高考数学压轴题:数列

合集下载

高考数学压轴题:交集数列

高考数学压轴题:交集数列

高考数学压轴题:交集数列数列中一类元素交并问题,实际考查思想方法,如最小公倍数、余数分析法,二项式定理应用.类型一 两个等差数列取交集数列问题 典例1. 若数列{}n a 的通项公式为232n n a +=-,数列{b }n 的通项公式为n b 534n =--. 设集合*{|2,}n A x x a n N ==∈,*{|4,}n B y y b n N ==∈.若等差数列{}n c 任一项1,n c A B c ∈是A B 中的最大数,且10265125c -<<-,求{}n c 的通项公式.类型二 一个等差数列和一个二次型数列取交集数列问题典例2已知数列{n a }的通项公式为72n a n =+,数列{n b }的通项公式为2n b n =.若将数列{n a },{n b }中相同的项按从小到大的顺序排列后看作数列{n c },则数列{}n c 的通项公式为____.类型三 一个等差数列和一个指数型数列取交集数列问题典例3 已知数列{}n a 和{}n b 的通项公式分别为319n a n =-,2n n b =.将{}n a 与{}n b 中的公共项按照从小到大的顺序排列构成一个新数列记为{}n c .(1)试写出1c ,2c ,3c ,4c 的值,并由此归纳数列{}n c 的通项公式; (2)证明你在(1)所猜想的结论.1. 设数列{a n }的通项公式为12-=n a n ,数列{b n }的通项公式为b n =3n -2.集合A ={x ∣x =a n ,n ∈N *},B ={x ∣x =b n ,n ∈N *}.将集合A ∪B 中的元素从小到大依次排列, 构成数列c 1,c 2,c 3,…,则{c n }的通项公式为___________.2. 已知各项均为正数的等差数列{}n a 的公差d 不等于0,设13,,k a a a 是公比为q 的等比数列{}n b 的前三项, (1)若k=7,12a =(i )求数列{}n n a b 的前n 项和T n ;(ii )将数列{}n a 和{}n b 的相同的项去掉,剩下的项依次构成新的数列{}n c ,设其前n 项和为S n ,求211*21232(2,)n n n n S n n N -----+⋅≥∈的值;(2)若存在m>k,*m N ∈使得13,,,k m a a a a 成等比数列,求证k 为奇数.3. 设是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列. ① 当时,求的数值;②求的所有可能值; (2)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列.k N *∈,21221,,k k k a a a -+成等比数列,其公比为 k q ,22122,,k k k a a a ++成等差数列,其公差为k d ,设11k k b q =-. (1)若12d =,求2a 的值; (2)求证:数列{}k b 为等差数列; (3)若12q =,设1nn n b c b +=,是否存在m 、k ()2,,k m k m >∈*N ≥,使得1c 、m c 、k c 成等比数列.若存在,求出所有符合条件的m 、k 的值;若不存在,请说明理由.5. 在数列中,,且对任意的,12212,,+-k k k a a a 成等比数列,其公比为.(1)若)(2*N k q k ∈=,求;(2)若对任意的,k a 2,12+k a ,22+k a 成等差数列,其公差为,设11k k b q =- ① 求证:{}k b 成等差数列,并指出其公差;12,,n a a a (4)n ≥0d ≠4n =1a dn (4)n ≥12,n b b b {}n a 11a =*k N ∈k q 13521...k a a a a -++++*k N ∈k d② 若21=d ,试求数列的前项的和k D .6. 数列{}n a 的各项均为正数.若对任意的*n N ∈,存在*k N ∈,使得22n k n n k a a a ++=⋅成立,则称数列{}n a 为“k J 型”数列.(1)若数列{}n a 是“2J 型”数列,且288,1a a ==,求2n a ;(2)若数列{}n a 既是“3J 型”数列,又是“4J 型”数列,证明:数列{}n a 是等比数列.7. 设M 为部分正整数组成的集合,数列}{n a 的首项11=a ,前n 项的和为n S ,已知对任意整数k M ∈,当n k >时,)(2k n k n k n S S S S +=+-+都成立. (1)设{1}M =,22=a ,求5a 的值; (2)设{3,4}M =,求数列}{n a 的通项公式答案类型一 两个等差数列取交集数列问题 典例1. 若数列{}n a 的通项公式为232n n a +=-,数列{b }n 的通项公式为n b 534n =--. 设集合*{|2,}n A x x a n N ==∈,*{|4,}n B y y b n N ==∈.若等差数列{}n c 任一项1,n c A B c ∈是A B 中的最大数,且10265125c -<<-,求{}n c 的通项公式.【答案】724n c n =-【解析】对任意*n N ∈,223,41252(61)3n n a n b n n =--=--=-+-,∴B A ⊂,∴A B B =∵1c 是AB 中的最大数,∴1c 17=-,设等差数列{}n c 的公差为d ,则∴265179125d -<-+<-,即527129d -<<-,又4n b 是一个以12-为公差等差数列, {}k d k∴*12()d k k N =-∈,∴24d =-,∴724n c n =-.类型二 一个等差数列和一个二次型数列取交集数列问题典例2已知数列{n a }的通项公式为72n a n =+,数列{n b }的通项公式为2n b n =.若将数列{n a },{n b }中相同的项按从小到大的顺序排列后看作数列{n c },则数列{}n c 的通项公式为____.【答案】⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=为偶数,为奇数,n n n n C n 22267217【解析】解:设227m n =+,考察m 模7的余数问题;若k k k k k k k m 7,17,27,37,47,57,67------=时经验证可得: 当37,47--=k k m 时,存在满足条件的n 存在故{n c }中的项目依次为: 3125241817111043,,,,,,,,b b b b b b b b b可求得数列{n c }的通项公式为:⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=为偶数,为奇数,n n n n C n 22267217类型三 一个等差数列和一个指数型数列取交集数列问题典例3 已知数列{}n a 和{}n b 的通项公式分别为319n a n =-,2n n b =.将{}n a 与{}n b 中的公共项按照从小到大的顺序排列构成一个新数列记为{}n c .(1)试写出1c ,2c ,3c ,4c 的值,并由此归纳数列{}n c 的通项公式; (2)证明你在(1)所猜想的结论.【答案】(1)212n n c -=(2)见解析【解析】解:(1)11172c b a ===,32392c b a ===,535172c b a ===,747482c b a ===, 由此归纳:212n n c -=.(2) 由n m a b =,得21921633m m n ++==+, ∴(31)163m n -+-=,由二项式定理得∴011122211133(1)3(1)3(1)(1)163m m m m m m m m m m m m C C C C C n ----+-+-++-+-+-=,∴当m 为奇数时,n 有整数解, ∴21212n n n c b --==.1. 设数列{a n }的通项公式为12-=n a n ,数列{b n }的通项公式为b n =3n -2.集合A ={x ∣x =a n ,n ∈N *},B ={x ∣x =b n ,n ∈N *}.将集合A ∪B 中的元素从小到大依次排列, 构成数列c 1,c 2,c 3,…,则{c n }的通项公式为___________.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=-=-=k n n k n nk n n c n 4,22324,2312,213【解析】解:因为 561)23(223-=--=-k k a k ,361)13(213-=--=-k k a k161323-=-⋅=k k a k ;2312562)12(3--=-=--=k k a k k b A k k b k ∉-=-⋅=262232所以 k k k k k a b a b a 32131223<<<=--- ,3,2,1=k ,即当)(34*∈-=N k k n 时,56-=k c n ;当24-=k n )(*∈N k36-=k c n ,当)(14*∈-=N k k n 时,26-=k c n ,当)(4*∈=N k k n 时,16-=k c n所以{}n c 的通项公式是⎪⎪⎩⎪⎪⎨⎧=--=--=--=-=kn k k n k k n k k n k c n 4,1614,2624,3634,56即:⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=-=-=k n n k n nk n n c n 4,22324,2312,2132. 已知各项均为正数的等差数列{}n a 的公差d 不等于0,设13,,k a a a 是公比为q 的等比数列{}n b 的前三项, (1)若k=7,12a =(i )求数列{}n n a b 的前n 项和T n ;(ii )将数列{}n a 和{}n b 的相同的项去掉,剩下的项依次构成新的数列{}n c ,设其前n 项和为S n ,求211*21232(2,)n n n n S n n N -----+⋅≥∈的值;(2)若存在m>k,*m N ∈使得13,,,k m a a a a 成等比数列,求证k 为奇数. 【答案】(1) (i )12n n T n +=⨯(ii )1(2)见解析 【解析】(1) 因为7k =,所以137,,a a a 成等比数列,又{}n a 是公差0d ≠的等差数列, 所以()()211126a d a a d +=+,整理得12a d =,又12a =,所以1d =, 112b a ==,32111122a b a dq b a a +====,所以()11111,2n n n n a a n d n b b q -=+-=+=⨯=, ①用错位相减法或其它方法可求得{}n n a b 的前n 项和为12n n T n +=⨯;① 因为新的数列{}n c 的前21n n --项和为数列{}n a 的前21n -项的和减去数列{}n b 前n 项的和,所以121(21)(22)2(21)(21)(21)221n n n n n n n S ----+-=-=---.所以211*21232(2,)n n n n S n n N -----+⋅≥∈=1.(2) 由d k a a d a ))1(()2(1121-+=+,整理得)5(412-=k d a d , 因为0≠d ,所以4)5(1-=k a d ,所以3111232a a d k q a a +-===.因为存在m >k,m ∈N *使得13,,,k m a a a a 成等比数列,所以313123⎪⎭⎫⎝⎛-==k a q a a m ,又在正项等差数列{a n }中,4)5)(1()1(111--+=-+=k m a a d m a a m ,所以3111234)5)(1(⎪⎭⎫ ⎝⎛-=--+k a k m a a ,又因为01>a ,有[]324(1)(5)(3)m k k +--=-,因为[]24(1)(5)m k +--是偶数,所以3(3)k -也是偶数,即3-k 为偶数,所以k 为奇数. 3. 设是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列. ① 当时,求的数值;②求的所有可能值; (2)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列.【答案】(1) ①14a d =-或11ad=②4n =(2)见解析 【解析】本小题考查等差数列、等比数列的综合应用。

专题52 数列通项结构的应用-高考数学压轴题(选择、填空题)(新高考地区专用)

专题52 数列通项结构的应用-高考数学压轴题(选择、填空题)(新高考地区专用)

专题52数列通项结构的应用【方法点拨】1.数列{a n }是等差数列⇔a n =pn +q (p ,q 为常数).2.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).3.已知S n 是等差数列{a n }的前n 项和,a 1,公差为{a n }公差的12.4.两个等差数列{a n }、{b n }的前n 项和S n 、T n 之间的关系为1212--=n n n n T S b a .5.两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,若D Cn B An T S n n ++=,则D m C B n A b a m n +-+-=)12()12(.【典型题示例】例1n S 是公差为2的等差数列{}n a 的前n 项和,若数列也是等差数列,则1a =________.【答案】1-或3【分析】用特殊值法,也可直接抓住等差数列的结构特征解题.【解析一】(特殊值法)由题意211(1)2(1)2n n n S na n a n -=+⨯=+-,∵数列是等差数列∴=,=,解得11a =-或13a =,11a =-1n ==-,13a =1n ==+,均为n 的一次函数,数列是等差数列,故1a 的值为-1或3.【解析一】(特殊值法)由题意211(1)2(1)2n n n S na n a n -=+⨯=+-,∵数列是等差数列=必为关于n 的一次式,即21(1)+1n a n +-是完全平方式∴21(1)40a --=解之得11a =-或13a =(下同解法一).例2已知{}n a 是首项为2,公比为()1q q >的等比数列,且{}n a 的前n 项和为n S等比数列,则q =.【答案】2【解析】因为{}n a 是首项为2,公比为()1q q >的等比数列.所以()1122221111n n n n a q q q S q q q q---===+----.222112n n q q S q=++-+--{}2n S +也为等比数列.所以2201q+=-,即2q =.点评:等比数列通项的结构特征是:(0)n n a Aq A q =≠、.例3已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n n a b 为整数的正整数n 的个数是.【答案】5【解析】根据等差数列前n 项和的公式不难得到:2121(21)7(21)45719(21)(21)31n n n n n n a n a A n n b n b B n n ----++====--++(﹡)(﹡)式是一个关于n 的一次齐次分式,遇到此类问题的最基本的求解策略是“部分分式”——即将该分式逆用通分,将它转化为分子为常数,只有分母中含有变量n 因为7197(1)12127111n n n n n +++==++++所以,要求使得n n a b 为整数的正整数n ,只需1n +为12的不小于2的正约数所以12,3,4,6,12n +=例4已知S n 是等差数列{a n }的前n 项和,若a 1=-2014,S 20142014-S 20082008=6,则S 2020等于________.【答案】2020d ,则S 20142014-S 20082008=6d =6,∴d =1,且首项为S 11=-2014.故S 20162016=S 11+2015d =-2014+2015=1,∴S 2020=1×2020=2020.【巩固训练】1.记等差数列{a n }的前n 项和为n S ,已知12a =,且数列也为等差数列,则13a =.2.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22,数列{b n }满足b n =S nn +c (其中c ≠0),若{b n }为等差数列,则c 的值等于________.3.设等比数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有314n n n S T +=,则33a b 的值为________.4.设n S ,n T 分别是等差数列{}n a ,{}n b 的前n 项和,已知2142n n S n T n +=-,*n N ∈,则1011318615a a b b b b +=++.。

专题16 数列(选填压轴题)(解析版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

专题16  数列(选填压轴题)(解析版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

所以 x 0, 2023 ,则方程x x 1 由 2022 个根.①④正确,
2 故选:D.
4.(2022·河南信阳·高二期末(理))二进制数是用 0 和 1 表示的数,它的基数为 2,进位
规则是“逢二进一”,借位规则是“借一当二”,二制数
a0
a1a2
ak
2
(
k
N
*
)对应的十进制数
记为 mk ,即 mk a0 2k a1 2k1 ... ak1 2 ak 20 ,其中 a0 1 , ai 0,1(i 1,2,3,,k),
317
4
c13 c23 c33 c173
56 4 c23 16 64 ,
1 所以
c18
4
,所以
7 2
1 c18
4 ,则
1 4
c18
2 7
.
故选:C.
6.(2022·江苏南京·高二期末)将等比数列bn按原顺序分成 1 项,2 项,4 项,…, 2n1 项 的各组,再将公差为 2 的等差数列an 的各项依次插入各组之间,得到新数列cn:b1 ,a1 ,
1 2
nt
0
1 2
n


n
为偶数,此时
1 2
n
0
,则此时不存在 t
N*
,使得
1 nt 2
1 n 2

综上:B 选项错误;
设 an 2n 1 ,此时满足 a1 2 1 3 0 ,
也满足 n, s N*, ans 2n s 1, an as 2n 1 2s 1 2n s 2 ,
② n, s N*, ans an as ;③ n N* ,t N*, ant an .定义:同时满足性质①和②的数

压轴题01 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题01 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题01数列压轴题题型/考向一:等差数列、等比数列性质的综合题型/考向二:以古文化、实际生活等情境综合题型/考向三:数列综合应用一、等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S na 1-a n q1-q ,q ≠1,二、等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).三、数列求和的常用方法热点一分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c nn ,n 为奇数,n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.热点二裂项相消法求和裂项常见形式:(1)分母两项的差等于常数1(2n -1)(2n +1)=1n (n +k )=(2)分母两项的差与分子存在一定关系2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=141n 2-1(n +2)2.(3)分母含无理式1n +n +1=n +1-n .热点三错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.○热○点○题○型一等差数列、等比数列性质的综合1.已知等比数列{}n a 满足123434562,4a a a a a a a a +++=+++=,则11121314a a a a +++=()A .32B .64C .96D .128【答案】B【详解】设{}n a 的公比为q ,则()234561234a a a a q a a a a +++=+++,得22q =,所以()()1051112131412341234264a a a a a a a a q a a a a +++=+++⨯=+++⨯=.故选:B2.已知等比数列{}n a 的公比0q >且1q ≠,前n 项积为n T ,若106T T =,则下列结论正确的是()A .671a a =B .781a a =C .891a a =D .9101a a =【答案】C3.已知等差数列n 满足15,36,数列n 满足12n n n n ++=⋅⋅.记数列{}n b 的前n 项和为n S ,则使0n S <的n 的最小值为()A .8B .9C .10D .11【答案】C【分析】设等差数列{}n a 的公差为d ,则由1536446a a a a =⎧⎨=+⎩得:111141624206a a da d a d =+⎧⎨+=++⎩,解得:1163a d =⎧⎨=-⎩,()1631319n a n n ∴=--=-+,则当6n ≤时,0n a >;当7n ≥时,0n a <;∴当4n ≤时,0n b >;当5n =时,0n b <;当6n =时,0n b >;当7n ≥时,0n b <;11613102080b =⨯⨯= ,213107910b =⨯⨯=,31074280b =⨯⨯=,474128b =⨯⨯=,()54128b =⨯⨯-=-,()()612510b =⨯-⨯-=,()()()725880b =-⨯-⨯-=-,()()()85811440b =-⨯-⨯-=-,()()()9811141232b =-⨯-⨯-=-,()()()101114172618b =-⨯-⨯-=-,532900S ∴=>,915480S =>,1010700S =-<,100S < ,当10n ≥时,0n b <,∴当10n ≥时,0n S <,则使得0n S <的n 的最小值为10.()()()()()()102120232022k k k k k k k T f a f a f a f a f a f a =-+-++- ,1,2k =,则1T ,2T 的大小关系是()A .12T >TB .12T T <C .12T T =D .1T ,2T 的大小无法确定()()101322022...a f a +-)()22023f a -1=125.数列n 满足12,21n n n ++=+∈N ,现求得n 的通项公式为n nn F A B ⎛=⋅+⋅ ⎝⎭⎝⎭,,A B ∈R ,若[]x 表示不超过x 的最大整数,则812⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎣⎦的值为()A .43B .44C .45D .46○热○点○题○型二以古文化、实际生活等情境综合6.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为P ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,问每年应还()万元.A .10MB .()()1010111MP P P ++-C .()10110M P +D .()()99111MP P P ++-7.传说国际象棋发明于古印度,为了奖赏发明者,古印度国王让发明者自己提出要求,发明者希望国王让人在他发明的国际象棋棋盘上放些麦粒,规则为:第一个格子放一粒,第二个格子放两粒,第三个格子放四粒,第四个格子放八粒……依此规律,放满棋盘的64个格子所需小麦的总重量大约为()吨.(1kg麦子大约20000粒,lg2=0.3)A.105B.107C.1012D.1015次日脚痛减一半,六朝才得到其关,要见末日行里数,请公仔细算相还.”其意思为:有一个人一共走了441里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走的路程是()A.7里B.8里C.9里D.10里【答案】A【详解】设第六天走的路程为1a,第五天走的路程为2a……第一天走的路程记为6a,9.2022年10月16日上午10时,中国共产党第二十次全国代表大会在北京人民大会堂隆重开幕.某单位组织全体党员在报告厅集体收看党的二十大开幕式,认真聆听习近平总书记向大会所作的报告.已知该报告厅共有10排座位,共有180个座位数,并且从第二排起,每排比前一排多2个座位数,则最后一排的座位数为()A .23B .25C .27D .2910次差成等差数列的高阶等差数列.现有一个高阶等差数列的前6项分别为4,7,11,16,22,29,则该数列的第18项为()A .172B .183C .191D .211【答案】C【详解】设该数列为{}n a ,则11,(2)n n a a n n --=+≥,○热○点○题○型三数列综合应用11.在数列{}n a 中,11a =,11n n a a n +=++,则122022111a a a +++= ()A .20211011B .40442023C .20212022D .2022202312.已知正项数列{}n a 的前n 项和为n S ,且12a =,()()1133n nn n n n S S S S ++-=+,则2023S =()A .202331-B .202331+C .2022312+D .2023312+13.已知一族曲线n .从点向曲线n 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .则下列结论错误的是()A .数列{}n x 的通项为1n nx n =+B .数列{}n y 的通项为n yC .当3n >时,1352111nn nx x x x x x--⋅⋅⋅>+ Dnnxy <故D 正确.故选:B.14.在数列{}n a 中给定1a ,且函数()()311sin 213n n f x x a x a x +=-+++的导函数有唯一零点,函数()()()112πcos π2g x x x x =-且()()()12918g a g a g a +++= ,则5a =().A .14B .13C .16D .1915.已知函数()()*ln N f x nx x n =+∈的图象在点,fn n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为n a ,则数列11n n a a +⎧⎫⎨⎩⎭的前n 项和n S 为()A .11n +B .()()235212n nn n +++C .()41nn +D .()()235812n nn n +++。

高考数学压轴专题人教版备战高考《数列》基础测试题附答案解析

高考数学压轴专题人教版备战高考《数列》基础测试题附答案解析

【高中数学】数学《数列》复习知识点一、选择题1.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C D .【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.2.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9.故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.3.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.4.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.5.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.6.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】 【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.7.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( ) AB .2CD .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.8.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案. 【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q---====--+-,解得2q =,所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.9.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.10.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件. A .必要而不充分 B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <¿{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.11.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =, 所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.12.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.13.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( )A .3944B .58C .1516D .1322【答案】C 【解析】 【分析】利用等差中项的性质将371159a a ab b +++化简为7732a b ,再利用数列求和公式求解即可. 【详解】11337117131135971313()3333213115213()22223131162a a a a a a A b b b b b B +++⨯-==⨯=⨯=⨯=++⨯+, 故选:C. 【点睛】本题考查了等差中项以及数列求和公式的性质运用,考查了推理能力与计算能力,属于中档题.14.设等比数列{}n a 的前n 项和记为n S ,若105:1:2S S =,则155:S S =( ) A .34B .23C .12D .13【答案】A 【解析】 【分析】根据等比数列前n 项和的性质求解可得所求结果. 【详解】∵数列{}n a 为等比数列,且其前n 项和记为n S , ∴51051510,,S S S S S --成等比数列. ∵105:1:2S S =,即1051 2S S =, ∴等比数列51051510,,S S S S S --的公比为105512S S S -=-, ∴()1510105511 24S S S S S -=--=, ∴15510513 44S S S S =+=, ∴1553:4S S =. 故选A . 【点睛】在等比数列{}n a 中,其前n 项和记为n S ,若公比1q ≠,则233,,,k k k k k S S S S S --L 成等比数列,即等比数列中依次取k 项的和仍为等比数列,利用此性质解题时可简化运算,提高解题的效率.15.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a . 故选C . 【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.16.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*n ∈N ),则n S =( ) A .121n -+ B .2n n ⋅C .31n -D .123n n -⋅【答案】B 【解析】 【分析】由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121n n n nn n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥) 由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n -+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n nS n n n =⨯+⋅=⋅+. 故选:B 【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.17.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--,当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立;当10a <时,11322a d a =--≥=1a =立; ∴实数d的取值范围为(,)-∞⋃+∞.故选:D.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.18.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( )A .23岁B .32岁C .35岁D .38岁【答案】C【解析】【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案.【详解】设这位公公的第n 个儿子的年龄为n a ,由题可知{}n a 是等差数列,设公差为d ,则3d =-, 又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁.故选C .【点睛】 本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】 按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)【答案】D【解析】【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<-⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。

高考数列压轴题汇总

高考数列压轴题汇总

高考数列压轴题一1、已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n n a n N =∈ (1)求数列}{n a 的通项公式; (2)设n n nn n b b b T a b +++==21,2,若)(Z m m T n ∈<,求m 的最小值;(3)求使不等式12)11()11)(11(21+≥+++n p a a a n对一切*N n ∈均成立的最大实数p .解:(1)由题意得⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ,解得⎩⎨⎧-==12b a ,)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==-(2)由(1)得nn n b 212-=, nn n n n T 2122322523211321-+-++++=∴- ①2311113252321222222n n n n n n n T -+---=+++++ ② ①-②得12311112222212222222n n nn n T -+-=+++++-1122111111121()222222n n n n --+-=+++++- 112122123+----=n n n .nnn n n n T 23232122132+-=---=∴-,设*,232)(N n n n f n∈+=,则由1512132121)32(252232252)()1(1<+≤++=++=++=++n n n n n n f n f nn得*,232)(N n n n f n∈+=随n 的增大而减小+∞→∴n 当时,3→n T又)(Z m m T n ∈<恒成立,3min =∴m (3)由题意得*21)11()11)(11(121N n a a a n p n∈++++≤对 恒成立记)11()11)(11(121)(21na a a n n F ++++= ,则1)1(4)1(2)32)(12(22)11()11)(11(121)11)(11()11)(11(321)()1(221121-++=+++=+++++++++=++n n n n n a a a n a a a a n n F n F nn n1)1(2)1(2=++>n n)(),()1(,0)(n F n F n F n F 即>+∴> 是随n 的增大而增大)(n F 的最小值为332)1(=F ,332≤∴p ,即332max =p .2、设数列{}n a 的前n 项和为n S ,对一切*n N ∈,点,n S n n ⎛⎫ ⎪⎝⎭都在函数()2n a f x x x=+的图象上.(Ⅰ)求123,,a a a 的值,猜想n a 的表达式,并用数学归纳法证明;(Ⅱ)将数列{}n a 依次按1项、2项、3项、4项循环地分为(1a ),(2a ,3a ),(4a ,5a ,6a ),(7a ,8a ,9a ,10a );(11a ),(12a ,13a ),(14a ,15a ,16a ),(17a ,18a ,19a ,20a );(21a ),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{}n b ,求5100b b +的值; (Ⅲ)设n A 为数列1n n a a ⎧⎫-⎨⎬⎩⎭的前n 项积,是否存在实数a ,使得不等式3()2n a A f a a +<-对一切*n N ∈都成立?若存在,求出a 的取值范围;若不存在,请说明理由.解:(Ⅰ)因为点,n S n n ⎛⎫⎪⎝⎭在函数()2n a f x x x =+的图象上, 故2n n S a n nn=+,所以212n n S n a =+.令1n =,得11112a a =+,所以12a =;令2n =,得122142a a a +=+,所以24a =; 令3n =,得1233192a a a a ++=+,所以36a =.由此猜想:2n a n =.用数学归纳法证明如下:① 当1n =时,有上面的求解知,猜想成立. ② 假设 (1)n k k =≥时猜想成立,即2k a k =成立, 则当1n k =+时,注意到212n n S n a =+*()n N ∈, 故2111(1)2k k S k a ++=++,212k k S k a =+.两式相减,得11112122k k k a k a a ++=++-,所以142k k a k a +=+-.由归纳假设得,2k a k =,故1424222(1)k k a k a k k k +=+-=+-=+. 这说明1n k =+时,猜想也成立.由①②知,对一切*n N ∈,2n a n =成立 .(Ⅱ)因为2n a n =(*n N ∈),所以数列{}n a 依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),…. 每一次循环记为一组.由于每一个循环含有4个括号, 故100b 是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20. 同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20. 故各组第4个括号中各数之和构成等差数列,且公差为80. 注意到第一组中第4个括号内各数之和是68, 所以 1006824801988b =+⨯=.又5b =22,所以5100b b +=2010. (Ⅲ)因为111n nna a a -=-,故12111111n n A a a a ⎛⎫⎛⎫⎛⎫=--⋅⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,所以12111111n n A a a a ⎛⎛⎫⎛⎫=--⋅⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭又333()2222n n n a a a f a a a aaaa++-=+-=-,故3()2n a A f a a+<-对一切*n N ∈都成立,就是1211131112n a a a a a⎛⎛⎫⎛⎫--⋅⋅--⎪ ⎪⎝⎭⎝⎭⎝⎭ 对一切*n N ∈都成立.设12111()111n g n a a a ⎛⎛⎫⎛⎫=--⋅⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭ m ax 3[()]2g n a a<-即可.由于1(1)1211()22n g n n g n a n +⎛⎫++=-=⎪+⎝⎭1=<,所以(1)()g n g n +<,故()g n是单调递减,于是m ax [()](1)2g n g ==令322a a<-,即(0a a a-+>,解得02a -<<,或a >综上所述,使得所给不等式对一切*n N ∈都成立的实数a 存在,a 的取值范围是(0))2-+∞ .3、已知点列()0,n n x A 满足:1110-=∙+a A A A A n n ,其中N n ∈,又已知10-=x ,111>=a x ,.(1)若()()*+∈=N n x f x n n 1,求()x f 的表达式;(2)已知点B()0a ,,记()*∈=Nn BA a n n ,且n n a a<+1成立,试求a 的取值范围;(3)设(2)中的数列{}n a 的前n 项和为n S ,试求:aa S n --<21 。

新高考数学高考数学压轴题 数列的概念选择题专项训练分类精编含解析

新高考数学高考数学压轴题 数列的概念选择题专项训练分类精编含解析

新高考数学高考数学压轴题 数列的概念选择题专项训练分类精编含解析一、数列的概念选择题1.已知数列{}n a 满足12n n a a n +=+,且133a =,则na n的最小值为( ) A .21B .10C .212 D .172答案:C解析:C 【分析】由累加法求出233n a n n =+-,所以331n a n n n,设33()1f n n n=+-,由此能导出5n =或6时()f n 有最小值,借此能得到na n的最小值. 【详解】解:()()()112211n n n n n a a a a a a a a ---=-+-+⋯+-+22[12(1)]3333n n n =++⋯+-+=+-所以331n a n nn设33()1f n n n=+-,由对勾函数的性质可知, ()f n 在(上单调递减,在)+∞上单调递减,又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662a a ===, 所以n a n的最小值为62162a =.故选:C. 【点睛】本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.2.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23 D .211答案:C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-.故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.3.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么24620201a a a a +++++=( )A .2021aB .2022aC .2023aD .2024a答案:A解析:A 【分析】根据数列的递推关系式即可求解. 【详解】由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a +++++++++=+3462020562020201920202021a a a a a a a a a a =+++=+++=+=.故选:A4.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .3答案:B解析:B 【分析】由数列的递推关系式以及11a =求出2a ,进而得出3a . 【详解】11a =,21123a a ∴=+=,321523a a -=+= 故选:B5.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .112答案:B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322a a ⎛⎫= ⎪⎝⎭,2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n n a a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值.()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-.∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值; 6.在数列{}n a 中,21n n a n +=+,则{}n a ( ) A .是常数列B .不是单调数列C .是递增数列D .是递减数列答案:D解析:D 【分析】 由21111n n a n n +==+++,利用反比例函数的性质判断即可. 【详解】在数列{}n a 中,21111n n a n n +==+++, 由反比例函数的性质得:{}n a 是*n N ∈时单调递减数列, 故选:D7.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( )A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭答案:A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 8.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和383969a a a ++⋅⋅⋅+=( )A .180B .160C .150D .140答案:B解析:B 【分析】根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B9.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .160答案:B解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=. 故选:B 【点睛】本小题主要考查数列新定义,考查累加法,属于基础题.10.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .2075答案:C解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项,所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.11.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a = C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 答案:C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-答案:C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广. 13.若数列的前4项分别是1111,,,2345--,则此数列的一个通项公式为( ) A .1(1)n n --B .(1)n n -C .1(1)1n n +-+D .(1)1n n -+答案:C解析:C根据数列的前几项的规律,可推出一个通项公式. 【详解】设所求数列为{}n a ,可得出()111111a+-=+,()212121a+-=+,()313131a+-=+,()414141a+-=+,因此,该数列的一个通项公式为()111n na n +-=+.故选:C. 【点睛】本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题. 14.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N++=+∈且1300nS=,若23a <,则n 的最大值为( )A .49B .50C .51D .52答案:A解析:A 【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n nS =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值.【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n=,因为22485048+348503501224,132522S S ⨯+⨯====,所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+因为2491149349412722S a a +⨯-=+=+,2511151351413752S a a +⨯-=+=+,又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题. 15.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件答案:A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”. 因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.二、数列多选题16.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列C .2020312a <<D .2020314a << 答案:ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数,所以函数在10,2⎛⎫⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln 1222f x <<<+<+, 所以()112f x << , 即11(2)2n a n <<≥,所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题. 17.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23 C .32D .3答案:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.18.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >答案:ABC 【分析】因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.19.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为8答案:BD 【分析】由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列是递增数列,则,A 选项错误解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.20.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =答案:BD 【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d S d -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.21.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =答案:BCD 【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解. 【详解】设等差数列的公差为, 由题意,,所以,故A 错误; 所以,所以,故B 正确; 因为, 所以当解析:BCD 【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解. 【详解】设等差数列{}n a 的公差为d ,由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2211168642n n n a n d n n n S -=+=-+=--+,所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.22.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21答案:BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D . 【详解】由公差,可得,即,① 由a7是a解析:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭*n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.23.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+答案:ABD 【分析】由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果. 【详解】 得, ∴,即数列是首项为,公差为1的等差数列,∴,∴,得,由二次函数的性质得数列为递增数列,解析:ABD【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果.【详解】)211na=-得)211na+=,1=,即数列2=,公差为1的等差数列,2(1)11n n=+-⨯=+,∴22na n n=+,得28a=,由二次函数的性质得数列{}n a为递增数列,所以易知ABD正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.24.设等差数列{a n}的前n项和为S n,公差为d.已知a3=12,S12>0,a7<0,则()A.a6>0B.2437d-<<-C.S n<0时,n的最小值为13D.数列nnSa⎧⎫⎨⎬⎩⎭中最小项为第7项答案:ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d=12,可得<d<﹣3.a1>0.利用S13=13a7<0.可得Sn<0解析:ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d=12,可得247-<d<﹣3.a1>0.利用S13=13a7<0.可得S n<0时,n的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.25.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值答案:AC 【分析】由已知求出数列的首项与公差,得到通项公式判断与;再求出,由的项分析的最小值. 【详解】解:在递增的等差数列中, 由,得,又,联立解得,, 则,. .故正确,错误;可得数列的解析:AC 【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值. 【详解】解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC . 【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。

1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。

2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。

1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。

3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。

1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。

4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。

1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。

专题18 数列(解答题压轴题)(学生版)-2024年高考数学压轴专题复习

专题18 数列(解答题压轴题)(学生版)-2024年高考数学压轴专题复习

专题18 数列(解答题压轴题)目录①数列求通项,求和 (1)②数列中的恒成立(能成立)问题 (5)③数列与函数 (8)④数列与概率 (11)①数列求通项,求和②数列中的恒成立(能成立)问题1.(2023·吉林·长春吉大附中实验学校校考模拟预测)图中的数阵满足:每一行从左到右成等差数列,每一列从上到下成等比数列,且公比均为实数21,11,32,24,27,5,0,5,6,q a a a a a >==-=.1,11,21,31,2,12,22,32,3,13,23,33,,1,2,3,n n n n n n n n a a a a a a a a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅(1)设,n n n b a =,求数列{}n b 的通项公式;(2)设1,12,1,1n n S a a a =++⋅⋅⋅+,是否存在实数λ,使,1n n a S λ≤恒成立,若存在,求出λ的所有值,若不存在,请说明理由.2.(2023·河北·统考模拟预测)已知数列{}n a 的前n 项和为n S ,点(),n n S 在曲线220x x y -+=上.(1)证明:数列{}n a 为等差数列;③数列与函数④数列与概率1.(2023·湖南·校联考模拟预测)一部电视连续剧共有1(10)n n +≥集,某同学看了第一集后,被该电视剧的剧情所吸引,制定了如下的观看计划:从看完第一集后的第一天算起,把余下的n 集电视剧随机分配在2n 天内;每天要么不看,要么看完完整的一集;每天至多看一集.已知这部电视剧最精彩的部分在第n 集,设该同学观看第一集后的第X 天观看该集.(1)求X 的分布列;(2)证明:最有可能在第(22)n -天观看最精彩的第n 集.2.(2023春·河北唐山·高二校考期末)第22届世界杯于2022年11月21日到12月18日在卡塔尔举办.在决赛中,阿根廷队通过点球战胜法国队获得冠军.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左也会等可能地随机选择球门的左不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数(2)好成绩的取得离不开平时的努力训练,甲等可能地随机传向另外4.(2023·全国·高三专题练习)学校篮球队30名同学按照1,2,…,30(1)估计这100位学生的数学成绩的平均值(2)根据整个年级的数学成绩可以认为学生的数学成绩样本的标准差s 的近似值为10,用样本平均数抽取一位学生,求他的数学成绩恰在640().6827P X μσμσ≤≤+≈-,(2P μσ-(3)该年级1班的数学老师为了能每天督促学生的网络学习,提高学生每天的作业质量及学习数学的积极性,8.(2023·全国·高三专题练习)某学校组织数学,物理学科答题竞赛活动,该学校准备了100个相同的箱子,其中第()1,2,,100k k = 个箱子中有k 个数学题,100k -个物理题.每一轮竞赛活动规则如下:任选一个箱子,依次抽取三个题目(每次取出不放回),并全部作答完毕,则该轮活动结束;若此轮活动中,三个题目全部答对获得一个奖品.(1)已知学生甲在每一轮活动中,都抽中了2个数学题,1个物理题,且甲答对每一个数学题的概率为p ,答对每一个物理题的概率为q .①求学生甲第一轮活动获得一个奖品的概率;②已知1p q +=,学生甲理论上至少要进行多少轮活动才能获得四个奖品?并求此时p 、q 的值.(2)若学生乙只参加一轮活动,求乙第三次抽到物理题的概率.。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

2024届高考数学专项练习压轴题型09 数列通项、求和及综合灵活运用(解析版)

2024届高考数学专项练习压轴题型09 数列通项、求和及综合灵活运用(解析版)

压轴题型09 数列通项、求和及综合灵活运用命题预测数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显(特别是与函数、导数的结合问题),浙江卷小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.数列与数学归纳法的结合问题,也应适度关注.高频考法(1)数列通项、求和问题(2)数列性质的综合问题(3)实际应用中的数列问题(4)以数列为载体的情境题(5)数列放缩01 数列通项、求和问题1、遇到下列递推关系式,我们通过构造新数列,将它们转化为熟悉的等差数列、等比数列,从而求解该数列的通项公式:(1)形如1n n a pa q +=+(1p ≠,0q ≠),可变形为111n n qq a p a p p +⎛⎫+=+ ⎪−−⎝⎭,则1nq a p ⎧⎫+⎨⎬−⎩⎭是以11qa p +−为首项,以p 为公比的等比数列,由此可以求出n a ; (2)形如11n n n a pa q ++=+(1p ≠,0q ≠),此类问题可两边同时除以1n q +,得111n nn na a p q q q ++=⋅+,设2024届高考数学专项练习n n na b q =,从而变成1n b +=1n p b q +,从而将问题转化为第(1)个问题; (3)形如11n n n n qa pa a a ++−=,可以考虑两边同时除以1n n a a +,转化为11n n q p a a +−=的形式,设1n nb a =,则有11n n qb pb +−=,从而将问题转化为第(1)个问题.2、公式法是数列求和的最基本的方法,也是数列求和的基础.其他一些数列的求和可以转化为等差或等比数列的求和.利用等比数列求和公式,当公比是用字母表示时,应对其是否为1进行讨论.3、用裂项相消法求和时,要对通项进行变换,如:()11n k n kn n k=+−++,1111()n n k k n n k ⎛⎫=− ⎪++⎝⎭,裂项后产生可以连续相互抵消的项.抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,但是前后所剩项数一定相同.常见的裂项公式: (1)111(1)1n n n n =−++; (2)1111(21)(21)22121n n n n ⎛⎫=− ⎪−+−+⎝⎭;(3)1111(2)22n n n n ⎛⎫=− ⎪++⎝⎭;(4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=−⎢⎥+++++⎣⎦; (5)(1)(2)(1)(1)(1)3n n n n n n n n ++−−++=.4、用错位相减法求和时的注意点:(1)要善于通过通项公式特征识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS −”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.5、分组转化法求和的常见类型:(1)若n n n a b c =±,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和; (2)通项公式为,,n n n b n a c n ⎧=⎨⎩奇数偶数,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和;(3)要善于识别一些变形和推广的分组求和问题. 【典例1-1】(2024·河北沧州·一模)在数列{}n a 中,已知321212222nn a a a a n −++++=. (1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a +成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).【解析】(1)当1n =时,12a =; 当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a −−−−⎛⎫⎛⎫=++++−++++⎪ ⎪⎝⎭⎝⎭()2212n n =−−=, 所以122nn a −=⇒2n n a =,2n ≥. 当1n =时,上式亦成立, 所以:2n n a =. (2)由()123155n n ⎡⎤+++++−=⎣⎦⇒10n =.所以新数列{}n b 前55项中包含数列{}n a 的前10项,还包含,11x ,21x ,22x ,31x ,32x ,,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=, ()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+.设123935719T a a a a =++++1239325272192=⨯+⨯+⨯++⨯则234102325272192T =⨯+⨯+⨯++⨯,所以()1239102322222192T T T −=−=⨯+⨯+++−⨯101722=−⨯−.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【典例1-2】(2024·高三·河南濮阳·开学考试)已知等比数列{}n a 的首项为2,公比q 为整数,且1243424a a a a ++=.(1)求{}n a 的通项公式;(2)设数列21n n n a ⎧⎫⋅的前n 项和为nS ,比较nS 与4的大小关系,并说明理由.【解析】(1)由已知可得12n n a q −=⨯,因为1243424a a a a ++=,所以324222242q q q ⨯+⨯+⨯=⨯,即324240q q q −++=,则()()22220q q q −−−=,解得2q或13所以2q,()1*222n n n a n −=⋅=∈N .(2)由(121212nnn n n a n =⋅⋅1122222n n n nn n n n −−=−=⋅⋅ 令12n n nb −=,设{}n b 前n 项和为n C ,则01211232222n n nC −=++++, 所以123112322222n n n C =++++,两式相减得1211111122222nn n n C −=++++−1122212212n n n n n −+=−=−−, 所以42442n nnC +=−<, 令12n n x n −=⋅0n x >, 设{}n x 前n 项和为n T ,则0n T >, 所以4n n n S C T =−<.【变式1-1】(2024·四川泸州·三模)已知n S 是数列{}n a 的前n 项和,11a =,()12n n na n S +=+,则n a = . 【答案】()212n n −+⋅【解析】当2n ≥时,()()111n n n a n S −−=+,即12n n n S a n +=+,111n n n S a n −−=+, 则11121n n n n n n n S S a a a n n −+−−=−=++,即()1221n n n a a n ++=+,则有()121nn n a a n −+=,1221n n a n a n −−=−,,21232a a ⨯=, 则()212112112n n n n n n a a a a a n a a a −−−−=⨯⨯⨯⨯=+⋅,当1n =时,11a =,符合上式,故()212n n a n −=+⋅.故答案为:()212n n −+⋅.【变式1-2】(2024·青海西宁·二模)已知各项都是正数的等比数列{}n a 的前3项和为21,且312a =,数列{}n b 中,131,0b b ==,若{}n n a b +是等差数列,则12345b b b b b ++++= .【答案】33−【解析】设数列{}n a 的公比为(0)q q >,则333221a a a q q ++=,即21112121qq ⎛⎫++= ⎪⎝⎭, 化简得23440q q −−=,解得2q(负值舍去),所以331312232n n n n a a q −−−=⋅=⨯=⨯.于是111333,4,12a a b a b =+=+=, 所以等差数列{}n n a b +的公差为()()3311431a b a b +−+=−,所以()14414,4432n n n n n a b n n b n a n −+=+−==−=−⨯,所以()()23412345412345312222b b b b b ++++=⨯++++−⨯++++()56032133=−⨯−=−.故答案为:33−02 数列性质的综合问题1、在等差数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a +=+=. 在等比数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a ==.2、前n 项和与积的性质(1)设等差数列{}n a 的公差为d ,前n 项和为n S . ①n S ,2n n S S −,32n n S S −,…也成等差数列,公差为2n d . ②n S n ⎧⎫⎨⎬⎩⎭也是等差数列,且122n S d d n a n ⎛⎫=+− ⎪⎝⎭,公差为2d .③若项数为偶数2k ,则 S S kd −=奇偶,1k kS a S a +=偶奇. 若项数为奇数21k +,则1 k S S a +−=奇偶,1S k S k+=奇偶. (2)设等比数列{}n a 的公比为q ,前n 项和为.n S①当1q ≠−时,n S ,2n n S S −,32n n S S −,…也成等比数列,公比为.n q ②相邻n 项积n T ,2n n T T ,32n nT T ,…也成等比数列,公比为()nn q 2n q =. ③若项数为偶数2k ,则()21 11k a q S S q−−=+奇偶,1S S q=奇偶;项数为奇数时,没有较好性质. 3、衍生数列(1)设数列{}n a 和{}n b 均是等差数列,且等差数列{}n a 的公差为d ,λ,μ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++()*,k m ∈N 也是等差数列,公差为kd .②数列{}n a λμ+,{}n n a b λμ±也是等差数列,而{}n a λ是等比数列.(2)设数列{}n a 和{}n b 均是等比数列,且等比数列{}n a 的公比为q ,λ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++也是等比数列,公比为k q .②数列{}(0)n a λλ≠,(0)n a λλ⎧⎫≠⎨⎬⎩⎭,{}n a ,{}n n a b ,n n a b ⎧⎫⎨⎬⎩⎭,{}mn a 也是等比数列,而{}log a n a ()010n a a a >≠>,,是等差数列.【典例2-1】(2024·山西晋城·二模)已知等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则21a 的取值范围是( )A .67,78⎛⎫ ⎪⎝⎭B .613,715⎛⎫⎪⎝⎭C .67,,78⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭D .613,,715⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由题意可得:()158168915080S a S a a =>⎧⎨=+<⎩,即88900a a a >⎧⎨+<⎩,可知90a <,设等差数列{}n a 的公差为d ,则980d a a =−<, 可得等差数列{}n a 为递减数列,则10a >,由88900a a a >⎧⎨+<⎩可得11702150a d a d +>⎧⎨+<⎩,则112715d a −<<−,所以211116131,715a a d d a a a +⎛⎫==+∈ ⎪⎝⎭. 故选:B.【典例2-2】(2024·北京顺义·二模)设1a ,2a ,3a ,…,7a 是1,2,3,…,7的一个排列.且满足122367a a a a a a −≥−≥≥−,则122367a a a a a a −+−++−的最大值是( )A .23B .21C .20D .18【答案】B【解析】122367a a a a a a −+−++−即为相邻两项之差的绝对值之和,则在数轴上重复的路径越多越好,又122367a a a a a a −≥−≥≥−,比如1726354→→→→→→,其对应的一个排列为1,7,2,63,5,4,则122367a a a a a a −+−++−的最大值是6+5+4+3+2+1=21故选:B【变式2-1】(2024·浙江宁波·二模)已知数列{}n a 满足2n a n n λ=−,对任意{}1,2,3n ∈都有1n n a a +>,且对任意{}7,N n n n n ∈≥∈都有1n n a a +<,则实数λ的取值范围是( )A .11,148⎡⎤⎢⎥⎣⎦B .11,147⎛⎫ ⎪⎝⎭C .11,157⎛⎫ ⎪⎝⎭D .11,158⎛⎤ ⎥⎝⎦【答案】C【解析】因为对任意{}1,2,3n ∈都有1n n a a +>, 所以数列{}n a 在[]1,3上是递减数列, 因为对任意{}7,N n n n n ∈≥∈都有1n n a a +<, 所以数列{}n a 在[)7,+∞上是递增数列,所以0172211522λλλ⎧⎪>⎪⎪>⎨⎪⎪<⎪⎩,解得11157λ<<, 所以实数λ的取值范围是11,157⎛⎫⎪⎝⎭.故选:C.【变式2-2】(多选题)(2024·浙江绍兴·二模)已知等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,且*n ∀∈N ,101na q q<−,则( ) A .数列{}n a 是递增数列B .数列{}n a 是递减数列C .若数列{}n S 是递增数列,则1q >D .若数列{}n T 是递增数列,则1q >【答案】ACD【解析】由题意可知()()()()111211111,1n n n n n n n a q S T a a q a q a qq−−−===−,且*n ∀∈N ,101na q q<−, 故有101a q <−且0q >(否则若0q <,则11na q q −的符号会正负交替,这与*n ∀∈N ,101n a q q<−,矛盾), 也就是有101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩,无论如何,数列{}n a 是递增数列,故A 正确,B 错误;对于C ,若数列{}n S 是递增数列,即110n n n S S a ++−=>,由以上分析可知只能101a q >⎧⎨>⎩,故C 正确;对于D ,若数列{}n T 是递增数列,显然不可能是1001a q <⎧⎨<<⎩,(否则()121n n n n T a q −=的符号会正负交替,这与数列{}n T 是递增数列,矛盾),从而只能是101a q >⎧⎨>⎩,且这时有111n n n T a T ++=>,故D 正确. 故选:ACD.03 实际应用中的数列问题(1)数列实际应用中的常见模型①等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差; ②等比模型:如果后一个量与前一个量的比是一个固定的数,则该模型是等比模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑是第n 项n a 与第1n +项1n a +的递推关系还是前n 项和n S 与前1n +项和1n S +之间的递推关系.在实际问题中建立数列模型时,一般有两种途径:一是从特例入手,归纳猜想,再推广到一般结论;二是从一般入手,找到递推关系,再进行求解.一般地,涉及递增率或递减率要用等比数列,涉及依次增加或减少要用等差数列,有的问题需通过转化得到等差或等比数列,在解决问题时要往这些方面联系.(2)解决数列实际应用题的3个关键点 ①根据题意,正确确定数列模型; ②利用数列知识准确求解模型;③问题作答,不要忽视问题的实际意义.【典例3-1】(2024·北京房山·一模)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第三天走的路程为( ) A .12里 B .24里 C .48里 D .96里【答案】C【解析】由题意可得,此人6天中每天走的路程是公比为12的等比数列, 设这个数列为{}n a ,前n 项和为n S ,则16611163237813212a S a ⎛⎫− ⎪⎝⎭===−,解得1192a =, 所以321192482a =⨯=, 即该人第三天走的路程为48里. 故选:C.【典例3-2】(2024·北京海淀·一模)某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1.通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,…;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半.于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,112111221112A A A A OA ==….若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r (*N r ∈,单位:cm )至少为( )A .6B .7C .8D .9【答案】C【解析】由题意可知,114cm OA =,只要计算出黏菌沿直线一直繁殖下去,在11OA 方向上的距离的范围,即可确定培养皿的半径的范围,依题意可知黏菌的繁殖规律,由此可得每次繁殖在11OA 方向上前进的距离依次为:3131134,2,248,则31353842155724+++=>+=, 黏菌无限繁殖下去,每次繁殖在11OA 方向上前进的距离和即为两个无穷等比递缩数列的和, 即1311432164316841+28114228231144++⎛⎫⎛⎫+++⨯+++≈+⨯=<= ⎪⎪⎝⎭⎝⎭−−, 综合可得培养皿的半径r (*N r ∈,单位:cm )至少为8cm , 故选:C【变式3-1】(2024·四川·模拟预测)分形几何学是美籍法国数学家伯努瓦-曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学领域的众多难题提供了全新的思路.下图展示了如何按照图①的分形规律生长成一个图②的树形图,则在图②中第2023行的黑心圈的个数是( )A .2022312−B .2023332−C .202231−D .202333−【答案】A【解析】设题图②中第n 行白心圈的个数为n a ,黑心圈的个数为n b ,依题意可得1113,2,2n n n n n n n n n a b a a b b b a −+++==+=+,且有111,0a b ==,故有()11113,,n n n n n n n n a b a b a b a b ++++⎧+=+⎨−=−⎩,所以{}n n a b +是以111a b 为首项,3为公比的等比数列,{}n n a b −为常数数列,且111a b −=,所以{}n n a b −是以111a b −=为首项,1为公比的等比数列,故13,1,n n n n n a b a b −⎧+=⎨−=⎩故1131,231,2n n n na b −−⎧+=⎪⎪⎨−⎪=⎪⎩所以20222023312b −=. 故选:A.【变式3-2】(2024·江西九江·二模)第14届国际数学教育大会(ICME -International Congreas of Mathematics Education )在我国上海华东师范大学举行.如图是本次大会的会标,会标中“ICME -14”的下方展示的是八卦中的四卦——3、7、4、4,这是中国古代八进制计数符号,换算成现代十进制是3210387848482020⨯+⨯+⨯+⨯=,正是会议计划召开的年份,那么八进制107777⋅⋅⋅个换算成十进制数,则换算后这个数的末位数字是( )A .1B .3C .5D .7【答案】B【解析】由进位制的换算方法可知,八进制107777⋅⋅⋅个换算成十进制得:1098110187878787878118−⨯+⨯+⋅⋅⋅+⨯+⨯=⨯=−−,()101001019919101010101010811021C 10C 102C 102C 21−=−−=+⨯+⋅⋅⋅+⨯+−因为01019919101010C 10C 102C 102+⨯+⋅⋅⋅+⨯是10的倍数,所以,换算后这个数的末位数字即为101010C 21−的末尾数字,由101010C 211023−=可得,末尾数字为3.故选:B04 以数列为载体的情境题解决数列与数学文化相交汇问题的关键【典例4-1】(2024·上海黄浦·二模)设数列{}n a 的前n 项和为n S ,若对任意的*N n ∈,n S 都是数列{}n a 中的项,则称数列{}n a 为“T 数列”.对于命题:①存在“T 数列”{}n a ,使得数列{}n S 为公比不为1的等比数列;②对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①是真命题,②是假命题D .①是假命题,②是真命题【答案】A【解析】对于命题①,对于数列{}n a ,令21,12,2n n n a n −=⎧=⎨≥⎩,则11,12,2n n n S n −=⎧=⎨≥⎩,数列{}n S 为公比不为1的等比数列, 当1n =时,11S =是数列{}n a 中的项,当2n ≥时,12n n S −=是数列{}n a 中的项,所以对任意的*N n ∈,n S 都是数列{}n a 中的项, 故命题①正确;对于命题②,等差数列{}n a ,令1a d =−,则()()112n a a n d n d =+−=−, 则()()()123222n n n d n d n a a n n S d ⎡⎤−+−+−⎣⎦===, 因为21n −≥−且2Z n −∈, ()2313912228n n n −⎛⎫=−−≥− ⎪⎝⎭,且()3N*,Z 2n n n −∈∈, 所以对任意的*N n ∈,n S 都是数列{}n a 中的项,所以对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”, 故命题②正确; 故选:A.【典例4-2】(2024·广东梅州·二模)已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n M ,即{}12max ,,,n n M a a a =⋅⋅⋅;前n 项的最小值记为n m ,即{}12min ,,,n n m a a a =⋅⋅⋅,令n n n p M m =−(1,2,3,n =⋅⋅⋅),并将数列{}n p 称为{}n a 的“生成数列”. (1)若3n n a =,求其生成数列{}n p 的前n 项和; (2)设数列{}n p 的“生成数列”为{}n q ,求证:n n p q =;(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +,⋅⋅⋅是等差数列.【解析】(1)因为3nn a =关于n 单调递增,所以{}12max ,,,3nn n n M a a a a =⋅⋅⋅==,{}121min ,,,3n n m a a a a =⋅⋅⋅==,于是33nn n n p M m =−=−,{}n p 的前n 项和()()()()()1231333333333313132n n nn P n n −=−+−++−=−=−−−.(2)由题意可知1n n M M +≥,1n n m m +≤, 所以11n n n n M m M m ++−≥−,因此1n n p p +≥,即{}n p 是单调递增数列,且1110p M m ==-, 由“生成数列”的定义可得n n q p =.(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,12n n n a a a ++⋯,,,是等差数列. 当{}n p 是一个常数列,则其公差d 必等于0,10n p p ==, 则n n M m =,因此{}n a 是常数列,也即为等差数列;当{}n p 是一个非常数的等差数列,则其公差d 必大于0,1n n p p +>, 所以要么11n n n M a M ++>=,要么11n n n m a m ++=<,又因为{}n a 是由正整数组成的数列,所以{}n a 不可能一直递减, 记2min ,{}n n a a a a =,,,,则当0n n >时,有n n M m =, 于是当0n n >时,0n n n n n p M m a a =−=−, 故当0n n >时,0n n n a p a =+,…,因此存在正整数0n ,当0n n ≥时,12n n n a a a ++,,,…是等差数列. 综上,命题得证.【变式4-1】(2024·全国·模拟预测)“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.下图是由“杨辉三角”拓展而成的三角形数阵,记n a 为由图中虚线上的数1,3,6,10,…依次构成的数列的第n 项,则1220111a a a ++⋅⋅⋅+的值为 .【答案】4021【解析】设第n 个数为n a ,则11a =,212a a −=,323a a −=,434a a −=,…,1n n a a n −−=, 叠加可得()11232n n n a n +=+++⋅⋅⋅+=, ∴122011122212232021a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯ 111114021223202121⎛⎫=⨯−+−+⋅⋅⋅+−= ⎪⎝⎭.故答案为:4021. 【变式4-2】(2024·内蒙古呼伦贝尔·一模)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差相等.对这类高阶等差数列的研究·杨辉之后一般被称为“垛积术”.现有高阶等差数列前几项分别为1,4,8,14,23,36,54,则该数列的第21项为 . (注:()()22221211236n n n n +++++⋅⋅⋅+=)【答案】1391【解析】设题设高阶等差数列为{}n a ,令1n n n b a a +=−,设数列{}n b 的前n 项和为n B ,则数列{}n b 的前几项分别为3,4,6,9,13,18,1111n n n B a a a ++=−=−,令1+=−n n n c b b ,设数列{}n c 的前n 项和为n C ,则数列{}n c 的前几项分别为1,2,3,4,5,1113n n n C b b b ++=−=−,易得2,2n n n n c n C +==,所以21332n n n n b C ++=+=+,故()21133222n n n n b n −=+=−+,则()()()()()1211111632626n n n n n n n n n B n n ⎡⎤++++−=−+=+⎢⎥⎣⎦, 所以11n n a B +=+,所以211391a =.故答案为:139105 数列放缩在证明不等式时,有时把不等式的一边适当放大或缩小,利用不等式的传递性来证明,我们称这种方法为放缩法.放缩时常采用的方法有:舍去一些正项或负项、在和或积中放大或缩小某些项、扩大(或缩小)分式的分子(或分母).放缩法证不等式的理论依据是:,A B B C A C >>⇒>;,A B B C A C <<⇒<.放缩法是一种重要的证题技巧,要想用好它,必须有目标,目标可从要证的结论中去查找.【典例5-1】(2024·天津滨海新·二模)已知数列{}n a 满足112,1,2n n n n a t qa n a −−=⎧⎪=⎨+≥⎪⎩,其中220,0,0,N q t q t n ≥≥+≠∈.(1)若0qt =,求数列{}n a 的前n 项的和; (2)若0=t ,2q且数列{}n d 满足:11n nn n n a a d a a =++−,证明:121ni i d n =<+∑. (3)当12q =,1t =时,令)22,2n n b n n a =≥∈−N ,判断对任意2n ≥,N n ∈,n b 是否为正整数,请说明理由.【解析】(1)因为0qt =,220q t +≠,所以当0q =时,0t ≠,2n ≥时,1n n t a a −=,即n 为奇数时,2n a =;n 为偶数时,2n ta =. 记数列{}n a 的前n 项的和为n S ,当n 为偶数时,222n n t S ⎛⎫=+ ⎪⎝⎭,当n 为奇数时,112221224n n n t tn tS S n −−−⎛⎫=+=++=++ ⎪⎝⎭, 综上2,2221,214n n t n k S tn t n n k ⎧⎛⎫+= ⎪⎪⎪⎝⎭=⎨−⎪++=+⎪⎩,其中N k ∈.当0=t 时,0q ≠,2n ≥时,1n n a qa −=,此时{}n a 是等比数列, 当1q =时,2n S n =;当1q ≠时,()211nn q S q−=−,故()2,121,11nn n q S q q q=⎧⎪=−⎨≠⎪−⎩. (2)由(1)知,0=t ,2q时,2n n a =,22112121n n n n n n n n n a a d a a =+=++−+−1122121n n =+−−+,112211111112212121212121nin n i dn =⎛⎫⎛⎫⎛⎫=+−+−++− ⎪ ⎪ ⎪−+−+−+⎝⎭⎝⎭⎝⎭∑ 1212121n n n ≤+−<++(3)对任意2n ≥,N n ∈,n b 是正整数.理由如下: 当12q =,1t =时,21111322a a a =+=,此时24b =; 2321117212a a a =+=,此时324b =;由202n n b a =>−,平方可得2242n n a b =+,212142n n a b ++=+, 又222121111124n n n n n a a a a a +⎛⎫=+=++ ⎪⎝⎭,所以22221414221442n n n n b b b b +⎛⎫+=+++ ⎪+⎝⎭, 整理可得()222142n n n b b b +=+,当3n ≥时,()2221142n n n b b b −−=+,所以()()222222111424242n n n n n n b b b b b b +−−⎡⎤=+=++⎣⎦ ()()22242211141241n n n n n b b b b b −−−=++=+,所以()21121n n n b b b +−=+,由23N,N b b ∈∈,所以4N b ∈,以此类推,可知对任意2n ≥,N n ∈,n b 是正整数.【典例5-2】(2024·全国·模拟预测)已知数列{}n a 的各项均为正数,11a =,221n n n a a a ++≥.(1)若23a =,证明:13n n a −≥;(2)若10512a =,证明:当4a 取得最大值时,121112na a a +++<. 【解析】(1)由题意知,211n n n n a a a a +++≥,设1n n na q a +=,12n q q q ∴≤≤≤,23a =,11a =,13q ∴=,当2n ≥时,113211121111213n n nn n n a a a a a a q q q a q a a a −−−−=⋅⋅=⋅⋅≥⋅=.当1n =时,11a =满足13n n a −≥,综上,13n n a −≥.(2)()31011291231512a a q q q q q q a =⋅⋅=≥⋅⋅⋅,1238q q q ∴⋅⋅≤,4a ∴的最大值为8,当且仅当123456789q q q q q q q q q ⋅⋅=⋅⋅=⋅⋅时取等号.而12n q q q ≤≤≤,1292q q q ∴====,而10n ≥时,192n n q q q −≥≥≥=,1112n n n a a q −−≥∴⋅=,2112111111111121()()2121222212nn n n a a a −⎛⎫⋅− ⎪⎛⎫⎝⎭∴+++≤++++==−< ⎪⎝⎭−. 【变式5-1】(2024·浙江杭州·二模)已知等差数列{}n a 的前n 项和为n S ,且()*4224,21n n S S a a n ==+∈N .(1)求数列{}n a 的通项公式;(2)数列{}n b 满足13b =,令21n n n n a b a b ++⋅=⋅,求证:192nk k b =<∑. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d .由4224,21n nS S a a ==+,得()()11114684212211a d a da n d a n d +=+⎧⎨+−=+−+⎩, 解得:1a 1,d2,所以()()12121n a n n n *=+−=−∈N .(2)由(1)知,()()12123n n n b n b +−=+, 即12123n n b n b n +−=+,12321n n b n b n −−=+,122521n n b n b n −−−=−,……,322151,75b b b b ==, 利用累乘法可得:1211212325313212175n n n n n b b b n n b b b b b n n −−−−−=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅+− ()()()99112212122121n n n n n ⎛⎫==−≥ ⎪−+−+⎝⎭,13b =也符合上式,12311nkn n k bb b b b b −==+++++∑9111111112335572121n n ⎡⎤⎛⎫=−+−+−++− ⎪⎢⎥−+⎝⎭⎣⎦911221n ⎛⎫=−⎪+⎝⎭所以191912212nk k b n =⎛⎫=−< ⎪+⎝⎭∑.【变式5-2】(2024·广西·二模)在等差数列{}n a 中,26a =,且等差数列{}1n n a a ++的公差为4. (1)求10a ; (2)若2111n n n n b a a a −+=+,数列{}n b 的前n 项和为n S ,证明:21228n S n n <++. 【解析】(1)设{}n a 的公差为d ,则1212()()24n n n n n n a a a a a a d +++++−+=−==,2d =, 又26a =,所以1624a =−=, 所以42(1)22n a n n =+−=+,1022a =. (2)由(1)得11114()44(1)(2)412n b n n n n n n =+=−+++++,所以2212111(1)111()42222422284(2)8n n n n S b b b n n n n n n +=+++=−+⨯=++−<++++.1.在公差不为0的等差数列{}n a 中,3a ,7a ,m a 是公比为2的等比数列,则m =( ) A .11 B .13C .15D .17【答案】C【解析】设等差数列的公差为d ,则0d ≠, 因为3a ,7a ,m a 是公比为2的等比数列,所以()1111162,226a m d a d a d a d +−+==++,由前者得到12a d =,代入后者可得128m +=, 故15m =, 故选:C.2.记数列{}n a 的前n 项积为n T ,设甲:{}n a 为等比数列,乙:2n n T ⎧⎫⎨⎬⎩⎭为等比数列,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件 【答案】D【解析】若{}n a 为等比数列,设其公比为q ,则11n n a a q −=,(1)12(1)211n n n n n n T a q a q−+++−==,于是(1)12()22n n n n n T a q −=,(1)111211(1)12()222()22n n n n n n n n n n nT a qa q T a q ++++−==⋅,当1q ≠时,12n a q ⋅不是常数, 此时数列2n n T ⎧⎫⎨⎬⎩⎭不是等比数列,则甲不是乙的充分条件;若2n nT ⎧⎫⎨⎬⎩⎭为等比数列,令首项为1b ,公比为p ,则112n n n T b p −=,112(2)n n T b p −=⋅, 于是当2n ≥时,112112(2)22(2)n n n n n T b p a p T b p −−−⋅===⋅,而1112a T b ==, 当1b p ≠时,{}n a 不是等比数列,即甲不是乙的必要条件, 所以甲是乙的既不充分也不必要条件. 故选:D3.已知数列{}n a 为等比数列,且11a =,916a =,设等差数列{}n b 的前n 项和为n S ,若55b a =,则9S =( ) A .-36或36 B .-36C .36D .18【答案】C【解析】数列{}n a 为等比数列,设公比为q ,且11a =,916a =, 则89116a q a ==,则44q =, 则45514b a a q ===,则()199599362b b S b+⨯===,故选:C.4.已知等差数列{}n a 的前n 项和为n S ,36S =,()*3164,n S n n −=≥∈N ,20n S =,则n 的值为( )A .16B .12C .10D .8【答案】B【解析】由36S =,得1236a a a ++=①,因为()*3164,n S n n −=≥∈N ,20n S =,所以34n n S S −−=,即124n n n a a a −−++=②,①②两式相加,得1213210n n n a a a a a a −−+++++=,即()1310n a a +=, 所以1103n a a +=,所以()152023n n n a a n S +===,解得12n =. 故选:B.5.在等比数列{}n a 中,00n a >.则“001n n a a +>”是“0013n n a a ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】设等比数列{}n a 的公比为0q ≠,当001n n a a +>时,即有00n n a q a >⋅,又00n a >,故1q <且0q ≠,当1q <−时,有0002311n n n a q a a +++=>,故不能得到0013n n a a ++>,即“001n n a a +>”不是“0013n n a a ++>”的充分条件;当0013n n a a ++>时,即有0002311n n n a q a a +++=<,即21q <且0q ≠,则001n n a q a +=⋅,当()1,0q ∈−时,由00n a >,故010n a +<,故001n n a a +>, 当()0,1q ∈时,0001n n n a q a a +=⋅<,亦可得001n n a a +>, 故“001n n a a +>”是“0013n n a a ++>”的必要条件;综上所述,“001n n a a +>”是“0013n n a a ++>”的必要不充分条件. 故选:B.6.已知正项数列{}n a 的前n 项和为n S ,且22n n nS a a =+,数列{}n b 的前n 项积为n T 且2n n T S =,下列说法错误的是( )A .2n S nB .{}n b 为递减数列C .202420242023b = D .2(1)n a n n =−【答案】B【解析】当1n =时,11122a a a =+,解得12a = 当2n ≥时,1122n n n n n S S S S S −−=−−+,即2212n n S S −−=,且212S =,所以数列}{2n S 是首项为2,公差为2的等差数列,所以()22212n S n n =+⋅−=,又0n a >,所以2n S n =,故A 正确; 当2n ≥时,有()22121n a n n n n =−=−,取1n =时,121112a =−=1a ,故数列}{n a 的通项公式为21n a n n =−,故D 正确;因为数列{}n b 的前n 项积为n T 且2n n T S =,所以21232n n n T b b b b S n =⋅⋅==,当1n =时,12b =, 当2n ≥时,()12111121111n n n T n n n b T n n n n −−+=====+−−−−, 显然1n =不适用,故数列{}n b 的通项公式为2,111,21n n b n n =⎧⎪=⎨+≥⎪−⎩, 显然122b b ==,所以数列{}n b 不是递减数列,故B 错误, 由当2n ≥时,1n n b n =−,得202420242024202412023b ==−,故C 正确,故选:B.7.(多选题)数列{}n a 满足:()111,32n n a S a n −==≥,则下列结论中正确的是( )A .213a =B .{}n a 是等比数列C .14,23n n a a n +=≥D .114,23n n S n −−⎛⎫=≥ ⎪⎝⎭【答案】AC【解析】由13(2)n n S a n −=≥, 当1122,31n S a a ====,解得213a =,故A 正确;当1n ≥,可得13n n S a +=,所以1133(2)n n n n S S a a n −+−=−≥,所以133(2)n n n a a a n +=−≥, 即14(2)3n n a a n +=≥,而2113=a a ,故C 正确,B 不正确; 因22112311413341,24313n n n n Sa a a a n −−−−⎡⎤⎛⎫−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=++++=+=> ⎪⎝⎭−,故D 错误. 故选:AC.8.(多选题)设{}n a 是等差数列,n S 是其前n 项的和.且56S S <,678S S S =>,则下面结论正确的是( )A .0d ≤B .70a =C .6S 与7S 均为n S 的最大值D .满足0n S <的n 的最小值为14【答案】BCD【解析】A :因为678S S S =>,所以7678780,0S S a S S a −==−=<, 所以870d a a =−<,故A 错误; B :由A 的解析可得B 正确;C :因为56S S <,678S S S =>,所以6S 与7S 均为n S 的最大值,故C 正确;D :因为71132a a a =+,由()113131302a a S +==,()()114147814702a a S a a +==+<,故D 正确; 故选:BCD.9.(多选题)已知数列{}n a 满足:212n n n a a a λ+=++*()N n ∈,其中R λ∈,下列说法正确的有( )A .当152,4a λ==时,1n a n ≥+ B .当1,4λ∞⎡⎫∈+⎪⎢⎣⎭时,数列{}n a 是递增数列C .当2λ=−时,若数列{}n a 是递增数列,则()()1,31,a ∞∞∈−−⋃+D .当13,0a λ==时,1211112223n a a a +++<+++【答案】ACD【解析】对于A ,当54λ=时,2215111042n n n n n a a a a a +⎛⎫−=++=++≥> ⎪⎝⎭,又12a =,故11n n a a +>+,所以1211211n n n a a a a n n −−>+>+>>+−+=,故A 项正确.对于B ,因为22111()24n n n n n a a a a a λλ+−=++=++−且1,4λ∞⎡⎫∈+⎪⎢⎣⎭,所以10n n a a +−≥, 当14λ=,112a =-时,22211111,,()2220n n n n n a a a a a a a ++⇒⇒−=+==-==-,此时数列{}n a 是常数列,故B 项错误;对于C, 由于数列{}n a 是递增数列, 当2n ≥时,故10n n a a −−>,2211111(22)(22)()(2)0n n n n n n n n n n a a a a a a a a a a +−−−−−=+−−+−=−++>,故120n n a a −++>, 所以2121020a a a a −>⎧⎨++>⎩,即()()211121112202220a a a a a a ⎧+−−>⎪⎨+−++>⎪⎩,解得11a >或13a <−,故C 项正确;对于D,当0λ=时,2212(1)1n nn n a a a a +=+=+−,结合13a =,可知2214111a a =−=>, 232133a a =−>,⋯,结合111()(2)n n n n n n a a a a a a +−−−=−++,可知{}n a 是递增数列,13n a a ≥=,则12(2)3(2)n n n n a a a a ++=+≥+, 即1232n n a a ++≥+,所以1121212223(2)222n nn n n a a a n a a a −−−−+++⨯⨯⨯≥≥+++, 即11523(2)3(2)3n nn a a n −+≥+=⨯≥,所以131(2)253n n n a ≤⨯≥+,当1n =时,1111312553a =≤⨯+,所以*131(N )253n n n a ≤⨯∈+, 可得2111(1)1311133133()125333510313nn n i i a =−≤+++=⨯<<+−∑,故D 项正确; 故选:ACD .10.(多选题)已知数列{}n a 满足2122n n n a a a +=−+,则下列说法正确的是( )A .当112a =时,()5124n a n <≤≥ B .若数列{}n a 为常数列,则2n a = C .若数列{}n a 为递增数列,则12a > D .当13a =时,1221n n a −=+【答案】AD【解析】对于A ,当112a =时,254a =,令1n nb a =−,则21n n b b +=,214b =,故()1024n b n <≤≥,即()5124n a n <≤≥,A 正确;对于B ,若数列{}n a 为常数列,令n a t =,则222t t t =−+,解得1t =或2,1n t a =∴=或2n a =,B 不正确;对于C ,令1n n b a =−,则21n n b b +=,若数列{}n a 为递增数列,则数列{}n b 为递增数列,则210n n n n b b b b +−=−>,解得0n b <或1n b >.当11b <−时,2211b b =>,且21n n b b +=,2312,n b b b b b ∴<<⋅⋅⋅<<⋅⋅⋅<,此时数列{}n b 为递增数列,即数列{}n a 为递增数列;当110b −≤<时,201b <≤,且21n n b b +=,2312,n b b b b b ∴≥≥⋅⋅⋅≥≥⋅⋅⋅<,此时数列{}n b 不为递增数列,即数列{}n a 不为递增数列;当11b >时,21n n b b +=,123n b b b b ∴<<<⋅⋅⋅<<⋅⋅⋅,此时数列{}n b 为递增数列,即数列{}n a 为递增数列.综上,当11b <−或11b >,即10a <或12a >时,数列{}n a 为递增数列,C 不正确;对于D ,令1n n b a =−,则21n n b b +=,12b =,两边同时取以2为底的对数,得212log 2log n n b b +=,21log 1b =,∴数列{}2log n b 是首项为1,公比为2的等比数列, 12log 2n n b −∴=,即11222,21n n n n b a −−=∴=+,D 正确.故选:AD.11.洛卡斯是十九世纪法国数学家,他以研究斐波那契数列而著名.洛卡斯数列就是以他的名字命名,洛卡斯数列{}n L 为:1,3,4,7,11,18,29,47,76,,即1213L L ==,,且()21n n n L L L n *++=+∈N .设数列{}n L 各项依次除以4所得余数形成的数列为{}n a ,则2024a = . 【答案】3【解析】{}n L 的各项除以4的余数分别为1,3,0,3,3,2,1,3,0,,故可得{}n a 的周期为6,且前6项分别为1,3,0,3,3,2, 所以20246337223a a a ⨯+===. 故答案为:3.12.某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于32米,若堆放占用场地面积最小,则最下层圆钢根数为 .【答案】134【解析】设第一层有m 根,共有n 层,则(1)20242n n n S nm −=+=, 4(21)404821123n m n +−==⨯⨯,显然n 和21m n +−中一个奇数一个偶数,则1121368n m n =⎧⎨+−=⎩或1621253n m n =⎧⎨+−=⎩或23176n m =⎧⎨=⎩,即11179n m =⎧⎨=⎩或16119n m =⎧⎨=⎩或2377n m =⎧⎨=⎩,显然每增加一层高度增加53当11179n m =⎧⎨=⎩时,10531096.6h =⨯≈厘米150<厘米,此时最下层有189根; 当16119n m =⎧⎨=⎩时,155310139.9h =⨯≈厘米150<厘米,此时最下层有134根;当2377n m =⎧⎨=⎩时,22310200.52150h =⨯≈>厘米,超过32米,所以堆放占用场地面积最小时,最下层圆钢根数为134根. 故答案为:13413.已知数列{}n a 是给定的等差数列,其前n 项和为n S ,若9100a a <,且当0m m =与0n n =时,m nS S −{}()*,|30,m n x x x ∈≤∈N 取得最大值,则00mn −的值为 .【答案】21【解析】不妨设数列{}n a 的公差大于零, 由于9100a a <,得9100,0a a <>, 且9n ≤时,0n a <,10n ≥时,0n a >, 不妨取m n >,则1mm n ii n S S a=+−=∑,设3030910i i k S S a ==−=∑,若9,30n m >=,则030301n ii n S S ak =+−≤<∑,此时式子取不了最大值;若9,30n m <=,则09301n ii n S S a k =+−≤+∑,又9i ≤时,0i a <, 因为09301n ii n S S a k k =+−≤+<∑,此时式子取不了最大值;因此这就说明09n n ==必成立. 若30m <,则0910m m i i S S a k =−≤<∑,这也就说明030m <不成立,因此030m =, 所以0021m n −=. 故答案为:21.14.已知数列 {}n a 是各项均为正数的等比数列, n S 为其前 n 项和, 1331614a a S ==,, 则2a = ; 记 ()1212n n T a a a n ==,,, 若存在 *0n ∈N 使得 n T 最大, 则 0n 的值为 .【答案】 4 3或4【解析】等比数列{}n a 中,公比0q >;由213216a a a ⋅==,所以24a =,又314S =,所以13131610a a a a ⋅=⎧⎨+=⎩解得1328a a =⎧⎨=⎩或1382a a =⎧⎨=⎩;若1328a a =⎧⎨=⎩时,可得2q,则21224a a q ==⨯=,且012,,,n a a a ⋯的值为2,4,8,16⋯,,可知数列{}n a 单调递增,且各项均大于1, 所以不会存在0n 使得012,,,n a a a ⋯的乘积最大(舍去);若1382a a =⎧⎨=⎩时,可得12q =,则211842a a q ==⨯=,且012,,,n a a a ⋯的值为118,4,2,1,,24,…,可知数列{}n a 单调递减,从第5项起各项小于1且为正数, 前4项均为正数且大于等于1,所以存在03n =或04n =,使得8421⨯⨯⨯的乘积最大, 综上,可得0n 的一个可能值是3或4. 故答案为:4;3或415.在数列{}n a 中,122,3a a ==−.数列{}n b 满足()*1n n n b a a n +=−∈N .若{}n b 是公差为1的等差数列,则{}n b 的通项公式为nb= ,n a 的最小值为 .【答案】 6n − 13−【解析】由题意1215b a a =−=−,又等差数列{}n b 的公差为1,所以()5116n b n n =−+−⋅=−; 故16n n a a n +−=−,所以当6n ≤时,10n n a a +−≤,当6n >时,10n n a a +−>, 所以123456789a a a a a a a a a >>>>>=<<<⋅⋅⋅,显然n a 的最小值是6a .又16n n a a n +−=−,所以()()()()()612132435465a a a a a a a a a a a a =+−+−+−+−+−()()()()()25432113=+−+−+−+−+−=−,即n a 的最小值是13−. 故答案为:6n −,13−16.第24届北京冬奥会开幕式由一朵朵六角雪花贯穿全场,为不少人留下深刻印象.六角雪花曲线是由正三角形的三边生成的三条1级Koch 曲线组成,再将六角雪花曲线每一边生成一条1级Koch 曲线得到2级十八角雪花曲线(如图3)……依次得到n 级*()n K n ∈N 角雪花曲线.若正三角形边长为1,我们称∧为一个开三角(夹角为60︒),则n 级n K 角雪花曲线的开三角个数为 ,n 级n K 角雪花曲线的内角和为 .。

北京高考数学压轴题

北京高考数学压轴题

【例1】如果存在常数a使得数列{}n a满足:若x是数列{}n a中的一项,则a x-也是数列{}n a中的一项,称数列{}n a为“兑换数列”,常数a是它的“兑换系数”.(1)若数列:1,2,4,(4)m m>是“兑换系数”为a的“兑换数列”,求m和a的值;(2)已知有穷..等差数列{}nb的项数是00(3)n n≥,所有项之和是B,求证:数列{}n b是“兑换数列”,并用n和B表示它的“兑换系数”;(3)对于一个不少于3项,且各项皆为正整数的递增数列{}n c,是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.压轴题【例2】 已知集合121{|(,,),{0,1},1,2,,}(2)n n S X X x x x x i n n ==∈=≥…,…对于12(,,,)n A a a a =…,12(,,,)n n B b b b S =∈…,定义A 与B 的差为1122(||,||,||)n n A B a b a b a b -=---…; A 与B 之间的距离为111(,)||i d A B a b -=-∑(Ⅰ)证明:,,,n n A B C S A B S ∀∈-∈有,且(,)(,)d A C B C d A B --=;(Ⅱ)证明:,,(,)(,)(,)n A B C S d A B d A C d B C ∀∈,,,三个数中至少有一个是偶数(Ⅲ) 设n P S ⊆,P 中有(2)m m …个元素,记P 中所有两元素间距离的平均值为()d P .【例3】 已知集合{}12(2)k A a a a k = ,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n .若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ; (II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.【例4】 设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到 的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之表2和与每列的各数之和均为非负整数?请说明理由.1 2 3 7-2-1122221212a a a a a a a a ------【例5】 若12(0n n i A a a a a == 或1,1,2,,)i n = ,则称n A 为0和1的一个n 位排列.对于n A ,将排列121n n a a a a - 记为1()n R A ;将排列112n n n a a a a -- 记为2()n R A ;依此类推,直至()n n n R A A =.对于排列n A 和()i n R A (1,2,,1)i n =- ,它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做n A 和()i n R A 的相关值,记作(,())i n n t A R A .例如3110A =,则13()011R A =, 133(,())1t A R A =-.若(,())1(1,2,,1)i n n t A R A i n =-=- ,则称n A 为最佳排列. (Ⅰ)写出所有的最佳排列3A ; (Ⅱ)证明:不存在最佳排列5A ;(Ⅲ)若某个21(k A k +是正整数)为最佳排列,求排列21k A +中1的个数.【例6】 设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=. 已知0P 0000(,)(,)x y x y ∈ Z 为平面上一个定点,平面上点列{}i P 满足:1()i i P P τ-=,且点i P 的坐标为(,)i i x y ,其中1,2,3,...,i n =.(Ⅰ)请问:点0P 的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由; (Ⅱ)求证:若0P 与n P 重合,n 一定为偶数;(Ⅲ)若0(1,0)P ,且100n y =,记0ni i T x ==∑,求T 的最大值.。

2020年高考数学压轴题专题复习: 数列与不等式的综合问题【解析版】

2020年高考数学压轴题专题复习: 数列与不等式的综合问题【解析版】

第二章 数列与不等式专题 数列与不等式的综合问题纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.数列与不等式的结合,一般有两类题:一是利用基本不等式求解数列中的最值;二是与数列中的求和问题相联系,证明不等式或求解参数的取值范围,此类问题通常是抓住数列通项公式的特征,多采用先求和后利用放缩法或数列的单调性证明不等式,求解参数的取值范围. 本专题通过例题说明此类问题解答规律与方法.①函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;②放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到; ③比较方法:作差或者作商比较.【压轴典例】例1.(2013·全国高考真题(理))设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,… 若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ) A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】B 【解析】因为11b c >,不妨设111142,33a a b c ==,13()22p a b c a =++=;故211S ==; 21a a =,112125326a ab a +==,112147326a a c a +==,2216S a ==; 显然21S S >;同理,31a a =,112159428a a b a +==,113137428a a c a +==,231S ==,显然32S S >.例2. (2018·江苏高考真题)已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________. 【答案】27 【解析】设=2kn a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥ 所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >. 由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27. 例3.(2018·浙江高考模拟)设数列的前项和分别为,其中,使成立的最大正整数__________,__________.【答案】 6. 114. 【解析】根据题意,数列{a n }中,a n =-3n+20,则数列{a n }为首项为17,公差为-3的等差数列,且当n≤6时,a n >0,当n >7时,a n <0,又由b n =|a n |,当n≤6时,b n =a n ,当n >7时,b n =-a n , 则使T n =S n 成立的最大正整数为6,T 2018+S 2018=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(b 1+b 2+……+b 6+b 7+b 8+……+b 2018)=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(a 1+a 2+……+a 6-a 7-a 8-……-a 2018) =2(a 1+a 2+……+a 6)=,故答案为:6,114 例4.(2019·江西师大附中高考模拟(文))数列{}n a 中的项按顺序可以排成如图的形式,第一行1项,排1a ;第二行2项,从左到右分别排2a ,3a ;第三行3项,……依此类推,设数列{}n a 的前n 项和为n S ,则满足2019n S >的最小正整数n 的值为( )A .20B .21C .26D .27【答案】B 【解析】第一行为4,其和为4,可以变形为:1232T =⨯-;第二行为首项为4,公比为3的等比数列,共2项,其和为:()22241323213T -==⨯--;第三行为首项为4,公比为3的等比数列,共3项,其和为()33341323213T -==⨯--;依此类推:第n 行的和:232nn T =⨯-;则前6行共:12345621+++++=个数 前6行和为:()()()()26267212322322322333123152172S =⨯-+⨯-+⋅⋅⋅+⨯-=⨯++⋅⋅⋅+-=-=满足2019n S >而第六行的第6个数为:543972⨯=,则202197212002019S S =-=<∴满足2019n S >的最小正整数n 的值为:21本题正确选项:B例5.(2019·内蒙古高考模拟(理))数列()11n a n n =+的前n 项和为n S ,若1S ,m S ,n S 成等比数列()1m >,则正整数n 值为______. 【答案】8 【解析】∵()11111n a n n n n ==-++,∴11111122311n nS n n n =-+-++-=++, 又1S ,m S ,n S 成等比数列()1m >,∴()21m n S S S =⋅, 即()221211m n n m =⋅++,()22211m n n m =++, ∴()2221m m <+,即2210m m --<,解得1212m -<<+,结合1m 可得2m =, ∴8n =,故答案为8.例6.(2016·天津高考真题(理))已知{}是各项均为正数的等差数列,公差为d ,对任意的,是和的等比中项.(Ⅰ)设求证:数列{}是等差数列;(Ⅱ)设求证:【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】(Ⅰ)证明:由题意得,有,因此,所以是等差数列.(Ⅱ)证明:所以.例7.(2016·四川高考真题(理))已知数列{}的首项为1,为数列{}的前n 项和,,其中q>0,.(Ⅰ)若成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线的离心率为,且,证明:.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由已知,两式相减得到.又由得到,故对所有都成立.所以,数列是首项为1,公比为q的等比数列.从而.由成等差数列,可得,即,则,由已知,,故.所以.(Ⅱ)由(Ⅰ)可知,.所以双曲线的离心率.由解得.因为,所以.于是,故.例8.(2016·浙江高考真题(理))设数列满足,.(Ⅰ)证明:,;(Ⅱ)若,,证明:,.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)由得,故,,所以,因此.(Ⅱ)任取,由(Ⅰ)知,对于任意,,故.从而对于任意,均有.由的任意性得.①否则,存在,有,取正整数且,则,与①式矛盾.综上,对于任意,均有.【压轴训练】1.(2019·安徽高考模拟(理))设是等差数列,下列结论一定正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;对于B选项,当,分别为-4,-1,2时,满足a1+a3<0,但a2+a3=1>0,故B不正确;又{a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2,∴a 2,即C 正确;若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2≤0,即D 不正确. 故选:C .2.(2018·浙江高考模拟)已知等差数列的前项和是,公差不等于零,若成等比数列,则A .B .C .D .【答案】C 【解析】 由成等比数列.可得,可得(,即,∵公差不等于零,故选:C .3.(2019·山东高考模拟(文))已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a ,使得18m n a a a =,则91m n+的最小值为__________. 【答案】2 【解析】正项等比数列{}n a 满足5432a a a +=, 432111=+2a q a q a q ∴,整理,得210+2q q -=,又0q >,解得,12q =, 存在两项m a ,n a 使得18m n a a a =, 2221164m n a q a +-∴=,整理,得8m n +=,∴9119119()()(10)88m n m n m n m n n m +=++=++ 19(102)28m n n m+=, 则91m n+的最小值为2. 当且仅当9m n n m=取等号,又m ,*n N ∈.8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:24.(2019·湖南师大附中高考模拟(理))已知等比数列{a n }的前n 项积为T n ,若124a =-,489a =-,则当T n 取最大值时,n 的值为_____. 【答案】4 【解析】设等比数列{a n }的公比为q ,因为124a =-,489a =-,可得341127a q a ==,解得13q =,则()()()1112312(2131)(32424)n n nnn n n T a a a a q-+++⋅⋅⋅+-=⋅⋅⋅=-=-, 当T n 取最大值时,可得n 为偶数,函数13xy =()在R 上递减, 又由2192T =,4489T =,66983T =,可得246T T T <>,当6n >,且n 为偶数时,6n T T <, 故当4n =时,T n 取最大值.5.(2019·安徽高考模拟(理))已知数列的各项均为正数,记为的前项和,若,,则使不等式成立的的最小值是________.【答案】11 【解析】由可得,则()()=0,又数列的各项均为正数,∴,即,可得数列{a n }是首项为公比为q =2的等比数列,∴,则n>10,又,∴n 的最小值是11,故答案为11.6.(2019·甘肃天水一中高考模拟(文))已知数列{}n a 满足11a =,0n a >,11n n a a +=,那么32n a <成立的n 的最大值为______ 【答案】5 【解析】11n n a a +=, 所有{}na 11a =,公差d 1=n n a =,2n a n = 解232n a n =<,得n 42<所以32n a <成立的n 的最大值为5 故答案为:57.(2019·河北高考模拟(理))已知数列{}n a 的前n 项和为n S ,且()2119*2n n n nS S n N +-+=∈,若24a <-,则n S 取最小值时n =__________.【答案】10 【解析】由21192n n n nS S +-+=,()21(1)1912n n n n S S ----+=,两式作差可得:1110(2)n n S S n n +--=-≥,即110(2)n n a a n n ++=-≥,由110n na a n ++=-,219n n a a n +++=-,两式作差可得:21(2)n n a a n +-=≥,则328a a +=-,24a <-,故234a a <-<,进一步可得:4567891011,,,a a a a a a a a <<<<,又10110a a +=,则10110a a <<,且111212130a a a a <+<+<,则n S 取最小值时10n =.8.(2019·河南高考模拟(理))记首项为11(0)a a >,公差为d 的等差数列{}n a 的前n 项和为n S ,若1212a d =-,且1n n n S a S λ+≤+,则实数λ的取值范围为__________. 【答案】19,121⎡⎤⎢⎥⎣⎦【解析】由1n n n S a S λ+≤+,得11n n n n S S a a λ++-=≤. 因为10a >,所以0d <,()12312n a a n d n d ⎛⎫=+-=-⎪⎝⎭. 所以当111n ≤≤时,0n a >,当12n ≥时,0n a <. (1)当111n ≤≤时,由1n n a a λ+≥得1211223n n n n n a a d d a a a n λ++≥==+=+-. 因为221911223212321n +≤+=-⨯-,所以1921λ≥.(2)当12n ≥时,由1n n a a λ+≥得121223n n a a n λ+≤=+-. 因为211223n +>-,所以1λ≤.综上所述,λ的取值范围是19,121⎡⎤⎢⎥⎣⎦. 9.(2019·四川重庆南开中学高考模拟(理))在正项递增等比数列{}n a 中,51a =,记12...n n S a a a =+++,12111...n nT a a a =+++,则使得n n S T ≤成立的最大正整数n 为__________. 【答案】9【解析】由题得11111(1)(1)(1)11(1)1n nn nq q a q a q q q a q q--⋅-≤=---,因为数列是正项递增等比数,所以10,1a q >>,所以2111n a q -≤.因为51a =,所以44281111,,a q a q a q --=∴=∴=,所以81901,,9n n q qq q n ---⋅≤∴≤∴≤.所以使得n n S T ≤成立的最大正整数n 为9. 故答案为:910.(2017·吉林高考模拟(理))已知数列{}n a 满足()113,31.2n n a a a n N *+==-∈ (1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列; (2)若数列{}n c 满足312log ,n n n n c a T c c c ==+++,求证:()1.2n n n T ->【答案】(1) 见解析;(2)见解析. 【解析】(1) 由题可知()*n N∈,从而有13n n b b +=,11112b a =-=,所以{}n b 是以1为首项,3为公比的等比数列.(2) 由(1)知13n n b -=,从而1132n n a -=+,11331log 3log 312n n n c n --⎛⎫=+>=- ⎪⎝⎭,有()12101212n n n n T c c c n -=+++>+++-=,所以()12n n n T ->.11.(2019·江苏金陵中学高考模拟)已知各项均为正整数的数列{a n }的前n 项和为S n ,满足:S n ﹣1+ka n =ta n 2﹣1,n≥2,n∈N *(其中k ,t 为常数).(1)若k =12,t =14,数列{a n }是等差数列,求a 1的值; (2)若数列{a n }是等比数列,求证:k <t . 【答案】(1)a 1=(2)见解析 【解析】(1)∵k=12,t =14,∴2111124n n n S a a -+=-(n≥2),设等差数列{a n }的公差为d ,令n =2,则212211a a a 124+=-,令n =3,则2123311124a a a a ++=-,两式相减可得:()()()2332321124a a a a a a +=+-,∵a n >0,∴a 3﹣a 2=2=d .由212211124a a a +=-,且d =2,化为2112a a -﹣4=0,a 1>0.解得a 1=(2)∵S n ﹣1+ka n =ta n 2﹣1①,n≥2,n∈N *,所以S n +ka n+1=2n 1ta +﹣1②, ②-①得a n +ka n+1﹣ka n =2n 1ta +﹣2n ta ,∴a n =(a n+1﹣a n )[t (a n+1+a n )﹣k], 令公比为q >0,则a n+1=a n q ,∴(q ﹣1)k+1=ta n (q 2﹣1), ∴1=(q ﹣1)[ta n (q+1)﹣k];∵对任意n≥2,n∈N *, 1=(q ﹣1)[ta n (q+1)﹣k]成立;∴q≠1,∴a n 不是一个常数; ∴t=0,∴S n ﹣1+ka n =﹣1,且{a n }是各项均为正整数的数列,∴k<0, 故k <t .12.(2019·天津高考模拟(理))已知单调等比数列{}n a ,首项为12,其前n 项和是n S ,且3312a S +,5S ,44a S +成等差数列,数列{}n b 满足条件1231(2)n b na a a a =(1)求数列{}n a 、{}n b 的通项公式; (2)设1n n nc a b =-,记数列{}n c 的前n 项和是n T . ①求n T ;②求正整数k ,使得对任意*n N ∈,均有k n T T ≥.【答案】(1)12nn a ⎛⎫= ⎪⎝⎭,(1)n b n n =+;(2)①.1112n n T n =-+;②.4k =. 【解析】(1)设11n n a a q -=.由已知得53344122S a S a S =+++,即5341222S a S =+, 进而有()543122S S a -=.所以53122a a =,即214q =,则12q =±.由已知数列{}n a 是单调等比数列,且112a =,所以取12q =.数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭. 1231(2)n b na a a a =,(1)2322222222n b n nn+∴⨯⨯⨯⨯==,则(1)n b n n =+.即数列{}n b 的通项公式为(1)n b n n =+. (2)①.由(1)可得:1111112(1)21n n n n n c a b n n n n ⎛⎫=-=-=-- ⎪++⎝⎭, 分组求和可得:1111112112n n nT n n ⎛⎫=---=- ⎪++⎝⎭. ②由于11111111(1)(2)222122(1)(2)n n n n n n n n T T n n n n ++++++--=--+=++++, 由于12n +比()()12n n ++变化快,所以令10n n T T +->得4n <. 即1234,,,T T T T 递增,而456,,n T T T T 递减.所以,4T 最大.即当4k =时,k n T T ≥.13.(2019·安徽高考模拟(文))已知数列为等差数列,且公差,其前项和为,,且,,成等比数列. (1)求等差数列的通项公式;(2)设,记数列的前项和为,求证.【答案】(1);(2)证明见解析.【解析】 (1)由题意得: ,解得:,∴(2)由(1)得,∴ ∴14.(2019·广东高考模拟(理))已知数列{}n a 满足11*121(22)2()n n n a a a n N n-++++=∈.(1)求12,a a 和{}n a 的通项公式;(2)记数列{}n a kn -的前n 项和为n S ,若4n S S ≤对任意的正整数n 恒成立,求实数k 的取值范围. 【答案】(1) 1a 4= 26;a = 22n a n =+ (2) 125[,].52【解析】(1)由题意得111222?2n n n a a a n -++++=,所以23112124,222,a a a =⨯=+=⨯得26;a =由111222?2n n n a a a n -++++=,所以()2121221?2n n n a a a n --+++=-(2n ≥),相减得()1+12?21?2n n n n a n n -=--,得22,1n a n n =+=当也满足上式. 所以{}n a 的通项公式为22n a n =+.(2)数列{}n a kn -的通项公式为()2222,n a kn n kn k n -=+-=-+ 是以4k -为首项,公差为2k -的等差数列,若4n S S ≤对任意的正整数n 恒成立,等价于当4n =时,n S 取得最大值,所以()()4544220,55220.a k k a k k ⎧-=-+≥⎪⎨-=-+≤⎪⎩解得125.52k ≤≤ 所以实数k 的取值范围是125,.52⎡⎤⎢⎥⎣⎦ 15.(2017·浙江高考模拟)已知无穷数列{}n a 的首项112a =,*1111,2n n n a n N a a +⎛⎫=+∈ ⎪⎝⎭. (Ⅰ)证明: 01n a <<;(Ⅱ) 记()211n n nn n a a b a a ++-=, n T 为数列{}n b 的前n 项和,证明:对任意正整数n , 310n T <. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)证明:①当1n =时显然成立;②假设当n k = ()*k N ∈时不等式成立,即01k a <<, 那么当1n k =+时,11112k k k a a a +⎛⎫=+ ⎪⎝⎭ > 1·12=,所以101k a +<<, 即1n k =+时不等式也成立.综合①②可知, 01n a <<对任意*n N ∈成立. (Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列. 又1111112n n n n n a a a a a +⎛⎫-=-+ ⎪⎝⎭ 112n n a a ⎛⎫=- ⎪⎝⎭,易知1n n a a ⎧⎫-⎨⎬⎩⎭为递减数列, 所以111nn a a +⎧⎫-⎨⎬⎩⎭也为递减数列, 所以当2n ≥时,111n n a a +-22112a a ⎛⎫≤- ⎪⎝⎭154245⎛⎫=- ⎪⎝⎭ 940= 所以当2n ≥时, ()211n n nn n a a b a a ++-== ()()11111940n n n n n n a a a a a a +++⎛⎫--<- ⎪⎝⎭当1n =时, 11934010n T T b ===<,成立; 当2n ≥时, 12n n T b b b =+++ < ()()()32431994040n n a a a a a a +⎡⎤+-+-++-⎣⎦()12994040n a a +=+- ()2999942731140404040510010a ⎛⎫<+-=+-=< ⎪⎝⎭ 综上,对任意正整数n , 310n T <16.(2017·浙江高考模拟)已知数列{}n a 满足: 11p ap +=, 1p >, 11ln n n na a a +-=.(1)证明: 11n n a a +>>; (2)证明:12112n nn n a a a a ++<<+; (3)证明:()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析. 【解析】(1)先用数学归纳法证明1n a >. ①当1n =时,∵1p >,∴111p a p+=>; ②假设当n k =时, 1k a >,则当1n k =+时, 1111ln 1k k k k k a a a a a +--=>=-. 由①②可知1n a >. 再证1n n a a +>.111ln ln ln n nn nn n n n na a a a a a a a a +----=-=, 令()1ln f x x x x =--, 1x >,则()'ln 0f x x =-<, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=,所以1ln 0ln n n nna a a a --<,即1n n a a +>.(2)要证12112n nn n a a a a ++<<+,只需证2111ln 2n n n n n a a a a a -+<<+, 只需证()2210,{1220,n n n n n na lna a a lna a -+<+-+>其中1n a >, 先证22ln 10n n n a a a -+<,令()22ln 1f x x x x =-+, 1x >,只需证()0f x <. 因为()()'2ln 2221220f x x x x x =+-<-+-=, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=. 再证()1ln 220n n n a a a +-+>,令()()1ln 22g x x x x =+-+, 1x >,只需证()0g x >,()11'ln 2ln 1x g x x x x x +=+-=+-, 令()1ln 1h x x x =+-, 1x >,则()22111'0x h x x x x -=-=>,所以()h x 在()1,+∞上单调递增,所以()()10h x h >=,从而()'0g x >,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=, 综上可得12112n nn n a a a a ++<<+. (3)由(2)知,一方面, 1112n n a a ---<,由迭代可得()1111111122n n n a a p --⎛⎫⎛⎫-<-= ⎪⎪⎝⎭⎝⎭,因为ln 1x x ≤-,所以111ln 12n n n a a p -⎛⎫≤-< ⎪⎝⎭,所以()1212ln ln ln ln n n a a a a a a ⋯=++⋯+ 0111111222n p -⎡⎤⎛⎫⎛⎫⎛⎫<++⋯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 111112121212nn n p p -⎛⎫- ⎪-⎝⎭=⨯=⨯-;另一方面,即11112n n n na a a a ++-->, 由迭代可得111111111212n n nn a a a a p ----⎛⎫⎛⎫>⨯= ⎪ ⎪+⎝⎭⎝⎭.因为1ln 1x x ≥-,所以1ln 1n n a a ≥- 11112n p -⎛⎫> ⎪+⎝⎭,所以()01112121111ln ln ln ln 1222n n n a a a a a a p -⎡⎤⎛⎫⎛⎫⎛⎫⋯=++⋯+>⨯++⋯+⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦112112n n p --=⨯+;综上,()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+.。

新高考数学高考数学压轴题 等差数列选择题专项训练分类精编及答案(2)

新高考数学高考数学压轴题 等差数列选择题专项训练分类精编及答案(2)

一、等差数列选择题1.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) A .3、8、13、18、23 B .4、8、12、16、20 C .5、9、13、17、21 D .6、10、14、18、22解析:C 【分析】根据首末两项求等差数列的公差,再求这5个数字. 【详解】在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则712514716a a d --===-, 则这5个数依次是5,9,13,17,21. 故选:C2.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15 B .30C .3D .64解析:A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A3.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020 D .2021解析:B 【分析】根据递推关系式求出数列的通项公式即可求解. 【详解】由121()2n n a a n N *++=∈,则11()2n n a a n N *+=+∈, 即112n n a a +-=, 所以数列{}n a 是以1为首项,12为公差的等差数列, 所以()()11111122n n a a n d n +=+-=+-⨯=, 所以2021a =2021110112+=. 故选:B4.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36 B .48 C .56 D .72解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.5.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .5解析:A 【分析】由2219a a =,可得14a d =-,从而得2922n d d S n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-,对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A6.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26C .52D .56解析:B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B.7.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .13解析:B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B8.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60 B .120C .160D .240解析:B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B.9.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( ) A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++ 解析:D 【分析】当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++,()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确; D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.故选:D . 【点睛】关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求解,在变形过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 10.已知数列{}n a 中,132a =,且满足()*1112,22n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有n a nλ≥成立,则实数λ的最小值是( ) A .2 B .4C .8D .16解析:A 【分析】 将11122n n n a a -=+变形为11221n n n n a a --=+,由等差数列的定义得出22n n n a +=,从而得出()22n n n λ+≥,求出()max22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,11122n n n a a -=+,所以11221n n n n a a --=+,而1123a = 所以数列{}2n n a 是首项为3公差为1的等差数列,故22nn a n =+,从而22n n n a +=. 又因为n a n λ≥恒成立,即()22n n n λ+≥恒成立,所以()max22n n n λ+⎡⎤≥⎢⎥⎣⎦.由()()()()()()()1*121322,221122n n nn n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨+-+⎪≥⎪⎩N 得2n = 所以()()2max2222222n n n +⨯+⎡⎤==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A11.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10 B .9C .8D .7解析:A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A12.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85解析:C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a k b k ⨯-==⨯-,故选:C .13.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( )A .21B .20C .19D .19或20解析:B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 14.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4 D .-4解析:A 【详解】 由()()18458884816222a a a a S +⨯+⨯⨯====.故选A.15.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .0解析:A 【分析】 转化条件为122527n na a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解.二、等差数列多选题16.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2 B .5C .3D .4解析:BD 【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1n n a a -的最大值为3. 故选:BD .【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 17.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值解析:AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定; 18.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD19.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S += B .27S S =C .5S 最小D .50a =解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.20.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n+⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.21.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k N k ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k kk aa a a a a a a kp +++++--+-+-++-=,222k k aa kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.22.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 解析:ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7nnN,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6n n N上单调递增,1na 在7n n N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 23.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( ) A .2n S n = B .223n S n n =-C .21n a n =-D .35n a n =-解析:AC 【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.24.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 解析:ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.25.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值解析:AC 【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值. 【详解】解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC . 【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。

2024年高考数学新题型之19题压轴题专项汇编(解析版)

2024年高考数学新题型之19题压轴题专项汇编(解析版)

2024新题型之19压轴题1.命题方向2024新题型之19压轴题以大学内容为载体的新定义题型以数列为载体的新定义题型以导数为载体的新定义题型两个知识交汇2.模拟演练题型01以大学内容为载体的新定义题型1(2024·安徽合肥·一模)“q -数”在量子代数研究中发挥了重要作用.设q 是非零实数,对任意n ∈N *,定义“q -数”(n )q =1+q +⋯+q n -1利用“q -数”可定义“q -阶乘”n !q =(1)q (2)q ⋯(n )q ,且0 !q =1.和“q -组合数”,即对任意k ∈N ,n ∈N *,k ≤n ,n kq =n !qk !q n -k !q(1)计算:532;(2)证明:对于任意k ,n ∈N *,k +1≤n ,n k q =n -1k -1q +q k n -1kq(3)证明:对于任意k ,m ∈N ,n ∈N *,k +1≤n ,n +m +1k +1 q -n k +1 q =∑m i =0q n -k +i n +ikq.【解】(1)由定义可知,532=5 !23 !22 !2=(1)2(2)2(3)2(4)2(5)2(1)2(2)2(3)2 (1)2(2)2=(4)2(5)2(1)2(2)2=1+2+22+23 1+2+22+23+24 1×1+2=155.(2)因为n kq =n !qk !q n -k !q =(n )q ⋅n -1 !q k !q n -k !q,n -1k -1q +q k n -1kq =n -1 !q k -1 !q n -k !q +q k ⋅n -1 !q k !q n -k -1 !q=n -1 !q k !q n -k !q(k )q +q k⋅(n -k )q .又(k )q +q k ⋅(n -k )q =1+q +⋯+q k -1+q k 1+q +⋯+q n -k -1=1+q +⋯+q n -1=(n )q ,所以n k q =n -1k -1q +q k n -1kq(3)由定义得:对任意k ∈N ,n ∈N *,k ≤n ,n k q =nn -kq.结合(2)可知n k q =n n -kq =n -1n -k -1q +q n -k n -1n -kq=n -1kq +q n -kn -1k -1q即n k q =n -1kq +q n -k n -1k -1q,也即n k q -n -1k q =q n -k n -1k -1q.所以n +m +1k +1q -n +m k +1 q =q n +m -k n +mkq,n +m k +1 q -n +m -1k +1q =q n +m -1-k n +m -1kq,⋯⋯n +1k +1 q -n k +1 q =q n -k nkq.上述m +1个等式两边分别相加得:n +m +1k +1q -n k +1 q =∑m i =0q n -k +i n +ikq.2(2024·广东江门·一模)将2024表示成5个正整数x 1,x 2,x 3,x 4,x 5之和,得到方程x 1+x 2+x 3+x 4+x 5=2024①,称五元有序数组x 1,x 2,x 3,x 4,x 5 为方程①的解,对于上述的五元有序数组x 1,x 2,x 3,x 4,x 5 ,当1≤i ,j ≤5时,若max (x i -x j )=t (t ∈N ),则称x 1,x 2,x 3,x 4,x 5 是t -密集的一组解.(1)方程①是否存在一组解x 1,x 2,x 3,x 4,x 5 ,使得x i +1-x i i =1,2,3,4 等于同一常数?若存在,请求出该常数;若不存在,请说明理由;(2)方程①的解中共有多少组是1-密集的?(3)记S =5i =1x 2i ,问S 是否存在最小值?若存在,请求出S 的最小值;若不存在,请说明理由.【解】(1)若x i +1-x i i =1,2,3,4 等于同一常数,根据等差数列的定义可得x i 构成等差数列,所以x 1+x 2+x 3+x 4+x 5=5x 3=2024,解得x 3=20245,与x 3∈N *矛盾,所以不存在一组解x 1,x 2,x 3,x 4,x 5 ,使得x i +1-x i i =1,2,3,4 等于同一常数;(2)因为x =15x 1+x 2+x 3+x 4+x 5 =20245=404.8,依题意t =1时,即当1≤i ,j ≤5时,max (x i -x j )=1,所以max x i =405,min x j =404,设有y 个405,则有5-y 个404,由405y +4045-y =2024,解得y =4,所以x 1,x 2,x 3,x 4,x 5中有4个405,1个404,所以方程①的解共有5组.(3)因为平均数x =15x 1+x 2+x 3+x 4+x 5 =20245=404.8,又方差σ2=155i =1x i -x 2 ,即5σ2=5i =1x i -x 2 =5i =1x 2i -5x 2,所以S =5σ2+5x 2,因为x 为常数,所以当方差σ2取最小值时S 取最小值,又当t =0时x 1=x 2=x 3=x 4=x 5,即5x 1=2024,方程无正整数解,故舍去;当t =1时,即x 1,x 2,x 3,x 4,x 5 是1-密集时,S 取得最小值,且S min =4×4052+4042=819316.3(2024·江苏四校一模)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D 四点的交比,记为(A ,B ;C ,D ).(1)证明:1-(D ,B ;C ,A )=1(B ,A ;C ,D );(2)若l 1,l 2,l 3,l 4为平面上过定点P 且互异的四条直线,L 1,L 2为不过点P 且互异的两条直线,L 1与l 1,l 2,l 3,l 4的交点分别为A 1,B 1,C 1,D 1,L 2与l 1,l 2,l 3,l 4的交点分别为A 2,B 2,C 2,D 2,证明:(A 1,B 1;C 1,D 1)=(A 2,B 2;C 2,D 2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG 与△E ′F ′G ′的对应边不平行,对应顶点的连线交于同一点,则ΔEFG 与△E ′F ′G ′对应边的交点在一条直线上.【解】证明:(1)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用,设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D 四点的交比,记为(A ,B ;C ,D ).1-(D ,B ;C ,A )=1-DC ⋅BA BC ⋅DA =BC ⋅AD +DC ⋅BABC ⋅AD =BC ⋅(AC +CD )+CD ⋅AB BC ⋅AD,=BC ⋅AC +BC ⋅CD +CD ⋅AB BC ⋅AD =BC ⋅AC +AC ⋅CD BC ⋅AD =AC ⋅BD BC ⋅AD =1(B ,A ;C ,D );(2)(A1,B 1;C 1,D 1)=A 1C 1⋅B 1D 1B 1C 1⋅A 1D 1=S △PA 1C 1⋅S △PB 1D 1S △PB 1C 1⋅S △PA 1D 1=12⋅PA 1⋅PC 1⋅sin ∠A 1PC 1⋅12⋅PB 1⋅PD 1⋅sin ∠B 1PD 112⋅PB 1⋅PC 1⋅sin ∠B 1PC 1⋅12⋅PA 1⋅PD 1⋅sin ∠A 1PD 1=sin ∠A 1PC 1⋅sin ∠B 1PD 1sin ∠B 1PC 1⋅sin ∠A 1PD 1=sin ∠A 2PC 2⋅sin ∠B 2PD 2sin ∠B 2PC 2⋅sin ∠A 2PD 2=S △PA 2C 2⋅S △PB 2D 2S △PB 2C 2⋅S △PA 2D 2=A 2C 2⋅B 2D 2B 2C 2⋅A 2D 2=(A 2,B 2;C 2,D 2);(3)设EF 与E ′F ′交于X ,FG 与F ′G ′交于Y ,EG 与E ′G ′交于Z ,连接XY ,FF ′与XY 交于L ,EE ′与XY 交于M ,GG ′与XY 交于N ,欲证X ,Y ,Z 三点共线,只需证Z 在直线XY 上,考虑线束XP ,XE ,XM ,XE ′,由第(2)问知(P ,F ;L ,F ′)=(P ,E ;M ,E ′),再考虑线束YP ,YF ,YL ,YF ′,由第(2)问知(P ,F ;L ,F ′)=(P ,G ;N ,G ′),从而得到(P ,E ;M ,E ′)=(P ,G ;N ,G ′),于是由第(2)问的逆命题知,EG ,MN ,E ′G ′交于一点,即为点Z ,从而MN 过点Z ,故Z 在直线XY 上,X ,Y ,Z 三点共线.题型02以数列为载体的新定义题型4(2024·安徽黄山·一模)随着信息技术的快速发展,离散数学的应用越来越广泛.差分和差分方程是描述离散变量变化的重要工具,并且有广泛的应用.对于数列a n ,规定Δa n 为数列a n 的一阶差分数列,其中Δa n =a n +1-a n n ∈N * ,规定Δ2a n 为数列a n 的二阶差分数列,其中Δ2a n =Δa n +1-Δa nn ∈N *.(1)数列a n 的通项公式为a n =n 3n ∈N * ,试判断数列Δa n ,Δ2a n 是否为等差数列,请说明理由?(2)数列log a b n 是以1为公差的等差数列,且a >2,对于任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,求a 的值;(3)各项均为正数的数列c n 的前n 项和为S n ,且Δc n 为常数列,对满足m +n =2t ,m ≠n 的任意正整数m,n,t都有c m≠c n,且不等式S m+S n>λS t恒成立,求实数λ的最大值.【解】(1)因为a n=n3,所以Δa n=a n+1-a n=n+13-n3=3n2+3n+1,因为Δa1=7,Δa2=19,Δa3=37,故Δa2-Δa1=12,Δa3-Δa2=18,显然Δa2-Δa1≠Δa3-Δa2,所以Δa n不是等差数列;因为Δ2a n=Δa n+1-Δa n=6n+6,则Δ2a n+1-Δ2a n=6,Δ2a1=12,所以Δ2a n是首项为12,公差为6的等差数列.(2)因为数列log a b n是以1为公差的等差数列,所以log a b n+1-log a b n=1,故b n+1b n=a,所以数列b n是以公比为a的正项等比数列,b n=b1a n-1,所以Δ2b n=Δb n+1-Δb n=b n+2-b n+1-b n+1-b n=b n+2-2b n+1+b n,且对任意的n∈N*,都存在m∈N*,使得Δ2b n=b m,即b1a n+1-2b1a n+b1a n-1=b1a m-1,所以a-12=a m-n,因为a>2,所以m-n>0,①若m-n=1,则a2-3a+1=0,解得a=3-52(舍),或a=3+52,即当a=3+52时,对任意的n∈N*,都存在m∈N*,使得Δ2b n=b m=b n+1.②若m-n≥2,则a m-n≥a2>a-12,对任意的n∈N*,不存在m∈N*,使得Δ2b n=b m.综上所述,a=3+5 2.(3)因为Δc n为常数列,则c n是等差数列,设c n的公差为d,则c n=c1+n-1d,若d=0,则c n=c m,与题意不符;若d<0,所以当n>1-c1d时,c n<0,与数列c n的各项均为正数矛盾,所以d>0,由等差数列前n项和公式可得S n=d2n2+c1-d2n,所以S n+S m=d2n2+m2+c1-d2n+m,因为m+n=2t,所以S t=d2n+m22+c1-d2n+m2,因为m≠n,故n2+m22>n+m22,所以S n+S m=d2n2+m2+c1-d2n+m>d2×n+m22+c1-d2n+m=2S t则当λ≤2时,不等式S m +S n >λS t 恒成立,另一方面,当λ>2时,令m =t +1,n =t -1,n ∈N *,t ≥2,则S n +S m =d 22t 2+2 +2t c 1-d 2 ,S t =d 2t 2+c 1-d 2t ,则λS t -S n +S m =d 2λt 2+c 1-d 2 λt -d 22t 2+2 -2t c 1-d2=d2λ-dt 2-t +λ-2 c 1t -d ,因为d2λ-d >0,t 2-t ≥0,当t >dλ-2 c 1时,λS t -S n +S m >0,即S n +S m <λS t ,不满足不等式S m +S n >λS t 恒成立,综上,λ的最大值为2.5(2024·辽宁葫芦岛·一模)大数据环境下数据量积累巨大并且结构复杂,要想分析出海量数据所蕴含的价值,数据筛选在整个数据处理流程中处于至关重要的地位,合适的算法就会起到事半功倍的效果.现有一个“数据漏斗”软件,其功能为;通过操作L M ,N 删去一个无穷非减正整数数列中除以M 余数为N 的项,并将剩下的项按原来的位置排好形成一个新的无穷非减正整数数列.设数列a n 的通项公式a n =3n -1,n ∈N +,通过“数据漏斗”软件对数列a n 进行L 3,1 操作后得到b n ,设a n +b n 前n 项和为S n .(1)求S n ;(2)是否存在不同的实数p ,q ,r ∈N +,使得S p ,S q ,S r 成等差数列?若存在,求出所有的p ,q ,r ;若不存在,说明理由;(3)若e n =nS n2(3n-1),n ∈N +,对数列e n 进行L 3,0 操作得到k n ,将数列k n 中下标除以4余数为0,1的项删掉,剩下的项按从小到大排列后得到p n ,再将p n 的每一项都加上自身项数,最终得到c n ,证明:每个大于1的奇平方数都是c n 中相邻两项的和.【解】(1)由a n =3n -1,n ∈N +知:当n =1时,a 1=1;当n ≥2时a n3∈N +,故b n =3n ,n ∈N +,则S n =4∑ni =13n -1=4×1-3n1-3=23n -1 ,n ∈N +;(2)假设存在,由S n 单调递增,不妨设p <q <r ,2S q =S p +S r ,p ,q ,r ∈N +,化简得3p -q+3r -q=2,∵p -q <0,∴0<3p -q<1,∴1<3r -q<2,∴0<r -q <log 23<1,与“q <r ,且q ,r ∈N +”矛盾,故不存在;(3)由题意,e n =nS n 2(3n -1)=n ×2(3n -1)2(3n -1)=n ,则e 3n =3n ,e 3n -2=3n -2,e 3n -1=3n -1,所以保留e 3n -2,e 3n -1,则k 2n -1=3n -2,k 2n =3n -1,n ∈N +,又k 4n +1=6n +1,k 4n +2=6n +2,k 4n +3=6n +4,k 4n +4=6n +5,n ∈N +,将k 4n ,k 4n +1删去,得到p n ,则p 2n +1=6n +2,p 2n +2=6n +4,c 2n +1=6n +2 +2n +1 =8n +3,c 2n +2=6n +4 +2n +2 =8n +6,n ∈N +,即:c 2n -1=8n -5,c 2n =8n -2,n ∈N +,即:c n =4n -1,n =2k -14n -2,n =2k,k ∈N +,记r k =k k +12,下面证明:(2k +1)2=c r k+c r k-1,由r 4m =8m 2+2m ,r 4m +1=8m 2+6m +1,r 4m +2=8m 2+10m +3,r 4m +3=8m 2+14m +6,k =4m 时,r 4m =8m 2+2m ,r 4m +1=8m 2+2m +1,c r 4tm+c r4m -1=48m 2+2m -2 +48m 2+2m +1 -1=64m 2+16m +1=(2×4m +1)2;k =4m +1时,r 4m -1=8m 2+6m +1,r 4m +1=8m 2+6m +2,c r4m -1+c r4m +1-1=48m 2+6m +1 -1 +48m 2+6m +2 -2=64m 2+48m +9=24m +1 +1 2;k =4m +2时,k 4m +2=8m 2+10m +3,k 4m +2+1=8m 2+10m +4,c k4m -2+c k4m -2+1=48m 2+10m +3 -1 +48m 2+10m +4 -2=64m 2+80m +25=24m +2 +1 2;k =4m +3时,r 4m +3=8m 2+14m +6,r 4m +3+1=8m 2+14m +7,c r4m +3+c r4m +3+1=48m 2+14m +6 -2 +48m 2+14m +7 -1=64m 2+112m +49=24m +3 +1 2,综上,对任意的k ∈N +,都有2k +1 2=c r k+c r k+1,原命题得证.6(2024·山东青岛·一模)记集合S =a n |无穷数列a n 中存在有限项不为零,n ∈N * ,对任意a n ∈S ,设变换f a n =a 1+a 2x +⋯+a n x n -1+⋯,x ∈R .定义运算⊗:若a n ,b n ∈S ,则a n ⊗b n∈S ,f a n ⊗b n =f a n ⋅f b n .(1)若a n ⊗b n =m n ,用a 1,a 2,a 3,a 4,b 1,b 2,b 3,b 4表示m 4;(2)证明:a n ⊗b n ⊗c n =a n ⊗b n ⊗c n ;(3)若a n =n +12+1n n +1,1≤n ≤1000,n >100,b n=12203-n,1≤n ≤5000,n >500,d n =a n ⊗b n ,证明:d 200<12.【解】(1)因为f a n ⊗b n =f a n ⋅f b n =a 1+a 2x +a 3x 2+a 4x 3⋯ b 1+b 2x +b 3x 2+b 4x 3⋯ =⋅⋅⋅+a 1b 4+a 2b 3+a 3b 2+a 4b 1 x 3+⋅⋅⋅,且f m n =m 1+m 2x +m 3x 2+m 4x 3+⋯,所以,由a n ⊗b n =m n 可得m 4x 3=(a 1b 4+a 2b 3+a 3b 2+a 4b 1)x 3,所以m 4=a 1b 4+a 2b 3+a 3b 2+a 4b 1.(2)因为f ({a n }⊗{b n })=f ({a n })⋅f ({b n }),所以f ({a n })⋅f ({b n })⋅f ({c n })=f ({a n }⊗{b n })⋅f ({c n })=f (({a n }⊗{b n })⊗{c n })又因为f a n ⋅f b n ⋅f c n =f a n ⋅f b n ⋅f c n =f ({a n })⋅f ({b n }⊗{c n })=f ({a n }⊗({b n }⊗{c n }))所以f (({a n }⊗{b n })⊗f {c n })=f ({a n }⊗({b n }⊗f {c n })),所以a n ⊗b n ⊗c n =a n ⊗b n ⊗c n .(3)对于{a n },{b n }∈S ,因为(a 1+a 2x +⋯+a n x n -1+⋯)(b 1+b 2x +⋯+b n x n -1+⋯)=d 1+d 2x +⋯+d n x n -1+⋯,所以d n x n -1=a 1(b n x n -1)+⋯+a k x k -1(b n +1-k x n -k )+⋯+a n -1x n -2(b 2x )+a n x n -1b 1,所以d n =a 1b n +a 2b n -1+⋯+a k b n +1-k +⋯+a n -1b 2+a n b 1,所以a n ⊗b n =d n =∑nk =1a kb n +1-k ,d 200=200k =1a k b 201-k =100k =1a k b 201-k +200k =101a k b 201-k =100k =1a k b 201-k =100k =1(k +1)2+1k (k +1)2k +2,所以d 200=∑100k =112k +21+2k -1k +1,=∑100k =112k +2+∑100k =11k ⋅2k +1-1k +1 ⋅2k +2=12-102101×2102<12.7(2024·江苏徐州·一模)对于每项均是正整数的数列P :a 1,a 2,⋯,a n ,定义变换T 1,T 1将数列P 变换成数列T 1P :n ,a 1-1,a 2-1,⋯,a n -1.对于每项均是非负整数的数列Q :b 1,b 2,⋯,b m ,定义S (Q )=2(b 1+2b 2+⋯+mb m )+b 21+b 22+⋯+b 2m ,定义变换T 2,T 2将数列Q 各项从大到小排列,然后去掉所有为零的项,得到数列T 2Q .(1)若数列P 0为2,4,3,7,求S T 1P 0 的值;(2)对于每项均是正整数的有穷数列P 0,令P k +1=T 2T 1P k ,k ∈N .(i )探究S T 1P 0 与S P 0 的关系;(ii )证明:S P k +1 ≤S P k .【解】(1)依题意,P 0:2,4,3,7,T 1P 0 :4,1,3,2,6,S T 1P 0 =2(4+2×1+3×3+4×2+5×6)+16+1+9+4+36=172.(2)(i )记P 0:a 1,a 2,⋯,a n ,(a 1,a 2,⋯,a n ∈N *),T 1P 0 :n ,a 1-1,a 2-1,⋯,a n -1,S (T 1(P 0))=2[n +2(a 1-1)+3(a 2-1)+⋯+(n +1)(a n -1)]+n 2+(a 1-1)2+(a 2-1)2+⋯+(a n -1)2,S (P 0)=2(a 1+2a 2+3a 3+⋯+na n )+a 21+a 22+⋯+a 2n ,S (T 1(P 0))-S (P 0)=2n +2a 1+2a 2+⋯+2a n -4-6-⋯-2(n +1)+n 2-2a 1-2a 2-⋯-2a n +n =n 2+3n -(2n +6)⋅n2=0,所以S (T 1(P 0))=S (P 0).(ii )设A 是每项均为非负整数的数列a 1,a 2,⋯,a n ,当存在1≤i <j ≤n ,使得a i ≤a j 时,交换数列A 的第i 项与第j 项得到数列B ,则S (B )-S (A )=2(ia j +ja i -ia i -ja j )=2(i -j )(a j -a i )≤0,当存在1≤m <n ,使得a m +1=a m +2=⋯=a n =0时,若记数列a 1,a 2,⋯,a m 为C ,则S (C )=S (A ),因此S T 2(A ) ≤S (A ),从而对于任意给定的数列P 0,由P k +1=T 2T 1P k (k =0,1,2,⋯),S P k +1 ≤S T 1P k ,由(i )知S T 1P k =S P k ,所以S P k +1 ≤S P k .题型03以导数为载体的新定义题型8(2024·广东惠州·一模)黎曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数f x =x s -1e x -1(x >0,s >1,s 为常数)密切相关,请解决下列问题.(1)当1<s ≤2时,讨论f x 的单调性;(2)当s >2时;①证明f x 有唯一极值点;②记f x 的唯一极值点为g s ,讨论g s 的单调性,并证明你的结论.【解】(1)由f x =x s -1e x -1,x ∈0,+∞ ,1<s ≤2可得fx =s -1 ⋅xs -2⋅e x -1 -x s -1⋅e x e x -1 2=x s -2⋅s -1-x ⋅e x -s -1e x -12,令h x =s -1-x ⋅e x -s -1 ,则h x =-e x +s -x -1 ⋅e x =s -x -2 ⋅e x ;又1<s ≤2,x >0,所以s -x -2<0,e x >0,即h x <0恒成立;即函数h x 在0,+∞ 上单调递减,又h 0 =0,所以h x <h 0 =0,可得fx =x s -2⋅s -1-x ⋅e x -s -1e x -12<0恒成立,因此函数f x 在0,+∞ 上单调递减,即当1<s ≤2时,函数f x 在0,+∞ 上单调递减;(2)当s >2时,①由(1)可知令h x =s -x -2 ⋅e x =0,可得x =s -2>0,易知当x ∈0,s -2 时,h x =s -x -2 ⋅e x >0,即函数h x 在0,s -2 上单调递增,当x ∈s -2,+∞ 时,h x =s -x -2 ⋅e x <0,即函数h x 在s -2,+∞ 上单调递减,即函数h x 在x =s -2处取得极大值,也是最大值;注意到h 0 =0,由单调性可得h s -2 >h 0 =0,可知h x 在0,s -2 大于零,不妨取x =2s -2,则h 2s -2 =1-s ⋅e 2s -2-s -1 =1-s e 2s -2+1 <0;由零点存在定理可知h x 存在唯一变号零点x 0∈s -2,+∞ ,所以fx =x s -2⋅s -1-x ⋅e x -s -1 e x -12存在唯一变号零点x 0满足f x 0 =0,由h x 单调性可得,当x ∈0,x 0 时,f x >0,当x ∈x 0,+∞ 时,f x <0;即可得函数f x 在0,x 0 上单调递增,在x 0,+∞ 单调递减;所以f x 有唯一极大值点x 0;②记f x 的唯一极值点为g s ,即可得x 0=g s由h x 0 =s -1-x 0 ⋅e x 0-s -1 =0可得s =x 0⋅e x 0e x 0-1+1,即可得g s 的反函数g -1s =x 0⋅ex 0e x 0-1+1,令φx =x ⋅e x e x -1+1,x ∈s -2,+∞ ,则φx =e x e x -x -1 e x -1 2,构造函数m x =e x -x -1,x ∈0,+∞ ,则m x =e x -1,显然m x =e x -1>0在0,+∞ 恒成立,所以m x 在0,+∞ 上单调递增,因此m x >m 0 =0,即e x >x +1在0,+∞ 上恒成立,而s >2,即s -2>0,所以e x >x +1在s -2,+∞ 上恒成立,即可得φx =e x e x -x -1e x -12>0在s -2,+∞ 上恒成立,因此g -1s 在s -2,+∞ 单调递增;易知函数g s 与其反函数g -1s 有相同的单调性,所以函数g s 在2,+∞ 上单调递增;9(2024·湖北·一模)英国数学家泰勒发现的泰勒公式有如下特殊形式:当f x 在x =0处的n n ∈N * 阶导数都存在时,f x =f 0 +f0 x +f 0 2!x 2+f 30 3!x 3+⋯+f n0 n !x n +⋯.注:f x 表示f x 的2阶导数,即为f x 的导数,f nx n ≥3 表示f x 的n 阶导数,该公式也称麦克劳林公式.(1)根据该公式估算sin12的值,精确到小数点后两位;(2)由该公式可得:cos x =1-x 22!+x 44!-x 66!+⋯.当x ≥0时,试比较cos x 与1-x 22的大小,并给出证明;(3)设n ∈N *,证明:nk =11(n +k )tan 1n +k>n -14n +2.【解】(1)令f x =sin x,则f (x)=cos x,f (x)=-sin x,f3 x =-cos x,f4 x =sin x,⋯故f0 =0,f (0)=1,f (0)=0,f3 0 =-1,f4 0 =0,⋯由麦克劳林公式可得sin x=x-x33!+x55!-x77!+⋯,故sin 12=12-148+⋯≈0.48.(2)结论:cos x≥1-x22,证明如下:令g x =cos x-1+x22,x≥0,令h x =g x =-sin x+x,h x =-cos x+1≥0,故h x 在0,+∞上单调递增,h x ≥h0 =0,故g x 在0,+∞上单调递增,g x ≥g0 =0,即证得cos x-1+x22≥0,即cos x≥1-x22.(3)由(2)可得当x≥0时,cos x≥1-x22,且由h x ≥0得sin x≤x,当且仅当x=0时取等号,故当x>0时,cos x>1-x22,sin x<x,1n+ktan1n+k =cos1n+kn+ksin1n+k>cos1n+kn+k⋅1n+k=cos1n+k>1-12(n+k)2,而12(n+k)2=2(2n+2k)2<2(2n+2k)2-1=22n+2k-12n+2k+1=12n+2k-1-12n+2k+1,即有1n+ktan1n+k>1-12n+2k-1-12n+2k+1故nk=11(n+k)tan1n+k>n-12n+1-12n+3+12n+3-12n+5+⋯+14n-1-14n+1=n-12n+1+1 4n+1而n-12n+1+14n+1-n-14n+2=14n+1-14n+2>0,即证得nk=11(n+k)tan1n+k>n-14n+2.10(2024·山东菏泽·一模)帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数f(x)在x=0处的[m,n]阶帕德近似定义为:R(x)=a0+a1x+⋯+a m x m1+b1x+⋯+b n x n,且满足:f(0)=R(0),f (0)=R (0),f (0)=R (0),⋯,f(m+n)(0)=R(m+n)(0).(注:f (x)=f (x),f (x)=f(x ) ,f (4)(x )=f (x ) ,f (5)(x )=f (4)(x ) ,⋯;f (n )(x )为f(n -1)(x )的导数)已知f (x )=ln (x +1)在x =0处的1,1 阶帕德近似为R (x )=ax1+bx.(1)求实数a ,b 的值;(2)比较f x 与R (x )的大小;(3)若h (x )=f (x )R (x )-12-m f (x )在(0,+∞)上存在极值,求m 的取值范围.【解】(1)由f (x )=ln (x +1),R (x )=ax1+bx,有f (0)=R (0),可知f (x )=1x +1,f (x )=-1(x +1)2,R (x )=a (1+bx )2,R(x )=-2ab (1+bx )3,由题意,f (0)=R (0),f (0)=R (0),所以a =1-2ab =-1 ,所以a =1,b =12.(2)由(1)知,R (x )=2x x +2,令φ(x )=f (x )-R (x )=ln (x +1)-2xx +2(x >-1),则φ(x )=1x +1-4(x +2)2=x 2(x +1)(x +2)2>0,所以φ(x )在其定义域(-1,+∞)内为增函数,又φ(0)=f (0)-R (0)=0,∴x ≥0时,φ(x )=f (x )-R (x )≥φ(0)=0;-1<x <0时,φ(x )=f (x )-R (x )<φ(0)=0;所以x ≥0时,f (x )≥R (x );-1<x <0时,f (x )<R (x ).(3)由h (x )=f (x )R (x )-12-m f (x )=1x +m ln (x +1),∴h(x )=-1x 2ln (x +1)+1x +m 1x +1=mx 2+x -(x +1)ln (x +1)x 2(x +1).由h (x )=f (x )R (x )-12-m f (x )在(0,+∞)上存在极值,所以h (x )在(0,+∞)上存在变号零点.令g (x )=mx 2+x -(x +1)ln (x +1),则g (x )=2mx +1-ln (x +1)+1 =2mx -ln (x +1),g (x )=2m -1x +1.①m <0时,g (x )<0,g (x )为减函数,g (x )<g (0)=0,g (x )在(0,+∞)上为减函数,g (x )<g (0)=0,无零点,不满足条件.②当2m >1,即m >12时,g (x )>0,g (x )为增函数,g (x )>g (0)=0,g (x )在(0,+∞)上为增函数,g (x )>g (0)=0,无零点,不满足条件.③当0<2m <1,即0<m <12时,令g (x )=0即2m =1x +1,∴x =12m-1.当0<x <12m -1时,g (x )<0,g (x )为减函数;x >12m -1时,g (x )>0,g (x )为增函数,∴g min (x )=g 12m -1=2m 12m -1 -ln 12m-1+1 =1-2m +ln2m ;令H (x )=1-x +ln x ,0<x <1,H (x )=-1+1x ,H (x )=-1+1x>0在0<x <1时恒成立,H(x)在0,1上单调递增,H(x)<H(1)=0,∴g12m-1=(1-2m)+ln2m<0恒成立;∵x>0,0<m<1,∴x(m-1)<0,则mx2-1>mx2-1+mx-x=x+1mx-1,∴mx2-1x+1>mx-1,∴1+mx2-1x+1-ln(x+1)>mx-ln(x+1);∵g(x)=(x+1)mx2+xx+1-ln(x+1),令l(x)=mx2+xx+1-ln(x+1)=1+mx2-1x+1-ln(x+1)>mx-ln(x+1)=m(x+1)-ln(x+1)-m,令F x =ln(x+1)-2x+1x>0,F x =1x+1-1x+1=1-x+1x+1<0,则F x 在0,+∞是单调递减,F x <F0 =-2,所以ln(x+1)<2x+1,∴l(x)>m(x+1)-2x+1-m=m2(x+1)-m+m2(x+1)-2x+1,令x=16m2-1,则x+1=16m2,∴m2(x+1)-2x+1≥0,m2(x+1)-m=8m-m>00<m<12.∴l(x)>0,即l16m2-1>0.由零点存在定理可知,l(x)在12m-1,+∞上存在唯一零点x0∈12m-1,16m2-1,又由③知,当0<x<12m-1时,g (x)<0,g (x)为减函数,g (0)=0,所以此时,g (x)<0,在0,12m-1内无零点,∴g(x)在(0,+∞)上存在变号零点,综上所述实数m的取值范围为0,12.题型04两个知识交汇11【概率与数列】(2024·山东聊城·一模)如图,一个正三角形被分成9个全等的三角形区域,分别记作A,B1,P,B2,C1,Q1,C2,Q,C3. 一个机器人从区域P出发,每经过1秒都从一个区域走到与之相邻的另一个区域(有公共边的区域),且到不同相邻区域的概率相等.(1)分别写出经过2秒和3秒机器人所有可能位于的区域;(2)求经过2秒机器人位于区域Q的概率;(3)求经过n秒机器人位于区域Q的概率.【解】(1)经过2秒机器人可能位于的区域为P、Q1,Q,经过3秒机器人可能位于的区域为A,B1,B2,C1,C2,C3;(2)若经过2秒机器人位于区域Q,则经过1秒时,机器人必定位于B2,P有三个相邻区域,故由P→B2的概率为p1=13,B2有两个相邻区域,故由B2→Q的概率为p2=12,则经过2秒机器人位于区域Q的概率为p1p2=13×12=16;(3)机器人的运动路径为P→A∪B1∪B2→P∪Q1∪Q→A∪B1∪B2∪C1∪C2∪C3→P∪Q1∪Q→A∪B1∪B2∪C1∪C2∪C3→P∪Q1∪Q→⋯,设经过n秒机器人位于区域Q的概率P n,则当n为奇数时,P n=0,当n为偶数时,由(2)知,P2=16,由对称性可知,经过n秒机器人位于区域Q的概率与位于区域Q1的概率相等,亦为P n,故经过n秒机器人位于区域P的概率为1-2P n,若第n秒机器人位于区域P,则第n+2秒机器人位于区域Q的概率为1 6,若第n秒机器人位于区域Q1,则第n+2秒机器人位于区域Q的概率为1 6,若第n秒机器人位于区域Q,则第n+2秒机器人位于区域Q的概率为1-2×1 6=23,则有P n+2=23P n+16P n+161-2P n,即P n+2=16+12P n,令P n+2+λ=12P n+λ,即P n+2=12P n-12λ,即有λ=-13,即有P n+2-13=12P n-13,则P n+2-13P n-13=12,故有P n-13P n-2-13=12、P n-2-13P n-4-13=12、⋯、P4-13P2-13=12,故P n-13P n-2-13×P n-2-13P n-4-13×⋯×P4-13P2-13×P2-13=P n-13=12 n2-1×16-13=-13⋅12 n2,即P n=13-13⋅12n2,综上所述,当n为奇数时,经过n秒机器人位于区域Q的概率为0,当n为偶数时,经过n秒机器人位于区域Q的概率为13-13⋅12n2.12【概率与函数】(2024·广东汕头·一模)2023年11月,我国教育部发布了《中小学实验教学基本目录》,内容包括高中数学在内共有16个学科900多项实验与实践活动.我市某学校的数学老师组织学生到“牛田洋”进行科学实践活动,在某种植番石榴的果园中,老师建议学生尝试去摘全园最大的番石榴,规定只能摘一次,并且只可以向前走,不能回头.结果,学生小明两手空空走出果园,因为他不知道前面是否有更大的,所以没有摘,走到前面时,又发觉总不及之前见到的,最后什么也没摘到.假设小明在果园中一共会遇到n颗番石榴(不妨设n颗番石榴的大小各不相同),最大的那颗番石榴出现在各个位置上的概率相等,为了尽可能在这些番石榴中摘到那颗最大的,小明在老师的指导下采用了如下策略:不摘前k(1≤k<n)颗番石榴,自第k+1颗开始,只要发现比他前面见过的番石榴大的,就摘这颗番石榴,否则就摘最后一颗.设k=tn,记该学生摘到那颗最大番石榴的概率为P.(1)若n=4,k=2,求P;(2)当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k +1k+1+⋯+1n-1=ln nk)【解】(1)依题意,4个番石榴的位置从第1个到第4个排序,有A44=24种情况,要摘到那个最大的番石榴,有以下两种情况:①最大的番石榴是第3个,其它的随意在哪个位置,有A33=6种情况;②最大的番石榴是最后1个,第二大的番石榴是第1个或第2个,其它的随意在哪个位置,有2A22=4种情况,所以所求概率为6+424=512.(2)记事件A表示最大的番石榴被摘到,事件B i表示最大的番石榴排在第i个,则P B i=1 n,由全概率公式知:P(A)=ni=1P(A|B i)P(B i)=1nni=1P(A|B i) ,当1≤i≤k时,最大的番石榴在前k个中,不会被摘到,此时P(A|B i)=0;当k+1≤i≤n时,最大的番石榴被摘到,当且仅当前i-1个番石榴中的最大一个在前k个之中时,此时P A|B i)=ki-1,因此P(A)=1nkk+kk+1+⋯+kn-1=k n ln n k,令g(x)=xnln nx(x>0),求导得g (x)=1nln nx-1n,由g(x)=0,得x=ne,当x∈0,n e时,g (x)>0,当x∈n e,n时,g (x)<0,即函数g(x)在0,n e上单调递增,在n e,n上单调递减,则g(x)max=gne=1e,于是当k=n e时,P(A)=k n ln n k取得最大值1e,所以P的最大值为1e,此时t的值为1e.13【解析几何与立体几何】(2024·山东日照·一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12经过点F1且倾斜角为θ0<θ<π2的直线l与椭圆交于A,B两点(其中点A在x轴上方),且△ABF2的周长为8.将平面xOy沿x轴向上折叠,使二面角A-F1F2-B为直二面角,如图所示,折叠后A,B在新图形中对应点记为A ,B .(1)当θ=π3时,①求证:A O⊥B F2;②求平面A'F1F2和平面A'B'F2所成角的余弦值;(2)是否存在θ0<θ<π2,使得折叠后△A B F2的周长为152?若存在,求tanθ的值;若不存在,请说明理由.【解】(1)①由椭圆定义可知AF1+AF2=2a,BF1+BF2=2a,所以△ABF2的周长L=4a=8,所以a=2,因为离心率为12,故ca=12,解得c=1,则b2=a2-c2=3,由题意,椭圆的焦点在x轴上,所以椭圆方程为x24+y23=1,直线l:y-0=tan π3⋅x+1,即l:y=3x+1,联立x24+y23=1得15x2+24x=0,解得x=0或-85,当x=0时,y=3×0+1=3,当x=-85时,y=3×-85+1=-335,因为点A在x轴上方,所以A0,3,B-85,-335,故AO⊥F1F2,折叠后有A O⊥F1F2,因为二面角A-F1F2-B为直二面角,即平面A F1F2⊥F1F2B ,交线为F1F2,A O⊂平面A F1F2,所以A O⊥平面F1F2B ,因为F 2B ⊂平面F 1F 2B ,所以A O ⊥F 2B ;②以O 为坐标原点,折叠后的y 轴负半轴为x 轴,原x 轴为y 轴,原y 轴正半轴为z 轴,建立空间直角坐标系,则F 10,-1,0 ,A 0,0,3 ,B 335,-85,0,F 20,1,0 ,A F 2 =0,1,-3 ,BF 2 =-335,135,0 ,其中平面A F 1F 2的法向量为n 1=1,0,0 ,设平面A B F 2的法向量为n 2=x ,y ,z ,则n 2 ⋅AF 2 =x ,y ,z ⋅0,1,-3 =y -3z =0n 2 ⋅B F 2 =x ,y ,z ⋅-335,135,0 =-335x +135y =0,令y =3得x =133,z =1,故n 2 =133,3,1 ,设平面A B F 2与平面A F 1F 2的夹角为φ,则cos φ=cos n 1 ,n 2 =n 1 ⋅n 2n 1 ⋅n 2 =1,0,0 ⋅133,3,1 1699+3+1=13205205,故平面A B F 2与平面A F 1F 2的夹角的余弦值为13205205;(2)设折叠前A x 1,y 1 ,B x 2,y 2 ,折叠后对应的A x 1,y 1,0 ,B x 2,0,-y 2 ,设直线l 方程为my =x +1,将直线l 与椭圆方程x 24+y 23=1联立得,3m 2+4 y 2-6my -9=0,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,在折叠前可知AB =x 1-x 22+y 1-y 2 2,折叠后,在空间直角坐标系中,A B=x 1-x 22+y 21+y 22,,由A F 2 +B F 2 +A B =152,AF 2 +BF 2 +AB =8,故AB -A B =12,所以AB -A B =x 1-x 22+y 1-y 2 2-x 1-x 22+y 21+y 22=12①,分子有理化得-2y 1y 2x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=12,所以x 1-x 22+y 1-y 2 2+x 1-x 22+y 21+y 22=-4y 1y 2②,由①②得x 1-x 22+y 1-y 2 2=14-2y 1y 2,因为x 1-x 2 2+y 1-y 2 2=my 1-1-my 2+1 2+y 1-y 2 2=m 2+1y 1-y 2 ,故14-2y 1y 2=m 2+1y 1-y 2 ,即14-2y 1y 2=m 2+1y 1+y 2 2-4y 1y 2,将y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4代入上式得14+183m 2+4=m 2+16m3m 2+42+363m 2+4,两边平方后,整理得2295m 4+4152m 2-3472=0,即45m 2-28 51m 2+124 =0,解得m 2=2845,因为0<θ<π2,所以tan θ=1m =33514.14【导数与三角函数】(2024·山东烟台·一模)如图,在平面直角坐标系xOy 中,半径为1的圆A 沿着x 轴正向无滑动地滚动,点M 为圆A 上一个定点,其初始位置为原点O ,t 为AM 绕点A 转过的角度(单位:弧度,t ≥0).(1)用t 表示点M 的横坐标x 和纵坐标y ;(2)设点M 的轨迹在点M 0(x 0,y 0)(y 0≠0)处的切线存在,且倾斜角为θ,求证:1+cos2θy 0为定值;(3)若平面内一条光滑曲线C 上每个点的坐标均可表示为(x (t ),y (t )),t ∈[α,β],则该光滑曲线长度为F (β)-F (α),其中函数F (t )满足F(t )=[x(t )]2+[y(t )]2.当点M 自点O 滚动到点E 时,其轨迹OE为一条光滑曲线,求OE的长度.【解】(1)依题意,y =1-cos t ,|OB |=BM=t ,则x =|OB |-sin t =t -sin t ,所以x =t -sin t ,y =1-cos t .(2)由复合函数求导公式yt=y x⋅x t及(1)得y x=y x ⋅x t x t =y t x t=sin t 1-cos t ,因此tan θ=sin t 1-cos t ,而1+cos2θ=2cos 2θ=2cos 2θsin 2θ+cos 2θ=2tan 2θ+1=2sin t 1-cos t 2+1=2(1-cos t )22-2cos t =1-cos t =y 0,所以1+cos2θy 0为定值1.(3)依题意,F (t )=(1-cos t )2+sin 2t =2-2cos t =2sin t 2.由0≤t 2≤π,得sin t 2≥0,则F (t )=2sin t 2,于是F (t )=-4cos t2+c (c 为常数),则F (2π)-F (0)=(-4cosπ+c )-(-4cos0+c )=8,所以OE 的长度为8.15【导数与数列】(2024·山东济宁·一模)已知函数f x =ln x -12ax 2+12a ∈R .(1)讨论函数f x 的单调性;(2)若0<x 1<x 2,证明:对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f (ξ)=f x 2 -f x 1x 2-x 1成立;(3)设a n =2n +1n 2,n ∈N *,数列a n 的前n 项和为S n .证明:S n >2ln (n +1).【解】(1)函数f x 的定义域为0,+∞ ,fx =1x -ax =1-ax 2x ,①若a ≤0,f x >0恒成立,f x 在0,+∞ 上单调递增.②若a >0,x ∈0,1a时,fx >0,f x 单调递增;x ∈1a,+∞时,f x <0,f x 单调递减.综上,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,1a上单调递增,在1a,+∞ 上单调递减.(2)证明:令F x =f x -f x 2 -f x 1x 2-x 1,x >0则F x =1x -ax -ln x 2-12ax 22-ln x 1+12ax 12x 2-x 1=1x -ax -ln x 2-ln x 1x 2-x 1+12a x 2+x 1因为a >0,所以,F x =1x -ax -ln x 2-ln x 1x 2-x 1+12a x 2+x 1 在区间x 1,x 2 上单调递减.F x 1 =1x 1-ax 1-ln x 2-ln x 1x 2-x 1+12a x 2+x 1 =1x 1-ln x 2-ln x 1x 2-x 1+12a x 2-x 1=1x 2-x 1x 2x 1-1-ln x 2x 1+12a x 2-x 1令g t =t -1-ln t ,t >0,则g t =1-1t =t -1t,所以,t ∈0,1 时,g t <0,g t 单调递减,t ∈1,+∞ 时,g t >0,g t 单调递增,所以,g t min =g 1 =0,又0<x 1<x 2,所以,x 2x 1>1,所以g x 2x 1=x 2x 1-1-ln x 2x 1>0恒成立,又因为a >0,x 2-x 1>0,所以,F x 1 >0.同理可得,F x 2 =1x 2-x 11-x 1x 2-ln x 2x 1+12a x 1-x 2 ,由t -1-ln t ≥0(t =1时等号成立)得,1t -1-ln 1t ≥0,即1-1t -ln t ≤0(t =1时等号成立),又0<x 1<x 2,所以0<x 1x 2<1,所以1-x1x 2-ln x 2x 1<0恒成立,又因为a >0,x 1-x 2<0,x 2-x 1>0,所以,F x 2 <0,所以,区间x 1,x 2 上存在唯一实数ξ,使得F ξ =0,所以对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f ξ =f x 2 -f x 1x 2-x 1成立;(3)证明:当a =1时,由(1)可得,f x =ln x -12x 2+12在1,+∞ 上单调递减.所以,x >1时,f x <f 1 =0,即ln x -12x 2+12<0.令x =n +1n ,n ∈N *,则ln n +1n -12n +1n 2+12<0,即n +1n2-1>2ln n +1 -2ln n ,即2n +1n 2>2ln n +1 -2ln n 令b n =2ln n +1 -2ln n ,n ∈N *,则a n >b n ,a 1+a 2+a 3+⋅⋅⋅+a n >b 1+b 2+b 3+⋅⋅⋅+b n=2ln2-2ln1+2ln3-2ln2+⋯+2ln n +1 -2ln n =2ln n +1 所以,S n >2ln n +1 .。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学压轴题:数列一、解答题(共30小题)1.已知数列{}n a 的前n 项和为n S ,且*(1)()n S n n n N =+∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:3122331313131n n n b b b ba =+++⋯+++++,求数列{}nb 的通项公式; (Ⅲ)令*()4n nn a b c n N =∈,求数列{}n 的前n 项和n T . 2.数列{}n a 满足12a =,2166()n nn a a a n N ⨯+=++∈ (Ⅰ)设5log (3)n n C a =+,求证{}n C 是等比数列; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)设21166n n n n b a a a =--+,数列{}n b 的前n 项和为n T ,求证:51164n T -<-.3.已知数列{}n a 的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{}n a 前n 项和为n S ,且满足5452S a a =+,934a a a =+. (1)求数列{}n a 的通项公式;(2)若12m m m a a a ++=,求正整数m 的值; (3)是否存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.4.已知数列{}n a 的前n 项和为n S ,且满足112a =,120(2)n n n a S S n -+=. (1)判断1{}nS 是否为等差数列?并证明你的结论; (2)求n S 和n a ;(3)求证:222121124n S S S n++⋯+-. 5.已知数列{}n a ,{}n b 满足1n n n b a a +=-,其中1n =,2,3,⋯. (Ⅰ)若11a =,n b n =,求数列{}n a 的通项公式; (Ⅱ)若11(2)n n n b b b n +-=,且11b =,22b =.(ⅰ)记61(1)nn a n -=,求证:数列{}n 为等差数列;(ⅱ)若数列{}n an中任意一项的值均未在该数列中重复出现无数次.求1a 应满足的条件.6.数列{}n a 中,11a =,22a =,数列{}n b 满足1(1)n n n n b a a +=+-,n N +∈. (Ⅰ)若数列{}n a 是等差数列,求数列{}n b 的前100项和100S ; (Ⅱ)若数列{}n b 是公差为2的等差数列,求数列{}n a 的通项公式.7.已知数列{}n a 的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{}n a 前n 项和为n S ,且满足34S a =,3542a a a +=+ (1)求数列{}n a 的通项公式; (2)求数列{}n a 前2k 项和2k S ;(3)在数列{}n a 中,是否存在连续的三项m a ,1m a +,2m a +,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m 的值;若不存在,说明理由.8.已知数列{}n a 是无穷数列,1a a =,2(a b a =,b 是正整数),11111(1),(1)nnn n n n n nn a a a a a a aa a --+--⎧>⎪⎪=⎨⎪⎪⎩.(Ⅰ)若12a =,21a =,写出4a ,5a 的值;(Ⅱ)已知数列{}n a 中*1()k a k N =∈,求证:数列{}n a 中有无穷项为1;(Ⅲ)已知数列{}n a 中任何一项都不等于1,记21{n n b max a -=,2}(1n a n =,2,3,⋯;{max m ,}n 为m ,n 较大者).求证:数列{}n b 是单调递减数列. 9.设a 是一个自然数,f (a )是a 的各位数字的平方和,定义数列1{}:n a a 是自然数,*1()(n n a f a n N -=∈,2)n . (Ⅰ)求(99)f ,(2014)f ; (Ⅱ)若1100a ,求证:12a a >; (Ⅲ)求证:存在*m N ∈,使得100m a <.10.已知数列{}n a 满足11a =,23a =,且2(12|cos |)|sin |22n n n n a a ππ+=++,*n N ∈, (1)求*21()k a k N -∈;(2)数列{}n y ,{}n b 满足21n n y a -=,11b y =,且当2n 时2222121111()n n n b y y y y -=++⋯+.证明当2n 时,有12221(1)n n b b n n n +-=+; (3)在(2)的条件下,试比较1231111(1)(1)(1)(1)nb b b b +++⋯+与4的大小关系.11.对于函数()f x ,若存在0x R ∈,使00()f x x =成立,则称0x 为()f x 的不动点.如果函数2()x af x bx c+=-有且仅有两个不动点0和2. (1)试求b 、c 满足的关系式.(2)若2c =时,各项不为零的数列{}n a 满足14()1n n S f a =,求证:1111(1)(1)n n a a n na e a +-<<-. (3)设1n nb a =-,n T 为数列{}n b 的前n 项和,求证:2009200812009T ln T -<<. 12.数列{}(*)n a n N ∈有100项,1a a =,对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,若k a 与前n 项中某一项相等,则称k a 具有性质P . (1)若11a =,2d =,求4a 所有可能的值;(2)若{}n a 不为等差数列,求证:数列{}n a 中存在某些项具有性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为c ,使用a ,d ,c 表示12100a a a ++⋯+. 13.设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式; ()ii 求2*1()ni i i a c n N =∈∑.14.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n c =*n N ∈,证明:12n c c c ++⋯+<,*n N ∈. 15.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;(2)已知数列*{}()n b n N ∈满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式;②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m 时,都有1k k k c b c +成立,求m 的最大值.16.(2019•北京)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.17.(2019•新课标Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.18.(2018•江苏)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设10a =,11b =,2q =,若1||n n a b b -对1n =,2,3,4均成立,求d 的取值范围;(2)若110a b =>,*m N ∈,(1q ∈,证明:存在d R ∈,使得1||n n a b b -对2n =,3,⋯,1m +均成立,并求d 的取值范围(用1b ,m ,q 表示).19.(2018•浙江)已知等比数列{}n a 的公比1q >,且34528a a a ++=,42a +是3a ,5a 的等差中项.数列{}n b 满足11b =,数列1{()}n n n b b a +-的前n 项和为22n n +. (Ⅰ)求q 的值;(Ⅱ)求数列{}n b 的通项公式.20.(2018•上海)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有||1n n b a -,则称{}n b 与{}n a “接近”. (1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:11a =,22a =,34a =,48a =,{}n b 是一个与{}n a 接近的数列,记集合{|i M x x b ==,1i =,2,3,4},求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b -,32b b -,⋯,201200b b -中至少有100个为正数,求d 的取值范围.21.(2017•北京)设{}n a 和{}n b 是两个等差数列,记11{n c max b a n =-,22b a n -,⋯,}(1n n b a n n -=,2,3,)⋯,其中1{max x ,2x ,⋯,}s x 表示1x ,2x ,⋯,s x 这s 个数中最大的数.(1)若n a n =,21n b n =-,求1c ,2c ,3c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m 时,nc M n>;或者存在正整数m ,使得m c ,1m c +,2m c +,⋯是等差数列.22.(2017•江苏)对于给定的正整数k ,若数列{}n a 满足:11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋯+++⋯++=对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“P (3)数列”;(2)若数列{}n a 既是“P (2)数列”,又是“P (3)数列”,证明:{}n a 是等差数列. 23.(2017•浙江)已知数列{}n x 满足:11x =,*11(1)()n n n x x ln x n N ++=++∈,证明:当*n N ∈时,(Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-; (Ⅲ)121122nn n x --. 24.(2016•浙江)设数列满足1||12n n a a +-,*n N ∈. (Ⅰ)求证:1*1||2(||2)()n n a a n N --∈(Ⅱ)若3||()2n n a ,*n N ∈,证明:||2n a ,*n N ∈.25.(2016•上海)若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且11a =,22a =,43a =,52a =,67821a a a ++=,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==;5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈,求证:“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.26.(2016•天津)已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的n N +∈,n b 是n a 和1n a +的等比中项.(1)设221n n n c b b +=-,n N +∈,求证:数列{}n c 是等差数列;(2)设1a d =,221(1)nk n kk T b ==-∑,*n N ∈,求证:21112ni iT d =<∑. 27.(2016•四川)已知数列{}n a 的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+,其中0q >,*n N ∈.(Ⅰ)若22a ,3a ,22a +成等差数列,求n a 的通项公式;(Ⅱ)设双曲线2221n y x a -=的离心率为n e ,且253e =,证明:121433n n n n e e e --+++>.28.(2016•北京)设数列1:A a ,2a ,⋯,N a (2)N .如果对小于(2)n n N 的每个正整数k 都有k n a a <,则称n 是数列A 的一个“G 时刻”,记G (A )是数列A 的所有“G 时刻”组成的集合.(Ⅰ)对数列:2A -,2,1-,1,3,写出G (A )的所有元素; (Ⅱ)证明:若数列A 中存在n a 使得1n a a >,则G (A )≠∅;(Ⅲ)证明:若数列A 满足11(2n n a a n --=,3,⋯,)N ,则G (A )的元素个数不小于1N a a -. 29.(2016•江苏)记{1U =,2,⋯,100},对数列*{}()n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若1{T t =,2t ,⋯,}k t ,定义12k T t t t S a a a =++⋯+.例如:{1T =,3,66}时,1366T S a a a =++.现设*{}()n a n N ∈是公比为3的等比数列,且当{2T =,4}时,30T S =.(1)求数列{}n a 的通项公式;(2)对任意正整数(1100)k k ,若{1T ⊆,2,⋯,}k ,求证:1T k S a +<; (3)设C U ⊆,D U ⊆,C D S S ,求证:2C D CDS S S +.30.(2018•天津)设函数123()()()()f x x t x t x t =---,其中1t ,2t ,3t R ∈,且1t ,2t ,3t 是公差为d 的等差数列.(Ⅰ)若20t =,1d =,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若3d =,求()f x 的极值;(Ⅲ)若曲线()y f x =与直线2()y x t =---d 的取值范围.2020年高考数学复习之挑战压轴题(解答题):数列综合题(30题)参考答案与试题解析一、解答题(共30小题)1.(2017•河西区二模)已知数列{}n a 的前n 项和为n S ,且*(1)()n S n n n N =+∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:3122331313131n n n b b b ba =+++⋯+++++,求数列{}nb 的通项公式; (Ⅲ)令*()4n nn a b c n N =∈,求数列{}n 的前n 项和n T . 【考点】82:数列的函数特性;84:等差数列的通项公式;8E :数列的求和 【专题】15:综合题【分析】(Ⅰ)当1n =时,112a S ==,当2n 时,1(1)(1)2n n n a S S n n n n n -=-=+--=,由此能求出数列{}n a 的通项公式. (Ⅱ)由31223(1)31313131n n n b b b ba n =+++⋯+++++,知311212313131313131n n n n n b b b b ba +++=+++⋯+++++++,所以111231n n n n b a a +++=-=+,由此能求出n b .(Ⅲ)(31)34n n n nn a b c n n n ==+=+,所以23123(1323333)(12)n n nT c c c n n =+++⋯+=⨯+⨯+⨯+⋯+⨯+++⋯+,令231323333nn H n =⨯+⨯+⨯+⋯+⨯,由错位相减法能求出1(21)334n n n H +-⨯+=,由此能求出数列{}n 的前n 项和.【解答】解:(Ⅰ)当1n =时,112a S ==, 当2n 时,1(1)(1)2n n n a S S n n n n n -=-=+--=, 知12a =满足该式,∴数列{}n a 的通项公式为2n a n =.(2分)(Ⅱ)31223(1)31313131n n n b b b ba n =+++⋯+++++① ∴311212313131313131n nn n n b b b b ba +++=+++⋯+++++++②(4分) ②-①得:111231n n n n b a a +++=-=+,112(31)n n b ++=+,故*2(31)()n n b n N =+∈.(6分) (Ⅲ)(31)34n n n nn a b c n n n ==+=+, 23123(1323333)(12)n n nT c c c n n ∴=+++⋯+=⨯+⨯+⨯+⋯+⨯+++⋯+(8分)令231323333n n H n =⨯+⨯+⨯+⋯+⨯,① 则234131323333n n H n +=⨯+⨯+⨯+⋯+⨯② ①-②得:231233333n n n H n +-=+++⋯+-⨯13(13)313n n n +-=-⨯-∴1(21)334n n n H +-⨯+=,⋯(10分)∴数列{}n 的前n 项和1(21)33(1)42n n n n n T +-⨯++=+⋯(12分)【点评】本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意错位相减法的灵活运用.2.(2016•天津一模)数列{}n a 满足12a =,2166()n nn a a a n N ⨯+=++∈ (Ⅰ)设5log (3)n n C a =+,求证{}n C 是等比数列; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)设21166n n n n b a a a =--+,数列{}n b 的前n 项和为n T ,求证:51164n T -<-.【考点】8E :数列的求和;8H :数列递推式;87:等比数列的性质 【专题】15:综合题;16:压轴题;35:转化思想【分析】()I 由已知可得,213(3)n n a a ++=+,利用构造法令5log (3)n n C a =+,则可得12n nc c +=,从而可证数列{}n c 为等比数列()II 由()I 可先求数列n c ,代入5log (3)n n c a =+可求n a ()III 把()II 中的结果代入整理可得,11166n n n b a a +=---,则代入12n n T b b b =++⋯+相消可证【解答】解:(Ⅰ)由2166n nn a a a +=++得213(3)n n a a ++=+, ∴1(3)(3)55log 2log n n a a +++=,即12n n c c +={}n c ∴是以2为公比的等比数列.(Ⅱ)又15log 51c ==,12n n c -∴=,即(3)15log 2n a n +-=,1235n n a -∴+=故1253n n a -=- (Ⅲ)2111116666n n n n n n b a a a a a +=-=--+--,211111166459nn n T a a +∴=-=-----. 又221110591659n<=--. 51164n T ∴-<-【点评】本题考查了利用定义证明等比数列:数列{}n a 为等比数列⇔10nn a q a -=≠;利用构造法求数列的通项公式及数列的求和公式,属于对基本知识的综合考查.3.(2015•淮安校级四模)已知数列{}n a 的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{}n a 前n 项和为n S ,且满足5452S a a =+,934a a a =+. (1)求数列{}n a 的通项公式;(2)若12m m m a a a ++=,求正整数m 的值; (3)是否存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.【考点】87:等比数列的性质;83:等差数列的性质 【专题】16:压轴题;54:等差数列与等比数列【分析】(1)设等差数列的公差为d ,等比数列的公比为q 由题意列式求出公差和公比,则等差数列和等比数列的通项公式即可得出;(2)分2m k =和21m k =-,利用12m m m a a a ++=即可求出满足该等式的正整数m 的值;(3)对于*k N ∈,有22(121)2(13)13213k k k k k S k +--=+=-+-.21212122132313k k k k k k S S a k k ---=-=-+-=-+.假设存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项,设*221()m m S L L N S -=∈,则2211313m m m L m --+=-+,变形得到12(3)3(1)(1)m L L m --=--,由此式得到L 的可能取值,然后依次分类讨论求解. 【解答】解:(1)设等差数列的公差为d ,等比数列的公比为q , 则11a =,22a =,31a d =+,42a q =,914a d =+. 5452S a a =+,1234a a a a ∴++=,即42d q +=,又934a a a =+. 1412d d q ∴+=++.解得:2d =,3q =.∴对于*k N ∈,有12121(1)221,23k k k a k k a --=+-=-=.故*12,2123,2n n n n k a k N n k-=-⎧⎪=∈⎨⎪=⎩; (2)若2m k =,则由12m m m a a a ++=,得123(21)23k k k -+=,解得:1k =,则2m =; 若21m k =-,则由1(21)2321k k k --=+, 此时左边为偶数,右边为奇数,不成立. 故满足条件的正数为2; (3)对于*k N ∈,有22(121)2(13)13213k k k k k S k +--=+=-+-.21212122132313k k k k k k S S a k k ---=-=-+-=-+. 假设存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项, 又由(1)知,数列中的每一项都为正数,故可设*221()mm S L L N S -=∈, 则2211313m m m L m --+=-+,变形得到 12(3)3(1)(1)m L L m --=--①.1m ,1L ,130m ->, 3L ∴.又*L N ∈,故L 可能取1,2,3.当1L =时,1(3)30m L -->,2(1)(1)0L m --=,∴①不成立;当2L =时,12(32)3(21)(1)m m --=--,即1231m m -=-. 若1m =,1231m m -≠-,令2*11(,2)3m m m T m N m --=∈,则2211(1)1133m m m m m m T T +-+---=-22172()2232233m mm m m -++-++== 22222303m -+⨯+<.因此,231T T =>>⋯,故只有21T =,此时2m =,22L a ==. 当3L =时,12(33)3(31)(1)m m --=--. 1m ∴=,33L a ==.综上,存在正整数1m =,使得21S S 恰好为数列{}n a 中的第三项,存在正整数2m =,使得43S S 恰好为数列{}n a 中的第二项. 【点评】本题考查了等差数列和等比数列的性质,训练了分类讨论的数学思想方法,考查了学生综合分析问题和解决问题的能力,考查了学生的逻辑思维能力,是压轴题. 4.(2016•辽宁校级模拟)已知数列{}n a 的前n 项和为n S ,且满足112a =,120(2)n n n a S S n -+=.(1)判断1{}nS 是否为等差数列?并证明你的结论; (2)求n S 和n a ;(3)求证:222121124n S S S n++⋯+-. 【考点】83:等差数列的性质;8E :数列的求和;8H :数列递推式;8K :数列与不等式的综合【专题】11:计算题;16:压轴题【分析】(1)当2n 时,112n n n n n a S S S S --=-=-,两边同除以1n n S S -,可得1112n n S S --=,从而可得1{}nS 为等差数列; (2)由(1)知1{}nS 是以首项为2,公差为2的等差数列,从而可得n S ,利用120(2)n n n a S S n -+=,可求n a ;(3)利用12n S n =,表示22212n S S S ++⋯+,利用放缩法变为22122211111111()(1)41241223(1)n S S n n n+⋯+=++⋯++++⋯+⨯⨯-⨯,从而利用裂项法求和,即可证得.【解答】解:(1)1112S a ==,∴112S =当2n 时,112n n n n n a S S S S --=-=-,∴1112n n S S --=∴1{}nS 为等差数列,首项为2,公差为2⋯(4分) (2)由(1)知12(1)22n n n S =+-⨯=,∴12n S n=⋯(6分) 当2n 时,11112222(1)2(1)n n n a S S n n n n -=-=-=---1,121,22(1)n n a n n n ⎧=⎪⎪∴=⋯⎨⎪-⎪-⎩(9分)(3)2212221111111111111111()(1)(11)(2)41241223(1)421424n S S n n n n n n n+⋯+=++⋯++++⋯+=+-+⋯+-=-=-⋯⨯⨯-⨯-(13分)【点评】本题的考点是数列与不等式的综合,主要考查数列的通项的求解,关键是利用当2n 时,1n n n a S S -=-,巧妙构建新数列,同时考查放缩法,考查裂项法求和,有一定的综合性.5.(2016•南京三模)已知数列{}n a ,{}n b 满足1n n n b a a +=-,其中1n =,2,3,⋯. (Ⅰ)若11a =,n b n =,求数列{}n a 的通项公式; (Ⅱ)若11(2)n n n b b b n +-=,且11b =,22b =. (ⅰ)记61(1)nn a n -=,求证:数列{}n 为等差数列;(ⅱ)若数列{}n an中任意一项的值均未在该数列中重复出现无数次.求1a 应满足的条件.【考点】83:等差数列的性质;8H :数列递推式 【专题】11:计算题;16:压轴题;32:分类讨论【分析】(Ⅰ)根据数列的基本性质以及题中已知条件便可求出数列{}n a 的通项公式; (Ⅱ)(ⅰ)先根据题中已知条件推导出6n n b b +=,然后求出1n nc +-为定值,便可证明数列{}n 为等差数列;(ⅱ)数列6{}n i a +均为以7为公差的等差数列,然后分别讨论当76i i a =时和当76i ia ≠时,数列{}n an是否满足题中条件,便可求出1a 应满足的条件.【解答】解:(Ⅰ)当2n 时,有121321()()()n n n a a a a a a a a -=+-+-+⋯+- 1121n a b b b -=+++⋯+(2分)2(1)11222n n n n-⨯=+=-+.(3分)又因为11a =也满足上式,所以数列{}n a 的通项为2122n n na =-+.(4分)(Ⅱ)由题设知:0n b >,对任意的*n N ∈有21n n n b b b ++=,132n n n b b b +++=得31n n b b +=, 于是又361n n b b ++=,故6n n b b +=(5分)6511n b b -∴==,6422n b b -==,6332n b b -==,6241n b b -==,615611,22n n b b b -===(ⅰ)16561616616263641112217(1)22n nn n n n n n n n c a a b b b b b b n ++--++++-=-=+++++=+++++=,所以数列{}n 为等差数列.(7分)(ⅱ)设6(0)n n i d a n +=,(其中i 为常数且{1i ∈,2,3,4,5,6}),所以1666661626364657(0)n n n i n i n i n i n i n i n i n i d d a a b b b b b b n +++++++++++++++-=-=+++++= 所以数列6{}n i a +均为以7为公差的等差数列.(9分) 设6777(6)7766666666i i k i i k i ii k a a a a k f k i i k i k i k+++--+====+++++, (其中6(0)n k i k =+,i 为{1,2,3,4,5,6}中的一个常数), 当76i i a =时,对任意的6n k i =+有76n a n =;(10分) 由76i i a =,{1i ∈,2,3,4,5,6}知1741111,,,,,632362a =--; 此时76重复出现无数次. 当76i i a ≠时,1777117666()()()()6(1)666(1)66[6(1)](6)i i k k ii i ia a i i f f a a k i k i k i k i k i k i +----=-=--=-+++++++++ ①若76i ia >,则对任意的k N ∈有1k k f f +<,所以数列6{}6k i a k i ++为单调减数列; ②若76i ia <,则对任意的k N ∈有1k k f f +>,所以数列6{}6k i a k i ++为单调增数列;(12分)6{}(16k ia i k i+=+,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多各出现一次,即数列{}n an中任意一项的值最多出现六次.综上所述:当174111{,,,,}63236a B ∈--=时,数列{}n a n 中必有某数重复出现无数次.当1a B ∉时,数列{}n an中任意一项的值均未在该数列中重复出现无数次.(14分)【点评】本题考查了等差数列的基本性质和数列的递推公式,考查了学生的计算能力和对数列的综合掌握,解题时分类讨论思想和转化思想的运用,属于中档题.6.(2015•湖北二模)数列{}n a 中,11a =,22a =,数列{}n b 满足1(1)n n n n b a a +=+-,n N +∈. (Ⅰ)若数列{}n a 是等差数列,求数列{}n b 的前100项和100S ; (Ⅱ)若数列{}n b 是公差为2的等差数列,求数列{}n a 的通项公式. 【考点】85:等差数列的前n 项和;8H :数列递推式 【专题】32:分类讨论;54:等差数列与等比数列【分析】(Ⅰ)先求出等差数列{}n a 的通项公式n a ,再求出{}n b 的通项公式,计算{}n b 的前100项和;(Ⅱ)先求出等差数列{}n b 的通项公式,再根据1(1)n n n n b a a +=+-,讨论n 为奇数或偶数时,求出n a .【解答】解:(Ⅰ)等差数列{}n a 中,11a =,22a =,n a n ∴=; 当n 为奇数时,11n n n b a a +=-=,即135211n b b b b -===⋯==; 当n 为偶数时,121n n n b a a n +=+=+,则25b =,49b =,613b =, {}n b ∴的前100项和为 10012100S b b b =++⋯+139924100()()b b b b b b =++⋯++++⋯+50494150(505)2⨯⨯=⨯+⨯+5200=;⋯(6分)(Ⅱ){}n b 是公差为2的等差数列,且1211b a a =-=,21n b n ∴=-;当n 为奇数时,121n n n b a a n +=-=-, 当n 为偶数时,121n n n b a a n +=+=-; 即2122122124341n n n n n n ba a nb a a n --+=-=-⎧⎨=+=-⎩,21212n n a a +-∴+= 21212n n a a +-∴=-;又11a =,1351a a a ∴===⋯=,211n a -∴=,242n a n =-;∴()()1,22,n n a n n ⎧⎪=⎨-⎪⎩为奇数为偶数.⋯(12分)【点评】本题考查了等差数列的通项公式的应用问题,也考查了数列前n 项和的计算问题,考查了分类讨论思想的应用问题,是综合性题目.7.(2015•高邮市校级模拟)已知数列{}n a 的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{}n a 前n 项和为n S ,且满足34S a =,3542a a a +=+ (1)求数列{}n a 的通项公式; (2)求数列{}n a 前2k 项和2k S ;(3)在数列{}n a 中,是否存在连续的三项m a ,1m a +,2m a +,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m 的值;若不存在,说明理由.【考点】83:等差数列的性质;85:等差数列的前n 项和;89:等比数列的前n 项和 【专题】54:等差数列与等比数列【分析】(1)等差数列和等比数列的通项公式即可得出; (2)利用等差数列的通项公式即可得出;(3)在数列{}n a 中,仅存在连续的三项1a ,2a ,3a ,按原来的顺序成等差数列,此时正整数m 的值为1.分类讨论2m k a a =,21m k a a -=,证明不成立即可. 【解答】解:(1)设等差数列的公差为d ,等比数列的公比为q , 则11a =,22a =,31a d =+,42a q =,512a d =+. 34S a =,12(1)2d q ∴+++=,即42d q +=,又3542a a a +=+,11222d d q ∴+++=+,即32d q =,解得2d =,3q =.∴对于*k N ∈,有211(1)221k a k k -=+-=-,故12,2123,2n n n n k a n k-=-⎧⎪=⎨⎪=⎩,*k N ∈.(2)21221321242(121)2(13)()()[13(21)]2(1333)13213k k kk k k k k S a a a a a a k k --+--=++⋯++++⋯+=++⋯+-++++⋯+=+=-+-.(3)在数列{}n a 中,仅存在连续的三项1a ,2a ,3a ,按原来的顺序成等差数列,此时正整数m 的值为1,下面说明理由若2m k a a =,则由212m m m a a a +++=,得123232(21)k k k -⨯+⨯=+. 化简得14321k k -=+,此式左边为偶数,右边为奇数,不可能成立. 若21m k a a -=,则由212m m m a a a +++=,得1(21)(21)223k k k --++=⨯⨯ 化简得13k k -=, 令*1()3k k k T k N -=∈,则111120333k k k k k k k kT T +-+--=-=<. 因此,1231T T T =>>>⋯,故只有11T =,此时1K =,2111m =⨯-=.综上,在数列{}n a 中,仅存在连续的三项1a ,2a ,3a ,按原来的顺序成等差数列,此时正整数m 的值为1.【点评】本题考查了等差数列与等比数列的通项公式性质及其前n 项和公式等基础知识与基本方法,属于难题.8.(2016•丰台区一模)已知数列{}n a 是无穷数列,1a a =,2(a b a =,b 是正整数),11111(1),(1)n nn n n n n nn a a a a a a aa a --+--⎧>⎪⎪=⎨⎪⎪⎩.(Ⅰ)若12a =,21a =,写出4a ,5a 的值;(Ⅱ)已知数列{}n a 中*1()k a k N =∈,求证:数列{}n a 中有无穷项为1;(Ⅲ)已知数列{}n a 中任何一项都不等于1,记21{n n b max a -=,2}(1n a n =,2,3,⋯;{max m ,}n 为m ,n 较大者).求证:数列{}n b 是单调递减数列. 【考点】82:数列的函数特性【专题】32:分类讨论;35:转化思想;54:等差数列与等比数列 【分析】()I 利用递推关系即可得出.(Ⅱ)*1()k a k N =∈,假设1k a m +=,对m 分类讨论,利用已知递推关系即可证明. (Ⅲ)由条件可知1(1n a n >=,2,3,)⋯.由于{}n a 中任何一项不等于1,可得1(1n n a a n +≠=,2,3,)⋯.分类讨论:①若212n n a a ->,则21n n b a -=.②若212n n a a -<,则2n n b a =.再利用递推关系即可证明.【解答】解:(Ⅰ)12a =,21a =,∴21112a a =<,1322aa a ∴==. 同理可得:3422a a a ==,3541aa a ==. (Ⅱ)*1()k a k N =∈,假设1k a m +=, ①当1m =时,依题意有231k k a a ++==⋯=, ②当1m >时,依题意有2k a m +=,31k a +=, ③当1m <时,依题意有21k a m +=,321k a m +=,41k a m +=,51k a m+=,61k a +=.由以上过程可知:若*1()k a k N =∈,在无穷数列{}n a 中,第k 项后总存在数值为1 的项,以此类推,数列{}n a 中有无穷项为1.(Ⅲ)证明:由条件可知1(1n a n >=,2,3,)⋯,{}n a 中任何一项不等于1,1(1n n a a n +∴≠=,2,3,)⋯.①若212n n a a ->,则21n n b a -=. 21212n n na a a -+=,2121n n a a -+∴>. 若21221n n a a ->,则21222122n n n n a a a a -+-=<,于是2122n n a a -+>; 若21221n n a a -<,则22222222212121212n n n n n n n n n n na a a a a a a a a a a +----===<<,于是2122n n a a -+>; 若21221n n a a -=,则221n a +=,于题意不符; 2121{n n a max a -+∴>,22}n a +,即1n n b b +>.②若212n n a a -<,则2n n b a =. 22121nn n a a a +-=,221n n a a +∴>; 22221nn n a a a ++=,222n n a a +∴>; 221{n n a max a +∴>,22}n a +,即1n n b b +>.综上所述,对于一切正整数n ,总有1n n b b +>,所以数列{}n b 是单调递减数列.【点评】本题考查了递推关系、分类讨论方法、数列的周期性,考查了推理能力与计算能力,属于难题.9.(2014•东城区二模)设a 是一个自然数,f (a )是a 的各位数字的平方和,定义数列1{}:n a a 是自然数,*1()(n n a f a n N -=∈,2)n . (Ⅰ)求(99)f ,(2014)f ; (Ⅱ)若1100a ,求证:12a a >; (Ⅲ)求证:存在*m N ∈,使得100m a <. 【考点】8B :数列的应用【专题】16:压轴题;54:等差数列与等比数列 【分析】(Ⅰ)利用新定义,可求(99)f ,(2014)f ;(Ⅱ)假设1a 是一个n 位数(3)n ,设出1a ,由21()a f a =可得,2222221321n n a b b b b b -=++⋯+++.作差,即可得证; (Ⅲ)利用反证法进行证明即可.【解答】(Ⅰ)解:22(99)99162f =+=;2222(2014)201421f =+++=. (Ⅱ)证明:假设1a 是一个n 位数(3)n ,那么可以设1221132110101010n n n n a b b b b b ---=++⋯+++, 其中09i b 且(1)i b N i n ∈,且0n b ≠. 由21()a f a =可得,2222221321n n a b b b b b -=++⋯+++.1221211332111(10)(10)(10)(10)(1)n n n n n n a a b b b b b b b b b b -----=-+-+⋯+-+-+- 12211332111(10)(10)(10)(10)(1)n n n n n n b b b b b b b b b b ----=-+-+⋯+-+-+- 所以11211(10)(1)n n n a a b b b b -----. 因为0n b ≠,所以1(10)99n n n b b --. 而11(1)72b b -,所以120a a ->,即12a a >.(Ⅲ)证明:由(Ⅱ)可知当1100a 时,12a a >. 同理当100n a 时,1n n a a +>. 若不存在*m N ∈,使得100m a <.则对任意的*n N ∈,有100n a ,总有1n n a a +>. 则11n n a a --,可得1(1)n a a n --. 取1n a =,则1n a ,与100n a 矛盾. 存在*m N ∈,使得100m a <.【点评】本题考查数列的应用,考查新定义,考查反证法,考查学生分析解决问题的能力,难度较大.10.(2017•启东市校级模拟)已知数列{}n a 满足11a =,23a =,且2(12|cos|)|sin |22n n n n a a ππ+=++,*n N ∈, (1)求*21()k a k N -∈;(2)数列{}n y ,{}n b 满足21n n y a -=,11b y =,且当2n 时2222121111()n n n b y y y y -=++⋯+.证明当2n 时,有12221(1)n n b b n n n +-=+; (3)在(2)的条件下,试比较1231111(1)(1)(1)(1)nb b b b +++⋯+与4的大小关系.【考点】8H :数列递推式;8K :数列与不等式的综合;9R :反证法与放缩法证明不等式 【专题】11:计算题;15:综合题;16:压轴题【分析】(1)设21n k =-,利用条件可证数列21(}k a -为等差数列.从而可求其通项; (2)先求得,222211112(1)n b n n =++⋯+-,然后再写一式,两式相减即可证得; (3)先计算的当1n =时,11124b +=<;当2n =时,12115(1)(1)244b b ++=⨯<,再证当3n 时,利用放缩法结合裂项求和即可的结论. 【解答】解:(1)设21n k =- 由212121(21)(21)(12|cos |)|sin |122k k k k k a a a ππ+----=++=+ 21211k k a a +-∴-=∴数列21(}k a -为等差数列.*21()k a k k N -∴=∈; ⋯(4分) (2)证:21n y a n -==.当2n 时,222211112(1)n b n n =++⋯+⋯-① ∴12222111(1)12n b n n+=++⋯+⋯+②⋯(6分) ②式减①式,有12221(1)n n b b n n n +-=+,得证. ⋯(8分)(3)解:当1n =时,11124b +=<; 当2n =时,12115(1)(1)244b b ++=⨯<, 由(2)知,当2n 时,2211(1)n n b n b n ++=+,∴当3n 时,22123111111(1)(1)(1)(1)2[1]2n b b b b n+++⋯+=++⋯+ 21111(2)(1)1n n n n n n<=---, ∴12311111(1)(1)(1)(1)2(2)4n b b b b n+++⋯+<-< ⋯(14分)【点评】本题以数列为载体,考查等差数列的定义,考查数列与不等式的结合,有较强的技巧性.11.(2014•南充模拟)对于函数()f x ,若存在0x R ∈,使00()f x x =成立,则称0x 为()f x 的不动点.如果函数2()x a f x bx c+=-有且仅有两个不动点0和2.(1)试求b 、c 满足的关系式.(2)若2c =时,各项不为零的数列{}n a 满足14()1n n S f a =,求证:1111(1)(1)n n a a n na e a +-<<-. (3)设1n nb a =-,n T 为数列{}n b 的前n 项和,求证:2009200812009T ln T -<<. 【考点】8K :数列与不等式的综合 【专题】15:综合题;16:压轴题【分析】(1)设2x a x bx c +=-的不动点为0和2,由此知0422ac a b c⎧=⎪⎪-⎨+⎪=⎪-⎩即012a c b =⎧⎪⎨=+⎪⎩即12c b =+且0c ≠.(2)由2c =,知2b =,2()(1)2(1)x f x x x =≠-,22n n nS a a =-,且1n a ≠.所以11n n a a --=-,n a n =-,要证待证不等式,只要证(1)111(1)(1)n n n e n -+-+<<+,即证111(1)(1)n n e n n ++<<+,只要证11(1)1(1)(1)nln n ln n n +<<++,即证111(1)1ln n n n<+<+.考虑证不等式(1)(0)1xln x x x x <+<>+,由此入手能导出1111(1)(1)n n a a n n a e a +-<<-.(3)由1n b n =,知111123n T n =+++⋯+.在111(1)1ln n n n<+<+中,令1n =,2,3,⋯,2008,并将各式相加,能得到2009200812009T ln T -<<.【解答】解:(1)设2x ax bx c+=-的不动点为0和2∴0422ac a b c⎧=⎪⎪-⎨+⎪=⎪-⎩即012a c b =⎧⎪⎨=+⎪⎩即12c b =+且0c ≠(2)222()(1)2(1)x c b f x x x =∴=∴=≠-,由已知可得22n n n S a a =-①,且1n a ≠.当2n 时,21112n n n S a a ---=-②,①-②得11()(1)0n n n n a a a a --+-+=,1n n a a -∴=-或11n n a a -=--, 当1n =时,2111121a a a a =-⇒=-,若1n n a a -=-,则21a =与1n a ≠矛盾.11n n a a -∴-=-,n a n ∴=-∴要证待证不等式,只要证(1)111(1)(1)n n n e n-+-+<<+, 即证111(1)(1)n n e n n++<<+,只要证11(1)1(1)(1)nln n ln n n +<<++,即证111(1)1ln n n n<+<+.考虑证不等式(1)(0)**1xln x x x x <+<>+. 令()(1)g x x ln x =-+,()(1)(0)1xh x ln x x x =+->+. ()1xg x x'∴=+,2()(1)x h x x '=+,0x >,()0g x '∴>,()0h x '>,()g x ∴、()h x 在(0,)+∞上都是增函数,()(0)0g x g ∴>=,()(0)0h x h >=,0x ∴>时,(1)1xln x x x <+<+. 令1x n=则**式成立,∴1111(1)(1)n n a a n n a e a +-<<-,(3)由(Ⅱ)知1n b n =,则111123n T n=+++⋯+ 在111(1)1ln n n n <+<+中,令1n =,2,3,2008,并将各式相加, 得1112320091111232009112008232008ln ln ln ++⋯+<++⋯+<+++⋯+. 即2009200812009T ln T -<<.【点评】本题考查不等式的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.12.(2019•上海)数列{}(*)n a n N ∈有100项,1a a =,对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,若k a 与前n 项中某一项相等,则称k a 具有性质P .(1)若11a =,2d =,求4a 所有可能的值;(2)若{}n a 不为等差数列,求证:数列{}n a 中存在某些项具有性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为c ,使用a ,d ,c 表示12100a a a ++⋯+. 【考点】8B :数列的应用【专题】15:综合题;23:新定义;54:等差数列与等比数列;62:逻辑推理 【分析】(1)根据11a =,2d =逐一求出2a ,3a ,4a 即可;(2){}n a 不为等差数列,数列{}n a 存在m a 使得1m m a a d -=+不成立,根据题意进一步推理即可证明结论;(3)去除具有性质P 的数列{}n a 中的前三项后,数列{}n a 的剩余项重新排列为一个等差数列,且该数列的首项为a ,公差为d ,求12100a a a ++⋯+即可.【解答】解:(1)数列{}n a 有100项,1a a =,对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,∴若11a =,2d =,则当2n =时,213a a d =+=,当3n =时,[1i ∈,2],则313a a d =+=或325a a d =+=,当4n =时,[1i ∈,3],则413a a d =+=或425a a d =+=或431()5a a d a d d =+=++=或432()7a a d a d d =+=++= 4a ∴的所有可能的值为:3,5,7;(2){}n a 不为等差数列,∴数列{}n a 存在m a 使得1m m a a d -=+不成立,对任意[2n ∈,10],存在n i a a d =+,[1i ∈,1]n -;∴存在[1p ∈,2]n -,使m p a a d =+,则对于m q i a a d -=+,[1i ∈,1]n q --,存在p i =,使得m q m a a -=, 因此{}n a 中存在具有性质P 的项;(3)由(2)知,去除具有性质P 的数列{}n a 中的前三项,则数列{}n a 的剩余项均不相等, 对任意[2n ∈,100],存在n i a a d =+,[1i ∈,1]n -,则一定能将数列{}n a 的剩余项重新排列为一个等差数列,且该数列的首项为a ,公差为d , 12100a a a ∴++⋯+97(96)2a a d c ++=+974656a d c =++.【点评】本题考查了等差数列的性质和前n 项和公式,考查了逻辑推理能力和计算能力,关键是对新定义的理解,属难题.13.(2019•天津)设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式; ()ii 求2*1()ni i i a c n N =∈∑.【考点】8E :数列的求和;84:等差数列的通项公式;88:等比数列的通项公式 【专题】11:计算题;35:转化思想;49:综合法;54:等差数列与等比数列;62:逻辑推理【分析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,利用等差数列、等比数列的通项公式列出方程组,能求出{}n a 和{}n b 的通项公式.(Ⅱ)()i 由222(1)(1)n n n n a c a b -=-,能求出数列22{(1)}n n a c -的通项公式. (Tex translation failed),由此能求出结果.【解答】解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 依题意有:26626124q d q d =+⎧⎨=+⎩,解得32d q =⎧⎨=⎩, 4(1)331n a n n ∴=+-⨯=+,16232n n n b -=⨯=⨯.(Ⅱ)()i 数列{}n c 满足11c =,11,22,,2,k k n kk n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. 222(1)(1)(321)(321)941n n n n n n n a c a b ∴-=-=⨯+⨯-=⨯-,∴数列22{(1)}n n a c -的通项公式为:22(1)941n n n a c -=⨯-.(Tex translation failed)12(21)(243)(941)2n n nni i =-=⨯+⨯+⨯-∑2114(14)(3252)914n n n n ---=⨯+⨯+⨯--2112725212n n n --=⨯+⨯--.*()n N ∈.【点评】本题考查等差数列、等比数列通项公式及前n 项和等基础知识,考查化归与转化思想和数列求和的基本方法以及运算求解能力.14.(2019•浙江)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n c =*n N ∈,证明:12n c c c ++⋯+<,*n N ∈. 【考点】8I :数列与函数的综合【专题】14:证明题;35:转化思想;49:综合法;54:等差数列与等比数列;63:数学建模【分析】(Ⅰ)利用等差数列通项公式和前n 项和公式列出方程组,求出10a =,2d =,从而22n a n =-,*n N ∈.2n S n n =-,*n N ∈,利用212()()()n n n n n n S b S b S b +++=++,能求出n b .(Ⅱ)n c ==,*n N ∈,用数学归纳法证明,得到12n c c c ++⋯+<,*n N ∈.【解答】解:(Ⅰ)设数列{}n a 的公差为d , 由题意得11124333a d a d a d +=⎧⎨+=+⎩,解得10a =,2d =, 22n a n ∴=-,*n N ∈.2n S n n ∴=-,*n N ∈,数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.212()()()n n n n n n S b S b S b ++∴+=++, 解得2121()2n n n n b S S S ++=-,解得2n b n n =+,*n N ∈.(Ⅱ)证明:n c ==,*n N ∈,用数学归纳法证明:①当1n =时,102c =<,不等式成立;②假设n k =,*()k N ∈时不等式成立,即12k c c c ++⋯+< 则当1n k =+时,121k k c c c c +++⋯++<<<==即1n k=+时,不等式也成立.由①②得12nc c c++⋯+<,*n N∈.【点评】本题考查等差数列、等比数列、数列求和、数学归纳法等基础知识,考查运算求解能力和综合应用能力.15.(2019•江苏)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列*{}()na n N∈满足:245a a a=,321440a a a-+=,求证:数列{}na为“M-数列”;(2)已知数列*{}()nb n N∈满足:11b=,1122n n nS b b+=-,其中nS为数列{}nb的前n项和.①求数列{}nb的通项公式;②设m为正整数,若存在“M-数列”*{}()nc n N∈,对任意正整数k,当k m时,都有1k k kc b c+成立,求m的最大值.【考点】8K:数列与不等式的综合【专题】35:转化思想;4M:构造法;53:导数的综合应用;54:等差数列与等比数列;4F:归纳法;15:综合题;55:点列、递归数列与数学归纳法;5T:不等式【分析】(1)设等比数列{}na的公比为q,然后根据245a a a=,321440a a a-+=列方程求解,在根据新定义判断即可;(2)求出2b,3b,4b猜想nb,然后用数学归纳法证明;(3)设{}nc的公比为q,将问题转化为[][]1max minlnk lnkk k-,然后构造函数()(3)lnxf x xx=,()(3)1lnxg x xx=-,分别求解其最大值和最小值,最后解不等式331ln lnmm-,即可.【解答】解:(1)设等比数列{}na的公比为q,则由245a a a=,321440a a a-+=,得244112111440a q a qa q a q a⎧=⎪⎨-+=⎪⎩∴112aq=⎧⎨=⎩,∴数列{}na首项为1且公比为正数。

相关文档
最新文档