哈尔滨市道里区2020届九年级上期末考试数学试题含答案
哈尔滨市道里区2020 年新人教版九年级上期末考试数学试题含答案
![哈尔滨市道里区2020 年新人教版九年级上期末考试数学试题含答案](https://img.taocdn.com/s3/m/71f8231333d4b14e84246837.png)
道里区2020-2021学年度上学期九年级期末调研测试数学学科一.选择题(每小题3分,共计30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()(A) (B) (C) (D)2.在△ABC中,∠C=90°,下列选项中的关系式正确的是( )(A)sinA=ABAC(B)cosB=BCAC(C)tanA=ABBC(D)AC=AAB cos⋅3.如图的几何体是由一些小正方体组合而成的,则这个几何体的主视图是()4.如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()(A)65°(B)55°(C)45°(D)35°5.如图,将△ABC绕点A逆时针旋转得到CBA''∆,若B'落在BC边上,∠B=50°,则CBC''∠为()(A)50°(B)60°(C)70°(D)80°6.在反比例函数xmy31-=图象上有两点A),(11yx,B ),22yx(,1x<0<2x,1y<2y,则m的取值范围是( )(A)m>13(B)m<13(C)m≥13(D)m≤13(第3题图)7.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从 这个袋中任取2个珠子,都是蓝色珠子的概率是( )(A)21(B)31 (C)41 (D)618.如图,543l l l ∥∥,1l 交543,,l l l 于E,A,C, 2l 交543,,l l l 于D,A,B,以 下结论的错误的为( )(A)AB DA AC EA = (B)CE CA BD BA = (C)DB DA CE CA = (D)DBDAEC EA =9. 如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E 且分别交PA 、PB 于点C ,D ,若PA=4,则△PCD 的周长为( )(A)8 (B)7 (C)6 (D)510.如图是抛物线y 1=ax 2+bx+c(a≠0)的一部分,抛物线的顶点坐标 A(1,3),与x 轴的一个公共点B(4,0),直线y 2=mx+n(m≠0) 与抛物线交于A ,B 两点,下列结论:①2a-b=0;②abc <0;③方程 ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个公共点 是(﹣1,0);⑤当1<x <4时,有y 2>y 1 ;其中正确的有( )个. (A)1 (B)2 (C)3 (D)4二.填空题(每题3分,共30分)11.点(-4,1)关于原点的对称点的坐标为 . 12.若反比例函数xky =的图象经过点(﹣2,3),则k= . 13.将二次函数y=x 2+1的图象向左平移2个单位,再向下平移3个单位长度得到的图象对应的二次函数的解析式为b ax x y ++=2,则ab = . 14.在△ABC 中,∠C=90°,cosA=23,AC=36,则BC= . 15.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,(第8题图)(第9题图)(第10题图)∠B=135°,则AC 的长为 .16.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一 颗棋子,取得白色棋子的概率是31,如再往盒中放进4颗黑色棋子, 取得白色棋子的概率变为51,则22y x += . 17.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15° 方向的A 处,若渔船沿北偏西75°方向以60海里/小时的速度 航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B 、C 之间的距离为 海里 .18.某种商品的进价为40元,在某段时间内若以每件x 元出售,可卖 出(100-x)件,当x= 时才能使利润最大.19.如图,⊙O 的弦AB 与半径OC 垂直,点D 为垂足,OD=DC,32=AB ,点E 在⊙O 上,∠EOA=30°,则△EOC 的面积为 .20. 如图,△ABC,∠ACB=90°,点D,E 分别在AB, BC 上, AC=AD,∠CDE=45°,CD 与AE 交于点F,若 ∠AEC=∠DEB, CE=4107,则CF= .三.解答题(60分)21.(本题7分)通过配方,确定抛物线12++=bx ax y 的顶点坐标及对称轴,其中︒-︒=45tan 30sin a ,︒⋅︒=60sin 30tan 4b .(第19题图)(第17题图)(第2020)22.(本题7分)如图,在小正方形的边长均为1的方格纸中,有线段AB ,点A ,B 均在小正方形的顶点上.(1)在图1中画出四边形ABCD ,四边形ABCD 是中心对称图形,且四边形ABCD 的面积为6,点C ,D 均在小正方形的顶点上; (2)在图2中画一个△ABE ,点E 在小正方形的顶点上,且BE=BA,请直接写出∠BEA 的余弦值.23.(本题8分)在平面直角坐标系内,点O 为坐标原点,直线4+=x y 交x 轴于点A,交y 轴于点B, 点C(2,m)在直线4+=x y 上,反比例函数xny =经过点C. (1)求m ,n 的值 ; (2)点D 在反比例函数xny =的图象上,过点D 作X 轴的垂线,点E 为垂足,若OE=3, 连接AD,求tan ∠DAE 的值(第23题图)24.(本题8分)如图,正方形ABCD,点E 在AD 上,将△CDE 绕点C 顺时针旋转90°至△CFG ,点F,G 分别为点D,E 旋转后的对应点,连接EG ,DB,DF, DB 与CE 交于点M,DF 与CG 交于点N.(1)求证BM=DN;(2)直接写出图中已经存在的所有等腰直角三角形.25.(本题10分)如图,在平面直角坐标系内,点O 为坐标原点,抛物线423412++-=x x y 交x 轴负半轴于点A,交x 轴正半轴于点B,交y 轴于点C. (1)求AB 长 ;(2)同时经过A,B,C 三点作⊙D ,求点D 的坐标 ; (3)在(2)的条件下,横坐标为10的点E 在抛物线423412++-=x x y 上,连接AE,BE, 求∠AEB 的度数.。
黑龙江省哈尔滨市道里区2019-2020学年九年级上学期数学期末试卷及参考答案
![黑龙江省哈尔滨市道里区2019-2020学年九年级上学期数学期末试卷及参考答案](https://img.taocdn.com/s3/m/702c7af4227916888586d7e7.png)
黑龙江省哈尔滨市道里区2019-2020学年九年级上学期数学期末试卷一、单选题1. 下列中式元素的图案中,既是中心对称图形又是轴对称图形的是( ) A . B .C .D .2. 五个完全相同的正方体搭成的几何体如图所示,其主视图是( ) A . B . C . D .3. 将抛物线y =x ﹣2向右平移3个单位长度,再向上平移2个单位长度,则所得抛物线的解析式为( )A . y =(x +3)B . y =(x ﹣3)C . y =(x +2)+1D . y =(x ﹣2)+1 4. 在△ABC 中,∠C =90°,sinA = ,则tanB 等于( )A .B .C .D .5. 已知点P (a ,2)与点P (﹣3,b )关于原点对称,则a ﹣b 的值是( )A . ﹣5B . ﹣1C . 1D . 56. 在反比例函数y = 图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值范围是( )A . k >2B . k >0C . k ≥2D . k <27. 随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数大于3的概率为 ( )A .B .C .D .8. 关于抛物线y =﹣(x +3)+2,下列说法错误的是( )A . 开口向下B . 对称轴是直线x =﹣3C . 与y 轴交点坐标(0,2)D . 顶点坐标(﹣3,2)9. 如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( )A . 100°B . 110°C . 115°D . 120°10. 如图,平行四边形ABCD 中,连接AC , 在CD 的延长线上取一点E , 连接BE , 分别交AC 和AD 于点G和点F , 则下列结论错误的是() A . =B . =C . =D . =2222212211.函数 中,自变量 的取值范围是________12. 若二次函数y =x ﹣6x +3a 的图象与x 轴有且只有一个交点,则a 的值为________.13. 身高1.5米的小强站在旗杆旁,测得小强和旗杆在地面上的影长分别为2米和16米,则旗杆的高度为________米.14. 一个扇形的半径为6,弧长为3π,则此扇形的圆心角为________度.15. 汽车刹车后行驶的距离s 与行驶时间t (秒)的函数关系是s =15t ﹣6t , 汽车从刹车到停下来所用时间是________秒.16. 如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD=2,tan ∠OAB= ,则AB 的长是________.17. 科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶6千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C . 小明发现古镇C 恰好在A 地的正北方向,则B 、C 两地的距离是________千米.18. 如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将△ABC 绕点A 逆时针旋转得到△AB ′C ′,点B 、C 的对应点分别为点B '、C ′,AB ′与BC 相交于点D , 当B ′C ′∥AB 时,则CD =________.19. 如图,CD 是⊙O的直径,AB 是⊙O 的弦,CD ⊥AB ,垂足为E , 连接BC 、BD . 点F 为线段CB 上一点,连接DF , 若CE =2,AB =8,BF = ,则tan ∠CDF =________.20. 如图,P 是等边三角形ABC 内一点,连接PA 、PC , PA =PC , ∠APC=90°,把线段AP 绕点A 逆时针旋转120°,得到线段AQ (点P 与点Q 为对应点),连接BQ 交AP 于点E . 点D 为BQ 的中点,连接AD 、PD , 若S =2,则AB =________.22△DAP21. 先化简,再求代数式(1﹣)÷ 的值,其中x=2sin60°﹣tan45°.22. 如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点均在小正方形的顶点上.(1)在图中画出以AB为底的等腰三角形ABC,点C在小正方形的顶点上,且△ABC的面积是7.5;(2)在(1)的条件下,在图中画出以AC为斜边的直角三角形ACE(AE<EC),点E在小正方形的顶点上,且△A CE的面积是5,连接EB,并直接写出tan∠AEB的值.23. 某中学在艺术节期间向全校学生征集书画作品,美术王老师从全校随机抽取了四个班级记作A、B、C、D,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师抽查的四个班级共征集到作品多少件?(2)请把图2的条形统计图补充完整;(3)若全校参展作品中有五名同学获得一等奖,其中有三名男生、二名女生.现在要在其中抽两名同学去参加学校总结表彰座谈会,请用画树状图或列表的方法求恰好抽中一名男生一名女生的概率.24. 在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转60°,得到△AED,点B、C的对应点分别是E、D.F为AC的中点,连接BF、DF、BE,DF与EA相交于点G,BE与AC相交于点H.(1)如图1,求证:四边形BFDE为平行四边形;(2)如图2,连接CE,在不添加任何辅助线与字母的情况下,请直接写出所有与△AEC全等的三角形.25. 某超市有甲、乙两种商品,若买1件甲商品和2件乙商品,共需80元;若买2件甲商品和3件乙商品,共需135元.(1)求甲、乙两种商品每件售价分别是多少元;(2)甲商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该超市每天销售甲商品100件;若销售单价每上涨1元,甲商品每天的销售量就减少5件.写出甲商品每天的销售利润y(元)与销售单价(x)元之间的函数关系,并求每件售价为多少元时,甲商品每天的销售利润最大,最大利润是多少?26. 已知:△ABC是⊙O的内接三角形,AB为直径,AC=BC,D、E是⊙O上两点,连接AD、DE、AE.(1) 如图1,求证:∠AED ﹣∠CAD =45°;(2) 如图2,若DE ⊥AB 于点H , 过点D 作DG ⊥AC 于点G , 过点E 作EK ⊥AD 于点K , 交AC 于点F , 求证:AF =2DG ;(3) 如图3,在(2)的条件下,连接DF 、CD ,若∠CDF =∠GAD , DK =3,求⊙O 的半径.27. 在平面直角坐标系中,点O 为坐标原点,抛物线y = ax + ax + a (a ≠0)交x 轴于点A 和点B (点A 在点B 左边),交y 轴于点C , 连接AC , tan ∠CAO =3.(1) 如图1,求抛物线的解析式;(2) 如图2,D 是第一象限的抛物线上一点,连接DB , 将线段DB 绕点D 顺时针旋转90°,得到线段DE (点B 与点E 为对应点),点E 恰好落在y 轴上,求点D 的坐标;(3) 如图3,在(2)的条件下,过点D 作x 轴的垂线,垂足为H , 点F 在第二象限的抛物线上,连接DF 交y 轴于点G , 连接GH , sin ∠DGH = ,以DF 为边作正方形DFMN , P 为FM 上一点,连接PN ,将△MPN 沿PN 翻折得到△TPN (点M 与点T 为对应点),连接DT 并延长与NP的延长线交于点K, 连接FK,若FK =,求cos ∠KDN的值.参考答案1.2.3.4.5.6.7.8.9.10.11.12.214.15.16.17.18.19.20.21.22.24.25.26.27.。
哈尔滨市2020年九年级上学期数学期末考试试卷(II)卷
![哈尔滨市2020年九年级上学期数学期末考试试卷(II)卷](https://img.taocdn.com/s3/m/567a9cca227916888586d772.png)
哈尔滨市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八上·法库期末) 已知a,b为两个连续整数,且a< <b,则这两个整数是()A . 1和2B . 2和3C . 3和4D . 4和52. (2分)(2020·吉林模拟) 2020 年 5 月 21 日,是联合国确定的首个“国际茶日”.茶是世界三大饮品之一,全球饮茶人口超过 20 亿,将数据 20 亿用科学计数法表示为()A . 20 ×108B . 0.2 ×1010C . 2×109D . 2 ×1010 .3. (2分)(2019·萧山模拟) 下列各式变形中,正确的是()A .B .C .D .4. (2分)(2018·江油模拟) 下列命题:①若a<1,则(a﹣1) =﹣;②圆是中心对称图形又是轴对称图形;③ 的算术平方根是4;④如果方程ax2+2x+1=0有实数根,则实数a≤1.其中正确的命题个数是()A . 1个B . 2个C . 3个D . 4个5. (2分)已知α是锐角,且点A(, a),B(sinα+cosα,b), C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是()A . a<b<cB . a<c<C . b<c<aD . c<b<a6. (2分)(2018·沈阳) 在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<07. (2分) (2019九上·长春期末) 下列命题中,属于真命题的是()A . 所有的等腰三角形都相似B . 所有的直角三角形都相似C . 所有的等边三角形都相似D . 所有的矩形都相似8. (2分) (2019九上·长春期末) 如图,在平面直角坐标系中,一次函数的图象分别与x轴、y 轴交于A、B两点,与函数的图象交于点C.若点A为线段BC的中点,则k的值为()A . 1B .C . 2D . 3二、填空题 (共6题;共6分)9. (1分) (2016八上·肇源月考) 若,则 =________10. (1分)(2012·常州) 已知函数y= ,则自变量x的取值范围是________;若分式的值为0,则x=________.11. (1分) (2019九上·长春期末) 在比例尺为1:2500000的地图上,一条路长度约为8cm,那么这条路它的实际长度约为________km.12. (1分)连结矩形四边中点所得四边形是________.13. (1分) (2019九上·长春期末) 如图,在⊙O中,半径OA垂直弦于点D.若∠ACB = 33°,则∠OBC的大小为________度.14. (1分) (2019九上·长春期末) 如图,在平面直角坐标系中,正方形OABC的顶点A在y轴正半轴上,顶点C在x轴正半轴上,抛物线(a<0)的顶点为D ,且经过点A、B .若△ABD为等腰直角三角形,则a的值为________.三、解答题 (共10题;共74分)15. (10分)(2019·泉州模拟) 《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?16. (5分)先化简,再求值:,其中.17. (5分)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.18. (5分) (2019九上·长春期末) 如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,ta n39°=0.81)19. (7分) (2019九上·长春期末) 某校学生会为了解本校初中学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查.在确定调查对象时,大家提出以下几种方案:A.对各班班长进行调查;B.对某班的全体学生进行调查;C.从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会将收集到的数据整理后绘制成如图所示的条形统计图.(1)为了使收集到的数据具有代表性.学生会在确定调查对象时应选择方案________ (填A,B或C);(2)被调查的学生每天做作业所用时间的众数为________h;(3)根据以上统计结果,估计该校900名初中学生中每天做作业用1.5 h的人数.20. (5分) (2019九上·长春期末) 如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF= BC ,求证:四边形OCFE是平行四边形.21. (2分)(2017·丰润模拟) 甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22. (5分) (2019九上·长春期末) 问题情境:小明和小丽共同探究一道数学题:如图①,在△ABC中,点D是边BC的中点,∠BAD = 65°,∠DAC = 50°,AD = 2,求AC的长为多少.探索发现;小明的思路是:延长AD至点E ,使DE = AD ,构造全等三角形.小丽的思路是:过点C作CE∥AB ,交AD的延长线于点E ,构造全等三角形.选择小明、小丽其中一人的方法解决问题情境中的问题.23. (15分) (2019九上·长春期末) 如图①,在Rt△ABC中,∠C = 90°,AB = 10,BC = 6.点P从点A 出发,沿折线AB—BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长.(用含t的代数式表示).(2)当PQ与△ABC的一边平行时,求t的值.(3)如图②,过点P作PE⊥AC于点E ,以PE、QE为邻边作矩形PEQF ,点D为AC的中点,连结DF .直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.图②24. (15分) (2019九上·长春期末) 对于给定的两个函数和,在这里我们把叫做这两个函数的积函数,把直线和叫做抛物线的母线.(1)直接写出函数和的积函数,然后写出这个积函数的图象与x轴交点的坐标.(2)点P在(1)中的抛物线上,过点P垂直于x轴的直线分别交此抛物线的母线于M、N两点,设点P的横坐标为m ,求时m的值.(3)已知函数和.当它们的积函数自变量的取值范围是,且当时,这个积函数的最大值是8,求n的值以及这个积函数的最小值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共74分)15-1、16-1、17-1、18-1、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、24-3、。
2020-2021学年黑龙江省哈尔滨市道里区九年级(上)期末数学试卷(五四学制)(含解析)
![2020-2021学年黑龙江省哈尔滨市道里区九年级(上)期末数学试卷(五四学制)(含解析)](https://img.taocdn.com/s3/m/62407cc10b4e767f5acfcee0.png)
2020-2021学年黑龙江省哈尔滨市道里区九年级第一学期期末数学试卷(五四学制)一.选择题(共10小题).1.下列各点中,在反比例函数y=图象上的是()A.(﹣1,8)B.(﹣2,4)C.(1,7)D.(2,4)2.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋中摸出1个球,是白球的概率是()A.B.C.D.4.下面四个几何体中,主视图为三角形的是()A.B.C.D.5.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3 6.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+)米C.(1.5+150sinα)米D.(1.5+)米7.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A逆时针旋转得到Rt△AB'C',使点C'落在AB边上,连接BB',则BB'的长度是()A.1cm B.2cm C.cm D.2cm8.如图,⊙O为△ABC的外接圆,已知∠ABC为130°,则∠AOC的度数为()A.50°B.80°C.100°D.115°9.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB,则下列式子一定正确的是()A.B.C.D.10.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①abc<0;②4a﹣2b+c=0;③当x>1时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有一个实数根.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共10小题).11.在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是.12.抛物线y=2(x+1)2﹣3的顶点坐标为.13.一辆汽车行驶的路程s(单位:m)关于时间t(单位:s)的函数解析式是s=9t+t2,经过16s汽车行驶了m.14.反比例函数y=的图象经过点(﹣2,3),则k的值为.15.如图,AD是△ABC的外接圆⊙O的直径,若∠BAD=40°,则∠ACB=°.16.在△ABC中,∠C=90°,sin A=,BC=6,则AC的长为.17.若扇形的圆心角为45°,半径为6,则该扇形的弧长为.18.AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM =3,则弦AB的长为.19.同时掷两个质地均匀的骰子,则两个骰子的点数和是10的概率为.20.如图,△ABC的中线AD与高CE交于点F,AE=EF,FD=2,S△ACF=24,则AB的长为.三、解答题(60分)21.先化简,再求代数式(1+)÷值,其中x=3tan30°.22.如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.(1)在图中画出等腰△ABC,点C在小正方形顶点上;(2)在(1)的条件下确定点C后,再确定点D,点D在小正方形顶点上,请你连接DA,DC,DB,使tan∠ACD=,并直接写出四边形ADBC的面积为.23.为了解疫情期间学生网络学习的学习效果,高远中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题(1)这次活动共抽查学生多少名?(2)请通过计算补全条形统计图;(3)若高远中学共有1600名学生,估计该中学“优秀”等次的学生有多少名?24.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=AF;(2)在不添加任何辅助线的情况下,请直接写出图中所有的等腰直角三角形.25.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?26.△ABC内接于⊙O,CA=CB,BD为⊙O的直径,∠DBC=30°.(1)如图1,求证:△ABC为等边三角形;(2)如图2,弦AE交BC于点F,点G在EC上,∠BAF=∠GAF,求证:FB=FG;(3)如图3,在(2)的条件下,弦BH分别交AF,AG于P,Q两点,PO=DH=,AC=3,求QG的长.27.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx﹣3交x轴负半轴于点A,交x轴正半轴于点B,交y轴于点C,OB=OC=OA.(1)如图1,求抛物线的解析式;(2)如图2,点D在抛物线上,且点D在第二象限,连接BD交y轴于点E,若tan∠EBA=,求点D的坐标;(3)如图3,在(2)的条件下,点P在抛物线上,且点P在第三象限,点F在PB上,FC=FB,过点F作x轴的垂线,点G为垂足,连接DG并延长交BF于点H,若∠DHP =∠CEB,求BP的长.参考答案一.选择题(共10小题).1.下列各点中,在反比例函数y=图象上的是()A.(﹣1,8)B.(﹣2,4)C.(1,7)D.(2,4)解:A、∵﹣1×8=﹣8≠8,∴该点不在函数图象上,故本选项错不合题意;B、∵﹣2×4=﹣8≠8,∴该点不在函数图象上,故本选项不合题意;C、∵1×7=7≠8,∴该点不在函数图象上,故本选项不合题意;D、2×4=8,∴该点在函数图象上,故本选项符合题意.故选:D.2.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.3.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋中摸出1个球,是白球的概率是()A.B.C.D.【分析】用白球的个数除以总球的个数即可得出答案.解:∵袋子中装有4个黑球、2个白球,共有6个球,∴随机从袋中摸出1个球,是白球的概率是=.故选:A.4.下面四个几何体中,主视图为三角形的是()A.B.C.D.【分析】根据主视图是从正面看得到的图形,可得答案.解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.5.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.6.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()A.(1.5+150tanα)米B.(1.5+)米C.(1.5+150sinα)米D.(1.5+)米【分析】过点A作AE⊥BC,E为垂足,再由锐角三角函数的定义求出BE的长,由BC =CE+BE即可得出结论.解:过点A作AE⊥BC,E为垂足,如图所示:则四边形ADCE为矩形,AE=150,∴CE=AD=1.5,在△ABE中,∵tanα==,∴BE=150tanα,∴BC=CE+BE=(1.5+150tanα)(m),故选:A.7.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A逆时针旋转得到Rt△AB'C',使点C'落在AB边上,连接BB',则BB'的长度是()A.1cm B.2cm C.cm D.2cm【分析】由直角三角形的性质得到AB=2AC=2,然后根据旋转的性质和线段垂直平分线的性质得到AB′=BB′.解:∵在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,∴AC=AB,则AB=2AC=2cm.又由旋转的性质知,AC′=AC=AB,B′C′⊥AB,∴B′C′是△ABB′的中垂线,∴AB′=BB′.根据旋转的性质知AB=AB′=BB′=2cm.故选:B.8.如图,⊙O为△ABC的外接圆,已知∠ABC为130°,则∠AOC的度数为()A.50°B.80°C.100°D.115°解:作所对的圆周角∠ADC,如图,∵∠ADC+∠ABC=180°,而∠ABC=130°,∴∠ADC=180°﹣130°=50°,∴∠AOC=2∠ADC=100°.故选:C.9.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB,则下列式子一定正确的是()A.B.C.D.【分析】根据平行线分线段成比例可对A选项和B选项进行判断;:利用DE∥BC得到=,则根据比例的性质可对C选项进行判断;通过证明△ADE∽△EFC,则利用相似比可对D选项进行判断的.解:∵DE∥BC,∴=,所以A选项错误;∵EF∥AB,∴=,所以B选项错误;∵DE∥BC,∴=,即=,所以C选项错误;∵DE∥BC,∴∠AED=∠C,∵EF∥AB,∴∠A=∠CEF,∴△ADE∽△EFC,∴=,所以D选项正确.故选:D.10.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①abc<0;②4a﹣2b+c=0;③当x>1时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有一个实数根.其中正确的结论有()A.1个B.2个C.3个D.4个解:抛物线开口向上,则a>0,对称轴x=﹣=1,则b=﹣2a<0.与y轴交于负半轴,则c<0,故abc>0,所以①错误;抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②正确;x>1时,y随x的增大而增大,所以③正确;抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以④错误;综上所述,正确的结论有:②③,故选:B.二.填空题(每题3分,共30分)11.在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是(﹣3,﹣2).【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.解:点(3,2)关于原点对称的点的坐标是(﹣3,﹣2),故答案为:(﹣3,﹣2).12.抛物线y=2(x+1)2﹣3的顶点坐标为(﹣1,﹣3)..【分析】直接利用顶点式的特点可知顶点坐标.解:顶点坐标是(﹣1,﹣3).故答案为:(﹣1,﹣3).13.一辆汽车行驶的路程s(单位:m)关于时间t(单位:s)的函数解析式是s=9t+t2,经过16s汽车行驶了272m.【分析】将t=16代入函数解析式求解即可.解:当t=16时,s=9×16+×162=272,∴经过16s汽车行驶了272m,故答案为:272.14.反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.【分析】将点(﹣2,3)代入解析式可求出k的值.解:把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.故答案为:﹣6.15.如图,AD是△ABC的外接圆⊙O的直径,若∠BAD=40°,则∠ACB=50°.【分析】连接BD,如图,根据圆周角定理即可得到结论.解:连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣40°=50°,∴∠ACB=∠D=50°.故答案为50.16.在△ABC中,∠C=90°,sin A=,BC=6,则AC的长为2.【分析】根据锐角三角函数的意义,求出AB,再根据勾股定理求出BC即可.解:∵sin A==,BC=6,∴AB=8,∴BC====2,故答案为:2.17.若扇形的圆心角为45°,半径为6,则该扇形的弧长为π.【分析】把已知数据代入弧长公式,计算即可.解:由题意,得该扇形的弧长==π,故答案为:π.18.AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM =3,则弦AB的长为6或2.【分析】分∠OAM=30°,∠AOM=30°,两种情况分别利用正切的定义求解即可.解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=,∴AM=3,∴AB=2AM=6;若∠AOM=30°,则tan∠AOM=,∴AM=,∴AB=2AM=2.故答案为:6或2.19.同时掷两个质地均匀的骰子,则两个骰子的点数和是10的概率为.【分析】列举出所有情况,让两个骰子的点数和是10的情况数除以总情况数即为所求的概率.解:易得有6×6=36种可能,两个骰子的点数和是10的有4,6;5,5;6,4共3种,所以概率是.20.如图,△ABC的中线AD与高CE交于点F,AE=EF,FD=2,S△ACF=24,则AB的长为6.【分析】先判断出△BDM≌△CDF进而得出MB=CF,∠M=∠CFD.再判断出△ABM 是等腰直角三角形,求得BE=FN=2,然后利用S△ACF=24,即可得出结论.解:延长AD至点M,使MD=FD,连接MB,在△BDM和△CDF中,,∴△BDM≌△CDF(SAS).∴MB=CF,∠M=∠CFD.∴EC∥BM,∵EA=EF,CE是△ABC的高,∴∠EAF=∠EFA=45°,∵EC∥BM,∴∠ABM=∠AEF=90°,∴∠M=∠MAB=45°,∴AB=MB,∴AB=CF,∵CE是△ABC的高,S△ACF=24,∴CF•AE=24,即AB•AE=24,作FN⊥BM于N,则四边形EFNB是矩形,△FMN是等腰直角三角形,∴BE=FN=FM=×2FD=FD=2,∴AE=AB﹣2,∴AB•AE=AB(AB﹣2)=24,∴AB=6(负数舍去),故答案为6.三、解答题(60分)21.先化简,再求代数式(1+)÷值,其中x=3tan30°.【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据特殊锐角的三角函数值确定x的值,继而代入计算可得答案.解:原式=(+)÷=•=,当x=3tan30°=3×=时,原式==.22.如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.(1)在图中画出等腰△ABC,点C在小正方形顶点上;(2)在(1)的条件下确定点C后,再确定点D,点D在小正方形顶点上,请你连接DA,DC,DB,使tan∠ACD=,并直接写出四边形ADBC的面积为4.【分析】(1)根据等腰三角形的定义,画出图形即可.(2)取格点K,连接CK,由tan∠AKC=,证明∠ACD=∠AKC即可.解:(1)如图,△ABC即为所求作.(2)如图,四边形ADBC即为所求作.S四边形ADBC=3×3﹣×1×3﹣×1×1﹣×2×3=4.故答案为4.23.为了解疫情期间学生网络学习的学习效果,高远中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题(1)这次活动共抽查学生多少名?(2)请通过计算补全条形统计图;(3)若高远中学共有1600名学生,估计该中学“优秀”等次的学生有多少名?【分析】(1)通过条形统计图可得“优秀”的有40人,“良好”的有80人,“一般”的有60人,而“良好”的占40%,可求出调查人数;(2)计算出D等级的人数,即可补全条形统计图;(3)样本中“优秀”的占调查人数的,因此总体1600人的是“优秀”的人数.解:(1)80÷40%=200(名),答:这次活动共抽查学生200名;(2)200﹣80﹣40﹣60=20(名),补全条形统计图如图所示:(3)1600×=320(名),答:高远中学1600名学生中“优秀”等次的学生大约有320名.24.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=AF;(2)在不添加任何辅助线的情况下,请直接写出图中所有的等腰直角三角形.【分析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE =90°,由直角三角形斜边上的中线等于斜边的一半证得结论;(2)根据等腰三角形的判定定理进行推理即可.【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE.在△BAD与△CAE中,.∴△BAD≌△CAE(SAS).∴∠ABD=∠ACE.∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°.∴∠ABD=∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°.∵点F是DE的中点,∠DAE=∠DCE=90°.∴AF=DE,CF=DE.∴CF=AF;(2)解:符合条件的等腰直角三角形有:△ABC,△ADE,△ADF,△AFE.理由如下:在△ABC中,AB=AC,∠BAC=90°,则△ABC是等腰直角三角形.在△ADE中,AD=AE,∠DAE=90°,则△DEA是等腰直角三角形.在等腰Rt△ADE中,∵点F是DE的中点,∴AD⊥DE,AF=DF=EF=DE,∴△ADF,△AFE都是等腰直角三角形.25.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?【分析】(1)设购买一个甲种笔记本需x元,一个乙种笔记本需y元,由购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元.列出方程组,可求解;(2)设需要购买a个甲种笔记本,由总费用不超过300元,列出不等式,即可求解.解:(1)设购买一个甲种笔记本需x元,一个乙种笔记本需y元,由题意可得:,解得:,答:购买一个甲种笔记本需10元,一个乙种笔记本需5元;(2)设需要购买a个甲种笔记本,由题意可得:10a+5(35﹣a)≤300,解得:a≤25,答:至多需要购买25个甲种笔记本.26.△ABC内接于⊙O,CA=CB,BD为⊙O的直径,∠DBC=30°.(1)如图1,求证:△ABC为等边三角形;(2)如图2,弦AE交BC于点F,点G在EC上,∠BAF=∠GAF,求证:FB=FG;(3)如图3,在(2)的条件下,弦BH分别交AF,AG于P,Q两点,PO=DH=,AC=3,求QG的长.【分析】(1)如图1,连接CD,由∠BAC=60°、CA=CB证得△ABC为等边三角形;(2)如图2,根据△BAF≌△GAF(SAS)的对应边相等证得FB=FG;(3)如图3,过点O作OL⊥PH,点L为垂足.首先,推知Rt△POL中的∠OPL=30°;连接AH,延长PO交AH于点M,构造等边△AHP;然后,连接AD,通过解直角△ABD得到BD=2,在直角△BDH中,利用勾股定理求得BH=9,继而根据垂径定理推知BL=LH=,所以通过解直角△POL求得PL=.由图中线段间的和差关系易得PH=6,BP=3.则等边三角形△AHP中,得到,AP=PH=6,∠APH=60°;最后,连接BE,构造等边△BPE,根据等边三角形的性质和平行线的判定定理推知PQ ∥EG,结合平行线截线段成比例求得QG=.【解答】(1)证明:如图1,连接CD,∵BD为⊙O的直径,∴∠BCD=90°.∵∠DBC=30°,∴∠BDC=90°﹣∠DBC=60°.∴∠BAC=∠BDC=60°.∵CA=CB,∴△ABC为等边三角形;(2)证明:如图2,∵△ABC为等边三角形,∴∠ABC=∠ACB.∵∠E=∠ABC,∴∠ACB=∠E.∵∠BAF=∠GAF,∠BAF=∠BCE,∴∠GAF=∠BCE.∴∠ACB+∠BCE=∠E+∠GAF.∵∠AGC=∠E+∠GAF,∴∠AGC=∠ACG.∴AG=AC.∵△ABC为等边三角形,∴AC=AB.∴AB=AG.∵∠BAF=GAF,AE=AF,∴△BAF≌△GAF(SAS).∴FB=FG;(3)解:如图3,过点O作OL⊥PH,点L为垂足.∵点O为圆心,∴BL=LH,∵BO=OD,∴OL=DH.∵PO=DH,∴OL=PO.在Rt△POL中,sin∠OPL==.∴∠OPL=30°.连接AH,延长PO交AH于点M,∵△ABC是等边三角形,∴∠ACB=60°.∴∠AHB=∠ACB=60°.∴∠PMH=180°﹣∠AHB﹣∠OPL=90°.∴OM⊥AH.∴AM=MH.∴PA=PH.∵∠AHP=60°.∴△AHP是等边三角形.连接AD,∵BD为⊙O的直径,∴∠BAD=90°.∵△ABC是等边三角形,∴AB=AC=3.∵∠ADB=∠ACB=60°.∴在直角△ABD内,sin∠ADB=,BD==2.∵BD为⊙O的直径,∴∠BHD=90°.在直角△BDH中,BD2=BH2+DH2,∴BH=9.∵OL⊥PH,∴BL=LH=.在直角△POL中,cos∠OPL==.∵∠OPL=30°.∴PL==.∴PH=6,BP=3.∵△AHP是等边三角形,∴AP=PH=6,∠APH=60°.连接BE,∵∠BEA=∠ACB=60°,∠BPE=∠APH=60°,∴∠PBE=60°.∴∠PBE=∠BPE=∠BEA.∴△BPE是等边三角形.∴PE=PB=3.∴AE=9.∵∠AEC=∠ABC=∠BPE=60°,∴PQ∥EG.∴=.∵AG=AC=3.∴QG=.27.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx﹣3交x轴负半轴于点A,交x轴正半轴于点B,交y轴于点C,OB=OC=OA.(1)如图1,求抛物线的解析式;(2)如图2,点D在抛物线上,且点D在第二象限,连接BD交y轴于点E,若tan∠EBA=,求点D的坐标;(3)如图3,在(2)的条件下,点P在抛物线上,且点P在第三象限,点F在PB上,FC=FB,过点F作x轴的垂线,点G为垂足,连接DG并延长交BF于点H,若∠DHP =∠CEB,求BP的长.【分析】(1)利用二次函数图象上点的坐标可求出点C的坐标,进而可得出OC的长,结合OB=OC=3/2OA,可求出OB,OA的长,进而可得出点A,B的坐标,再利用待定系数法即可求出二次函数解析式;(2)在Rt△OBE中,通过解直角三角形可求出OE的长,进而可得出点E的坐标,根据点B,E的坐标,利用待定系数法可求出直线BE的解析式,再联立两函数解析式成方程组,解之即可得出点D的坐标(舍去点B的坐标);(3)连接OF,过点F作y轴的垂线,点T为垂足,取OM的中点N,连接DN,过点G 作DN的垂线交DN的延长线于点R,依次证明△OFB≌△OFC(SSS)、四边形OTFG 为正方形、△OEB≌△MND(SAS);设OG=GF=m,BG=3﹣m,NG=+m,由tan ∠NDG=tan∠GBF,得关于m的等式,解得m的值;设点P的横坐标为n,则点P的纵坐标为﹣﹣3,在Rt△PWB中,由tan∠PBW==,得关于n的方程,解得n的值;最后在Rt△PWB中,根据BP2=PW2+BW2,求得BP的长即可.解:(1)∵二次函数y=ax2+bx﹣3,∴当x=0时,y=3,C(0,﹣3),∴OC=3,∵OB=OC=OA,OB=3,OA=2,∴B(3,0),A(﹣2,0),∴,解得,∴抛物线的解析式为y=;(2)过点D作x轴的垂线,点M为垂足,设点D的横坐标为t,则点D的纵坐标为,∵点D在第二象限,∴DM=,∵OM=﹣t,OB=3,∴MB=﹣t+3,在Rt△DMB中,tan∠DBA=,∵tan∠EBA=,∴2DM=MB,2()=﹣t+3,解得t1=3(舍去),t2=﹣3,∴点D的纵坐标为﹣3=3,∴点D的坐标为(﹣3,3);(3)连接OF,∵OB=OC,FB=FC,OF=OF,∴△OFB≌△OFC(SSS),∴∠COF=∠BOF;过点F作y轴的垂线,点T为垂足,∵FG⊥OB,∴FT=FG,∵∠BOT=∠OTF=∠FGO=90°,∴四边形OTFG为矩形;∵FT=FG,∴四边形OTFG为正方形;取OM的中点N,连接DN,过点G作DN的垂线交DN的延长线于点R,在Rt△OEB中,tan∠EBO==,∴OE=;∵OM=3,∴MN=,∴MN=OE;∵DM=OB=3;∴∠DMN=∠EOB=90°,∴△OEB≌△MND(SAS),∴∠DNM=∠OEB,∵∠DHP=∠CEB,∴∠DNM=∠DHP,∵∠DNM=∠DGN+∠NDG,∠DHP=∠HGB+∠GBF,∠DGN=∠HGB,∴∠NDG=∠GBF;在Rt△OEB中,OE=,BO=3,BE2=OB2+OE2,∴BE=,∴DN=,在Rt△DNM中,tan∠DNM==2,∠DNM=∠GNR,在Rt△GNR中,tan∠GNR==2,∴RG=2RN;在Rt△GNR中,NR2+RG2=NR2,∴NR=5NG,∵四边形OTFG为正方形,∴设OG=GF=m,BG=3﹣m,NG=+m,NR=(+m),RG=(+m),∵∠NDG=∠GBF,∴tan∠NDG=tan∠GBF,在Rt△DGR中tan∠RDG=,在Rt△GBF中tan∠GBF=,∴=,解得m1=﹣3(舍去),m2=1;∴tan∠GBF=.过点P作x轴的垂线,点W为垂足,设点P的横坐标为n,则点P的纵坐标为﹣﹣3,∵点P在第三象限,∴PW=﹣++3,在Rt△PWB中,tan∠PBW==,∴2PW=BW,∵OW=﹣n.∴BW=﹣n+3,∴2(﹣++3)=﹣n+3,解得n1=3(舍去),n2=﹣1,∴BW=4,PW=2.在Rt△PWB中,BP2=PW2+BW2,∴BP=2.。
黑龙江省哈尔滨市道里区2019-2020学年九年级(上)期末数学试卷 含解析
![黑龙江省哈尔滨市道里区2019-2020学年九年级(上)期末数学试卷 含解析](https://img.taocdn.com/s3/m/50b28ca949649b6648d747b5.png)
2019-2020学年九年级(上)期末数学试卷一、选择题(每小题3分,共计30分)1.下列中式元素的图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【专题】558:平移、旋转与对称.【分析】根据轴对称图形与中心对称图形的概念解答.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,是中心对称图形,故本选项正确;C、不是轴对称图形,是中心对称图形,故本选项错误;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B.2.五个完全相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:A.3.将抛物线y=x2﹣2向右平移3个单位长度,再向上平移2个单位长度,则所得抛物线的解析式为()A.y=(x+3)2B.y=(x﹣3)2C.y=(x+2)2+1 D.y=(x﹣2)2+1 【考点】H6:二次函数图象与几何变换.【专题】535:二次函数图象及其性质;69:应用意识.【分析】利用二次函数图象的平移规律,左加右减,上加下减,进而得出答案.【解答】解:将抛物线y=x2﹣2向右平移3个单位长度,得到平移后解析式为:y=(x ﹣3)2﹣2,∴再向上平移2个单位长度所得的抛物线解析式为:y=(x﹣3)2﹣2+2,即y=(x﹣3)2;故选:B.4.在△ABC中,∠C=90°,sin B=,则tan B值为()A.B.C.D.【考点】T3:同角三角函数的关系.【专题】55E:解直角三角形及其应用;69:应用意识.【分析】先利用平方公式计算出cos B=,然后根据tan B=求解.【解答】解:∵∠C=90°,∴sin2A+cos2B=1,∴cos B==,∴tan B===.故选:A.5.已知点P1(a,2)与点P2(﹣3,b)关于原点对称,则a﹣b的值是()A.﹣5 B.﹣1 C.1 D.5【考点】R6:关于原点对称的点的坐标.【专题】558:平移、旋转与对称;64:几何直观.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,进而可得答案.【解答】解:∵点P1(a,2)与点P2(﹣3,b)关于原点对称,∴a=3,b=﹣2,∴a﹣b=5,故选:D.6.在反比例函数y=图象的每一条曲线上,y都随x的增大而增大,则k的取值范围是()A.k>2 B.k>0 C.k≥2 D.k<2【考点】G4:反比例函数的性质;G6:反比例函数图象上点的坐标特征.【专题】534:反比例函数及其应用;66:运算能力;67:推理能力.【分析】根据反比例函数的性质,可求k的取值范围.【解答】解:∵反比例函数y=图象的每一条曲线上,y都随x的增大而增大,∴k﹣2<0,∴k<2故选:D.7.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数大于3的概率为()A.B.C.D.【考点】X4:概率公式.【专题】11:计算题.【分析】骰子六个面出现的机会相同,求出骰子向上的一面点数大于3的情况有几种,直接应用求概率的公式求解即可.【解答】解:∵一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,点数大于3的有4,5,6共3个,∴这个骰子向上的一面点数大于3的概率为=.故选:A.8.关于抛物线y=﹣(x+3)2+2,下列说法错误的是()A.开口向下B.对称轴是直线x=﹣3C.与y轴交点坐标(0,2)D.顶点坐标(﹣3,2)【考点】H3:二次函数的性质.【专题】535:二次函数图象及其性质;67:推理能力.【分析】由抛物线的解析式可求得开口方向、对称轴及顶点坐标,可判断A、B、D,令x =0求得y的值即可判断C,则可求得答案.【解答】解:∵y=﹣(x+3)2+2,∴抛物线开口向下、对称轴为x=﹣3、顶点坐标为(﹣3,2),故A、B、D说法是正确的;在y=﹣(x+3)2+2中,令x=0可得y=﹣7,∴抛物线与y轴交点坐标(0,﹣7),∴选项C的说法是错误的,故选:C.9.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选:B.10.如图,平行四边形ABCD中,连接AC,在CD的延长线上取一点E,连接BE,分别交AC和AD于点G和点F,则下列结论错误的是()A.=B.=C.=D.=【考点】L5:平行四边形的性质;S9:相似三角形的判定与性质.【专题】55D:图形的相似;69:应用意识.【分析】利用平行四边形的性质以及平行线分线段成比例定理解决问题即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,AB∥CD,AD∥BC,∴AB∥CE,∴==,故A正确,∵AF∥BC,AB∥EC,∴==,故B正确,∵AF∥BC,AB∥EC,∴==,∴=,故C正确,故选:D.二、填空题(每小题3分,共计30分)11.函数y=的自变量x的取值范围是x≠2 .【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.12.若二次函数y=x2﹣6x+3a的图象与x轴有且只有一个交点,则a的值为 3 .【考点】HA:抛物线与x轴的交点.【专题】535:二次函数图象及其性质;66:运算能力.【分析】直接利用抛物线与x轴只有一个交点⇔b2﹣4ac=0,进而解方程得出答案.【解答】解:∵二次函数y=x2﹣6x+3a的图象与x轴有且只有一个交点,∴△=b2﹣4ac=(﹣6)2﹣4×3a=0,解得:a=3,故答案为:3.13.身高1.5米的小强站在旗杆旁,测得小强和旗杆在地面上的影长分别为2米和16米,则旗杆的高度为12 米.【考点】SA:相似三角形的应用.【专题】55D:图形的相似;69:应用意识.【分析】根据同一时刻同一地点物高与影长成正比求得答案即可.【解答】解:设旗杆高度为x米,根据题意得:,解得:x=12,故答案为:12.14.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为90 度.【考点】MN:弧长的计算.【专题】55C:与圆有关的计算;69:应用意识.【分析】根据弧长公式列式计算,得到答案.【解答】解:设这个扇形的圆心角为n°,则=3π,解得,n=90,故答案为:90.15.汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=15t﹣6t2,汽车从刹车到停下来所用时间是 1.25 秒.【考点】AD:一元二次方程的应用.【分析】利用配方法求二次函数最值的方法解答即可.【解答】解:∵s=15t﹣6t2=﹣6(t﹣1.25)2+9.375,∴汽车从刹车到停下来所用时间是1.25秒.故答案为:1.25.16.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,大圆的半径OA交小圆于点D,若OD=3,tan∠OAB=,则AB的长是12 .【考点】M5:圆周角定理;MC:切线的性质;T7:解直角三角形.【专题】11:计算题;55A:与圆有关的位置关系;55E:解直角三角形及其应用;66:运算能力;67:推理能力.【分析】连接OC,由切线的性质知OC⊥AB,根据垂径定理得AB=2AC,由tan∠OAB的值,易得OC:AC的值,进而可求出AC的长,而AB的长也可求出.【解答】解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=3,∴OC=3,∵tan∠OAB==,∴AC=6,∴AB=12.故答案为:12.17.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是3千米.【考点】TB:解直角三角形的应用﹣方向角问题.【专题】55E:解直角三角形及其应用.【分析】作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.【解答】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB•sin∠BAC=6×=3,由题意得,∠C=45°,∴BC==3÷=3(千米),故答案为:3.18.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,点B、C的对应点分别为点B'、C′,AB′与BC相交于点D,当B′C′∥AB时,则CD=.【考点】KQ:勾股定理;R2:旋转的性质.【专题】554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】设CD=x,由B′C′∥AB,可推得∠BAD=∠B′,由旋转的性质得:∠B=∠B′,于是得到∠BAD=∠B,AC=AC′=4,AD=BD=8﹣x,由勾股定理可求解.【解答】解:设CD=x,∵B′C′∥AB,∴∠BAD=∠B′,由旋转的性质得:∠B=∠B′,AC=AC′=6,∴∠BAD=∠B,∴AD=BD=8﹣x,∴(8﹣x)2=x2+62,∴x=,∴CD=,故答案为:.19.如图,CD是⊙O的直径,AB是⊙O的弦,CD⊥AB,垂足为E,连接BC、BD.点F为线段CB上一点,连接DF,若CE=2,AB=8,BF=,则tan∠CDF=.【考点】KQ:勾股定理;M2:垂径定理;M5:圆周角定理;T7:解直角三角形.【专题】559:圆的有关概念及性质;64:几何直观.【分析】连接OA,如图,设⊙O的半径为r,则OA=r,OE=r﹣2,利用垂径定理得到AE=BE=AB=4,再利用勾股定理计算出BC=2,42+(r﹣2)2=r2,解得r=5,则OE=3,接着判断F点为BC的中点,作FH⊥CE于H,则FH=BE=2,HE=CE=1,然后利用正切的定义得到tan∠HDF的值.【解答】解:连接OA,如图,设⊙O的半径为r,则OA=r,OE=r﹣2,∵CD⊥AB,∴AE=BE=AB=4,在Rt△BCE中,BC==2,在Rt△OAE中,42+(r﹣2)2=r2,解得r=5,∴OE=3,∵BF=,∴F点为BC的中点,作FH⊥CE于H,如图,∴FH为△BCE的中位线,∴FH=BE=2,HE=CE=1,在Rt△DHF中,tan∠HDF===.故答案为.20.如图,P是等边三角形ABC内一点,连接PA、PC,PA=PC,∠APC=90°,把线段AP绕点A逆时针旋转120°,得到线段AQ(点P与点Q为对应点),连接BQ交AP于点E.点D为BQ的中点,连接AD、PD,若S△DAP=2,则AB=4.【考点】KK:等边三角形的性质;KW:等腰直角三角形;R2:旋转的性质.【专题】558:平移、旋转与对称;69:应用意识.【分析】延长QA到M,使得AM=AQ,连接BM,PM.首先证明△PAM是等边三角形,证明△MAB≌△PAC(SAS),推出∠AMB=∠APC=90°,由AQ=AM,BD=DQ,推出AD∥BM,BM =2AD,推出AD=PA,再利用三角形的面积公式构建方方程求出PA即可解决问题.【解答】解:延长QA到M,使得AM=AQ,连接BM,PM.∵△ABC是等边三角形,∴∠BAC=60°,∵PA=PC,∠APC=90°,∴∠PAC=∠PCA=45°,∵∠PAQ=120°,∴∠PAM=180°﹣120°=60°,∵AM=AQ=AP,∴△APM是等边三角形,∴∠MAP=∠BAC=60°,∴∠MAB=∠PAC,∵AM=AP,AB=AC,∴△MAB≌△PAC(SAS),∴BM=PC,∠AMB=∠APC=90°,∵AQ=AM,BD=DQ,∴AD∥BM,BM=2AD,∴AD=PA,∴∠QAD=∠QMB=90°,∴∠PAD=∠MAD﹣∠MAP=90°﹣60°=30°,∵S△PAD=2,∴•PA•AD•sin30°=2,∴•PA•PA•=2,∴PA=4,∴AB=AC=PA=4,故答案为4.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式(1﹣)÷的值,其中x=2sin60°﹣tan45°.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【专题】513:分式;55E:解直角三角形及其应用.【分析】先算括号内的减法,把除法变成乘法,算乘法,求出x的值后代入,即可求出答案.【解答】解:(1﹣)÷=•=•=,当x=2sin60°﹣tan45°=2×﹣1=﹣1时,原式==.22.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点均在小正方形的顶点上.(1)在图中画出以AB为底的等腰三角形ABC,点C在小正方形的顶点上,且△ABC的面积是7.5;(2)在(1)的条件下,在图中画出以AC为斜边的直角三角形ACE(AE<EC),点E在小正方形的顶点上,且△ACE的面积是5,连接EB,并直接写出tan∠AEB的值.【考点】KJ:等腰三角形的判定与性质;KQ:勾股定理;KS:勾股定理的逆定理;N4:作图—应用与设计作图;T7:解直角三角形.【专题】13:作图题;64:几何直观.【分析】(1)直接利用网格结合等腰三角形的性质得出答案;(2)直接利用直角三角形的性质结合锐角三角函数关系得出答案.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:△ACE即为所求,延长EA,交网格于点G,连接BG,tan∠AEB===.23.某中学在艺术节期间向全校学生征集书画作品,美术王老师从全校随机抽取了四个班级记作A、B、C、D,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师抽查的四个班级共征集到作品多少件?(2)请把图2的条形统计图补充完整;(3)若全校参展作品中有五名同学获得一等奖,其中有三名男生、二名女生.现在要在其中抽两名同学去参加学校总结表彰座谈会,请用画树状图或列表的方法求恰好抽中一名男生一名女生的概率.【考点】V2:全面调查与抽样调查;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【专题】543:概率及其应用;69:应用意识.【分析】(1)用C班的人数除以该班的作品数得到调查的总作品数;(2)计算出B班的作品数,再补全条形统计图;(3)画树状图展示所有20种等可能的结果数,找出恰好抽中一名男生一名女生的结果数,然后根据概率公式计算.【解答】解:(1)5÷=12,所以抽查的四个班级共征集到作品12件,B班级的作品数为12﹣2﹣5﹣2=3(件),条形统计图补充为:(2)画树状图为:共有20种等可能的结果数,其中恰好抽中一名男生一名女生的结果数为12,所以恰好抽中一名男生一名女生的概率==.24.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转60°,得到△AED,点B、C的对应点分别是E、D.F为AC的中点,连接BF、DF、BE,DF与EA相交于点G,BE与AC相交于点H.(1)如图1,求证:四边形BFDE为平行四边形;(2)如图2,连接CE,在不添加任何辅助线与字母的情况下,请直接写出所有与△AEC 全等的三角形.【考点】KB:全等三角形的判定;KP:直角三角形斜边上的中线;L7:平行四边形的判定与性质;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;555:多边形与平行四边形;558:平移、旋转与对称;67:推理能力.【分析】(1)由直角三角形的性质可得BF=BC,由旋转的性质可得∠BAE=∠DAC=60°,CA=DA,DE=BC,由“AAS”可证△AFD≌△CBA,可得DF=AB=BE,且BF=DE,即可得四边形BFDE是平行四边形;(2)由“SAS”可证△BAC≌△EAC,△ACE≌△ADE,可求解.【解答】证明:(1)∵点F是边AC中点,∴BF=AC,∵∠BAC=30°,∴BC=AC,∠ACB=60°,∴BF=BC,∵将△ABC绕点A顺时针旋转60°,得到△AED,∴∠BAE=∠DAC=60°,CA=DA,DE=BC,∴DE=BF,△ACD和△BAE为等边三角形,∴BE=AB=AE,∵点F为△ACD的边AC的中点,∴DF⊥AC,∴∠DFA=∠ABC=90°,∠DAF=∠C=60°,AC=AD,∴△AFD≌△CBA(AAS),∴DF=AB,∴DF=BE,且BF=DE,∴四边形BFDE是平行四边形;(2)△ADE,△ABC,△ADF与△ACE全等;理由如下:∵∠BAE=60°,∠BAC=30°,∴∠BAC=∠CAE=30°,且AC=AC,AB=AE,∴△BAC≌△EAC(SAS),∵∠CAE=∠DAE=30°,AC=AD,AE=AE,∴△ACE≌△ADE(SAS),∵△AFD≌△CBA,∴△EAC≌△FDA.25.某超市有甲、乙两种商品,若买1件甲商品和2件乙商品,共需80元;若买2件甲商品和3件乙商品,共需135元.(1)求甲、乙两种商品每件售价分别是多少元;(2)甲商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该超市每天销售甲商品100件;若销售单价每上涨1元,甲商品每天的销售量就减少5件.写出甲商品每天的销售利润y(元)与销售单价(x)元之间的函数关系,并求每件售价为多少元时,甲商品每天的销售利润最大,最大利润是多少?【考点】9A:二元一次方程组的应用;HE:二次函数的应用.【专题】536:二次函数的应用;69:应用意识.【分析】(1)设甲、乙两种商品每件售价分别是a元,b元,根据题意列方程组即可得到结论;(2)由题意列出关于x,y的函数关系式;把函数关系式配方即可得到结果.【解答】解:(1)设甲、乙两种商品每件售价分别是a元,b元,由题意列方程组得:,解得:,答:甲、乙两种商品每件售价分别是30元和25元;(2)由题意得,y=(x﹣20)[100﹣5(x﹣30)]=﹣5x2+350x﹣5000,∵y=﹣5x2+350x﹣5000=﹣5(x﹣35)2+1125,∴当x=35时,y最大=1125,∴销售单价为35元时,甲商品每天的销售利润最大,最大利润是1125元.26.已知:△ABC是⊙O的内接三角形,AB为直径,AC=BC,D、E是⊙O上两点,连接AD、DE、AE.(1)如图1,求证:∠AED﹣∠CAD=45°;(2)如图2,若DE⊥AB于点H,过点D作DG⊥AC于点G,过点E作EK⊥AD于点K,交AC于点F,求证:AF=2DG;(3)如图3,在(2)的条件下,连接DF、CD,若∠CDF=∠GAD,DK=3,求⊙O的半径.【考点】MR:圆的综合题.【专题】152:几何综合题;55C:与圆有关的计算;67:推理能力.【分析】(1)连接CO,CE,证∠B=45°,可依次推出∠AED﹣∠CAD=∠AED﹣∠CED=∠AEC=∠COA=45°,即可写出结论;(2)连接CO并延长,交⊙O于点N,连接AN,过点E作EM⊥AC于M,证△ADG≌△EAM,△ADG≌△EFM,即可推出AF=2DG;(3)证△FCD∽△DCA,推出△GFD为等腰直角三角形,设GF=GD=a,分别用含a的代数式表示DF,AF,FK,在Rt△FKD中,即可求出a的值,再利用△FCD∽△DCA,求出FC 的值,即可求得AC的值,进一步求出AB的值,即可求得半径.【解答】(1)证明:如图1,连接CO,CE,∵AB是直径,∴∠ACB=90°,∵AC=BC,∴∠B=∠CAB=45°,∴∠COA=2∠B=90°,∵,∴∠CAD=∠CED,∴∠AED﹣∠CAD=∠AED﹣∠CED=∠AEC=∠COA=45°,即∠AED﹣∠CAD=45°;(2)如图2,连接CO并延长,交⊙O于点N,连接AN,过点E作EM⊥AC于M,则∠CAN=90°,∵AC=BC,AO=BO,∴CN⊥AB,∴AB垂直平分CN,∴AN=AC,∴∠NAB=∠CAB,∵AB垂直平分DE,∴AD=AE,∴∠DAB=∠EAB,∴∠NAB﹣∠EAB=∠CAB﹣∠DAB,即∠GAD=∠NAE,∵∠CAN=∠CME=90°,∴AN∥EB,∴∠NAE=∠MEA,∴∠GAD=∠MEA,又∵∠G=∠AME=90°,AD=EA,∴△ADG≌△EAM(AAS),∴AG=EM,AM=DG,又∵∠MEF+∠MFE=90°,∠MFE+∠GAD=90°,∴∠MEF=∠GAD,又∵∠G=∠FME=90°,∴△ADG≌△EFM(ASA),∴DG=MF,∵DG=AM,∴AF=AM+MF=2DG;(3)∵∠CDF=∠GAD,∠FCD=∠DCA,∴△FCD∽△DCA,∴∠CFD=∠CDA=∠CBA,∵AC=BC,AB为直径,∴△ABC为等腰直角三角形,∴∠CFD=∠CDA=∠CBA=45°,∴△GFD为等腰直角三角形,设GF=GD=a,则FD=a,AF=2a,∴==,∵∠FAK=∠DAG,∠AKF=∠G=90°,∴△AFK∽△ADG,∴==,在Rt△AFK中,设FK=x,则AK=3x,∵FK2+AK2=AF2,∴x2+(3x)2=(2a)2,解得,x=a(取正值),∴FK=a,在Rt△FKD中,FK2+DK2=FD2,∴(a)2+32=(a)2,解得,a=(取正值),∴GF=GD=,AF=,∵△FCD∽△DCA,∴=,∴CD2=CA•FC,∵CD2=CG2+GD2,∴CG2+GD2=CA•FC,设FC=n,则(﹣n)2+()2=(+n)n,解得,n=,∴AC=AF+CF=+=,∴AB=AC=,⊙O的半径为.27.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=3.(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(3)如图3,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P 为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT 并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.【考点】HF:二次函数综合题.【专题】556:矩形菱形正方形;55E:解直角三角形及其应用;66:运算能力;67:推理能力.【分析】(1)通过抛物线y=ax2+ax+a先求出点A的坐标,推出OA的长度,再由tan∠CAO=3求出OC的长度,点C的坐标,代入原解析式即可求出结论;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,证△DZE≌△DWB,得到DZ=DW,由此可知点D的横纵坐标相等,设出点D坐标,代入抛物线解析式即可求出点D坐标;(3)如图3,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,过点F作DC的垂线,交DC的延长线于点U,先求出点G坐标,求出直线DG解析式,再求出点F的坐标,即可求出正方形FMND的边长,再求出其对角线FN的长度,最后证点F,K,M,N,D共圆,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.【解答】解:(1)在抛物线y=ax2+ax+a中,当y=0时,x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,∵tan∠CAO=3,∴OC=3OA=3,∴C(0,3),∴a=3,∴a=2,∴抛物线的解析式为:y=﹣x2+x+3;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,∵∠ZDW=∠EDB=90°,∴∠ZDE=∠WDB,∵∠DZE=∠DWB=90°,DE=DB,∴△DZE≌△DWB(AAS),∴DZ=DW,设点D(k,﹣k2+k+3),∴k=﹣k2+k+3,解得,k1=﹣(舍去),k2=3,∴D的坐标为(3,3);(3)如图3,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,∵sin∠DGH=,∴设HI=4m,HG=5m,则IG=3m,由题意知,四边形OCDH是正方形,∴CD=DH=3,∵∠CDQ+∠IDH=90°,∠IDH+∠DHI=90°,∴∠CDQ=∠DHI,又∵∠CQD=∠DIH=90°,∴△CQD≌△DIH(AAS),设DI=n,则CQ=DI=n,DQ=HI=4m,∴IQ=DQ﹣DI=4m﹣n,∴GQ=GI﹣IQ=3m﹣(4m﹣n)=n﹣m,∵∠GCQ+∠QCD=90°,∠QCD+∠CDQ=90°,∴∠GCQ=∠CDQ,∴△GCQ∽△CDQ,∴=,∴=,∴n=2m,∴CQ=DI=2m,∴IQ=2m,∴tan∠CDG====,∵CD=3,∴CG=,∴GO=CO﹣CG=,设直线DG的解析式为y=kx+,将点D(3,3)代入,得,k=,∴y DG=x+,设点F(t,﹣t2+t+3),则﹣t2+t+3=t+,解得,t1=3(舍去),t2=﹣,∴F(﹣,)过点F作DC的垂线,交DC的延长线于点U,则UF=3﹣=,DU=3﹣(﹣)=,∴在Rt△UFD中,DF===,由翻折知,△NPM≌△NPT,∴∠MNP=∠TNP,NM=NT=ND,∠TPN=∠MPN,TP=MP,又∵NS⊥KD,∴∠DNS=∠TNS,DS=TS,∴∠SNK=∠TNP+∠TNS=×90°=45°,∴∠SKN=45°,∵∠TPK=180°﹣∠TPN,∠MPK=180°﹣∠MPN,∴∠TPK=∠MPK,又∵PK=PK,∴△TPK≌△MPK(SAS),∴∠MKP=∠TKP=45°,∴∠DKM=∠MKP+∠TKP=90°,连接FN,DM,交点为R,再连接RK,则RK=RF=RD=RN=RM,则点F,D,N,M,K同在⊙R上,FN为直径,∴∠FKN=90°,∠KDN=∠KFN,∵FN=FD=×=,∴在Rt△FKN中,∴cos∠KDN=cos∠KFN===.。
【5套打包】哈尔滨市初三九年级数学上期末考试检测试题(含答案)
![【5套打包】哈尔滨市初三九年级数学上期末考试检测试题(含答案)](https://img.taocdn.com/s3/m/4f0f61c9fd0a79563d1e723a.png)
人教版数学九年级上册期末考试试题及答案一、选择题(每小题3分,共30分)1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠04.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S=4,△AOT 则此函数的表达式为()A.B.C.D.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3 7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.88.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为.13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP 长为厘米.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN =时,△AMN与原三角形相似.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x2+x﹣1=018.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y 轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.参考答案一、选择题1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.【分析】根据根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可求出答案.解:∵共有直行、左拐、右拐这3种选择,∴恰好直行的概率是,故选:B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.=4,4.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT 则此函数的表达式为()A.B.C.D.【分析】由图象上的点所构成的三角形面积为可知,该点的横纵坐标的乘积绝对值为2,又因为点M在第二象限内,所以可知反比例函数的系数.=8;解:由题意得: |k|=2S△AOT又因为点M在第二象限内,则k<0;所以反比例函数的系数k为﹣8.故选:D.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【分析】画图可得结论.解:画图如下:则A'(5,﹣1),故选:D.【点评】本题考查了旋转的性质,熟练掌握顺时针或逆时针旋转是解决问题的关键.6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3【分析】方程移项配方后,利用平方根定义开方即可求出解.解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP =2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.8.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题. 解:∵点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,∴(﹣2,y 1),(﹣1,y 2)分布在第二象限,(3,y 3)在第四象限,每个象限内,y 随x 的增大而增大,∴y 3<y 1<y 2.故选:D .【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.9.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .C .D .【分析】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案.解:如图:,由勾股定理,得AC =,AB =2,BC =,∴△ABC 为直角三角形,∴tan ∠B ==,【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.【分析】利用底面周长=展开图的弧长可得.解:,解得r=.故答案为:.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为(﹣2,﹣).【分析】把B的横纵坐标分别乘以﹣得到B′的坐标.解:由题意得:△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,又∵B(3,1)∴B′的坐标是[3×(﹣),1×(﹣)],即B′的坐标是(﹣2,﹣);故答案为:(﹣2,﹣).【点评】本题考查了位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可,注意原图形与位似图形是同侧还是异侧,来确定所乘以的相似比的正负.13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.2 米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP 长为(﹣1)厘米.【分析】根据黄金分割点的定义,知AP是较长线段,得出AP=AB,代入数据即可得出AP的长.解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).【点评】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.【分析】首先由题意可证得:△ACB是等腰三角形,即可求得BC的长,然后由在Rt△CBD 中,CD=BC•sin60°,求得答案.解:过点C作CD⊥AB于点D,根据题意得:∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°,∴∠ACB=∠CBD﹣∠CAD=30°,∴∠CAB=∠ACB,∴BC=AB=2km,在Rt△CBD中,CD=BC•sin60°=2×=(km).故答案为:.【点评】此题考查了方向角问题.注意证得△ABC是等腰三角形是解此题的关键.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN =2或4.5 时,△AMN与原三角形相似.【分析】分别从△AMN∽△ABC或△AMN∽△ACB去分析,根据相似三角形的对应边成比例,即可求得答案.解:由题意可知,AB=9,AC=6,AM=3,①若△AMN ∽△ABC ,则=,即=, 解得:AN =2;②若△AMN ∽△ACB ,则=,即=, 解得:AN =4.5;故AN =2或4.5.故答案为:2或4.5.【点评】此题考查了相似三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x 2+x ﹣1=0【分析】(1)利用特殊角的三角函数值计算;(2)先计算判别式的值,然后利用求根公式解方程.解:(1)原式=4×﹣3×+2××=2﹣3+1 =1﹣; (2)△=12﹣4×(﹣1)=5,x == 所以x 1=,x 2=.【点评】本题考查了解一元二次方程﹣公式法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了特殊角的三角函数值.18.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.解:将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【分析】由∠BAE=∠CAD知∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,再根据线段的长得出==,据此即可得证.解:∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴==,∴△ABC∽△AED.【点评】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数的解析式,把点A(4,1)与点B(﹣1,﹣4)代入一次函数y=kx+b,即可得到一次函数解析式为y=x﹣3;(2)根据三角形的面积公式即可得到结论;(3)由图象即可得kx+b>的x的取值范围.解:(1)∵点A(4,1)与点B(﹣1,a)在反比例函数y=(m≠0)图象上,∴m=4,即反比例函数的解析式为y=,当x=1时,y=﹣4,即B(﹣1,﹣4),∵点A(4,1)与点B(﹣1,﹣4)在一次函数y=kx+b(k≠0)图象上,∴,解得:,∴一次函数解析式为y=x﹣3;(2)对于y=x﹣3,当y=0时,x=3,∴C(3,0),∴S△AOB =S△AOC+S△BOC=×3×1+×3×4=;(3)由图象可得,当﹣1<x<0或x>4时,kx+b>.【点评】本题考查的是反比例函数与一次函数的交点问题及三角形的面积公式,熟知坐标轴上点的坐标特点是解答此题的关键.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)【分析】过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD的长度和AC的长度,在直角△CBD中,解直角三角形求出BD的长度,再求出AD的长度,进而求出汽车从A地到B地比原来少走多少路程.解:过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC==40≈56.4(千米),∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴AD=40(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2≈27(千米).答:汽车从A地到B地比原来少走的路程为27千米.【点评】本题考查了勾股定理的运用以及解一般三角形的知识,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【解答】(1)解:∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴=,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【点评】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y 轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.【分析】(1)根据抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),可以求得该抛物线的解析式;(2)根据题意和(1)中的抛物线解析式可以求得点C的坐标,从而可以得到直线BC的函数解析式,然后根据在直线BC上方的抛物线上有点P,使△PBC面积为1,即可求得点P 的坐标.解:(1)∵抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),∴,解得,,∴抛物线的解析式为y=﹣x2+x+1;(2)∵y=﹣x2+x+1,∴当x=0时,y=1,即点C的坐标为(0,1),∵B(3,0),C(0,1),∴直线BC的解析式为:y=x+1,设点P的坐标为(p,﹣p2+p+1),将x=p代入y=x+1的,y=p+1,∵△PBC面积为1,∴=1,解得,p1=1,p2=2,当p1=1时,点P的坐标为(1,),当p=2时,点P的坐标为(2,1),2即点P的坐标为(1,)或(2,1).【点评】本题考查抛物线与x轴的交点、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解答本题的关键是明确题意,利用二次函数的性质解答.九年级上学期期末考试数学试题(含答案)一、选择题(下列各题的备选答案中,只有一个是正确的;本题共8个小题,每小题2分,共16分)1.(2分)如图,一个空心圆柱体,其左视图正确的是()A.B.C.D.2.(2分)关于x的一元二次方程x2+x+1=0的根的情况是()A.两个不等的实数根B.两个相等的实数根C.没有实数根D.无法确定3.(2分)有3张纸牌,分别是红桃2,红桃3,黑桃A,把纸牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,则两人抽的纸牌均为红桃的概率是()A.B.C.D.4.(2分)下列说法正确的是()A.有两个角为直角的四边形是矩形B.矩形的对角线相等C.平行四边形的对角线相等D.对角线互相垂直的四边形是菱形5.(2分)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4B.2C.D.6.(2分)已知反比例函数y=,下列结论不正确的是()A.该函数图象经过点(﹣1,1)B.该函数图象在第二、四象限C.当x<0时,y随着x的增大而减小D.当x>1时,﹣1<y<07.(2分)如图,在矩形ABCD中,AB=8厘米,BC=10厘米,点E在边AB上,且AE=2厘米,如果动点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,动点Q 在线段CD上由C点向D点运动,设运动时间为t秒,当△BPE与△CQP全等时,t的值为()A.2B.1.5或2C.2.5D.2或2.58.(2分)如图,已知∠MON=30°,B为OM上一点,BA⊥ON于点A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连接BE,若AB=2,则BE的最小值为()A.+1B.2﹣1C.3D.4﹣二、填空题(本题共8个小题,每小题3分,共24分)9.(3分)方程x2=2x的解是.10.(3分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只.11.(3分)小明的身高1.6米,他在阳光下的影长为0.8米,同一时刻,校园的旗杆影长为4.5米,则该旗杆高米.12.(3分)如图,已知点A在反比例函数图象上,AC⊥y轴于点C,点B在x轴的负半轴上,且△ABC的面积为3,则该反比例函数的表达式为.13.(3分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.14.(3分)如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.15.(3分)如图,在平面直角坐标系中,O为坐标原点,点A,B的坐标分别为(0,4),(﹣3,0),E为AB的中点,EF∥AO交OB于点F,AF与EO交于点P,则EP的长为.16.(3分)如图,正方形A1ABC的边长为1,正方形A2A1B1C1边长为2.正方形A3A2B2C2边长为4,…依此规律继续做正方形A n+1A n B n∁n,其中点A,A1,A2,A3,…在同一条直线上,连接AC1交A1B1于点D1,连接A1C2交A2B2于点D2,…,若记△AA1D1的面积为S1,△A1A2D2的面积为S2…,△A n﹣1A n D n的面积为S n,则S2019=.三、解答题(本大题共2个题,17题6分,18题5分,共11分)17.(6分)用适当的方法解下列一元二次方程:(1)(x﹣1)2=2;(2)2x2+5x=﹣218.(5分)如图,在平面直角坐标系中,△ABC的顶点都在小方格的格点上.(1)点A的坐标是;点C的坐标是;(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A1B1C1与△ABC对应边的比为1:2,请在网格中画出△A1B1C1;(3)△A1B1C1的面积为.四、解答题(本大题共3个题,19题6分,20,21题各8分,共22分)19.(6分)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(单位:千帕)随气体体积V(单位:立方米)的变化而变化,P随V的变化情况如下表所示.(1)写出符合表格数据的P关于V的函数表达式;(2)当气球的体积为20立方米时,气球内气体的气压P为多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,依照(1)中的函数表达式,基于安全考虑,气球的体积至少为多少立方米?20.(8分)小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?21.(8分)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.五、解答题(本大题共3个题,22题8分,23题9分,24题10分,共27分)22.(8分)利民商场经营某种品牌的T恤,购进时的单价是300元,根据市场调查:在一段时间内,销售单价是400元时,销售量是60件,销售单价每涨10元,销售量就减少1件.设这种T恤的销售单价为x元(x>400)时,销售量为y件、销售利润为W元.(1)请分别用含x的代数式表示y和W(把结果填入下表):(2)该商场计划实现销售利润10000元,并尽可能增加销售量,那么x的值应当是多少?23.(9分)如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A,B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为点M,BM=OM=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的表达式;(2)直线AB交x轴于点D,过点D作直线l⊥x轴,如果直线l上存在点P,坐标平面内存在点Q.使四边形OP AQ是矩形,求出点P的坐标.24.(10分)如图1,在正方形ABCD中,E是边BC上的点,将线段DE绕点E逆时针旋转90°得到EF,过点C作CG∥EF交BA(或其延长线)于点G,连接DF,FG.(1)FG与CE的数量关系是,位置关系是.(2)如图2,若点E是CB延长线上的点,其它条件不变.①(1)中的结论是否仍然成立?请作出判断,并给予证明;②DE,DF分别交BG于点M,N,若BC=2BE,求.2018-2019学年辽宁省锦州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的;本题共8个小题,每小题2分,共16分)1.【解答】解:一个空心圆柱体,其左视图为.故选:B.2.【解答】解:∵x2+x+1=0,∴△=12﹣4×1×1=﹣3<0,∴该方程无实数根,故选:C.3.【解答】解:列表如下:∴一共有9种等可能的结果,其中两次抽得纸牌均为红桃的有4种结果,∴两次抽得纸牌均为红桃的概率为,故选:A.4.【解答】解:A、错误.有3个角为直角的四边形是矩形.B、正确.矩形的对角线相等.C、错误.平行四边形的对角线不一定相等.D、错误.对角线互相垂直的四边形不一定是菱形.故选:B.5.【解答】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=.故选:C.6.【解答】解:对于y=,当x=﹣1时,y=1,∴该函数图象经过点(﹣1,1),A正确,不符合题意;∵k=﹣1<0,∴该函数图象在第二、四象限,B正确,不符合题意;当x<0时,y随着x的增大而增大,C错误,符合题意;当x>1时,﹣1<y<0,D正确,不符合题意,故选:C.7.【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,∵AB=8厘米,BC=10厘米,AE=2厘米,∴BE=CP=6厘米,∴BP=10﹣6=4厘米,∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=人教版数学九年级上册期末考试试题【答案】(1)人教版七年级数学下册第九章不等式与不等式组单元测试题。
★试卷3套精选★哈尔滨市2020届九年级上学期期末统考数学试题
![★试卷3套精选★哈尔滨市2020届九年级上学期期末统考数学试题](https://img.taocdn.com/s3/m/42774be3f111f18582d05aa7.png)
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在正方形ABCD中,AB=5,点M在CD的边上,且DM=2,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.34B.29C.27D.33【答案】A【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=1,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=34,进而得出EF的长.【详解】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=1.∵DM=2,∴CM=2.∴在Rt△BCM中,BM=2222+=+=BC CM5334∴EF =34,故选:A .【点睛】本题考查正方形的性质、三角形的判定和性质,关键在于做好辅助线,熟记性质.2.如图,平行四边形ABCD 中,E 是BC 延长线上一点,连结AE 交CD 于F ,则图中相似的三角形共有( )A .1对B .2对C .3对D .4对【答案】C 【分析】根据平行四边形的对边平行,利用“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”找出相似三角形,然后即可选择答案.【详解】在平行四边形ABCD 中,AB ∥CD ,BC ∥AD ,所以,△ABE ∽△FCE ,△FCE ∽△FDA ,△ADF ∽△EBA ,共3对.故选C .【点睛】本题考查了相似三角形的判定,利用平行四边形的对边互相平行的性质,再结合 “平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”即可解题3.下列方程中,是一元二次方程的是( ).A .20x x +=B .20x +=C .1x y +=D .12x= 【答案】A【分析】根据一元二次方程的定义进行判断.【详解】A 、符合题意;B 、是一元一次方程,不符合题意;C 、是二元一次方程,不符合题意;D 、是分式方程(0)x ≠,不符合题意;故选A .【点睛】本题考查一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.4.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今小王取出一年到期的本金和利息时,交纳利息税4.5元,则小王一年前存入银行的钱为( ).A .1000元B .977.5元C .200元D .250元 【答案】A【分析】利息问题是一个难点,要把握好利息、本金、利息税的概念,由利息税可求得利息为4.5÷20%=22.5元,根据年利率又可求得本金.【详解】解:据题意得:利息为4.5÷20%=22.5元本金为22.5÷2.25%=1000元.故选:A .【点睛】本题考查利息问题,此题关系明确,关键是分清利息、本金、利息税的概念.5.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A .4.4×108B .4.40×108C .4.4×109D .4.4×1010 【答案】C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:4 400 000 000=4.4×109,故选C .6.关于x 的一元二次方程x 2﹣有两个不相等的实数根,则实数m 的取值范围是( ) A .m <3B .m >3C .m≤3D .m≥3 【答案】A【解析】分析:根据关于x 的一元二次方程x 2x+m=0有两个不相等的实数根可得△=()2-4m >0,求出m 的取值范围即可.详解:∵关于x 的一元二次方程x 2x+m=0有两个不相等的实数根,∴△=()2-4m >0,∴m <3,故选A .点睛:本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根. 7.如图,AB 为O 的直径,C ,D 为O 上的两点.若2AB =,1BC =,则BDC ∠的度数是( )A.15︒B.30C.45︒D.60︒【答案】B【分析】先连接OC,根据三条边都相等可证明△OCB是等边三角形,再利用圆周角定理即可求出角度. 【详解】解:如图,连接OC.∵AB=2,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°.故选:B.【点睛】本题考查圆周角定理,等边三角形的判定及性质等知识,作半径是圆中常用到的辅助线需熟练掌握. 8.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是( )A.极差是6 B.众数是7 C.中位数是5 D.方差是8【答案】D【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,1.A.极差1138=-=,结论错误,故A不符合题意;B.众数为5,7,11,3,1,结论错误,故B不符合题意;C .这5个数按从小到大的顺序排列为:3,5,7,1,11,中位数为7,结论错误,故C 不符合题意;D .平均数是()57113957++++÷=,方差()()()()()2222221577711737975S ⎡⎤=-+-+-+-+-⎣⎦8=.结论正确,故D 符合题意. 故选D .【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.9.如图,在Rt ABC 中,90C ∠=︒,3sin 4A ∠=,8AB cm =,则ABC 的面积是( )A .26cmB .224cmC .267cmD .2247cm【答案】C 【分析】在Rt △ABC 中,求出BC ,AC 即可解决问题.【详解】解:在Rt △ACB 中,∵∠C=90°,AB=8cm ,∴sinA=BC AB =34, ∴BC=6(cm ),∴22228267AB BC --==cm ), ∴S △ABC =12•BC •AC=12×6×77(cm 2). 故选:C .【点睛】本题考查解直角三角形的应用,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm )181 186 181 186 方差 3.5 3.5 6.5 7.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A .甲B .乙C .丙D .丁【答案】B【分析】根据平均数与方差的意义解答即可.【详解】解: =x x x x <=甲乙丁丙,∴乙与丁二选一, 又22s s <乙丁,∴选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键.11.如图,向量OA 与OB 均为单位向量,且OA ⊥OB ,令n =OA +OB ,则||n =( )A .1B .2C .3D .2【答案】B 【解析】根据向量的运算法则可得: n =()222OA OB +=,故选B.12.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .165【答案】C 【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC=∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B=∠BAC=90°,BC=AD ,∴∠BAC+∠DAE=90°, ∵DE AC ⊥,∴∠ADE+∠DAE=90°,∴∠BAC=ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==, ∴22222520533AC AB ⎛⎫-=-= ⎪⎝⎭.故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.二、填空题(本题包括8个小题)13.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为___.【答案】2020.【分析】把x=m代入方程计算即可求解.【详解】解:把x=m代入方程得:m2﹣m﹣2019=0,即m2﹣m=2019,则原式=2019+1=2020,故答案为2020.【点睛】本题考查一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.若AB是⊙O的直径,AC是弦,OD⊥AC于点D,若OD=4,则BC=_____.【答案】1【分析】由OD⊥AC于点D,根据垂径定理得到AD=CD,即D为AC的中点,则OD为△ABC的中位线,根据三角形中位线性质得到OD=12BC,然后把OD=4代入计算即可.【详解】∵OD⊥AC于点D,∴AD=CD,即D为AC的中点,∵AB是⊙O的直径,∴点O为AB的中点,∴OD为△ABC的中位线,∴OD=12 BC,∴BC=2OD=2×4=1.故答案为:1.【点睛】本题考查了三角形中位线定理以及垂径定理的运用.熟记和圆有关的各种性质定理是解题的关键.15.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.【答案】38 【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值63168=, ∴小球最终停留在黑色区域的概率是38, 故答案为:38. 【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.16.将抛物线22y x =-先向上平移3个单位,再向右平移2个单位后得到的新抛物线对应的函数表达式为______.【答案】()2223y x =--+【分析】根据二次函数平移的特点即可求解.【详解】将抛物线22y x =-先向上平移3个单位,再向右平移2个单位后得到的新抛物线对应的函数表达式为()2223y x =--+故答案为: ()2223y x =--+.【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的特点.17.正ABC 的边长为3cm ,边长为1cm 的正RPQ 的顶点R 与点A 重合,点P Q ,分别在AC ,AB 上,将RPQ 沿边顺时针连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为 cm (结果保留π)【答案】2π【解析】从图中可以看出翻转的第一次是一个120度的圆心角,半径是1,所以弧长=1201180π⨯,第二次是以点P 为圆心,所以没有路程,在BC 边上,第一次1201180π⨯第二次同样没有路程,AC 边上也是如此,点P 运动路径的长为120132180ππ⨯⨯= 18.一元二次方程290x 的解是__. 【答案】x 1=1,x 2=﹣1.【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±1,即x 1=1,x 2=﹣1,故答案为x 1=1,x 2=﹣1.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.三、解答题(本题包括8个小题)19.某水果批发商销售每箱进价为40元的苹果.经市场调研发现:若每箱以50元的价格销售,平均每天销售90箱;价格每提高1元,则平均每天少销售3箱.设每箱的销售价为x 元(x >50),平均每天的销售量为y 箱,该批发商平均每天的销售利润w 元.(1)y 与x 之间的函数解析式为__________;(2)求w 与x 之间的函数解析式;(3)当x 为多少元时,可以获得最大利润?最大利润是多少?【答案】(1)3240y x =-+;(2)w=233609600x x -+-;(3)当x 为60元时,可以获得最大利润,最大利润是1元【分析】(1)设每箱的销售价为x 元(x >50),则价格提高了(50)x -元,平均每天少销售3(50)x -箱,所以平均每天的销售量为903(50)x --,化简即可;(2)平均每天的销售利润=每箱的销售利润⨯平均每天的销售量,由此可得关系式;(3)当2b x a=-时(2)中的关于二次函数有最大值,将x 的值代入解析式求出最大值即可. 【详解】(1)903(50)3240y x x =--=-+.(2)(40)(3240)w x x =--+=233609600x x -+-.w=233609600x x -+-30-<∴当360602(3)x=-=⨯-时,w最大值=1.∴当x为60元时,可以获得最大利润,最大利润是1元.【点睛】本题考查了二次函数的实际应用,正确理解题意,根据题中等量关系列出函数关系式是解题的关键. 20.如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6 m,两个路灯的高度都是9.6 m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?【答案】(1)18;(2)3.6【分析】(1)依题意得到△APM∽△ABD,得到MP APBD AB=再由它可以求出AB;(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F则BF即为此时他在路灯AC的影子长,容易知道△EBF∽△CAF,再利用它们对应边成比例求出现在的影子.【详解】解:(1)由对称性可知AP=BQ,设AP=BQ=x m,∵MP∥BD,∴△APM∽△ABD,∴MP APBD AB=,∴1.69.6=212xx+,解得x=3,∴AB=2x+12=18(m),即两个路灯之间的距离为18米(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F,则BF即为此时他在路灯AC下的影子长,设BF=y m,∵BE ∥AC ,∴△FEB ∽△FCA , ∴BE BF AC FA = ,即1.69.6=18y y +, 解得y =3.6,当王华同学走到路灯BD 处时,他在路灯AC 下的影子长3.6米.【点睛】此题主要考查相似三角形的应用,两个问题都主要利用了相似三角形的性质:对应边成比例. 21.如图,平面直角坐标系中,一次函数y =x ﹣1的图象与x 轴,y 轴分别交于点A ,B ,与反比例函数y =k x 的图象交于点C ,D ,CE ⊥x 轴于点E ,13OA AE =.(1)求反比例函数的表达式与点D 的坐标;(2)以CE 为边作▱ECMN ,点M 在一次函数y =x ﹣1的图象上,设点M 的横坐标为a ,当边MN 与反比例函数y =k x的图象有公共点时,求a 的取值范围. 【答案】(1)D (﹣3,﹣4);(1)当边MN 与反比例函数y =k x 的图象有公共点时4<a ≤6或﹣3<a ≤﹣1.【分析】(1)利用待定系数法以及等腰直角三角形的性质求出EC ,OE 即可解决问题.(1)如图,设M (a ,a ﹣1),则N (a ,12a),由EC =MN 构建方程求出特殊点M 的坐标即可判断. 【详解】解:(1)由题意A (1,0),B (0,﹣1),∴OA =OB =1,∴∠OAB =∠CAE =45°∵AE =3OA ,∴AE =3,∵EC ⊥x 轴,∴∠AEC =90°,∴∠EAC =∠ACE =45°,∴EC =AE =3,∴C (4,3),∵反比例函数y =x k 经过点C (4,3), ∴k =11, 由112y x y x =-⎧⎪⎨=⎪⎩,解得43x y =⎧⎨=⎩或34x y =-⎧⎨=-⎩, ∴D (﹣3,﹣4).(1)如图,设M (a ,a ﹣1),则N (a ,12a)∵四边形ECMN 是平行四边形,∴MN =EC =3,∴|a ﹣1﹣12a|=3, 解得a =6或﹣1或﹣13,∴M (6,5)或(﹣1,﹣3),观察图象可知:当边MN 与反比例函数y =x k 的图象有公共点时4<a≤6或﹣3<a≤﹣1. 【点睛】考核知识点:反比例函数与一次函数.数形结合,解方程组求图象交点,根据图象分析问题是关键. 22.如图,抛物线y =﹣12x 2+2x+6交x 轴于A ,B 两点(点A 在点B 的右侧),交y 轴于点C ,顶点为D ,对称轴分别交x 轴、线段AC 于点E 、F .(1)求抛物线的对称轴及点A 的坐标;(2)连结AD ,CD ,求△ACD 的面积;(3)设动点P 从点D 出发,沿线段DE 匀速向终点E 运动,取△ACD 一边的两端点和点P ,若以这三点为顶点的三角形是等腰三角形,且P 为顶角顶点,求所有满足条件的点P 的坐标.【答案】(1)抛物线的对称轴x =1,A (6,0);(1)△ACD 的面积为11;(3)点P 的坐标为(1,1)或(1,6)或(1,3).【分析】(1)令y=0,求出x ,即可求出点A 、B 的坐标,令x =0,求出y 即可求出点C 的坐标,再根据对称轴公式即可求出抛物线的对称轴;(1)先将二次函数的一般式化成顶点式,即可求出点D 的坐标,利用待定系数法求出直线AC 的解析式,从而求出点F 的坐标,根据“铅垂高,水平宽”求面积即可;(3)根据等腰三角形的底分类讨论,①过点O 作OM ⊥AC 交DE 于点P ,交AC 于点M ,根据等腰三角形的性质和垂直平分线的性质即可得出此时AC 为等腰三角形ACP 的底边,且△OEP 为等腰直角三角形,从而求出点P 坐标;②过点C 作CP ⊥DE 于点P ,求出PD ,可得此时△PCD 是以CD 为底边的等腰直角三角形,从而求出点P 坐标;③作AD 的垂直平分线交DE 于点P ,根据垂直平分线的性质可得PD =PA ,设PD =x ,根据勾股定理列出方程即可求出x ,从而求出点P 的坐标.【详解】(1)对于抛物线y =﹣12x 1+1x+6令y =0,得到﹣12x 1+1x+6=0,解得x =﹣1或6, ∴B (﹣1,0),A (6,0),令x =0,得到y =6,∴C (0,6), ∴抛物线的对称轴x =﹣2b a=1,A (6,0). (1)∵y =﹣12x 1+1x+6=21(2)82x --+, ∴抛物线的顶点坐标D (1,8),设直线AC 的解析式为y =kx+b ,将A (6,0)和C (0,6)代入解析式,得0666k b=+⎧⎨=⎩ 解得:16k b =-⎧⎨=⎩, ∴直线AC 的解析式为y =﹣x+6,将x=1代入y =﹣x+6中,解得y=4∴F (1,4),∴DF =4, ∴12ACD S DF OA =⋅=1462⨯⨯=11; (3)①如图1,过点O 作OM ⊥AC 交DE 于点P ,交AC 于点M ,∵A (6,0),C (0,6),∴OA =OC =6,∴CM =AM ,∠MOA=12∠COA=45° ∴CP =AP ,△OEP 为等腰直角三角形,∴此时AC 为等腰三角形ACP 的底边,OE =PE =1.∴P (1,1),②如图1,过点C 作CP ⊥DE 于点P ,∵OC =6,DE =8,∴PD=DE﹣PE=1,∴PD=PC,此时△PCD是以CD为底边的等腰直角三角形,∴P(1,6),③如图3,作AD的垂直平分线交DE于点P,则PD=PA,设PD=x,则PE=8﹣x,在Rt△PAE中,PE1+AE1=PA1,∴(8﹣x)1+41=x1,解得x=5,∴PE=8﹣5=3,∴P(1,3),综上所述:点P的坐标为(1,1)或(1,6)或(1,3).【点睛】此题考查的是二次函数与图形的综合大题,掌握将二次函数的一般式化为顶点式、二次函数图象与坐标轴的交点坐标的求法、利用“铅垂高,水平宽”求三角形的面积和分类讨论的数学思想是解决此题的关键. 23.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+14PB的最小值为_____.【答案】145 2【分析】连接PC,则PC=12DE=2, 在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出结果.【详解】解:连接PC,则PC=12DE=2,∴P在以C为圆心,2为半径的圆弧上运动, 在CB上截取CM=0.25,连接MP,∴0.25121,2444 CM CPCP CB====,∴CM CP CP CB=,∵∠MCP=∠PCB, ∴△CPM∽△CBP,∴PM=14 PB,∴PA+14PB=PA+PM,∴当P、M、A共线时,PA+14PB最小,即221450.25+6=2.【点睛】本题考查了最短路径问题,相似三角形的判定与性质,正确做出辅助线是解题的关键.24.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:3,AB=10米,AE=15米.(i=1:3是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414, 1.732)【答案】(1)点B距水平面AE的高度BH为5米.(2)宣传牌CD高约2.7米.【分析】(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH. (2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.【详解】解:(1)过B作BG⊥DE于G,在Rt△ABF中,i=tan∠BAH=333=,∴∠BAH=30°∴BH=12AB=5(米).答:点B距水平面AE的高度BH为5米.(2)由(1)得:BH=5,AH=53,∴BG=AH+AE=53+15.在Rt△BGC中,∠CBG=45°,∴CG=BG=53+15.在Rt△ADE中,∠DAE=60°,AE=15,∴DE=3AE=153.∴CD=CG+GE﹣DE=53+15+5﹣153=20﹣103≈2.7(米).答:宣传牌CD高约2.7米.25.如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.【答案】sinA=513,cosA=1213,tanA=512.【分析】根据勾股定理求出AB,根据锐角三角函数的定义解答即可.【详解】由勾股定理得,222212513AB AC BC+=+=,则5sin13BCAAB==,12cos13ACAAB==,5tan12BCAAC==.【点睛】本题考查解直角三角形,解题的关键是利用勾股定理求出AB的长.26.一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.【答案】(1)23P=;(2)13P=.【分析】(1)从箱子中任意摸出一个球是白球的概率即是白球所占的比值;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验,此题要求画树状图,要按要求解答.【详解】解:(1)从箱子中任意摸出一个球是白球的概率是23 P=(2)记两个白球分别为白1与白2,画树状图如图所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率2163 P==.27.如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有颜色的概率.【答案】(1)18;(2)38;(3)18【分析】(1)三面涂有颜色的小正方体是在8个顶点处,共8个,再根据概率公式解答即可;(2)两面涂有颜色的小正方体是在12条棱的中间处,共24个,再根据概率公式解答即可;(3)各个面都没有颜色的小正方体是在6个面的中间处,共8个,再根据概率公式解答即可.【详解】解:(1)因为三面涂有颜色的小正方体有8个,所以P(三面涂有颜色)=81 648=;(2)因为两面涂有颜色的小正方体有24个,所以P(两面涂有颜色)=243 648=;(3)因为各个面都没有涂颜色的小正方体共有8个,所以P(各个面都没有涂颜色)=81 648=.【点睛】本题考查几何概率,等可能事件的概率=所求情况数与总情况数之比.关键是找到相应的具体数目.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.−2 B.2 C.−4 D.4【答案】B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=1.故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A.2 B.1 C.0 D.-1【答案】D【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【详解】2x>m−3,解得x>3 2m-,∵在数轴上的不等式的解集为:x>−2,∴32m-=−2,解得m=−1;故选:D.【点睛】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.3.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于()A5B25C5D.2 3【答案】C【解析】试题解析:设正方形网格每个小正方形边长为1,则BC 边上的高为2,则AB === ,sinABC ∠==. 故本题应选C.4.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的( )A .平均数B .频数C .中位数D .方差 【答案】D【分析】要判断成绩的稳定性,一般是通过比较两者的方差实现,据此解答即可.【详解】解:要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的方差.故选:D.【点睛】本题考查了统计量的选择,属于基本题型,熟知方差的意义是解题关键.5.sin60°的值是( )A .12BCD 【答案】C【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=2, 故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键.6.下列说法正确的是( )A .了解飞行员视力的达标率应使用抽样调查B .一组数据3,6,6,7,9的中位数是6C .从2000名学生中选200名学生进行抽样调查,样本容量为2000D .一组数据1,2,3,4,5的方差是10【答案】B【解析】选项A ,了解飞行员视力的达标率应使用全面调查,此选项错误;选项B ,一组数据3,6,6,7,9的数的个数是奇数,故中位数是处于中间位置的数6,此选项正确; 选项C ,从2000名学生中选200名学生进行抽样调查,样本容量应该是200,此选项错误;选项D ,一组数据1,2,3,4,5的平均数=15(1+2+3+4+5)=3,方差=15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此选项错误.故答案选B.7.将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位的所得抛物线的表达式是()A.y=(x+1)2-4 B.y=-(x+1)2-4 C.y=(x+3)2-4 D.y=-(x+3)2-4【答案】C【分析】先确定抛物线y=x2+4x+3的顶点坐标为(-2,-1),再根据点平移的规律得到点(-2,-1)平移后所得对应点的坐标为(-3,-4),然后根据顶点式写出平移后的抛物线解析式.【详解】解:∵y=x2+4x+3=x2+4x+4-4+3=(x+2)2-1∵将抛物线y=x2+4x+3向左平移1个单位,再向下平移3个单位∴平移后的函数解析式为:y=(x+2+1)2-1-3,即y=(x+3)2-4.故选:C【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.口袋中有2个红球和1个黑球,每次摸到后放回,两次都摸到红球的概率为()A.19B.29C.13D.49【答案】D【分析】根据题意画出树形图即可求出两次都摸到红球的概率,进而得出选项.【详解】解:设红球为1,黑球为2,画树形图得:由树形图可知:两次都摸到红球的概率为4 9 .故选:D.【点睛】本题考查用列表法与树状图法求随机事件的概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰【答案】D【解析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.若方程(m﹣1)x2﹣4x=0是关于x的一元二次方程,则m的取值范围是()A.m≠1 B.m=1 C.m≠0 D.m≥1【答案】A【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得m−1≠0,再解即可.【详解】解:由题意得:m﹣1≠0,解得:m≠1,故选:A.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.11.如图,A,B是反比例函数y=kx图象上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=15OC,S四边形ABCD=9,则k值为()A.8 B.10 C.12 D.1.【答案】B【分析】分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,根据反比例函数图象上点的坐标特征得到k=OD•t=t•5t,则OD=5t,所以B点坐标为(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四边形ABCD=S△ECD﹣S△EAB得到12•5t•5t﹣12•4t•4t=9,解得t2=2,然后根据k=t•5t进行计算.【详解】解:分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,∵A,B是反比例函数y=kx图象上两点,∴k=OD•t=t•5t,∴OD=5t,∴B点坐标为(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四边形ABCD=S△ECD﹣S△EAB,∴12•5t•5t﹣12•4t•4t=9,∴t2=2,∴k=t•5t=5t2=5×2=2.故选:B.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球.【答案】D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】解:打开电视机,正在播放篮球比赛是随机事件,A不符合题意;守株待兔是随机事件,B不符合题意;明天是晴天是随机事件,C不符合题意在只装有5个红球的袋中摸出1球,是红球是必然事件,D符合题意.故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.。
哈尔滨市初三数学九年级上册期末试题及答案
![哈尔滨市初三数学九年级上册期末试题及答案](https://img.taocdn.com/s3/m/c787103ae53a580217fcfe53.png)
一、选题
1.抛物线 的顶点坐标是()
A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)
2.如图,AB为圆O直径,C、D是圆上两点, ADC=110°,则 OCB度( )
A.40B.50C.60D.70
3.如图,已知点 在 的 边上,若 ,且 ,则 ()
34.如图,BD、CE是 的高.
(1)求证: ;
(2)若BD=8,AD=6,DE=5,求BC的长.
35.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):
24.二次函数 的图像开口方向向上,则 ______0.(用“=、>、<”填空)
25.抛物线 的顶点坐标是______.
26.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.
27.如图, 半径为 ,正方形 内接于 ,点 在 上运动,连接 ,作 ,垂足为 ,连接 .则 长的最小值为________.
乙:305,302,300,300,300,300,298,299,301,305
(1)分别计算甲、乙这两个样本的平均数和方差;
(2)比较这两台包装机包装质量的稳定性.
33.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)
哈尔滨市道里区九年级上册期末考试数学试题有答案-名师版
![哈尔滨市道里区九年级上册期末考试数学试题有答案-名师版](https://img.taocdn.com/s3/m/c63144173169a4517723a3ae.png)
道里九年级数学期末试题一、选择题(每题3分,共30分)1.抛物线y=(一2)2+3的顶点坐标是( )(A)(2,3) (B)(-2,3) (C)(2, -3) (D)( -2, -3) 2.下列图形是中心对称图形的是( )3.在Rt △ABC 中,∠C=900,sinA=53 ,则cosA 的值等于( ) (A) 53 (B) 54 (C) 43 (D)55 4.下列几何体中,俯视图是三角形的几何体是( )5.一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小质 地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个是红 概率是( )(A)81 (B) 61 (C) 41 (D) 43 6.如图,E 是平行四边形ABCD 的边BA 延长线上的一点, CE 交AD 于点F ,下列各式中错误的是( ) (A)CF EF AB AE = (B) FC CF BE CD = (C) DF AF AB AE = (D) BCAF AB AE =7.若反比例函数y=xm-3=的图象位于第二、四象限,则m 的取值范围是( ) (A)m>0 (B)m<0 (C)m>3 (D)m<38.将二次函数y=2的图象先向下平移l 个单位,再向右平移3个单位,得到的图象与一次函数y=2+b 的图象有公共点,则实数b 的取值范围是( ) (A)b>8 (B)b>一8 (C)b ≥8 (D)b ≥8 9.如图,在Rt △ABC中,∠C=900,∠A=500,以BC 为 直径的⊙0交AB 于点D ,E 是⊙0上一点,且弧CE=弧CD ,连接0E ,过点E 作⊙0的切线交AC 的延长线于点F , 则∠F 的度数为( )(A)900(B)1000(C)1100(D)120010.如图,正方形ABCD 的边长为3 cm ,点P 从点A 出发沿AB →BC →CD 以3 cm /s 的速度向终点D 匀速运动,同时,点Q 从点A 出发沿AD 以 1 cm /s 的速度向终点D 匀速运动,设P 点运动的时间为ts ,△APQ 的面积为S cm2,下列选项中能表示S 与t 之间函数关系的是( )二、填空题(每题3分,共30分)11.在平面直角坐标系中,点P(1,.2)关于原点的对称点的坐标是 . 12.若△ABC ∽△DEF,DE=2AB ,若△DEF 的面积为20,则△ABC 的面积为 . 13.若反比例函数y=x6的图象经过点A(m,3),则m 的值是 . 14.一辆汽车行驶的距离S(单位:m)关于行驶时间t(单位:s)的函数解析式是S=9t+221t ,当t=10 s 时,则S= 米.15.如图,四边形ABCD 与四边形EFGH 位似,位似中心是点O ,若43 EA OE ,则BCFG= . 16.如图,在Rt △ABC 中,∠ACB=900,AC=BC=2.将Rt△ABC 绕A 点逆时针旋转30。
哈尔滨市道里区九年级上期末考试数学试题有答案
![哈尔滨市道里区九年级上期末考试数学试题有答案](https://img.taocdn.com/s3/m/9094c4dfdd3383c4ba4cd262.png)
道里九年级数学期末试题一、选择题(每题3分,共30分)1.抛物线y=(一2)2+3的顶点坐标是( )(A)(2,3) (B)(-2,3) (C)(2, -3) (D)( -2, -3) 2.下列图形是中心对称图形的是( )3.在Rt △ABC 中,∠C=900,sinA=53 ,则cosA 的值等于( ) (A) 53 (B) 54 (C) 43 (D)55 4.下列几何体中,俯视图是三角形的几何体是( )5.一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小质 地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个是红 概率是( )(A)81 (B) 61 (C) 41 (D) 43 6.如图,E 是平行四边形ABCD 的边BA 延长线上的一点, CE 交AD 于点F ,下列各式中错误的是( ) (A)CF EF AB AE = (B) FC CF BE CD = (C) DFAFAB AE = (D) BCAF AB AE =7.若反比例函数y=xm-3=的图象位于第二、四象限,则m 的取值范围是( ) (A)m>0 (B)m<0 (C)m>3 (D)m<38.将二次函数y=2的图象先向下平移l 个单位,再向右平移3个单位,得到的图象与一次函数y=2+b 的图象有公共点,则实数b 的取值范围是( ) (A)b>8 (B)b>一8 (C)b ≥8 (D)b ≥8 9.如图,在Rt △ABC中,∠C=900,∠A=500,以BC 为 直径的⊙0交AB 于点D ,E 是⊙0上一点,且弧CE=弧CD ,连接0E ,过点E 作⊙0的切线交AC 的延长线于点F , 则∠F 的度数为( )(A)900(B)1000(C)1100(D)120010.如图,正方形ABCD 的边长为3 cm ,点P 从点A 出发沿AB →BC →CD 以3 cm /s 的速度向终点D 匀速运动,同时,点Q 从点A 出发沿AD 以 1 cm /s 的速度向终点D 匀速运动,设P 点运动的时间为ts ,△APQ 的面积为S cm2,下列选项中能表示S 与t 之间函数关系的是( )二、填空题(每题3分,共30分)11.在平面直角坐标系中,点P(1,.2)关于原点的对称点的坐标是 . 12.若△ABC ∽△DEF,DE=2AB ,若△DEF 的面积为20,则△ABC 的面积为 . 13.若反比例函数y=x6的图象经过点A(m,3),则m 的值是 . 14.一辆汽车行驶的距离S(单位:m)关于行驶时间t(单位:s)的函数解析式是S=9t+221t ,当t=10 s 时,则S= 米.15.如图,四边形ABCD 与四边形EFGH 位似,位似中心是点O ,若43=EA OE ,则BCFG= . 16.如图,在Rt △ABC 中,∠ACB=900,AC=BC=2.将Rt△ABC 绕A 点逆时针旋转30。
哈尔滨市数学九年级上册期末试卷(带解析)
![哈尔滨市数学九年级上册期末试卷(带解析)](https://img.taocdn.com/s3/m/9d0f51c0284ac850ac02422c.png)
哈尔滨市数学九年级上册期末试卷(带解析)一、选择题1.有一组数据5,3,5,6,7,这组数据的众数为( ) A .3 B .6C .5D .72.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm 4.方程 x 2=4的解是( )A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-4 5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9︰16B .3︰4C .9︰4D .3︰166.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( )A .45 B .34C .43 D .357.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A.60︒B.70︒C.72︒D.90︒8.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是()A.40°B.80°C.100°D.120°9.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α10.已知关于x的一元二次方程(x - a)(x - b)-12= 0 (a < b)的两个根为 x1、x2,(x1< x2)则实数 a、b、x1、x2的大小关系为()A.a < x1< b <x2B.a < x1< x2 < b C.x1< a < x2< b D.x1< a < b < x2 11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个12.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-13.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根14.如图,AB,AM,BN 分别是⊙O 的切线,切点分别为 P,M,N.若 MN∥AB,∠A=60°,AB=6,则⊙O 的半径是()A.32B.3 C.323D.315.如图,△ABC中,∠C=90°,∠B=30°,AC=7,D、E分别在边AC、BC上,CD =1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.3B.3C.7D.7二、填空题16.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m ,则树的高度为_________m.17.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.18.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).19.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.20.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;21.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)22.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 23.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.24.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .25.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.26.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)27.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.28.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____. 29.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”) 30.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.如图,AB BC =,以BC 为直径作O ,AC 交O 于点E ,过点E 作EG AB ⊥于点F ,交CB 的延长线于点G .(1)求证:EG 是O 的切线;(2)若23GF =4GB =,求O 的半径.32.(1)x 2+2x ﹣3=0 (2)(x ﹣1)2=3(x ﹣1)33.小亮晚上在广场散步,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?34.如图,在平面直角坐标系中,一次函数y=12x+2的图象与y轴交于A点,与x轴交于B点,⊙P的半径为5,其圆心P在x轴上运动.(1)如图1,当圆心P的坐标为(1,0)时,求证:⊙P与直线AB相切;(2)在(1)的条件下,点C为⊙P上在第一象限内的一点,过点C作⊙P的切线交直线AB于点D,且∠ADC=120°,求D点的坐标;(3)如图2,若⊙P向左运动,圆心P与点B重合,且⊙P与线段AB交于E点,与线段BO相交于F点,G点为弧EF上一点,直接写出12AG+OG的最小值.35.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.四、压轴题36.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.37.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?38.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.39.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.40.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 3.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa,当a、c异号时,可利用直接开平方法求解.5.B解析:B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.因为面积比是9:16,则相似比是3︰4,故选B.考点:本题主要考查了相似三角形的性质 点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方6.A解析:A【解析】【分析】根据勾股定理求出AB 的长,在求出∠ACD 的等角∠B ,即可得到答案.【详解】如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3,∴2222AB AC BC 345=+=+=,∵CD ⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α, ∴4cos 5BC cos B AB α===. 故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.7.C解析:C【解析】【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可.【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°,∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒.故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.8.C解析:C【解析】【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°,∵∠A=80°,∴∠C=100°,故选:C.【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键. 9.D解析:D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.10.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=12时,由题意可知:(x−a)(x−b)−12=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.11.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34AAB BD∠=∠=∠=∠,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF-S△ABD=26021233602π⨯-⨯=233π故选B.13.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.14.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO ≌△BPO (AAS ),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=33,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.15.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC7,∠ABC=30°,∴AB=2AC=7,BC3AC21,∵DE∥AB,∴CDCA=CECB,∴7=21,∴CE=3,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3∴E′H=12CE′=3,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.二、填空题16.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m17.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.18.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.19.720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019 解析:720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x ,则2018的全年收入为:720×(1+x )2019的全年收入为:720×(1+x )2.那么可得方程:720(1+x )2=845.故答案为:720(1+x )2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).20.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343 【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8,∴6AC ===,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图 ∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴3AC BCCD CE=,即3684CE=,∴CE3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.21.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】此题答案不唯解析:∠B=∠1或AE ADAC AB=【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B =∠1或AD AE AB AC=. ∵∠B =∠1,∠A =∠A ,∴△ADE ∽△ABC ; ∵AD AE AB AC=,∠A =∠A , ∴△ADE ∽△ABC ; 故答案为∠B =∠1或AD AE AB AC = 【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 22.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键. 23.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 24.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm ∴较小的三角形的周长为643484cm ⨯= 故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 25.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数k<解析:3【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.=方程有两个不相等的实数根,1a,b=-,c k241240b ac k∴∆=-=->,∴<.3kk<.故答案为:3【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.26.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.27.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.28.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.29.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.30.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC 的最长值是通过圆心的直线是解题关键.三、解答题31.(1)见解析;(2)O 的半径为4. 【解析】【分析】(1) 连接OE ,利用AB=BC 得出A C ∠=∠,根据OE=OC 得出,OEC C ∠=∠,从而求出OE AB ,再结合EG AB ⊥即可证明结论;(2)先利用勾股定理求出BF 的长,再利用相似三角形的性质对应线段比例相等求解即可. 【详解】解:(1)证明:连接OE .∵AB BC =∴A C ∠=∠∵OE OC =∴OEC C ∠=∠∴A OEC ∠=∠∴OEAB ∵BA GE ⊥,∴OE EG ⊥,且OE 为半径 ∴EG 是O 的切线(2)∵BF GE ⊥∴90BFG ∠=︒∵23GF =4GB =∴222BF BG GF =-=∵BF OE ∥∴BGF OGE ∆∆∽ ∴BF BG OE OG =∴244OE OE=+ ∴4OE =即O 的半径为4. 【点睛】本题考查的知识点是切线的判定与相似三角形的性质,根据题目作出辅助线,数形结合是解题的关键.32.(1)x =﹣3或x =1;(2)x =1或x =4.【解析】【分析】(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】解:(1)∵x 2+2x ﹣3=0,∴(x+3)(x ﹣1)=0,∴x =﹣3或x =1;(2)∵(x ﹣1)2=3(x ﹣1),∴(x ﹣1)[(x ﹣1)﹣3]=0, ∴(x ﹣1)(x ﹣4)=0,∴x =1或x =4;【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.33.(1)如图,BE 为所作;见解析;(2)小亮(CD )的影长为3m .【解析】【分析】(1)根据光是沿直线传播的道理可知在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,连接PA 并延长交直线BO 于点E ,则可得到小亮站在AB 处的影子;(2)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可.【详解】(1)如图,连接PA 并延长交直线BO 于点E ,则线段BE 即为小亮站在AB 处的影子:(2)延长PC 交OD 于F ,如图,则DF 为小亮站在CD 处的影子,AB =CD =1.6,OB =2.4,BE =1.2,OD =6,∵AB ∥OP ,∴△EBA ∽△EOP ,∴,AB EB OP EO =即1.6 1.2,1.2 2.4OP =+ 解得OP =4.8,∵CD ∥OP ,∴△FCD ∽△FPO ,∴CD FD OP FO =,即1.64.86FD FD =+, 解得FD =3答:小亮(CD )的影长为3m .【点睛】 本题考查的是相似三角形的判定及性质,解答此题的关键是根据题意画出图形,构造出相。
2019 2020哈尔滨市道里区九年级上期末考试数学试题有答案推荐
![2019 2020哈尔滨市道里区九年级上期末考试数学试题有答案推荐](https://img.taocdn.com/s3/m/1e0fc31471fe910ef12df8fb.png)
道里九年级数学期末试题2019-2020)30分(每题3分,共一、选择题2( )的顶点坐标是x一2)+31.抛物线y=( -3) ,,3) (C)(2, -3) (D)( -2(A)(2,3) (B)(-2( ).下列图形是中心对称图形的是230( ) 的值等于,则△ABC中,∠C=90cosA,sinA=3.在Rt55334 (D)(A) (C) (B)54554.下列几何体中,俯视图是三角形的几何体是( )5.一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个是红概率是( )3111 (A) (B) (D) (C)4486于AD CE交ABCD的边BA延长线上的一点, 6.如图,E是平行四边形( ) F,下列各式中错误的是点AFAFAEEFCDCFAEAE???? (D) (B) (A) (C) BCABFCABDFABCFBEm?3( ) 的取值范围是y=7.若反比例函数=的图象位于第二、四象限,则m x(A)m>0 (B)m<0 (C)m>3 (D)m<3个单位,得到的图象与一次函数l个单位,再向右平移3将二次函数8.y=x的图象先向2y=2x+b下平移( ) 的取值范围是的图象有公共点,则实数b ≥8一8 (C)b≥8 (D)b(A)b>8 (B)b>0Rt△C=90,∠ABC中,∠0.如图,在90上一点,EAB ,以BC为直径的⊙0交于点D,是⊙A=50∠( )的延长线于点的切线交作⊙,过点,连接弧且弧CE=CD0EE0ACFF则,的度数为1匀Ds的速度向终点以→CD 3 cm/的边长为3 cm,0000 (C)110 (D)120 (A)90 (B)100点P从点A出发沿AB→BC10.如图,正方形ABCD,tsP点运动的时间为s的速度向终点D匀速运动,设cm速运动,同时,点Q从点A出发沿AD以 1 /( )t之间函数关系的是与的面积为S cm2,下列选项中能表示S△APQ)30分(每题3分,共二、填空题 . 2)关于原点的对称点的坐标是.在平面直角坐标系中,点P(1,.11 . 的面积为的面积为DEF20,则△ABC12.若△ABC∽△DEF,DE=2AB,若△6 . 的值是A(m,3)13.若反比例函数y=,则m的图象经过点x12t S=9t+s)的函数解析式是关于行驶时间单位:m)t(单位:s,当t=1014.一辆汽车行驶的距离S(2.S= 米时,则FG3OE?,则位似,位似中心是点O,若. = EFGH15.如图,四边形ABCD与四边形BCEA40Rt△ADE,30。
┃精选3套试卷┃2020届哈尔滨市九年级上学期期末教学质量检测数学试题
![┃精选3套试卷┃2020届哈尔滨市九年级上学期期末教学质量检测数学试题](https://img.taocdn.com/s3/m/e23a771d0508763230121265.png)
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2【答案】B 【分析】连接BD,CD,由勾股定理求出BD 的长,再利用ABD BED ,得出DE DB DB AD=,从而求出DE 的长,最后利用AE AD DE =-即可得出答案.【详解】连接BD,CD∵AB 为O 的直径90ADB ∴∠=︒22226511BD AB AD ∴=--=∵弦AD 平分BAC ∠11CD BD ∴==CBD DAB ∴∠=∠ADB BDE ∠=∠ABDBED ∴ DE DB DB AD ∴= 11511= 解得115DE = 115 2.85AE AD DE ∴=-=-=故选:B .【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.2.若32x y=,则下列等式一定成立的是( ) A .32x y =B .6xy =C .23x y =D .23y x = 【答案】D 【分析】根据比例的性质a c b d=,则ad=bc ,逐个判断可得答案. 【详解】解:由32x y=可得:2x=3y A. 32x y =,此选项不符合题意B. 6xy =,此选项不符合题意C. 23x y =,则3x=2y ,此选项不符合题意 D. 23y x =,则2x=3y ,正确 故选:D【点睛】 本题考查比例的性质,解题关键在于掌握a c b d=,则ad=bc. 3.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是( )A .2B .12C .18D .24【答案】C【分析】根据用频率估计概率可知: 摸到白球的概率为0.25,根据概率公式即可求出小球的总数,从而求出红球的个数.【详解】解:小球的总数约为:6÷0.25=24(个)则红球的个数为:24-6=18(个)故选C.【点睛】此题考查的是用频率估计概率和根据概率求小球的总数,掌握概率公式是解决此题的关键.4.一元二次方程23210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .只有一个实数根 【答案】B【分析】直接利用判别式△判断即可.【详解】∵△=()()22431160---=>∴一元二次方程有两个不等的实根故选:B .【点睛】本题考查一元二次方程根的情况,注意在求解判别式△时,正负号不要弄错了.5.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1)【答案】A 【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【详解】∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD , ∴A 点与C 点是对应点,∵C 点的对应点A 的坐标为(2,2),位似比为1:2,∴点C 的坐标为:(4,4)故选A .【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.6.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x ,那么x 满足的方程是A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x )+50(1+x )2=196D .50+50(1+x )+50(1+2x )=196【答案】C【详解】试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x ,那么可以用x 分别表示八、九月份的产量:八、九月份的产量分别为50(1+x )、50(1+x )2,从而根据题意得出方程:50+50(1+x )+50(1+x )2=1.故选C .7.一元二次方程230x x -=的解是( )A .3x =B .0x =C .113x =,20x =D .13x =,21x = 【答案】C【解析】用因式分解法解一元二次方程即可.【详解】(31)0x x -=∴0x = 或310x -=∴10x =,213x =故选C.【点睛】本题主要考查一元二次方程的解,掌握解一元二次方程的方法是解题的关键.8.如图,在ACB ∆中,90C ∠=︒,则BC AB等于( )A .cos AB .sin BC .tan BD .sin A【答案】D 【分析】直接根据正弦的定义解答即可.【详解】在△ACB 中,∠C=90°,BC sinA AB=, 故选:D .【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的对边a 与斜边c 的比叫做∠A 的正弦是解题的关键. 9.如图,O 是正方形 ABCD 的外接圆,点 P 是CD 上的一点,则APB ∠的度数是( )A .30B .36C .45D .72【答案】C 【分析】首先连接OB ,OA ,由⊙O 是正方形ABCD 的外接圆,即可求得∠AOB 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得APB ∠的度数.【详解】解: 连接OB ,OA ,∵⊙O 是正方形ABCD 的外接圆,∴∠BOA=90°,∴APB ∠=12∠BOA=45°. 故选:C .【点睛】此题考查了圆周角定理与圆的内接多边形、正方形的性质等知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.10.下列命题中,正确的个数是( )①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧,但弧不一定是半圆;④直径相等的两个圆是等圆;⑤等于半径两倍的线段是直径.A .2个B .3个C .4个D .5个 【答案】A【分析】根据弦、等圆、弧的相关概念直接进行排除选项.【详解】①直径是弦,弦是不一定是直径,故错误;②弦是圆上两点之间的线段,故错误;③半圆是弧,但弧不一定是半圆,故正确;④直径相等的两个圆是等圆,故正确;⑤等于半径两倍的弦是直径,故错误;所以正确的个数为2个;故选A .【点睛】本题主要考查圆的相关概念,正确理解圆的相关概念是解题的关键.11.已知两个相似三角形的相似比为2∶3,较小三角形面积为12平方厘米,那么较大三角形面积为( ) A .18平方厘米B .8平方厘米C .27平方厘米D .163平方厘米 【答案】C【分析】根据相似三角形面积比等于相似比的平方即可解题【详解】∵相似三角形面积比等于相似比的平方 22=3124=9S S S ⎛⎫ ⎪⎝⎭小大大 =27S 大故选C【点睛】本题考查相似三角形的性质,根据根据相似三角形面积比等于相似比的平方列出式子即可12.一元二次方程23610x x -+=的二次项系数、一次项系数分别是( )A .3,6-B .3,1C .6-,1D .3,6 【答案】A【分析】根据一元二次方程的定义解答.【详解】3x 2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故答案选A.【点睛】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.二、填空题(本题包括8个小题)13.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________;【答案】5【分析】先确定外接圆的半径是AB ,圆心在AB 的中点,再计算AB 的长,由此求出外接圆的半径为5.【详解】∵在△ABC 中,∠C=90°,∴△ABC 外接圆直径为斜边AB 、圆心是AB 的中点,∵∠C=90°,AC=6,BC=8,∴22226810AB AC BC ,∴△ABC 外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.14.在函数y 2x 1=-中,自变量x 的取值范围是 . 【答案】1x 2≥ 【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使2x 1-在实数范围内有意义,必须12x 10x 2-≥⇒≥. 15.如图,∠DAB=∠CAE ,请补充一个条件:________________,使△ABC ∽△ADE .【答案】解:∠D=∠B 或∠AED=∠C .【分析】根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B 或∠AED=∠C 或AD :AB=AE :AC 或AD•AC=AB•AE 时两三角形相似.故答案为∠D=∠B (答案不唯一).16.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.【答案】1【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=1故答案为1.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键.17.已知关于x的函数满足下列条件:①当x>0时,函数值y随x值的增大而减小;②当x=1时,函数值y=1.请写一个符合条件函数的解析式:_____.(答案不唯一)【答案】y=2x(答案不唯一).【分析】根据反比例函数的性质解答.【详解】解:根据反比例函数的性质关于x的函数当x>0时,函数值y随x值的增大而减小,则函数关系式为y=kx(k>0),把当x=1时,函数值y=1,代入上式得k=1,符合条件函数的解析式为y=2x(答案不唯一).【点睛】此题主要考察反比例函数的性质,判断k与零的大小是关键.18.反比例函数kyx=的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=____________.【答案】1【分析】根据平移的特性写出点Q的坐标,由点P、Q均在反比例函数kyx=的图象上,即可得出k=2n=3(n﹣1),解出即可.【详解】∵点P的坐标为(2,n),则点Q的坐标为(3,n﹣1),依题意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=1,故答案为1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义,解题的关键:由P点坐标表示出Q点坐标.三、解答题(本题包括8个小题)19.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB的高度.【答案】1m【分析】首先根据DO=OE=1m,可得∠DEB=15°,然后证明AB=BE,再证明△ABF∽△COF,可得AB CO BF OF=,然后代入数值可得方程,解出方程即可得到答案.【详解】解:延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=15°,∵AB⊥BF,∴∠BAE=15°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴AB COBF OF=,1.51(51)5xx+∴=+-,解得:x=1.经检验:x=1是原方程的解.答:围墙AB的高度是1m.【点睛】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE ,根据相似三角形的判定方法证明△ABF ∽△COF .20.已知关于x 的方程x 2+ax+16=0,(1)若这个方程有两个相等的实数根,求a 的值(2)若这个方程有一个根是2,求a 的值及另外一个根【答案】(1)a=1或﹣1;(2)a=﹣10,方程的另一个根为1.【分析】(1)由题意可得方程的判别式△=0,由此可得关于a 的方程,解方程即得结果;(2)把x=2代入原方程即可求出a ,然后再解方程即可求出方程的另一个根.【详解】解:(1)∵方程x 2+ax+16=0有两个相等的实数根,∴a 2-4×1×16=0,解得a=1或﹣1;(2)∵方程x 2+ax+16=0有一个根是2,∴22+2a+16=0,解得a=﹣10;此时方程为x 2﹣10x+16=0,解得x 1=2,x 2=1;∴a=﹣10,方程的另一个根为1.【点睛】本题考查了一元二次方程的解、一元二次方程的解法以及根的判别式等知识,属于基础题目,熟练掌握上述知识是解题的关键.21.若m 为实数,关于x 的方程2420x x m -+-=的两个非负实数根为a 、b ,求代数式22(1)(1)--a b 的最大值.【答案】1【分析】根据根的判别式和根与系数的关系进行列式求解即可;【详解】∵420=16-4(2)0+=⎧⎪⋅=-≥⎨⎪∆-≥⎩a b a b m m , ()2016420m m -≥⎧∴⎨--≥⎩, 26∴≤≤m ,22(1)(1)--a b ,222=(ab)()1-++a b ,22=(ab)()21⎡⎤-+-+⎣⎦a b ab ,2-+-+m,=(m-2)162(2)1m=时,原式=-15,当2m=时,原式=1,当6∴代数式22a b的最大值为1.--(1)(1)【点睛】本题主要考查了一元二次方程的知识点,准确应用根的判别式和根与系数的关系是解题的关键.22.如图,△ABC.(1)尺规作图:①作出底边的中线AD;②在AB上取点E,使BE=BD;(2)在(1)的基础上,若AB=AC,∠BAC=120°,求∠ADE的度数.【答案】(1)①详见解析;②详见解析;(2)15°.【分析】(1)①作线段BC的垂直平分线可得BC的中点D,连接AD即可;②以B为圆心,BD为半径画弧交AB于E,点E即为所求.(2)根据题意利用等腰三角形的性质,三角形的内角和定理求解即可.【详解】解:(1)如图,线段AD,点E即为所求.(2)如图,连接DE.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵BD=BE,∴∠BDE=∠BED=1(180°﹣30°)=75°,2∵AB=AC,BD=CD,∴AD ⊥BC ,∴∠ADB =90°,∴∠ADE =90°﹣∠ADE =90°﹣75°=15°.【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握相关的基本知识.23.如图,在Rt ABC 中,ACB 90∠=,DCE 是ABC 绕着点C 顺时针方向旋转得到的,此时B 、C 、E 在同一直线上.()1求旋转角的大小;()2若AB 10=,AC 8=,求BE 的长.【答案】(1)90°;(2)1.【分析】(1)根据题意∠ACE 即为旋转角,只需求出∠ACE 的度数即可.(2)根据勾股定理可求出BC ,由旋转的性质可知CE=CA=8,从而可求出BE 的长度.【详解】解:(1)∵△DCE 是△ABC 绕着点C 顺时针方向旋转得到的,此时点B 、C 、E 在同一直线上, ∴∠ACE=90°,即旋转角为90°,(2)在Rt △ABC 中,∵AB=10,AC=8,∴22AB AC -,∵△ABC 绕着点C 旋转得到△DCE ,∴CE=CA=8,∴BE=BC+CE=6+8=124.如图,已知Rt ABC ∆中,90ACB ∠=︒,E 为AB 上一点,以AE 为直径作O 与BC 相切于点D ,连接ED 并延长交AC 的延长线于点F .(1)求证:AE AF =;(2)若5,4AE AC ==,求BE 的长.【答案】(1)见解析;(2)53BE = 【分析】(1)连接OD ,根据切线的性质得到OD ⊥BC ,根据平行线的判定定理得到OD ∥AC ,求得∠ODE=∠F ,根据等腰三角形的性质得到∠OED=∠ODE ,等量代换得到∠OED=∠F ,于是得到结论; (2)根据平行得出BOD BAC ∆∆∽,再由BO OD AB AC =可得到关于BE 的方程,从而得出结论. 【详解】(1)证明:连接OD ,∵BC 切O 于点D , ∴OD BC .∴90ODC ︒∠=.又90ACB ︒∠=,∴//OD AC ,∴ODE F ∠=∠.∵OE OD ,∴OED ODE ∠=∠,∴OED F ∠=∠.∴AE AF =.(2)解:∵//OD AC ,∴BOD BAC ∆∆∽,∴BO OD AB AC=. ∵5,4AE AC ==, ∴ 2.5OE OD ==,∴2.5 2.554 BEBE+=+,∴53 BE=.【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定和性质,等腰三角形的判定与性质等知识,正确的作出辅助线是解题的关键.25.已知,关于x的方程(m﹣1)x2+2x﹣2=0为一元二次方程,且有两个不相等的实数根,求m的取值范围.【答案】12m>且1m≠【分析】由题意根据判别式的意义得到=22﹣4(m﹣1)×(﹣2)>0,然后解不等式即可.【详解】解:根据题意得=22﹣4(m﹣1)×(﹣2)>0且m﹣1≠0,解得12m>且m≠1,故m的取值范围是12m>且m≠1.【点睛】本题考查一元二次方程的定义以及一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.26.如图,AB是⊙O的直径,点C是圆周上一点,连接AC、BC,以点C为端点作射线CD、CP分别交线段AB所在直线于点D、P,使∠1=∠2=∠A.(1)求证:直线PC是⊙O的切线;(2)若CD=4,BD=2,求线段BP的长.【答案】(1)详见解析;(2)10 3【分析】(1)连接OC,由AB是⊙O的直径证得∠ACO+∠BCO=90°,由OA=OC证得∠2=∠A=∠ACO,由此得到∠PCO=90°,即证得直线PC是⊙O的切线;(2)利用∠1=∠A证得∠CDB=90°,得到CD2=AD•BD,求出AD,由此求得AB=10,OB=5;在由∠OCP=90°推出OC2=OD•OP,求出OP=253,由此求得线段BP的长.【详解】(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠A=∠ACO,∵∠A=∠1=∠2,∴∠2=∠ACO,∴∠2+∠BCO=90°,∴∠PCO=90°,∴OC⊥PC,∴直线PC是⊙O的切线;(2)∵∠ACB=90°,∴∠A+∠ABC=90°∴∠1=∠A,∴∠1+∠ABC=90°,∴∠CDB=90°,∴CD2=AD•BD,∵CD=4,BD=2,∴AD=8,∴AB=10,∴OC=OB=5,∵∠OCP=90°,CD⊥OP,∴OC2=OD•OP,∴52=(5﹣2)×OP,∴OP=253,∴PB=OP﹣OB=103.【点睛】此题是圆的综合题,考查圆的切线的判定定理,圆中射影定理的判定及性质,(2)中求出∠CDB=90°是此题解题的关键,由此运用射影定理求出线段的长度.27.如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.【答案】(1)y=﹣13x123x;(1)证明见解析;(3)P23,0).【分析】(1)用待定系数法求出抛物线解析式;(1)先求出直线OA对应的一次函数的表达式为y=33x.再求出直线BD的表达式为y=33x﹣1.最后求出交点坐标C,D即可;(3)先判断出C'D与x轴的交点即为点P,它使得△PCD的周长最小.作辅助线判断出△C'PO∽△C'DQ 即可.【详解】解:(1)∵抛物线顶点为A3,1),设抛物线解析式为y=a(x31+1,将原点坐标(0,0)在抛物线上,∴0=a31+1∴a=﹣13,∴抛物线的表达式为:y=﹣13x123x.(1)令y=0,得0=﹣13x1+33x,∴x=0(舍),或3∴B点坐标为:(30),设直线OA的表达式为y=kx.∵A31)在直线OA上,3,∴3∴直线OA对应的一次函数的表达式为3.∵BD∥AO,设直线BD对应的一次函数的表达式为y=3x+b.∵B(13,0)在直线BD上,∴0=3×13+b,∴b=﹣1,∴直线BD的表达式为y=3x﹣1.由2321233y xy x⎧=-⎪⎪⎨⎪=-+⎪⎩得交点D3,﹣3),令x=0得,y=﹣1,∴C点的坐标为(0,﹣1),由勾股定理,得:OA=1=OC,AB=1=CD,3=OD.在△OAB与△OCD中,OA OCAB CDOB OD=⎧⎪=⎨⎪=⎩,∴△OAB≌△OCD.(3)点C关于x轴的对称点C'的坐标为(0,1),∴C'D与x轴的交点即为点P,它使得△PCD的周长最小.过点D作DQ⊥y,垂足为Q,∴PO∥DQ,∴△C'PO∽△C'DQ,∴''PO C ODQ C Q=253=,∴23,∴点P23,0).【点睛】本题是二次函数综合题,主要考查了待定系数法求函数解析式,全等三角形的性质和判定,相似三角形的性质和全等,解答本题的关键是确定函数解析式.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1m ,则旗杆PA 的高度为( )A .11sin α-mB .11sin α+m C .11cos α- m D .11cos α+ m【答案】A【解析】设PA=PB=PB′=x ,在RT △PCB′中,根据sinα=PCPB ',列出方程即可解决问题.【详解】设PA=PB=PB′=x ,在RT △PCB′中,sinα=PCPB ', ∴1x x -=sinα,∴x-1=xsinα,∴(1-sinα)x=1,∴x=11sin α-.故选A .【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型. 2.已知关于x 的一元二次方程222(1)0x kx k ++-=有两个不相等的实数根,则k 的取值范围为( )A .12k >B .12k >- C .18k > D .12k <【答案】A【解析】根据根的判别式240b ac ->即可求出k 的取值范围.【详解】根据题意有2224(2)41(1)0b ac k k -=-⨯⨯-> 解得12k >故选:A .【点睛】本题主要考查根的判别式,掌握根的判别式与根的个数之间的关系是解题的关键.3.如图是二次函数2y ax bx c =++图象的一部分,其对称轴是1x =-,且过点(3,0)-,下列说法:①0abc <;②20a b -=;③420a b c ++<;④若()1255,,,2y y ⎛⎫-⎪⎝⎭是抛物线上两点,则12y y <,其中说法正确的是( )A .①②B .②③C .①②④D .②③④【答案】A 【分析】根据二次函数的图像和性质逐个分析即可.【详解】解:对于①:∵抛物线开口向上,∴a>0,∵对称轴02b a -<,即02b a>,说明分子分母a,b 同号,故b>0, ∵抛物线与y 轴相交,∴c<0,故0abc <,故①正确;对于②:对称轴=12-=-b x a,∴20a b -=,故②正确; 对于③:抛物线与x 轴的一个交点为(-3,0),其对称轴为直线x=-1,根据抛物线的对称性可知,抛物线与x 轴的另一个交点为,1,0),故当自变量x=2时,对应的函数值y=420a b c ++>,故③错误;对于④:∵x=-5时离对称轴x=-1有4个单位长度,x=52时离对称轴x=-1有72个单位长度, 由于72<4,且开口向上,故有12y y >,故④错误, 故选:A .【点睛】本题考查了二次函数的图像与其系数的符号之间的关系,熟练掌握二次函数的图形性质是解决此类题的关键.4.已知二次函数的图象与x 轴的一个交点为(-1,0),对称轴是直线1x =,则图象与x 轴的另一个交点是( )A .(2,0)B .(-3,0)C .(-2,0)D .(3,0) 【答案】D【分析】求出点(-1,0)关于直线1x =的对称点,对称点的坐标即为图象与x 轴的另一个交点坐标.【详解】由题意得,另一个交点与交点(-1,0)关于直线1x =对称设另一个交点坐标为(x,0)则有()112x+-=解得3x=另一个交点坐标为(3,0)故答案为:D.【点睛】本题考查了二次函数的对称问题,掌握轴对称图象的性质是解题的关键.5.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是()A.40°B.80°C.100°D.120°【答案】C【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠C+∠A=180°,∵∠A=80°,∴∠C=100°,故选:C.【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.6.如图,在菱形ABCD中,DE AB⊥,3cos5A=,3BE=,则tan DBE∠的值是()A.43B.2 C5D5【答案】B【分析】由菱形的性质得AD=AB,由3cos5AEAAD==,求出AD的长度,利用勾股定理求出DE,即可求出tan DBE∠的值.【详解】解:在菱形ABCD中,有AD=AB,∵3cos5AEAAD==,AE=AD BE-=AD-3,∴335 ADAD-=,∴7.5AD=,∴ 4.5AE=,∴227.5 4.56 DE=-=,∴6tan23DEDBEBE∠===;故选:B.【点睛】本题考查了三角函数,菱形的性质,以及勾股定理,解题的关键是根据三角函数值正确求出菱形的边长,然后进行计算即可.7.已知关于x的一元二次方程280x mx+-=的一个根为1,则m的值为( )A.1 B.-8 C.-7 D.7【答案】D【解析】直接利用一元二次方程的解的意义将x=1代入求出答案即可.【详解】∵关于x的一元二次方程x2+mx−8=0的一个根是1,∴1+m−8=0,解得:m=7.故答案选:D.【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.8.反比例函数4yx=-(x<0)如图所示,则矩形OAPB的面积是()A.-4 B.-2 C.2 D.4 【答案】D【分析】根据反比例函数的比例系数的几何意义:反比例函数图象上一点向x 轴,y 轴作垂线与坐标轴围成的矩形面积等于|k|解答即可.【详解】∵点P 在反比例函数4y x =-(x <0)的图象上, ∴S 矩形OAPB =|-4|=4,故选:D .【点睛】本题主要考查反比例函数的比例系数的几何意义,掌握反比例函数上一点向x 轴,y 轴作垂线与坐标轴围成的矩形面积等于|k|是关键. 9.已知抛物线2114y x =+具有如下性质:抛物线上任意一点到定点()0,2F 的距离与到x 轴的距离相等.如图点M 的坐标为()3,6 , P 是抛物线2114y x =+上一动点,则PMF ∆周长的最小值是( )A .5B .9C .11D .1【答案】C 【分析】作过P 作PH x ⊥轴于点H ,过点M 作MH x ⊥轴于点'H ,交抛物线2114y x =+于点P ',由PF PH =结合,结合点到直线之间垂线段最短及MF 为定值,即可得出当点P 运动到点P′时,△PMF 周长取最小值,再由点F 、M 的坐标即可得出MF 、MH '的长度,进而得出PMF ∆周长的最小值.【详解】解:作过P 作PH x ⊥轴于点H ,由题意可知:PF PH =,∴PMF ∆周长=MF MP PF MF MP PH ++=++,又∵点到直线之间垂线段最短,∴当M 、P 、H 三点共线时MP PH + 最小,此时PMF ∆周长取最小值,过点M 作MH x ⊥轴于点H ' ,交抛物线2114y x =+于点P ',此时PMF ∆周长最小值, (0,2)F 、(3,6)M ,'6MH ∴=,5FM =,PMF ∴∆周长的最小值6511ME FM =+=+=.故选:C .【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF 周长的取最小值时点P 的位置是解题的关键.10.若△ABC ∽△DEF ,且S △ABC :S △DEF =3:4,则△ABC 与△DEF 的周长比为A .3:4B .4:3C :2D .2【答案】C【分析】根据相似三角形面积比等于相似比的平方,周长的比等于相似比解答.【详解】解:∵△ABC ∽△DEF ,且S △ABC :S △DEF =3:4,∴△ABC 与△DEF 2,∴△ABC 与△DEF 2.故选C【点睛】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方,周长的比等于相似比. 11.已知圆心O 到直线l 的距离为d ,⊙O 的半径r=6,若d 是方程x 2–x –6=0的一个根,则直线l 与圆O 的位置关系为( )A .相切B .相交C .相离D .不能确定 【答案】B【分析】先解方程求得d ,根据圆心到直线的距离d 与圆的半径r 之间的关系即可解题.【详解】解方程:x 2–x –6=0,即:()()320x x -+=,解得3x =,或2x -=(不合题意,舍去), 当36d r =,=时,d r <,则直线与圆的位置关系是相交;故选:B【点睛】本题考查了直线与圆的位置关系,只要比较圆心到直线的距离d 和半径r 的大小关系.没有交点,则d r >;一个交点,则d r =;两个交点,则d r <. 12.函数22k y x--=(k 为常数)的图像上有三个点(-2,y 1),(-1,y 2),(12,y 3),函数值y 1,y 2,y 3的大小为( )A .123y y y >> B .213y y y >> C .231y y y >>D .312y y y >>【答案】B 【解析】∵−k 2−2<0,∴函数图象位于二、四象限,∵(−2,y 1),(−1,y 2)位于第二象限,−2<−1,∴y 2>y1>0;又∵(12,y 3)位于第四象限, ∴3y <0,∴213y y y >>.故选B.点睛:在反比例函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.二、填空题(本题包括8个小题)13.已知线段a =4 cm ,b =9 cm ,则线段a ,b 的比例中项为_________cm .【答案】6【分析】设比例中项为c ,得到关于c 的方程即可解答.【详解】设比例中项为c ,由题意得: 2c ab =,∴24936c ,∴c 1=6,c 2=-6(不合题意,舍去)故填6.【点睛】此题考查线段成比例,理解比例中项的含义即可正确解答.14.如果将抛物线221y x x =+-向上平移,使它经过点(0,3)A ,那么所得新抛物线的表达式是_______________.【答案】223y x x =++【解析】试题解析:设平移后的抛物线解析式为y=x 2+2x-1+b ,把A (0,1)代入,得1=-1+b ,解得b=4,则该函数解析式为y=x 2+2x+1.考点:二次函数图象与几何变换.15.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.【答案】(2,10)或(﹣2,0)【解析】∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).16.反比例函数y=﹣3x的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),则11a b+=_____.【答案】﹣5 3【分析】根据函数图象上点的坐标特征得到ab=﹣3,a+b=5,把原式变形,代入计算即可.【详解】∵反比例函数3yx=-的图象与一次函数y=﹣x+5的图象相交,其中一个交点坐标为(a,b),∴ab=﹣3,b+a=5,则115533b aa b ab++===--,故答案为:﹣53.【点睛】本题考查了反比例函数与一次函数的交点问题,掌握函数图象上点的坐标特征是解题的关键.17.如图,在菱形ABCD中,E是BC边上的点,AE交BD于点F,若EC=2BE,则BFFD的值是.【答案】1 3【解析】EC=2BE,得13BEBC=,由于AD//BC,得13BF BE BEFD AD BC===18.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.【答案】140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题(本题包括8个小题)19.如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=12∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.【答案】(1)证明见详解;(2)23;(3)30°或45°.【分析】(1)由题意:∠E=90°-∠ADE,证明∠ADE=90°- 12∠C即可解决问题.(2) 延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,BF BDAE DE=,由BD:DE=2:3,可得cos∠ABC=23 BF BFAB AE==;(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【详解】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°-∠ADE,∵AD平分∠BAC,∴∠BAD= 12∠BAC,同理∠ABD=12∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°-∠C,∴∠ADE= 12(∠ABC+∠BAC)=90°-12∠C,∴∠E=90°-(90°- 12∠C)=12∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,BF BD AE DE=,∵BD:DE=2:3,∴cos∠ABC=23 BF BFAB AE==;(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=12∠C,∴∠ABC=∠E=12∠C,∵∠ABC+∠C=90°,∴∠ABC=30°;②当∠C=∠DAE=90°时,∠E =12∠C=45°, ∴∠EDA=45°,∵△ABC 与△ADE 相似,∴∠ABC=45°;综上所述,∠ABC=30°或45°.【点睛】 本题属于相似形综合题,考查相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题.20.如图,AD 是ΔABC 的角平分线,延长AD 到E ,使CE AC =.(1)求证:ΔABD ΔECD ~.(2)若AB 2=,AC 4=,BD 1=,求BC 的长.【答案】(1)见解析,(2)BC=3.【分析】(1)由AD 是角平分线可得∠BAD=∠CAD ,根据AC=CE 可得∠CAD=∠E 即可证明∠BAD=∠E ,又因为对顶角相等,即可证明△ABD ∽△ECD ;(2)根据相似三角形的性质可得CD 的长,进而可求出BC 的长.【详解】(1)∵AD 是ΔABC 的角平分线,∴BAD CAD ∠∠=.∵CE AC =,∴CAD E ∠∠=.∴BAD E ∠∠=.又∵∠ADB=∠CDE∴ΔABD ΔECD ∽.(2)∵ΔABD ΔECD ∽,∴AB BD CE CD=. ∵CE AC 4==, ∴214CD =. ∴CD 2=.=+=+=.∴BC BD CD123【点睛】本题考查了相似三角形的判定与性质,相似三角形的对应边成比例,熟练掌握判定定理是解题关键. 21.如图是一根钢管的直观图,画出它的三视图.【答案】答案见解析【解析】试题分析:根据三视图的画法得出答案.试题解析:如图考点:三视图22.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?【答案】(1)22%;(2)22元.【分析】(1)设年平均增长率为x,根据东部华侨城景区在238年春节长假期间,共接待游客达22万人次,预计在2222年春节长假期间,将接待游客达1.8万人次.列出方程求解即可;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得关于y的方程,解方程并对方程的解作出取舍即可.【详解】解:(1)设年平均增长率为x,由题意得:22(1+x)2=1.8,解得:x1=2.2=22%,x2=﹣2.2(舍).答:年平均增长率为22%;(2)设当每杯售价定为y元时,店家在此款奶茶实现平均每天6322元的利润额,由题意得:(y﹣6)[322+32(25﹣y)]=6322,。
〖汇总3套试卷〗哈尔滨市2020年九年级上学期期末检测数学试题
![〖汇总3套试卷〗哈尔滨市2020年九年级上学期期末检测数学试题](https://img.taocdn.com/s3/m/18a136f4a5e9856a57126074.png)
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C 的位置,A1B1恰好经过点B,则旋转角α的度数等()A.70°B.65°C.55°D.35°【答案】A【解析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵在Rt△ACB 中,∠ACB=90°,∠A=35°,∴∠ABC=55°,∵将△ABC 绕点C 逆时针旋转α角到△A′B′C 的位置,∴∠B′=∠ABC=55°,∠B′CA′=∠ACB=90°,CB=CB′,∴∠CBB′=∠B′=55°,∴∠α=70°,故选:A.【点睛】本题考查旋转的性质以及等腰三角形的性质.注意掌握旋转前后图形的对应关系是解此题的关键.2.如果一个一元二次方程的根是x1=x2=1,那么这个方程是A.(x+1)2=0B.(x-1)2=0C.x2=1D.x2+1=0【答案】B【分析】分别求出四个选项中每一个方程的根,即可判断求解.【详解】A、(x+1)2=0的根是:x1=x2=-1,不符合题意;B、(x-1)2=0的根是:x1=x2=-1,符合题意;C、x2=1的根是:x1=1,x2=-1,不符合题意;D、x2+1=0没有实数根,不符合题意;故选B .3.己知a 、b 、c 均不为0,且0a b c ++≠,若222b c c a a b k a b c +++===,则k=( ) A .-1B .0C .2D .3 【答案】D【解析】分别用含有k 的代数式表示出2b+c ,2c+a ,2a+b ,再相加即可求解.【详解】∵222b c c a a b k a b c +++=== ∴2b c ak +=,2c a bk +=,2a b ck +=三式相加得,()2223()k a b c b c c a a b a b c ++=+++++=++∵ 0a b c ++≠∴k=3.故选D.【点睛】本题考查了比的性质,解题的关键是求得2b+c=ak ,2c+a=bk ,2a+b=ck.4.如图,在平面直角坐标系中,菱形ABCD 的顶点A(3,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上,若抛物线y=-x 2-5x+c 经过点B 、C ,则菱形ABCD 的面积为( )A .15B .20C .25D .30【答案】B 【分析】根据抛物线的解析式结合抛物线过点B 、C ,即可得出点C 的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB 的长度,套用平行四边形的面积公式即可得出菱形ABCD 的面积.【详解】解:抛物线的对称轴为5==22b x a --, ∵抛物线y=-x 2-1x+c 经过点B 、C ,且点B 在y 轴上,BC ∥x 轴,∴点C 的横坐标为-1.∵四边形ABCD 为菱形,∴AB=BC=AD=1,∴点D 的坐标为(-2,0),OA=2.在Rt △ABC 中,AB=1,OA=2,∴,∴S 菱形ABCD =AD•OB=1×4=3.故选:B .【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.5.将抛物线23y x =如何平移得到抛物线23(2)3y x =+-( )A .向左平移2个单位,向上平移3个单位;B .向右平移2个单位,向上平移3个单位;C .向左平移2个单位,向下平移3个单位;D .向右平移2个单位,向下平移3个单位.【答案】C【分析】根据二次函数图象的平移规律“左加右减,上加下减”即可得出答案.【详解】根据二次函数的平移规律可知,将抛物线23y x =向左平移2个单位,再向下平移3个单位即可得到抛物线23(2)3y x =+-,故选:C .【点睛】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.6.设计一个摸球游戏,先在一个不透明的盒子中放入2个白球,如果希望从中任意摸出1个球是白球的概率为13,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)( ) A .4B .5C .6D .7 【答案】A【分析】利用概率公式,根据白球个数和摸出1个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出1个球是白球的概率为13, ∴盒子中球的总数=1263÷=, ∴其他颜色的球的个数为6−2=4,故选:A .【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.7.已知52x y =,则x y y-的值是( )A.12B.2C.32D.23【答案】C【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【详解】解:∵52xy=∴x=5k(k≠0),y=2k(k≠0)∴52322x y k ky k--==故选:C.【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.8.如图,在正方形ABCD中,E F,分别为AD CD,的中点,CE BF,交于点G,连接AG,则:CFG ABGS S∆∆=()A.1:8 B.2:15 C.3:20 D.1:6【答案】A【分析】延长CE 交BA延长线于点M,可证AM CD=,12AGM ABG BMGS S S==,CFG ABG,2CFGMBGS CFS BM⎛⎫= ⎪⎝⎭【详解】解: 延长CE交BA延长线于点M在DCE与AME△中90D EAMAE DEMEA DEC∠=∠=︒⎧⎪=⎨⎪∠=∠⎩DCE AME∴≅AM CD∴=12AGM ABG BMGS S S∴==//CD ABCFG ABG2116CFG MBG SCF S BM ⎛⎫== ⎪⎝⎭ :1:8CFG ABG S S ∆∆=故选A【点睛】本题考查了相似三角形的性质.9.若将抛物线23y x =的函数图象先向右平移1个单位,再向下平移2个单位后,可得到一个新的抛物线的图象,则所得到的新的抛物线的解析式为( )A .23(1)2y x =-+B .23(1)2y x =+-C .23(1)2=--y xD .23(1)2y x =-+ 【答案】C【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将抛物线23y x =先向右平移1个单位可得到抛物线()231y x =-;由“上加下减”的原则可知,将抛物线()231y x =-先向下平移2个单位可得到抛物线23(1)2=--y x . 故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-= 【答案】C【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.11.二次函数21y x =-的图象与y 轴的交点坐标是( )A .(0,1)B .(1,0)C .(-1,0)D .(0,-1) 【答案】D【详解】当x=0时,y=0-1=-1,∴图象与y 轴的交点坐标是(0,-1).故选D.12.2019的相反数是( )A .12019B .﹣12019C .|2019|D .﹣2019【答案】D【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】2019的相反数是﹣2019,故选D.【点睛】此题考查相反数,掌握相反数的定义是解题关键二、填空题(本题包括8个小题)13.设m 是一元二次方程x 2﹣x ﹣2019=0的一个根,则m 2﹣m+1的值为___.【答案】2020.【分析】把x=m 代入方程计算即可求解.【详解】解:把x =m 代入方程得:m 2﹣m ﹣2019=0,即m 2﹣m =2019,则原式=2019+1=2020,故答案为2020.【点睛】本题考查一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________. 【答案】18【分析】需要三步完成,所以采用树状图法比较简单,根据树状图可以求得所有等可能的结果与出现三次正面朝上的情况,再根据概率公式求解即可.【详解】画树状图得:∴一共有共8种等可能的结果;出现3次正面朝上的有1种情况.∴出现3次正面朝上的概率是18 故答案为18. 点评:此题考查了树状图法概率.注意树状图法可以不重不漏地表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.若△ABC ∽△A′B′C′,且34AB A B ='',△ABC 的周长为12cm ,则△A′B′C′的周长为_____________. 【答案】16 cm【分析】根据相似三角形周长的比等于相似比求解.【详解】解:∵△ABC ∽△A′B′C′,且34AB A B ='',即相似三角形的相似比为34, ∵△ABC 的周长为12cm∴△A′B′C′的周长为12÷34=16cm . 故答案为:16.【点睛】此题考查相似三角形的性质,解题关键在于掌握相似三角形周长的比等于相似比.16.设1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线2(1)1y x =-++上的三点,则1y ,2y ,3y 的大小关系为__________.【答案】123y y y >>【分析】根据点A 、B 、C 的横坐标利用二次函数图象上点的坐标特征即可求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】∵1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线y =−(x +1)2+1上的三点,∴y 1=0,y 2=−3,y 3=−8,∵0>−3>−8,∴123y y y >>.故答案为:123y y y >>.【点睛】本题考查了二次函数图象上点的坐标特征,根据点的坐标利用二次函数图象上点的坐标特征求出纵坐标是解题的关键.17.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷1000次啤酒瓶盖,凸面向上的次数为420次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到0.01)【答案】0.42【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为10次, ∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.1, 故答案为:0.1.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.18.一个口袋中有红球、白球共10个,这些球除色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有60次摸到红球.请你估计这个口袋中有_____个白球.【答案】1【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.【详解】解:由题意可得,红球的概率为60%.则白球的概率为10%,这个口袋中白球的个数:10×10%=1(个),故答案为1.【点睛】本题考查了概率的问题,掌握概率公式、以频率计算频数是解题的关键.三、解答题(本题包括8个小题)19.如图,一次函数y=﹣x+2的图象与反比例函数y=﹣3x的图象交于A 、B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称.(1)求A 、B 两点的坐标;(2)求△ABC 的面积.【答案】(1)A点坐标为(﹣1,3),B点坐标为(3,﹣1);(2)S△ABC=1.【解析】试题分析:(1)根据反比例函数与一次函数的交点问题得到方程组,然后解方程组即可得到A、B两点的坐标;(2)先利用x轴上点的坐标特征确定D点坐标,再利用关于y轴对称的点的坐标特征得到C点坐标,然后利用S△ABC=S△ACD+S△BCD进行计算.试题解析:(1)根据题意得2 {3 yxyx=-+=-,解方程组得1{3xy=-=或3{1xy==-,所以A点坐标为(﹣1,3),B点坐标为(3,﹣1);(2)把y=0代入y=﹣x+2得﹣x+2=0,解得x=2,所以D点坐标为(2,0),因为C、D两点关于y轴对称,所以C点坐标为(﹣2,0),所以S△ABC=S△ACD+S△BCD=12×(2+2)×3+12×(2+2)×1=1.考点:反比例函数与一次函数的交点问题.20.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?【答案】(1)y =﹣2x+260;(2)销售单价为80元;(3)销售单价为90元时,每天获得的利润最大,最大利润是3200元.【分析】(1)由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w 元,由题意得二次函数,写成顶点式,可求得答案.【详解】(1)设y =kx+b (k ≠0,b 为常数)将点(50,160),(80,100)代入得1605010080k b k b =+⎧⎨=+⎩解得2260k b =-⎧⎨=⎩ ∴y 与x 的函数关系式为:y =﹣2x+260(2)由题意得:(x ﹣50)(﹣2x+260)=3000化简得:x 2﹣180x+8000=0解得:x 1=80,x 2=100∵x ≤50×(1+90%)=95∴x 2=100>95(不符合题意,舍去)答:销售单价为80元.(3)设每天获得的利润为w 元,由题意得w =(x ﹣50)(﹣2x+260)=﹣2x 2+360x ﹣13000=﹣2(x ﹣90)2+3200∵a =﹣2<0,抛物线开口向下∴w 有最大值,当x =90时, w 最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.【点睛】本题综合考查了待定系数法求一次函数的解析式、一元二次方程的应用、二次函数的应用等知识点,难度中等略大.21.关于x 的方程x 1﹣1(k ﹣1)x+k 1=0有两个实数根x 1、x 1.(1)求k 的取值范围;(1)若x 1+x 1=1﹣x 1x 1,求k 的值.【答案】(1)12k ≤;(1)3k =- 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围;(1)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)1-4k 1≥0,∴-8k +4≥0,∴k≤12; (1)∵x 1+x 1=1(k -1),x 1x 1=k 1,∴1(k -1)=1-k 1,∴k 1=1,k 1=-3.∵k≤12,∴k =-3. 22.如图,射线MN 表示一艘轮船的航行路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,A 处到M 处的距离为200海里.(1)求点A 到航线MN 的距离.(2)在航线MN 上有一点B .且23MAB ∠=︒,若轮船沿的速度为50海里/时,求轮船从M 处到B 处所用时间为多少小时.(参考数据:tan 230.424,tan373 1.732︒≈︒≈)【答案】(1)100海里(2)约为1.956小时【分析】(1)过A 作AH ⊥MN 于H .由方向角的定义可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA-∠QMB=30°.解直角△AMH 中,得出AH=12AM ,问题得解; (2)先根据直角三角形两锐角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM-∠MAB=45°,那么△AHB 是等腰直角三角形,求出BH=AH 距离,然后根据时间=路程÷速度即可求解.【详解】解:(1)如图,过A 作AH MN ⊥于H .∵30,60QMB QMA ∠=︒∠=︒,∴30NMA QMA QMB ∠=∠-∠=︒在直角AMH 中,∵90AHM ∠=︒,30AMH ∠=︒,200AM =海里,∴11002AH AM ==海里. 答:点A 到航线MN 的距离为100海里.(2)在直角AMH 中,90,30AHM AMH ∠=︒∠=︒,由(1)可知1003MH =∵23MAB ∠=︒ ∴602337,BH BAN tan BAH AH∠=︒-︒=︒∠=, ∴100310037173.275.497.8BM MH BH tan =-=-⋅︒≈-=,∴轮船从M 处到B 处所用时间约为97.850 1.956÷=小时.答:轮船从M 处到B 处所用时间约为1.956小时.【点睛】本题考查了解直角三角形的应用-方向角问题,含30°角的直角三角形的性质,等腰直角三角形的判定与性质,直角三角形两锐角互余的性质,准确作出辅助线构造直角三角形是解题的关键.23.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=,且DM 交AC 于F ,ME 交BC 于G .(1)证明:∽AMF BGM .(2)连结FG ,如果45α=︒,42AB =3AF =,求FG 的长.【答案】(1)见解析;(2)53=FG 【分析】(1)由DME A ∠=∠,可证∠AFM=∠BMG,从而可证∽AMF BGM ;(2)当=45α︒时,可得AC BC ⊥且4AC BC ==,再根据∽AMF BGM 可求BG ,从而可求CF ,CG ,进而可求答案.【详解】(1)证明:∵DME A ∠=∠∴AFM DME E A E BMG ∠=∠+∠=∠+∠=∠,又∵A B ∠=∠∴∽AMF BGM .解:(2)∵=45α︒,DME A B α∠=∠=∠=∴AC BC ⊥且4AC BC ==∵M 为AB 的中点,∴22AM BM == 又∵∽AMF BGM , ∴AF BM AM BG= ∴2222833AM BM BG AF ⋅⨯=== ∴431=-=-=CF AC AF ,84433=-=-=CG BC BG ∴222245133FG CF CG ⎛⎫=+=+= ⎪⎝⎭【点睛】本题考查的是相似三角形的判定与性质和勾股定理,熟练掌握相似三角形的相关知识与勾股定理是解题的关键.24.在图1的6×6的网格中,已知格点△ABC (顶点A 、B 、C 都在格各点上)(1)在图1中,画出与△ABC 面积相等的格点△ABD (不与△ABC 全等),画出一种即可;(2)在图2中,画出与△ABC 相似的格点△A′B′C′(不与ABC 全等),且两个三角形的对应边分别互相垂直,画出一种即可.【答案】(1)见详解;(2)见详解【分析】(1)利用等底同高作三角形ABD ;(2)利用相似比为2画△A 1B 1C 1.【详解】解:(1)如图1,△ABD 为所作;(2)如图2,△A 1B 1C 1为所作.【点睛】本题考查了作图−−相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了全等三角形的性质.25.如图,点A 的坐标为(33),,点B 的坐标为(40),.点C 的坐标为(01)-,. (1)请在直角坐标系中画出ABC 绕着点C 逆时针旋转90︒后的图形''A B C .(2)直接写出:点'A 的坐标(________,________),(3)点B '的坐标(________,________).【答案】 (1)见解析;(2)-4.2;(3)-1.3.【分析】(1)利用旋转的性质,找出各个关键点的对应点,连接即可;(2)根据(1)得到的图形即可得到所求点的坐标;(3)根据(1)得到的图形即可得到所求点的坐标.【详解】(1)如图(2)A’(-4.2).(3)B’(-1.3).【点睛】本题考查了坐标与图形的变化-旋转,作出图形,利用数形结合求解更加简便.26.小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用X ,Y 表示这两个看不清的数字,那么小李的号码为187781752X Y (手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求X Y +的值;(2)求出小王一次拨对小李手机号的概率.【答案】(1)14;(2)15. 【分析】(1)根据题意求出11个数字之和,再根据和是20的整数倍进行求解;(2)先求出X 、Y 的可能值,再根据概率公式进行求解.【详解】(1)11个数字之和为187781752X Y ++++++++++=46+X Y +=20n ,∵这11个数字之和是20的整数倍,2<X Y +<18∴当n=3时,14X Y +=即14X Y +=;(2)∵14X Y +=X 、Y 的可能值为9和5,8和6,7和7,6和8,5和9,∴小王一次拨对小李手机号码的概率15【点睛】此题主要考查概率的求解,解题的关键是熟知概率公式.27.如图,已知CE 是圆O 的直径,点B 在圆O 上由点E 顺时针向点C 运动(点B 不与点E 、C 重合),弦BD 交CE 于点F ,且BD=BC ,过点B 作弦CD 的平行线与CE 的延长线交于点A .(1)若圆O 的半径为2,且点D 为弧EC 的中点时,求圆心O 到弦CD 的距离;(2)当DF•DB=CD 2时,求∠CBD 的大小;(3)若AB=2AE ,且CD=12,求△BCD 的面积.【答案】(12;(2)45°;(3)1.【解析】(1)过O 作OH ⊥CD 于H ,根据垂径定理求出点O 到H 的距离即可;(2)根据相似三角形的判定与性质,先证明△CDF ∽△BDC ,再根据相似三角形的性质可求解;(3)连接BE ,BO ,DO ,并延长BO 至H 点,利用相似三角形的性质判定,求得BH 的长,然后根据三角形的面积求解即可.【详解】解:(1)如图,过O 作OH ⊥CD 于H ,∵点D为弧EC的中点,∴弧ED=弧CD,∴∠OCH=45°,∴OH=CH,∵圆O的半径为2,即OC=2,∴OH=2;(2)∵当DF•DB=CD2时,FD CD CD BD=,又∵∠CDF=∠BDC,∴△CDF∽△BDC,∴∠DCF=∠DBC,∵∠DCF=45°,∴∠DBC=45°;(3)如图,连接BE,BO,DO,并延长BO至H点,∵BD=BC,OD=OC,∴BH垂直平分CD,又∵AB∥CD,∴∠ABO=90°=∠EBC,∴∠ABE=∠OBC=∠OCB,又∵∠A=∠A,∴△ABE∽△ACB,∴AE ABAB AC=,即AB2=AE×AC,∴2AB ACAE=,设AE=x,则AB=2x,∴AC=4x,EC=3x,∴OE=OB=OC=32 x,∵CD=12,∴CH=6,∵AB∥CH,∴△AOB∽△COH,∴AO BO ABCO HO CH==,即33222362x x x xHOx+==,解得x=5,OH=4.5,OB=7.5,∴BH=BO+OH=12,∴△BCD的面积=12×12×12=1.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一个长方体的左视图和俯视图,则其主视图的面积为()A.6 B.8 C.12 D.24【答案】B【分析】左视图可得到长方体的宽和高,俯视图可得到长方体的长和宽,主视图表现长方体的长和高,让长×高即为主视图的面积.【详解】解:由左视图可知,长方体的高为2,由俯视图可知,长方体的长为4,∴长方体的主视图的面积为:428⨯=;故选:B.【点睛】本题考查主视图的面积的求法,根据其他视图得到几何体的长和高是解决本题的关键.2.下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式;B.只有被开方数完全相同的二次根式才是同类二次根式;C.35和15D 112213.【答案】D【分析】根据同类二次根式的定义逐项分析即可.【详解】解:A、被开方数不同的二次根式若化简后被开方数相同,就是同类二次根式,故不正确;B. 化成最简二次根式后,被开方数完全相同的二次根式才是同类二次根式,故不正确;C. 3515D. 11223和13133,是同类二次根式,正确故选D. 【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.3.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是()A.平均数B.方差C.中位数D.众数【答案】C【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【详解】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为46,与被涂污数字无关.故选:C.【点睛】本题考查了方差:它也描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.掌握以上知识是解题的关键.4.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( ) A.3.61×106B.3.61×107C.3.61×108D.3.61×109【答案】C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×1.故选C.5.已知一组数据:-1,0,1,2,3是它的一个样本,则这组数据的平均值大约是()A.5 B.1 C.-1 D.0【答案】B【分析】根据平均数的定义计算即可.【详解】这组数据的平均数为(﹣1+0+1+2+3)÷5=1.故选:B.【点睛】本题考查了平均数.掌握平均数的求法是解答本题的关键.6.下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是( )A.开口向上B.对称轴是直线x=1 C.顶点坐标是(-1,3) D.函数y有最小值【答案】B【分析】由抛物线的解析式可求得开口方向、对称轴及顶点坐标,再逐一进行判断即可.【详解】解:A 、∵−2<0,∴抛物线的开口向下,故A 错误,不符合题意;B 、抛物线的对称轴为:x =1,故B 正确,符合题意;C 、抛物线的顶点为(1,3),故C 错误,不符合题意;D 、因为开口向下,故该函数有最大值,故D 错误,不符合题意.故答案为:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k 中,顶点坐标为(h,k),对称轴为x=h .7.已知点()11,A y 、()2B y 、()32,C y -在函数()21212y x =+-上,则1y 、2y 、3y 的大小关系是( ).(用“>”连结起来)A .321y y y >>B .123y y y >>C .312y y y >>D .132y y y >> 【答案】D【分析】抛物线开口向上,对称轴为x= -1.根据三点横坐标离对称轴的距离远近来判断纵坐标的大小.【详解】解:由函数()21212y x =+-可知: 该函数的抛物线开口向上,且对称轴为x=-1.∵()11,A y 、()2B y 、()32,C y -在函数()21212y x =+-上的三个点, 且三点的横坐标距离对称轴的远近为: ()11,A y 、()32,C y -、()2B y∴132y y y >>.故选: D .【点睛】主要考查二次函数图象上点的坐标特征.也可求得()1 1, A y 的对称点()13, y -,使三点在对称轴的同一侧.8.已知x=1是方程x 2+px+1=0的一个实数根,则p 的值是( )A .0B .1C .2D .﹣2 【答案】D【分析】把x=1代入x 2+px+1=0,即可求得p 的值.【详解】把x=1代入把x=1代入x 2+px+1=0,得1+p+1=0,∴p=-2.故选D.【点睛】本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.9.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A.B.C.D.【答案】A【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置,从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.10.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=12DB,若S△ADE=3,则S四边形DBCE=( )A.12 B.15 C.24 D.27【答案】C【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,则可求出S△ABC,问题得解.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9,∵S△ADE=3,∴S△ABC=3×9=27,则S四边形DBCE=S△ABC﹣S△ADE=27﹣3=24.故选:C.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.11.用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B .△ABC 放大后,边AB 是原来的4倍C .△ABC 放大后,周长是原来的4倍D .△ABC 放大后,面积是原来的16倍【答案】A【解析】试题分析:用一个4倍放大镜照△ABC ,放大后与原三角形相似且相似比为1:4,相似三角形对应角相等,对应边的比等于相似比、对应周长的比等于相似比,面积比等于相似比的平方,故A 选项错误.故选A .考点:相似三角形的性质.12.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(5)米【答案】A 【解析】试题分析:根据CD :AD=1:2,5CD=3米,AD=6米,根据AB=10米,∠D=90°可得:22AB AD -米,则BC=BD -CD=8-3=5米.考点:直角三角形的勾股定理 二、填空题(本题包括8个小题)13.已知cos ( a -15°)=3a =____________ 【答案】45°【分析】由题意直接利用特殊角的三角函数值,进行分析计算进而得出答案.【详解】解:∵2(153)cos a -︒=, ∴a-15°=30°,∴a=45°.故答案为:45°.【点睛】本题主要考查特殊角的三角函数值,牢记是特殊角的三角函数值解题的关键.14.如图,在正方形铁皮上剪下一个扇形和一个半径为3cm 的圆形,使之恰好围成一个圆锥,则圆锥的高为____.【答案】315cm 【分析】利用已知得出底面圆的半径为3cm ,周长为6cm π,进而得出母线长,再利用勾股定理进行计算即可得出答案.【详解】解:∵半径为3cm 的圆形∴底面圆的半径为3cm∴底面圆的周长为6cm π∴扇形的弧长为906180R ππ⋅⋅= ∴12R cm =,即圆锥的母线长为12cm∴圆锥的高为22123315cm -=.故答案是:315cm【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.15.如上图,四边形OABF 中,90OAB B ∠=∠=︒,点A 在x 轴上,双曲线k y x =过点F ,交AB 于点E ,连接EF .若23BF OA =,4BEF S ∆=,则k 的值为 ______.【答案】6【分析】如图,过点F 作FG OA ⊥交OA 于点G ,由23BF OA =可得OA 、BF 与OG 的关系,设(,)F m n ,则3,2OA m BF m ==,结合4BEF S ∆=可得点B 的坐标,将点E 、点F 代入k y x=中即可求出k 值. 【详解】解:如图,过点F 作FG OA ⊥交OA 于点G ,则,AG BF GF AB ==23BF OA = 23BF OA ∴= 23OA AG OG BF OG OA OG ∴=+=+=+ 3OA OG ∴=2BF OG ∴=设(,)F m n ,则3,2OA m BF m ==4BEF S ∆=112422BF BE m BE ∴⋅=⋅⋅= 4BE m∴= 4AE n m ∴=-,即4(3,)E m n m- 双曲线k y x=过点F ,点E 4,3k k n n m m m∴=-= 化简得,312k mn k mn ==-,即312mn mn =-解得6mn =,即6k =.故答案为:6.【点睛】本题主要考查了反比例函数的图像,灵活利用坐标表示线段长和三角形面积是解题的关键.16.若b 1a 40-+-=,且一元二次方程20kx ax b ++=有实数根,则k 的取值范围是 .【答案】k 4≤且k 0≠.【解析】试题分析:∵b 1a 40-+-=,b 10b 1{{a 40a 4-==⇒-==. ∴一元二次方程为. ∵一元二次方程有实数根, ∴2k 0{k 444k 0≠⇒≤∆=-≥且k 0≠. 考点: (1)非负数的性质;(2)一元二次方程根的判别式.17.若⊙P 的半径为5,圆心P 的坐标为(﹣3,4),则平面直角坐标系的原点O 与⊙P 的位置关系是_____.【答案】点O 在⊙P 上【分析】由勾股定理等性质算出点与圆心的距离d ,则d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内.【详解】解:由勾股定理,得OP =22(3)4-+=5,d =r =5,故点O 在⊙P 上.故答案为点O 在⊙P 上.【点睛】此题考查点与圆的位置关系的判断.解题关键在于要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d=r 时,点在圆上,当d <r 时,点在圆内.18.如图,Rt △ABC 中,∠ACB =90°,AC =BC ,在以AB 的中点O 为坐标原点,AB 所在直线为x 轴建立的平面直角坐标系中,将△ABC 绕点B 顺时针旋转,使点A 旋转至y 轴的正半轴上的点A'处,若AO =OB =2,则图中阴影部分面积为_____.【答案】43π. 【分析】根据等腰三角形的性质求出AB ,再根据旋转的性质可得BA ′=AB ,然后求出∠OA ′B =30°,再根据直角三角形两锐角互余求出∠A ′BA =60°,即旋转角为60°,再根据S 阴影=S 扇形ABA ′+S △A ′BC ′﹣S △ABC ﹣S 扇形CBC ′=S 扇形ABA ′﹣S 扇形CBC ′,然后利用扇形的面积公式列式计算即可得解.【详解】解:∵∠ACB =90°,AC =BC ,∴△ABC 是等腰直角三角形,∴AB =2OA =2OB =4,BC =22,∵△ABC 绕点B 顺时针旋转点A 在A ′处,∴BA ′=AB ,∴BA ′=2OB ,∴∠OA ′B =30°,∴∠A ′BA =60°,即旋转角为60°,S 阴影=S 扇形ABA ′+S △A ′BC ′﹣S △ABC ﹣S 扇形CBC ′=S 扇形ABA ′﹣S 扇形CBC ′=2260460(22)360360ππ⨯⨯- =43π. 故答案为:43π. 【点睛】本题考查了阴影部分面积的问题,掌握等腰直角三角形的性质、旋转的性质、扇形面积公式是解题的关键.三、解答题(本题包括8个小题)19.已知某二次函数图象上部分点的横坐标x 、纵坐标y 的对应值如下表.求此函数表达式.【答案】2y (x 1)4=--+【分析】观察图表可知,此二次函数以x=1为轴对称,顶点为(1,4),判断适合套用顶点式y=a (x-h )2+k,得到2(1)4y a x =-+,再将除顶点外的任意已知点代入,如点(-1,0),得 a = -1.故所求函数表达式为2(1)4y x =--+【详解】解:观察图表可知,当x=-1时y=0,当x=3时y=0,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017一2018道里九年级数学期末试题
一、选择题(每题3分,共30分)
1.抛物线y=(x 一2)2
+3的顶点坐标是( )
(A)(2,3) (B)(-2,3) (C)(2, -3) (D)( -2, -3) 2.下列图形是中心对称图形的是( )
3.在Rt △ABC 中,∠C=900,sinA=5
3 ,则cosA 的值等于( ) (A) 53 (B) 5
4 (C) 43 (D)
5
5 4.下列几何体中,俯视图是三角形的几何体是( )
5.一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小质 地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个是红 概率是( )
(A)
81 (B) 61 (C) 41 (D) 4
3 6.如图,E 是平行四边形ABCD 的边BA 延长线上的一点, CE 交AD 于点F ,下列各式中错误的是( ) (A)CF EF AB AE = (B) FC CF BE CD = (C) DF AF AB AE = (D) BC
AF
AB AE =
7.若反比例函数y=
x
m
-3=的图象位于第二、四象限,则m 的取值范围是( ) (A)m>0 (B)m<0 (C)m>3 (D)m<3
8.将二次函数y=x 2
的图象先向下平移l 个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b 的图象有公共点,则实数b 的取值范围是( ) (A)b>8 (B)b>一8 (C)b ≥8 (D)b ≥8 9.如图,在Rt △ABC
中,∠C=900,∠A=500,以BC 为 直径的⊙0交AB 于点D ,E 是⊙0上一点,
且弧CE=弧CD ,连接0E ,过点E 作⊙0的切线交AC 的延长线于点F , 则∠F 的度数为( )
(A)900
(B)1000
(C)1100
(D)1200
10.如图,正方形ABCD 的边长为3 cm ,点P 从点A 出发沿AB →BC →CD 以3 cm /s 的速度向终点D 匀速运动,同时,点Q 从点A 出发沿AD 以 1 cm /s 的速度向终点D 匀速运动,设P 点运动的时间为ts ,△APQ 的面积为S cm2,下列选项中能表示S 与t 之间函数关系的是( )
二、填空题(每题3分,共30分)
11.在平面直角坐标系中,点P(1,.2)关于原点的对称点的坐标是 . 12.若△ABC ∽△DEF,DE=2AB ,若△DEF 的面积为20,则△ABC 的面积为 . 13.若反比例函数y=x
6
-
的图象经过点A(m,3),则m 的值是 . 14.一辆汽车行驶的距离S(单位:m)关于行驶时间t(单位:s)的函数解析式是S=9t+2
2
1t ,当t=10 s 时,则S= 米.
15.如图,四边形ABCD 与四边形EFGH 位似,位似中心是点O ,若
43=EA OE ,则BC
FG
= . 16.如图,在Rt △ABC 中,∠ACB=900
,AC=BC=2.将Rt△ABC 绕A 点逆时针旋转30。
后得到Rt△ADE,
点B 经过的路径为弧BD ,则图中阴影部分的面积是 .
17.菱形ABCD,AB=5,cosB=
5
3
,点E 在AD 上,若CE=17,则 DE 的长度为 . 18.如图,在一笔直的东西走向的沿湖道路上有A ,B 两个游船码头,观光岛屿C 在码头A 北偏东600的方向,在码头B 北偏西450
的方向,AC=4 km ,则BC= km .
19.AB 是⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=450
,若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是 .
20.如图,AD ,BE 分别为△AB C 的中线与高,AD=BE ,过AD ,BE 的交点F 作AB 的平行线交
AE 于点G ,若EG=3,DF=4
5
,tanC= .
三、解答题(第21-22题每题7分,23.24题每题8分,第25-27题每题10分,共60分)
21(本题7分),先化简,再求代数式x
x x x x x 2
2)1()11(+÷---值,其中 x=2sin600-tan450
.
22.(本题7分)图1、图2分别是7x6的网格,网格中的每个小正方形的边长均为1,点
A、B在小正方形的顶点上.
(1)在图1中确定点C(点C在小正方形的项点上),画出三角形ABC,使tanB=1,△ABC
的面积为l0;
(2)在图2中确定点D(点D在小正方形的顶点上),画出三角形ABD,"使△ABD是以
AB为斜边的直角三角形,且AD>BD;直接写出∠DAB的余弦值.
23.(本题8分)初四(1)班针对“你最喜爱的课外活动项目”,对全班学生进行调查(每名学生分别选且只选其中的一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
根据以上信息解决下列问题:
(1)求m,n的值;
(2)求扇形统计图中机器人项目所对应扇形的圆心角的度数;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请直接写出所选取的2名学生中恰好有1名男生、l名女生的概率.
24.(本题8分)如图,点E 在正方形ABCD 的边AD 上,将△ABE 绕点B 顺时针旋转 至点E 的对应点E 1落在CD 上时停止旋转,点A 1为点A 旋转后的对应点,过点
E 作BE 1的垂线分别交BA 1
,BC 于点F,G ,点H 为垂足. (1)如图l ,求证:FH=GH :
(2)若点P 恰在BA 1的延长线上,如图2,直接写出图2中已有的所有等腰直角三角形.
25.(本题l0分)A ,B 两地间仅有一长为l80千米的平直公路,若甲,乙两车分别从A,B 两 地同时出发匀速前往B ,A 两地,乙车速度是甲车速度的
3
4
倍,乙车比甲车早到45分钟. (1)求甲车速度; j
(2)乙车到达A 地停留半小时后以来A 地时的速度匀速返回B 地,甲车到达B 地后立即提速匀速返回A 地,若乙车返回到8地时甲车距A 地不多于30千米,求甲车至少提速多少千米/时?
26.(本题l0分)如图,点P 在⊙0的直径AB 的延长线上,PC 为⊙0的切线,点C 为 切点,连接AC ,过点A 作PC 的垂线,点D 为垂足,AD 交⊙0于点E . (1)如图l ,求证:∠DAC=∠PAC :
(2)如图2,点F(与点C 位于直径AB 两侧)在⊙0上,弧BF=弧FA ,连接EF ,过点F 作 AD 的平行线交PC 于点G ,求证:FG=DE+DG : (3)在(2)的条件下,如图3,若AE=
3
2
DG ,PO=5,求EF 长.
27.(本题l0分)在平面直角坐标系内,点0为坐标原点,如图,抛物线y=32
++bx ax 交x 轴正半轴于A ,B 两点,交y 轴于点C ,点A 为OB 中点,30B=20C 。
(1)求抛物线的解析式;
(2)过点C 作x 轴的平行线交抛物线于另一点D ,横坐标为t(t>2)的点P 在抛物线 y=32
++bx ax 上,过点P 作直线CD 的垂线,点E 为垂足,若线段PE 的长为d(d≠0), 求d 与t 之间的函数关系式,并直接写出相应的自变量t 的取值范围;
(3)在(2)的条件下,过点D 作PC 的垂线,点F 为垂足,∠CFD 的平分线交CD 于点 G ,交x 轴正半轴于点H ,若CG=30H ,求t 值.。