初中数学探索规律问题PPT课件
合集下载
初中数学规律探索公开课完整课件
14
第十四页,共18页。
探究(tànjiū)规律题的一般步骤:
课 ①探索观察(发现(fāxiàn)特点); 堂 ②猜想找出规律(找出某个数与其 小 结 对应序号之间的关系);
③验证(用具体数值代入规律)。
15
第十五页,共18页。
归纳与猜想
课后作业(zuòyè)
①熟记(shú jì)常见数列特征规律 ②导与练123页1、3、8题。
10
第十页,共18页。
归纳与猜想
…
第1个图
第2个图
第3个图
方法二:每个图形,可看成是序列(xùliè)数与3的倍 数
又多1枚棋子
…
第1个图
第2个图
第3个图
方法(fāngfǎ)三: 2n+(n+1)=3n+1
11
第十一页,共18页。
归纳与猜想
1、有一组数:1,2,5,10,17,26,……,请观察这组数
(n为正整数
8
第八页,共18页。
归纳与猜想
例3:观察下列各式: 1×3=12+2×1; 方法总结:
横向熟悉代数式、算式的结构;
2×4=22+2×2; 纵向观察、对比,研究各式之间的关 3×5=32+2×3;…系之,间…寻的求规不律变;和再变 按化要求(bi写àn出hu算à)式与或序结数
请你将猜想到的规律果。(guīlǜ)用正整数nn 1
13
第十三页,共18页。
5、观察(guānchá)下列各式:
归纳与猜想
请你将发现的规律(guīlǜ)用含自然数n(n≥1)的等式表示出
来 n 1 (n 1.) 1
n2
n2
6、按如下规律摆放三角形:
则第(4)堆三角形的个数为____1__4_______;第(n)
初中数学探索规律问题ppt课件
接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小 正方形的边长均为1)中用实线画出拼接成的新正方形.
小东同学的做法是: 设新正方形的边长为x(x >0). 依题意,割补前后 图形面积相等,有x2=5,解得x 5由此可知新正方形的边长等于两个小正 方形组成的矩形对角线的长. 于是,画出如图2所示的分割线, 拼出如图3所 示的新正方形.
25
实验操作型问题
折纸与剪纸
主要考查: (1)全等、相似、平移、对称、旋转、翻折等几何
操作变换的若干方法和技巧; (2)综合运用相关知识解决应用问题.
分割与拼合
展开与叠合
26
动手操作型的折纸与剪纸,图形的分割与拼合、几何体 的展开与叠合,几乎触及了每份试卷,从单一的选择、填空, 到综合性较强的探索猜想、总结规律,判断论证存在与否, 以及分类讨论等综合题,几乎无处不在.
S3 S2 S1 0 1 3 5 7 9 11 13
图6
S10=__7_6_______
9 16 25 36 7、一个巴尔末的中学教师成功地从光谱数据,5 , 12 , 21 , 32 ,
---中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这 种规律,写出第n(n≥1)个数据是___________________.
1
探究型问题是近年中考比较常见的题目,解 答这类问题的关键是牢固掌握基本知识,加强 “一题多解”、“一题多变”等的训练;需要有 较 强的发散思维能力、创新能力。具体做题时, 要仔细分析题目的有关信息、合情推理、联想, 并要运用类比、归纳、分类讨论等数学思想全 面考虑问题,有时还借助图形、实物或实际操 作来打开思路。
1.基础题型
27
1.折纸问题
操作与探究
小东同学的做法是: 设新正方形的边长为x(x >0). 依题意,割补前后 图形面积相等,有x2=5,解得x 5由此可知新正方形的边长等于两个小正 方形组成的矩形对角线的长. 于是,画出如图2所示的分割线, 拼出如图3所 示的新正方形.
25
实验操作型问题
折纸与剪纸
主要考查: (1)全等、相似、平移、对称、旋转、翻折等几何
操作变换的若干方法和技巧; (2)综合运用相关知识解决应用问题.
分割与拼合
展开与叠合
26
动手操作型的折纸与剪纸,图形的分割与拼合、几何体 的展开与叠合,几乎触及了每份试卷,从单一的选择、填空, 到综合性较强的探索猜想、总结规律,判断论证存在与否, 以及分类讨论等综合题,几乎无处不在.
S3 S2 S1 0 1 3 5 7 9 11 13
图6
S10=__7_6_______
9 16 25 36 7、一个巴尔末的中学教师成功地从光谱数据,5 , 12 , 21 , 32 ,
---中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这 种规律,写出第n(n≥1)个数据是___________________.
1
探究型问题是近年中考比较常见的题目,解 答这类问题的关键是牢固掌握基本知识,加强 “一题多解”、“一题多变”等的训练;需要有 较 强的发散思维能力、创新能力。具体做题时, 要仔细分析题目的有关信息、合情推理、联想, 并要运用类比、归纳、分类讨论等数学思想全 面考虑问题,有时还借助图形、实物或实际操 作来打开思路。
1.基础题型
27
1.折纸问题
操作与探究
《探索规律》数与代数PPT课件
- .
1. 六(4)班同学按下面的规律为教室挂上气球。
第20个气球是什么颜色的?第27个呢?请说明理由。
你能发现下列图形的规律吗?
1
2
3
4
5
(1)如果用数字“1”表示正方形的大小。
(2)现在正方形的大小怎么表示?
(3)现在正方形的大小呢?
(4)接着画第4个 ?
找规律,填一填。
9
15
18
30
16
128
16
49
64
216
15
28
16
29
搭三角形
用火柴棒按下图的方式搭三角形,填写下表
三角形的个数
1
2
3
4
5
…
n
火柴棒的根数
3
5
7
9
11
三角形的个数与火柴棒的根数之间有什么关系?
返回
搭三角形
用火柴棒按下图的方式搭三角形,填写下表
三角形的个数
6
7
8
9
斜着的一组数字分别是1、2、3、4、5、6、7、8、9,的平方。
探索数与数之间的规律:
9
9
18
27
36
45
54
63
72
81
8
8
16
24
32
40
48
56
64
72
7
7
14
21
28
35
42
49
56
63
6
6
12
18
24
30
36
42
48
54
5
5
10
中考数学专题一 规律探究(共33张PPT)
33
21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,
则21+22+23+24+…+22017的末位数字是 ( )
A.0
B.2
C.4
D.6
4
【思路点拨】根据题目中的式子可以知道,末位数字 按2,4,8,6的顺序出现,从而可以求得21+22+23+24+…+ 22017的末位数字.
(1)1,4,9,16,…,n2.
(2)1,3,6,10,…,n n 1 .
2
(3)1,3,7,15,…,2n-1.
(4)1+2+3+4+…+n= n n 1 .
2
13
(5)1+3+5+…+(2n-1)= n2.
(6)2+4+6+…+2n=n(n+1). (7)12+22+32+…+n2= 1 n(n+1)(2n+1).
后猜想其中蕴含的规律,反映了由特殊到一般的数学
方法,考查了学生的分析、归纳、抽象、概括能力.一
般解法是先写出数式的基本结构,然后通过横比(比较
同一等式中不同部分的数量关系)或纵比(比较不同等
式间相同位置的数量关系)找出各部分的特征,改写成
要求的格式.
3
【示范题1】(2017·岳阳中考)观察下列等式:
28
29
【解析】如图所示,P1(-2,0),P2(2,-4), P3(0,4),P4(-2,-2),P5(2,-2),P6(0,2), 发现6次一个循环, ∵2017÷6=336……1, ∴点P2017的坐标与P1的坐标相同,即P2017(-2,0). 答案:(-2,0)
21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,
则21+22+23+24+…+22017的末位数字是 ( )
A.0
B.2
C.4
D.6
4
【思路点拨】根据题目中的式子可以知道,末位数字 按2,4,8,6的顺序出现,从而可以求得21+22+23+24+…+ 22017的末位数字.
(1)1,4,9,16,…,n2.
(2)1,3,6,10,…,n n 1 .
2
(3)1,3,7,15,…,2n-1.
(4)1+2+3+4+…+n= n n 1 .
2
13
(5)1+3+5+…+(2n-1)= n2.
(6)2+4+6+…+2n=n(n+1). (7)12+22+32+…+n2= 1 n(n+1)(2n+1).
后猜想其中蕴含的规律,反映了由特殊到一般的数学
方法,考查了学生的分析、归纳、抽象、概括能力.一
般解法是先写出数式的基本结构,然后通过横比(比较
同一等式中不同部分的数量关系)或纵比(比较不同等
式间相同位置的数量关系)找出各部分的特征,改写成
要求的格式.
3
【示范题1】(2017·岳阳中考)观察下列等式:
28
29
【解析】如图所示,P1(-2,0),P2(2,-4), P3(0,4),P4(-2,-2),P5(2,-2),P6(0,2), 发现6次一个循环, ∵2017÷6=336……1, ∴点P2017的坐标与P1的坐标相同,即P2017(-2,0). 答案:(-2,0)
初一数学探索规律正式用PPT课件
(3)在(2)中,若改成每8张拼成1张大桌子,则共可
坐 100 人
第10页/共38页
3、研究下列算式,你发现了什么规律? 用字母表示这个规律. 1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52; …………… 用n表示自然数,规律 是: n(n+2)+1=(n+1)2 。
推测330的个位数字是(D )
A. 1
B. 3 C. 7 D. 9
第5页/共38页
重阳节快要到了,为了弘扬“孝敬 父母、尊敬老人”的中华传统美德,某 市文化局决定在重阳节这天在该市文化 广场举办一个千人书法大赛活动。若按 下图方式摆放桌子和椅子,你能帮主办 单位计算出需要的桌子和椅子吗?
第6页/共38页
(5)、2,5,10,17,2_6__,3_7___
第2页/共38页
第3页/共38页
回顾旧知识:
填写下表,并观察下面两个代数式的值 的变化情况:
n
12
3
4
5
6
7
8
5n+6 11 16 21 26 31 36 41 46
n2
14
9 16 25 36 49 64
①随着n的值逐渐变大,两个代数式的值如何变化?
a a+21
a+8 a+15
a+9 a+16
a+3
还有其它 规律吗?
a+24
第24页/共38页
返回
日一二三四 五六
123 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
数学中考复习《探索规律》课件(共30张ppt)
探索规律
探究型题有时可从数量关系
表示的规律着手,也可从图形本 身和规律着手.
归纳猜想
特殊入手
一般结论
探索
三角形的个数 1
2
3
4
5
… …
n
火柴棒的根数 3 5 7 9 11 … 2n+1
…
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
谢谢观赏
You made my day!
我们,还在路上……
a2-8 a3-7 a4-6 a9-1 1a0 a1+11 a1+66 a1+77 a1+88
横排中右边的数比左边的数大1 纵列中下面的数比上面的数大7
1234567 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 …… …… …… …… …… …… …… …… …… …… …… …… …… …… 995 996 997 998 999 1000 1001
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
横排中右边的数
3a 4a+1 比左边的数大1
纵列中下面的数
a1+07 a1+18 比上面的数大7
观察下面的几个算式,你发现了什么规律?
12=1 112=121 1112=12321 11112=1234321 利用上面的规律,请猜出 111112= 123454321 。
探究型题有时可从数量关系
表示的规律着手,也可从图形本 身和规律着手.
归纳猜想
特殊入手
一般结论
探索
三角形的个数 1
2
3
4
5
… …
n
火柴棒的根数 3 5 7 9 11 … 2n+1
…
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
谢谢观赏
You made my day!
我们,还在路上……
a2-8 a3-7 a4-6 a9-1 1a0 a1+11 a1+66 a1+77 a1+88
横排中右边的数比左边的数大1 纵列中下面的数比上面的数大7
1234567 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 …… …… …… …… …… …… …… …… …… …… …… …… …… …… 995 996 997 998 999 1000 1001
星星星星星星星 期期期期期期期 日一二三四五六
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
横排中右边的数
3a 4a+1 比左边的数大1
纵列中下面的数
a1+07 a1+18 比上面的数大7
观察下面的几个算式,你发现了什么规律?
12=1 112=121 1112=12321 11112=1234321 利用上面的规律,请猜出 111112= 123454321 。
七年级数学上册探索规律优秀课件
1 6 13 20 27 7 14 21 28 8 15 22 29
2 9 16 23 30
3 10 17 24 31
4 11 18 25
5 12 19 26
变式探 究(1)
在 + 字形区域内,五个数之和与正中心何关 系? 能用字母表示并验证这个关系吗?
答:五数之和=5×中间数
(a-1)+(a+1)+a+(a7)+(a+7)=___ 5a
52
53
54
操作探究(3):
------教材第111页随堂练习
要动手折叠哦?
将一张长方形的纸对 折,如右图所示可得到一 条折痕。继续对折,对折 时每次折痕与上次的折痕 保持平行,连续对折6次 后,可以得到几条折痕? 如果对折10次呢?对折n次 呢?
先将折叠后的结果填入下表, 细胞分裂示意图 再与细胞分裂数作比较:
a-8
a a+8
右下者比左上者多8
能用字母表示吗?
星期 日
星期 一
星期 二
星期 三
星期 四
星期 五
星期 六
(4)左下右上对角 线上三个相邻数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
二 三 1. 3x2-4x+5是_____次____项式。 2. (k-2)x2-5x+9是关于x的一次多项式,则 k=______。 2
3. 4xn+6xn+1+ xn+2- xn+3(n是自然数) 四 n+3 是_____次_____项式,其中最高次 项的系数 -1 是____。
(新)中考数学规律探索问题的探究详解课件(PPT)
(新)中考数学规律探索问题的探究详解课件
(1)根据题意可得出第一次变换前的边长(面积) 为b; (2)通过计算得到第一次变换后的边长(面积), 第二次变换后的边长(面积),第三次变换后的边长 (面积),第四次变换后的边长(面积),归纳出后 一个边长(面积)与前一个边长(面积)之间存在的 倍分关系是n; (3)第M次变换后,求得线段的长度(面积)为nMb.
120
【答案】 1 nn 1n 2n 3.n 4
120
(新)中考数学规律探索问题的探究详解课件
满分技法
数式规律探索主要有以下3类: 1.数字规律探索: (1)当所给的一组数是整数时,先观察这组数字是自然 数列、正整数列、奇数列、偶数列还是正整数数列经过平 方、平方加1或减1等运算后的数列,然后再看这组数字的 符号,判断数字符号的正负是交替出现还是只出现一种符 号,如果是交替出现的可用(-1)n或(-1)n-1表示数字的符号, 最后把数字规律和符号规律结合起来从而得到结果;
(新)中考数学规律探索问题的探究详解课件
例4题图 【思维教练】要得到第n个正六角星形的面积,通过观 察前一个正六角星形与后一个正六角星形之间的面积关 系,由于前后两个正六角星形相似,可根据相似图形面 积之比等于相似比的平方得到面积关系,找出规律即可.
(新)中考数学规律探索问题的探究详解课件
【解析】很容易知道正六角星形A1F1B1D1C1E1与正六角星 形AFBDCE相似,且相似比是1∶2,所以它们的面积比为
(新)中考数学规律探索问题的探究详解课件
3.等式规律探索: 第一步:标序数; 第二步:对比式子与序数,即分别比较等式中各部分与 序数(1,2,3,4,…,n)之间的关系,把其蕴含的规 律用含序数的式子表示出来.通常方法是将式子进行拆分, 观察式子中数字与序数是否存在倍数或者乘方的关系; 第三步:根据找出的规律得出第n个等式,并进行检验.
专题十二规律探索人教版七年级数学上册精品课件PPT
专题十二 规律探索-2020秋人教版七年级数学上册 课件
•
1、在困境中时刻把握好的机遇的才能 。我在 想,假 如这个 打算是 我往履 行那结 果必定 失败, 由于我 在作决 策以前 会把患 上失的 因素斟 酌患上 太多。
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
从P2向左跳3个单位到P3,第四次从P3向右跳4个单位
到P4,……,若按以上规律跳了100次时,它落在数
轴上的点P100所表示的数恰好是2 020,则这只小球的 初始位置点P0所表示的数是( A )
A. 1 970
B. 1 969
C. -1 970
D. -1 969
专题十二 规律探索-2020秋人教版七年级数学上册 课件
面的相对面的颜色是 绿色
.
专题十二 规律探索-2020秋人教版七年级数学上册 课件
专题十二 规律探索-2020秋人教版七年级数学上册 课件
12. 如图1,在锐角∠AOB内部,画1条射线,可得3 个锐角;如图2,画2条不同射线,可得6个锐角; 如图3,画3条不同射线,可得10个锐角;……; 照此规律,画(n-2)条不同射线,可得锐角 个.
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
•
4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
•
1、在困境中时刻把握好的机遇的才能 。我在 想,假 如这个 打算是 我往履 行那结 果必定 失败, 由于我 在作决 策以前 会把患 上失的 因素斟 酌患上 太多。
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
从P2向左跳3个单位到P3,第四次从P3向右跳4个单位
到P4,……,若按以上规律跳了100次时,它落在数
轴上的点P100所表示的数恰好是2 020,则这只小球的 初始位置点P0所表示的数是( A )
A. 1 970
B. 1 969
C. -1 970
D. -1 969
专题十二 规律探索-2020秋人教版七年级数学上册 课件
面的相对面的颜色是 绿色
.
专题十二 规律探索-2020秋人教版七年级数学上册 课件
专题十二 规律探索-2020秋人教版七年级数学上册 课件
12. 如图1,在锐角∠AOB内部,画1条射线,可得3 个锐角;如图2,画2条不同射线,可得6个锐角; 如图3,画3条不同射线,可得10个锐角;……; 照此规律,画(n-2)条不同射线,可得锐角 个.
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
•
4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06.10.2020
17
3、将正数按如图所示的规律排律下去。 若用有序实数对(n , m)表示第n排,从 左到右第m个数,如(4,3)表示实数9, 则(7,2)表示的实数_____2_3____
4、试观察下列各式的规律,然后填空:
(x1)x(1)x21 (x1)x (2x1)x31
(x 1 )x (3 x2 x 1 ) x4 1
(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;
(2)猜想并写出与第 n 个图形相对应的等式.
06.10.2020
14
复练2:
[06] 观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:
①
4×0+1=4×1-3;
②
4×1+1=4×2-3;
…
第1个图
第2个图
第3个图
方法二:每个图形,可看成是序列数与3的倍数
又多1枚棋子
06.10.2020
12
2.图形规律
归纳与猜想
例5(2009海南省)用同样大小的黑色棋子按图所示
的方式摆图形,按照这样的规律摆下去,则第n个图
形需棋子
枚(用含n的代数式表示).
…
第1个图
方法三:
06.10.2020
第2个图
的方式摆图形,按照这样的规律摆下去,则第n个图
形需棋子
枚(用含n的代数式表示).
…
第1个图
第2个图
第3个图
方法一:除第一个图形有4枚棋子外,每多一个图形,
多3枚棋子. 4+3(n-1)=3 n+1
06.10.2020
11
2.图形规律
归纳与猜想
例5(2009海南省)用同样大小的黑色棋子按图所示
的方式摆图形,按照这样的规律摆下去,则第n个图 形需棋子 3n+1 枚(用含n的代数式表示).
本题难点是,变化的部分太多,有三处发生变
化:分子、分母、分式的符号。学生很容易发现各
部分的变化规律,但是如何用一个统一的式子表示
出分式的符号的变化规律是难点.
7
1.数式规律
归纳与猜想
例3:(09年陕西)观察下列各式:
1×3=12+2×1;
2×4=22+2×2;
3×5=32+2×3;……
请你将猜方想法到总的结:规律用正整数n n 1
06.10.2020
5
1.数式规律
归纳与猜想
例1:(2009 湖北十堰)观察下面两行数: 2, 4, 8, 16, 32, 64, … ① 5, 7, 11, 19, 35, 67, … ② 根据你发现的规律,取每行数的第10个数,求得
它们的和是(写出最后的结果) 2051 .
分析:第一行的第10个数是 210 1024 ,第二行
06.10.2020
2
规律型问题
探
实 验操作题
究
型 问
存在型问题
题
动态型问题
06.10.2020
3
1.条件的不确定性 2.结构的多样性 3.思维的多向性 4.解答的层次性 5.过程的探究性 6.知识的综合性
06.10.2020
4
规律探索试题是中考中的一棵常青树,一直 受到命题者的青睐,主要原因是这类试题没有固 定的形式和方法,要求学生通过观察、分析、比 较、概括、推理、判断等探索活动来解决问题.
06.10.2020
……
则 (x 1 )x ( 1 0x 9 x 1 ) ____x_1_1___1______
06.10.2020
18
5、观察下列各式 152 1(11)100 52 225
252 2(2 1)100 52 625
352 3(3 1)100 52 1225 依此规律,第n个等式(n为正整数)为 (1n 0 5)2n(n1 ) 10 50 2
06.10.2020
16
二、填空题
1、有一组数:1,2,5,10,17,26,……,请观察这组数的构
成规律,用你发现的规律确定第8个数为 50
.
2、把正整数1,2,3,4,5,……,按如下规律排列: 1
2,3, 4,5,6,7, 8,9,10,11,12,13,14,15,
………… 按此规律,可知第n行有 2n-1 个正整数.
③
4×2+1=4×3-3;
④
___________________;
⑤
___________________;
……
……
(2)通过猜想,写出与第 n 个图形相对应的等式.
06.10.2020
返表一
15
探究规律题的一般步骤为: (1)观察(发现特点) (2)猜想(可能的规律) (3)实验(用具体数值代入猜想)
第3个图
方法总结:
2n+(n+1)=3n+认提1 真取数观式察信息研究仿图照案数(式形规)
律得到结论
13
复练1:
[05]
观察右面的图形(每个正方形的边长均为 1)和相应的等式,探究其中的规律:
① 1 1 1 1
22
② 2 2 2 2 33
③ 3 3 3 3
44
④ 4 4 4 4
55
……
……
表示出来横:向_熟__悉_代__数_式__、_算_.式的结构;
纵向观察、对比,研究各式之间的
关系,寻求变化规律;
06.10.2020
按要求写出算式或结果。
8
2.图形规律
归纳与猜想
例4:(2008黑龙江哈尔滨)观察下列图形:
它们是按一定规律排列的,依照此规律,第20
个图形共有 3n 个★.
三角形每条边上的
06.10.2020
1
探究型问题是近年中考比较常见的题目,解
答这类问题的关键是牢固掌握基本知识,加强
“一题多解”、“一题多变”等的训练;需要有 较 强的发散思维能力、创新能力。具体做题时,
要仔细分析题目的有关信息、合情推理、联想,
并要运用类比、归纳、分类讨论等数学思想全 面考虑问题,有时还借助图形、实物或实际操 作来打开思路。
方法一: 3(n+1)-3=3n
星数相同,再减去
06.10.2020
三个顶点的数
9
2.图形规律
归纳与猜想
例4:(2008黑龙江哈尔滨)观察下列图形:
3
6
9
12
它们是按一定规律排列的,依照此规律,第20
个图形共有 3n 个★.
06.10.2020
10
2.图形规律
归纳与猜想
例5(2009海南省)用同样大小的黑色棋子按图所示
的每个数总比第一行同一位置上的数大3,所以第
二行的第10个数是1024+3=1027.
06.10.2020
6
1.数式规律
归纳与猜想
例2:(2009北京)一组按规律排列的式子:
b2 , a
b5 a2
,
b8 a3
,
b11 …(ab≠0), a4
其中第7个式子是
,
第n个式子是
(n为正整数).
06.10.2020