0,b>0,且(a+1)(b+1)=M,求a+b的最小值.答案解析部分1.【答案】C【解析】【解答】复数z=−2+i的共轭复数为z̅=−2−i,在复平面内对应点的坐标为(-2,-1),所以位于第三象限.故答案为:C【分析】利用复数z与共轭复数的关系,从而求出复数z的共轭复数,进而利用复数的几何意义求出共轭复数在复平面内对应的点的坐标,从而求出共轭复数在复平面内对应的点所在的象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,点 的极坐标为 ,若直线过点 ,且倾斜角为 ,圆 以 圆心,3 为半径.
(Ⅰ)求直线的参数方程和圆 的极坐标方程;
(Ⅱ)设直线与圆 相交于 两点,求
.
【答案】(Ⅰ)
为参数),
;(Ⅱ) .
【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形
关系得
,即为圆 的极坐标方程(2)利用
A. 4 立方丈 B. 5 立方丈 C. 6 立方丈 D. 12 立方丈
【答案】B
【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为 3,四棱锥的体
积为 2,则刍甍的体积为 5.故选 B.
9. 已知矩形
的顶点都在球心为 ,半径为 的球面上,
,且四棱
锥
的体积为 ,则 等于( )
A. 4 B.
,
,
,
,
,
即二面角
的余弦值为 .
【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空 间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2) 写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂 直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理 结论求出相应的角和距离.
将圆 的极坐
标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得 |=7
试题解析:(Ⅰ)直线的参数方程为
(t 为参数),
圆的极坐标方程为
.
(Ⅱ)把
代入
,得
,
,设点 对应的参数分别为 ,
则
,
23. 选修 4-5:不等式选讲 设不等式 (Ⅰ)求集合 ;
的解集为 .
(Ⅱ)若
,求证:.【答案】来自Ⅰ)求剪辑时间 的分布列与数学期望.
【答案】(Ⅰ) ;(Ⅱ) .
【解析】试题分析:(Ⅰ)因为 36 节云课中采用分层抽样的方式选出 6 节,所以 节应选
出
节;(Ⅱ) 的所有可能取值为
,根据古典概型概率公式分别求出各
随机变量的概率,从而可得分布列,由期望公式可得结果.. 试题解析:(Ⅰ)根据分层抽样,选出的 6 节课中有 2 节点击量超过 3000. (Ⅱ) 的可能取值为 0,20,40,60
节数
6
18
12
(Ⅰ)现从 36 节云课中采用分层抽样的方式选出 6 节,求选出的点击量超过 3000 的节数.
(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间
内,则需
要花费 40 分钟进行剪辑,若点击量在区间
内,则需要花费 20 分钟进行剪辑,
点击量超过 3000,则不需要剪辑,现从(Ⅰ)中选出的 6 节课中随机取出 2 节课进行剪辑,
C.
D.
【答案】A
【解析】由题意可知球心到平面 ABCD 的距离 2,矩形 ABCD 所在圆的半径为
的半径
.故选 A.
10. 已知某算法的程序框图如图所示,则该算法的功能是( )
,从而球
A. 求首项为 1,公差为 2 的等差数列前 2020 项和
B. 求首项为 1,公差为 2 的等差数列前 2020 项和
13. 已知角 满足
,
,则
的取值范围是__________.
【答案】
【解析】结合题意可知:
,
且:
,
利用不等式的性质可知:
的取值范围是
.
点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变
量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待
求整体的范围,是避免错误的有效途径.
长春市普通高中 2020 届高三质量监测(一)
数学试题卷(理科)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1. 设为虚数单位,则
()
A.
B.
C. 5 D. -5
【答案】A
【解析】由题意可得:
.
本题选择 A 选项.
2. 集合
的子集的个数为( )
【解析】试题分析:(Ⅰ)求出 与 ,由
且
解方程组可求
的值;(Ⅱ)
恒成立等价于
恒成立,先证明当
时恒成
立,再证明
时不恒成立,进而可得结果;(Ⅲ))由
,令
,
即
,即
即可得结果.
,令
,各式相加
试题解析:(Ⅰ)由题意可知, 和 在
即在 处
且
,
解得
.
(Ⅱ)现证明
,设
处有相同的切线, ,
令
,即
,
因此
,即
恒成立,
即
的斜率 的取值范围是 k= .
试题解析:
(1)由椭圆定义
,有
,
,
,从而
.
(2)设直线
,有
,整理得
,
设
,
,有
,
,
,
,
由于
,所以
,
,解得
.
,
,由已知
.
21. 已知函数
,
.
(Ⅰ)若函数 与
(Ⅱ)当
时,
的图像在点
处有相同的切线,求 的值;
恒成立,求整数 的最大值;
(Ⅲ)证明:
.
【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ)证明见解析.
14. 已知平面内三个不共线向量 两两夹角相等,且
,
,则
__________.
【答案】
【解析】因为平面内三个不共线向量 两两夹角相等,所以由题意可知, 的夹角为
,又知
,
,所以
,
,
故答案为 .
15. 在
中,三个内角
的对边分别为 ,若
且
,
【答案】
面积的最大值为__________.
【解析】由
可得
, ,
则 的分布列为 0
20
40
60
即
.
19. 如图,四棱锥
中,底面
为菱形,
平面
, 为 的中点.
(Ⅰ)证明: 平面 ;
(Ⅱ)设
,三棱锥
的体积为 ,求二面角
的余弦
值.
【答案】(Ⅰ)证明见解析;(Ⅱ) .
【解析】试题分析:(Ⅰ) )连接 交 于点 ,连接 ,根据中位线定理可得
,
由线面平行的判定定理即可证明 平面 ;(Ⅱ)以点 为原点,以 方向为 轴,以
A. 4 B. 7 C. 8 D. 16
【答案】C
【解析】集合
含有 3 个元素,则其子集的个数为
.
本题选择 C 选项. 3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩 关于测试序号 的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出 下列结论: ①一班成绩始终高于年级平均水平,整体成绩比较好; ②二班成绩不够稳定,波动程度较大; ③三班成绩虽然多数时间低于年级平均水平,但在稳步提升. 其中正确结论的个数为( )
概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止
条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.
11. 已知 为坐标原点,设 分别是双曲线
的左、右焦点,点 为双曲线上任
一点,过点 作
的平分线的垂线,垂足为 ,则
()
A. 1 B. 2 C. 4 D.
【答案】A
,
同理可证
.
由题意,当
时,
且
,
即
,
即
时,
成立.
当
时,
,即
因此整数 的最大值为 2.
(Ⅲ)由
,令
不恒成立. ,
即
,即
由此可知,当
时,
,
当
时,
,
当
时,
……
当
时,
综上:
, .
.
即
.
(二)选考题:请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 选修 4-4:坐标系与参数方程 以直角坐标系的原点 为极点, 轴的正半轴为极轴建立极坐标系,已知点 的直角坐标为
;(Ⅱ)证明见解析.
【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并
集(2)利用分析法证明,将所求不等式转化为
,再根据
,
证明
试题解析:(1)由已知,令
由
得
.
(2)要证
,只需证
,
只需证
,只需证
只需证
,由
,则
恒成立.
点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、 基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径, 使用分析法证明的关键是推理的每一步必须可逆. (2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.
A. 95,94 B. 92,86 C. 99,86 D. 95,91 【答案】B 【解析】 由茎叶图可知,中位数为 92,众数为 86. 故选 B. 6. 若角 的顶点为坐标原点,始边在 轴的非负半轴上,终边在直线 取值集合是( )
A.
B.
上,则角 的
C. 【答案】D 【解析】因为直线
D. 的倾斜角是 ,所以终边落在直线
20. 已知椭圆 的两个焦点为
,且经过点
.
(Ⅰ)求椭圆 的方程;
(Ⅱ)过 的直线与椭圆 交于 两点(点 位于 轴上方),若