二次函数的图象和性质(第1课时)PPT课件
合集下载
二次函数 y=ax2的图象及其性质ppt课件
x轴
______对称.
如果已知y=ax2 (a≠0)的图象,可通过
2的图象.
翻折
_________更方便地得到y=-ax
上
当a>0时,抛物线开口向___;
当a<0时,抛物线开口向___.
下
y
7
6
5
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
-5
-6
y=2x2
1 2 3 4 5
x
y=-2x2
第1章 二次函数
1.2 二次函数的图象
第1课时 二次函数 y=ax²的图象及其性质
学习目标
知识与技能 :能够利用描点法画函数y=ax2的图象。
过程与方法 :
①经历二次函数y=ax2图象的作法。
②探索二次函数y=ax2性质,获得利用图象研究函数性质的经验。
重点:会画函数y=ax2的图象,并根据图象认识和理解二次函数y=ax2
0 时, y 随x 的增大而减小
当 x=0 时, y 最大值 =0
16
探究新知
例1 已知二次函数y=ax2 (a≠0)的图象经过点(-2,-3).
(1)求a的值,并写出这个二次函数的表达式.
解:把点(-2,-3)的坐标代入y=ax2 ,
得-3=a(-2)2,
解得 a=-
.
所以这个二次函数的表达式是y=-
0.5x2的图象,它们的共同特点是( D )
A.都关于x轴对称,抛物线开口向上
B.都关于原点对称,顶点都是原点
C.都关于y轴对称,抛物线开口向下
D.都关于y轴对称,顶点都是原点
24
二次函数的图象和性质(第1课时 )九年级数学上册课件(人教版)
然后描点、连线,得到图象如下图.
y
-4 -2 O 2 4
-2 4 6 8
由图象可知,这个函数 具有如下性质: 当x<-1时,函数值y随x
x
的增大而增大; 当x>-1时,函数值y随x 的增大而减小; 当x=-1时,函数取得最 大值,最大值y=3.
练一练 已知二次函数y=x2﹣6x+5. (1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式; (2)求该二次函数的图象的对称轴和顶点坐标; (3)当x取何值时,y随x的增大而减小.
( C) A.直线x=2
B.直线x=-2
C.直线x=1
D.直线x=-1
4.【2020·温州】已知(-3,y1),(-2,y2),(1,y3)是抛 物线y=-3x2-12x+m上的点,则( B )
A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
5.【2020·河北】如图,现要在抛物线y=x(4-x)上找点 P(a,b),针对b的不同取值,所找点P的个数,三人的 说法如下,
6.【中考·温州】已知二次函数y=x2-4x+2,关于该函 数在-1≤x≤3的取值范围内,下列说法正确的是( D)
A.有最大值-1,有最小值-2 B.有最大值0,有最小值-1 C.有最大值7,有最小值-1 D.有最大值7,有最小值-2
7.【中考·成都】在平面直角坐标系xOy中,二次函数y= ax2+bx+c的图象如图所示,下列说法正确的是( B)
(1)求 b、c 的值;
解:把 A(0,3),B-4,-92的坐标分别代入
y=-136x2+bx+c,得 c-=1336,×16-4b+c=-92,解得bc==398.,
(2)二次函数 y=-136x2+bx+c 的图象与 x 轴是否有公共点? 若有,求出公共点的坐标;若没有,请说明理由.
《二次函数的图像和性质》PPT(第1课时)
第三十章 二次函数
二次函数的图像和性质
第1课时
导入新课
讲授新课
当堂练习
-.
课堂小结
学习目标
1.正确理解抛物线的有关概念.(重点) 2.会用描点法画出二次函数y=ax²的图像,概括出图像 的特点.(难点) 3.掌握形如y=ax²的二次函数图像的性质,并会应用. (难点)
导入新课
情境引入
讲授新课
一 二次函数y=ax2的图像
问题2:观察图形,y随x的变化如何变化?
y x2
y ax2
(-1,-1) (-2,-4)
(1,-1) (2,-4)
知识要点
对于抛物线 y = ax 2 (a<0)
当x>0时,y随x取值的增大而减小; 当x<0时,y随x取值的增大而增大.
例2 在同一直角坐标系中,画出函数 y 1 x2, y 2x2 的图像.
关系是什么?
y y=ax2
二次项系数互为相反数,
开口相反,大小相同,
它们关于x轴对称.
O
x y=-ax2
二 二次函数y=ax2的性质 问题1:观察图形,y随x的变化如何变化?
(-2,4)
(2,4)
(-1,1)
(1,1)
y x2
y ax2
知识要点
对于抛物线 y = ax 2 (a>0) 当x>0时,y随x取值的增大而增大; 当x<0时,y随x取值的增大而减小.
< (1)若点(-2,y1)与(3,y2)在此二次函数的图像上,则y1_____y2;
(填“>”“=”或“<”);
(2)如图,此二次函数的图像经过点(0,0),长方形ABCD的顶
点A、B在x轴上,C、D恰好在二次函数的图像上,B点的横坐标
二次函数的图像和性质
第1课时
导入新课
讲授新课
当堂练习
-.
课堂小结
学习目标
1.正确理解抛物线的有关概念.(重点) 2.会用描点法画出二次函数y=ax²的图像,概括出图像 的特点.(难点) 3.掌握形如y=ax²的二次函数图像的性质,并会应用. (难点)
导入新课
情境引入
讲授新课
一 二次函数y=ax2的图像
问题2:观察图形,y随x的变化如何变化?
y x2
y ax2
(-1,-1) (-2,-4)
(1,-1) (2,-4)
知识要点
对于抛物线 y = ax 2 (a<0)
当x>0时,y随x取值的增大而减小; 当x<0时,y随x取值的增大而增大.
例2 在同一直角坐标系中,画出函数 y 1 x2, y 2x2 的图像.
关系是什么?
y y=ax2
二次项系数互为相反数,
开口相反,大小相同,
它们关于x轴对称.
O
x y=-ax2
二 二次函数y=ax2的性质 问题1:观察图形,y随x的变化如何变化?
(-2,4)
(2,4)
(-1,1)
(1,1)
y x2
y ax2
知识要点
对于抛物线 y = ax 2 (a>0) 当x>0时,y随x取值的增大而增大; 当x<0时,y随x取值的增大而减小.
< (1)若点(-2,y1)与(3,y2)在此二次函数的图像上,则y1_____y2;
(填“>”“=”或“<”);
(2)如图,此二次函数的图像经过点(0,0),长方形ABCD的顶
点A、B在x轴上,C、D恰好在二次函数的图像上,B点的横坐标
二次函数的图像和性质PPT课件(共21张PPT)
相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
二次函数图像和性质课件(1)完整版公开课
• 一般地, y=a(x-h)²+k(a≠0) 的图象可以看成 y=ax²的图象先沿x轴整体左(右)平移|h|个单位 (当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体 上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移) 得到的.
• 因此,二次函数y=a(x-h)²+k的图象是一条抛物线, 它的开口方向、对称轴和顶点坐标与a,h,k的值 有关.
到
二次函数y=3(x-1)2+2的 图象和抛物线 y=3x²,y=3(x-1)2有什么关 系?它的开口方向,对称轴 和顶点坐标分别是什么?
y 3x 12 2
y 3x 12
二次函数y=3(x-1)2+2的 图象可以看作是抛物线 y=3x2先沿着x轴向右平移 1个单位,再沿直线x=1向 上平移2个单位后得到的.
向下
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x=h时,最小值为k.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x=h时,最大值为k.
小练习: 抛物线
y 1 x2 2
y 5x2 2
y 2(x 1)2
y (x 1)2 2
向上平移 9 个单位可得到 y=x2+2的图象。
(3)将抛物线y=4x2向上平移3个单位,所得的抛物线的函数 式是 y=4x2+3 。
将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函 数式是 y=-5x2-4 。
回顾:
(1)怎样的抛物线可以通过平移得到? 二次项系数a值相同的抛物线可以通过平移得到
X=1
对称轴仍是平行于y轴的直 线(x=1);增减性与y=3x2类似.
• 因此,二次函数y=a(x-h)²+k的图象是一条抛物线, 它的开口方向、对称轴和顶点坐标与a,h,k的值 有关.
到
二次函数y=3(x-1)2+2的 图象和抛物线 y=3x²,y=3(x-1)2有什么关 系?它的开口方向,对称轴 和顶点坐标分别是什么?
y 3x 12 2
y 3x 12
二次函数y=3(x-1)2+2的 图象可以看作是抛物线 y=3x2先沿着x轴向右平移 1个单位,再沿直线x=1向 上平移2个单位后得到的.
向下
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x=h时,最小值为k.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x=h时,最大值为k.
小练习: 抛物线
y 1 x2 2
y 5x2 2
y 2(x 1)2
y (x 1)2 2
向上平移 9 个单位可得到 y=x2+2的图象。
(3)将抛物线y=4x2向上平移3个单位,所得的抛物线的函数 式是 y=4x2+3 。
将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函 数式是 y=-5x2-4 。
回顾:
(1)怎样的抛物线可以通过平移得到? 二次项系数a值相同的抛物线可以通过平移得到
X=1
对称轴仍是平行于y轴的直 线(x=1);增减性与y=3x2类似.
课件1二次函数的图像和性质
(2)在平面直角坐标系中描点:
y
-4
-3
-2
-1
o
1
2
3
4
x
-2
-4
-6
-8
y = - x2
-10
(3)用光滑曲线顺次连接各点,便得到函数y= -x2 的图象.
二次函数的图象是不是跟投篮路线很像?
知识要点
抛物线: 像这样的曲线通常叫做抛物线。 二次函数的图象都是抛物线。
一般地,二次函数 y ax2 bx c 的图象叫做抛物线 y ax2 bx c。
()
A.江南制造总局的汽车
B.洋人发明的火车
C.轮船招商局的轮船
D.福州船政局的军舰
[解析] 由材料信息“19世纪七十年代,由江苏沿江居民 到上海”可判断最有可能是轮船招商局的轮船。
二、近代以来交通、通讯工具的进步对人们社会生活的影 响
(1)交通工具和交通事业的发展,不仅推动各地经济文化交 流和发展,而且也促进信息的传播,开阔人们的视野,加快 生活的节奏,对人们的社会生活产生了深刻影响。
(2)通讯工具的变迁和电讯事业的发展,使信息的传递变得 快捷简便,深刻地改变着人们的思想观念,影响着人们的社 会生活。
y= 2x2
y=x2
y 10
9 8 7 6 5 4
3 2 1
y= 0.5x2
-5 -4 -3 -2 -1 o 1 2 3 4 5 x
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x -2
-3 -4
-5
-6
-7
-8 -9
y=-21 x
-10
y=-2x2 y=x2
a的符号决定抛物线的开口方向,|a|的 大小决定抛物线开口的大小,|a|越大开 口越小
二次函数的图像与性质(第一课时)优质课件
对称轴与抛物 线的交点叫做 抛物线的顶点.
抛物线y=x2在x轴的上方(除顶点外), 顶点是它的最低点,开口向上, 当x=0 时,函数y的值最小,最小值是0.
【内容】独立完成探究点一的针对练习、 探究点二。(5min)
【要求】1.独立思考,认真分析总结; 2.标记好自己的疑难问题,以便讨论 探究; 3.自主独立做题,2min时间到后学 科组长组织组员针对疑难问题及 小组任务进行讨论交流。
2.2 二次函数的图像与性质(一)
我们把物体抛射时所经过的路线叫做抛物线.
1.经历探索二次函数y=x2 的图像的作法
和性质的过程,获得利用图像研究函数性质 的经验;
2.能够利用描点法作出二次函数y=x2的图 像,并能根据图像认识和理解二次函数y=x2 的性质;
3.能够作出二次函数 y=-x2的图像,并能 够y=x2比较出与 的图像的异同,初步建立二 次函数表达式与图像之间的联系.
【内容】快速、独立完成训练案“自测反馈”(8min) 【要求】1.独立思考,认真分析总结
2.标记好自己的疑难问题,以便课后讨论探究
探究内容 展示小组
14组小2源自2组组 合3
6组
作
4
5组
能力提升1
1组
能力提升2
3组
【要求】1.独立完成训练案的填空题;2.标记好自己的疑难
问题,以便讨论 ;3.针对疑难,自由探讨,互帮互助.
2、剩余时间思考探究案中其他问题,并把你认为正确的答 案写在学案上。
1.列表时注意自变量X的取值是否有意义.
(1)反比例函数: y
2
x
(x≠0)
(2)圆的面积公式:S r 2 (r≥0)
(3)二次函数: y=-x2 (x取全体实数)
抛物线y=x2在x轴的上方(除顶点外), 顶点是它的最低点,开口向上, 当x=0 时,函数y的值最小,最小值是0.
【内容】独立完成探究点一的针对练习、 探究点二。(5min)
【要求】1.独立思考,认真分析总结; 2.标记好自己的疑难问题,以便讨论 探究; 3.自主独立做题,2min时间到后学 科组长组织组员针对疑难问题及 小组任务进行讨论交流。
2.2 二次函数的图像与性质(一)
我们把物体抛射时所经过的路线叫做抛物线.
1.经历探索二次函数y=x2 的图像的作法
和性质的过程,获得利用图像研究函数性质 的经验;
2.能够利用描点法作出二次函数y=x2的图 像,并能根据图像认识和理解二次函数y=x2 的性质;
3.能够作出二次函数 y=-x2的图像,并能 够y=x2比较出与 的图像的异同,初步建立二 次函数表达式与图像之间的联系.
【内容】快速、独立完成训练案“自测反馈”(8min) 【要求】1.独立思考,认真分析总结
2.标记好自己的疑难问题,以便课后讨论探究
探究内容 展示小组
14组小2源自2组组 合3
6组
作
4
5组
能力提升1
1组
能力提升2
3组
【要求】1.独立完成训练案的填空题;2.标记好自己的疑难
问题,以便讨论 ;3.针对疑难,自由探讨,互帮互助.
2、剩余时间思考探究案中其他问题,并把你认为正确的答 案写在学案上。
1.列表时注意自变量X的取值是否有意义.
(1)反比例函数: y
2
x
(x≠0)
(2)圆的面积公式:S r 2 (r≥0)
(3)二次函数: y=-x2 (x取全体实数)
人教版九年级数学上册《二次函数y=a(x-h)_+k的图象和性质》第1课时 课件(共22张PPT)
复习回顾
二次函数 =
>0
的图像和性质
<0
图像
开口方向
对称轴
顶点
<0
增减性
>0
开口大小
向上
向下
轴
轴
(0,0) (0,0) 最低点ቤተ መጻሕፍቲ ባይዱ
(0,0) (0,0) 最高点
随 的增大而减小
随 的增大而增大
随 的增大而增大
随 的增大而减小
越大,开口越小
探究二次函数 =
2
+ ≠ 0 的图像和性质
1 在同一个直角坐标系中画出 1 = 22,2 = 22 + 1,3 = 22 − 1 的图象.
1. 列表
1 =
···
2
2
2 = 22 + 1
3 =
2
2
−1
−2 −1.5 −1 −0.5
0
0.5
1
1.5
2
···
···
8
4.5
2
0.5
0
0.5
(0, ) 最高点
函数性质
最值
有最小值是
有最大值是
探究二次函数 =
2
+ ≠ 0 的图像和性质
6 抛物线 = 2 + 的性质.
图像从左至右 在对称轴左侧
的变化趋势 在对称轴右侧
增减性
>0
<0
下降
上升
上升
下降
>0
<0
<0
随 的增大而减小 随 的增大而增大
二次函数 =
>0
的图像和性质
<0
图像
开口方向
对称轴
顶点
<0
增减性
>0
开口大小
向上
向下
轴
轴
(0,0) (0,0) 最低点ቤተ መጻሕፍቲ ባይዱ
(0,0) (0,0) 最高点
随 的增大而减小
随 的增大而增大
随 的增大而增大
随 的增大而减小
越大,开口越小
探究二次函数 =
2
+ ≠ 0 的图像和性质
1 在同一个直角坐标系中画出 1 = 22,2 = 22 + 1,3 = 22 − 1 的图象.
1. 列表
1 =
···
2
2
2 = 22 + 1
3 =
2
2
−1
−2 −1.5 −1 −0.5
0
0.5
1
1.5
2
···
···
8
4.5
2
0.5
0
0.5
(0, ) 最高点
函数性质
最值
有最小值是
有最大值是
探究二次函数 =
2
+ ≠ 0 的图像和性质
6 抛物线 = 2 + 的性质.
图像从左至右 在对称轴左侧
的变化趋势 在对称轴右侧
增减性
>0
<0
下降
上升
上升
下降
>0
<0
<0
随 的增大而减小 随 的增大而增大
二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册
(g为定值)
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x
…
…
y
…
…
-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(1)你能描述图象的形状吗?
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x
…
…
y
…
…
-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(1)你能描述图象的形状吗?
1.2二次函数的图象与性质(第1课时)课件(共13张ppt)
图象的开口向 上 ; 图象是轴对称图形,对称轴是_y轴____x_=_0 对称轴与图象的交点是 O(0,0) ;
图象在对称轴左边的部分,函数值随
自变量取值的增大而 减小 ,
简称为“左降”;
图象在对称轴右边的部分,函数值随自变量取
值的增大而 增大 , 简称为“右升”; 当x= 0 时,函数值最 小 .
谢谢观赏
You made my day!
我们,还在路上……
当x= 0 时,函数值最 小 .
类似地,当a>0时,y=ax2的图象也具 有上述性质.
于是我们在画y=ax2(a>0)的图象时,可以先画出图象在y轴 右边的部分,然后利用对称性,画出图象在y轴左边的部分.
在画右边部分时,只要“列表、描点、连线”三个步骤 就可以了(因为我们知道了图象的性质).
例1 画二次函数y=x2的图象. 列表: x 0 0.5 1 1.5 2 3
,简称为“右升”.
观察
我们已经正确地画出了y =
现在可以从图象看出
y
=
1 2
x
2
的12 x其2 的他图一象些,性因质此(除,
了上面已经知道的关于y轴对称和“右升”外):
对称轴与图象的交点是 O(0,0) ;图象的开口向 上 ;
图象在对称轴左边的部分,函数值随自变量取值的
增大而 减小 , 简称为“左降”;
解:(1)把A(2,8)代人y=ax2 ∴ a=2 ∴ y=2x2
(2) 当x=1时,y=2 ≠ 4 ∴ B(1,4)不在y=2x2的图像上。
(3) 当y=18时,即2x2=18,x=3或x=-3 ∴ 纵坐标是18的点是:(3,18)和(-3,18)
对于y=ax2(当a>0时)的图象也具有上述性质.
图象在对称轴左边的部分,函数值随
自变量取值的增大而 减小 ,
简称为“左降”;
图象在对称轴右边的部分,函数值随自变量取
值的增大而 增大 , 简称为“右升”; 当x= 0 时,函数值最 小 .
谢谢观赏
You made my day!
我们,还在路上……
当x= 0 时,函数值最 小 .
类似地,当a>0时,y=ax2的图象也具 有上述性质.
于是我们在画y=ax2(a>0)的图象时,可以先画出图象在y轴 右边的部分,然后利用对称性,画出图象在y轴左边的部分.
在画右边部分时,只要“列表、描点、连线”三个步骤 就可以了(因为我们知道了图象的性质).
例1 画二次函数y=x2的图象. 列表: x 0 0.5 1 1.5 2 3
,简称为“右升”.
观察
我们已经正确地画出了y =
现在可以从图象看出
y
=
1 2
x
2
的12 x其2 的他图一象些,性因质此(除,
了上面已经知道的关于y轴对称和“右升”外):
对称轴与图象的交点是 O(0,0) ;图象的开口向 上 ;
图象在对称轴左边的部分,函数值随自变量取值的
增大而 减小 , 简称为“左降”;
解:(1)把A(2,8)代人y=ax2 ∴ a=2 ∴ y=2x2
(2) 当x=1时,y=2 ≠ 4 ∴ B(1,4)不在y=2x2的图像上。
(3) 当y=18时,即2x2=18,x=3或x=-3 ∴ 纵坐标是18的点是:(3,18)和(-3,18)
对于y=ax2(当a>0时)的图象也具有上述性质.
第1讲二次函数的图象和性质复习课件(共39张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
解得 x1 = 3,x2 = 6. 当 x = 3 时,y = 9 - 3 = 6,但 y>x ,不合题意,舍 去. 当 x = 6 时,y = 9 - 6 = 3. 所以当绿地面积为 18 m2 时,矩形的长为 6 m ,宽 为 3 m.
3.练习、巩固二次函数的定义
练习1 函数 y=(m-2)x2+mx-3(m 为常数). (1)当 m _≠__2___时,这个函数为二次函数; (2)当 m __=_2___时,这个函数为一次函数.
3.练习、巩பைடு நூலகம்二次函数的定义
例 某小区要修建一块矩形绿地,设矩形的长为 x m,宽为 y m,面积为 S m2(x>y).
(1)如果用 18 m 的建筑材料来修建绿地的边缘 (即周长),求 S 与 x 的函数关系,并求出 x 的取值范 围.
(2)根据小区的规划要求, 所修建的绿地面积必 须是 18 m2,在满足(1)的条件下,矩形的长和宽各 为多少 m ?
这三个函数关系式有什么共同点?
y 6x2 m 1 n2 1 n
22 y 20x2 40x 20
2.通过实例,归纳二次函数的定义
二次函数的定义:一般地,形如 y ax2 bx c (a ,b ,c 是常数,a≠0) 的函数,叫做二次函数.其中, x 是自变量,a, b,c 分别是函数解析式的二次项系数、一次项 系数和常数项.
4.小结
(1)一个函数是否为二次函数的关键是什么? (2)实际问题中列二次函数解析式需要考虑什么?
结束语
当你尽了自己的最大努力时, 失败也是伟大的,所以不要放 弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
3.练习、巩固二次函数的定义
练习2 填空: (1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是__S_=__4_π_r_2_; (2) n 支球队参加比赛,每两队之间进行两场比 赛,则比赛场次数 m 与球队数 n 之间的关系式是 ___m_=__n(__n_-_1__)____.
观察图片,这些曲线能否用函数关系式来表示?它 们的形状是怎样画出来的?
2.通过实例,归纳二次函数的定义
正方体的棱长为 x ,那么正方体的表面积 y 与 x 之 间有什么关系?
y 6x2
2.通过实例,归纳二次函数的定义
n 个球队参加比赛,每两队之间进行一场比赛.比 赛的场次数 m 与球队数 n 有什么关系?
m 1 n2 1 n 22
2.通过实例,归纳二次函数的定义
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20x2 40x 20
2.通过实例,归纳二次函数的定义
3.练习、巩固二次函数的定义
解:(1)由题意,得 2x 2 y 18,y 9 x. ∵ x>y>0, ∴ x 的取值范围是 92<x<9, ∴ S矩形 = xy = x(9-x)=-x2+9x.
3.练习、巩固二次函数的定义
(2)当矩形面积 S矩形 = 18 时,即 - x2 + 9x = 18,
九年级 上册
22.1 二次函数的图象和性质 (第1课时)
课件说明
• 本课是在学生已经学习了一次函数的基础上,继续进 行函数的学习,学习二次函数的定义,这是对函数知 识的完善与提高.
课件说明
• 学习目标: 通过对实际问题的分析,体会二次函数的意义.
• 学习重点: 理解二次函数的定义.
1.由实际生活引入二次函数