人口统计学4-20121109-学生

合集下载

人口统计学CH1新

人口统计学CH1新
人口统计学
南京人口管理干部学院
统计教研室 编制
教学参考书
李永胜主编 《人口统计学》西南财经大学出版社
陈先淮主编 《人口统计学》江苏科学技术出版社
第一章 导论
本章内容
第一节 人口统计学的形成与发展 第二节 人口统计学的研究对象与方法 第三节 人口统计学的指标体系
第一节 人口统计学的形成
一、 人口统计实践的产生与发展
内森·凯菲茨及其人口预测模型
内森·凯菲茨(Nathan Keyfitz),美国 哈佛大学教授,著名数理人口学家,美 国科学院院士 首次把矩阵方程引入人口预测
黑田俊夫及其人口负担系数
黑田俊夫,日本大学教授,著名人口学 家 黄金年龄结构理论 提出计算负担系数的公式中,少年儿童 人口年龄上限,应由14周岁调为19周岁; 老年人口的年龄下限,应由65周岁调为 70周岁
5. 标准化法
排除人口结构不同的影响,按照标准的结构 对各种人口统计指标进行处理,保证指标的 可比性
6. 年龄移算法
利用时间推移与年龄增长的一致性,根据人 口再生产过程的规律,进行人口预测分析的 基本方法之一
第三节 人口统计学的指标体系
一、统计指标的概念
指标的三要素
? 指标名称 ? 指标的计量方法和计量单位 ? 指标的特定范畴
2. 与其他人口学科的关系
人口统计学与其他人口学科一样,都处 于第二层次的地位上,是并列的关系 人口统计学为各门学科提供了分析研究 的有力手段,而各门学科的发展,也推 动了人口统计学的进一步发展和完善
3. 人口统计学的学科性质
人口统计学是一门方法论学科 从学科性质上说,是一门相对独立的社 会科学
2. 政治算术学派
统计学和人口统计学的真正创始者。 代表人物:英国古典政治经济学创始人之一 威廉·配第和人口学创始者约翰 ·格兰特 特点:以数量分析替代了笼统的文字描述 代表作:《政治算术》、《关于死亡表的自 然的和政治的观察》

人口统计学特征PPT

人口统计学特征PPT
在1895年国际统计学会(ISI)会议上, Anders Kiaer提倡在社会调查中应当更多地使用 代表抽样而不是全面调查。
死亡率(又称粗死亡率):指在一定时期内(通常为一年)一定地 区的死亡人数与同期平均人数(或期中人数)之比,一般用千分 率表示。计算公式为: 死亡率=年死亡人数/年平均人数×1000‰ 人口自然增长率:指在一定时期内(通常为一年)人口自然增加 数(出生人数减死亡人数)与该时期内平均人数(或期中人数)之 比,一般用千分率表示。计算公式为:
标志着古典政治经济学的诞生,同时也标志着统计学的诞生。
比较英、法总人口、神职人员、海员和工匠等指标,发
现法国的人口和土地多于英国,但非生产人口要多于英国,
海员和工匠少于英国,他分析得出英国国力优于法国。这是
人口构成分析的范例。
约翰·格朗特《死亡表》
人口统计学派的形成
一、人口统计学派的先驱者 威特(Johan de Witt,1625-1672)(荷兰) “关于终身年金价值”研究(1671),提出有关死亡的规
人口自然增长率=(本年出生人数-本年死亡人数)/年 平均人数×1000‰=人口出生率-人口死亡率
表10-2 各地区分性别的死亡人口和死亡率 (2004.11.1-2005.10.31)
地区
全国 北京 天津 上海 重庆
平均人口
死亡人口
单位:人、‰ 死亡率
合计


合计


合计


16,950,030
8,567,155
哈雷生命表(一)
哈雷生命表(二)
人口统计学的发展历程
人口统计——生命统计——保险统计 ——卫生统计 ——医疗统计—— 社会统计——犯罪统计——道德统计

人口统计基础知识及统计指标分析PPT85页

人口统计基础知识及统计指标分析PPT85页
人口统计基础知识及统计指标分析
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

北大医学部医学统计学课件--第七讲(1) 人口统计

北大医学部医学统计学课件--第七讲(1) 人口统计

2012-9-18
医学统计学
7
人口金字塔的形状是长期以来人口的出生、死亡、迁入 和迁出而形成的,一般变化缓慢,但相隔数十年,也会有 明显的变化。
分 型
①增长型人口:人口金字塔呈上尖下宽,多为出生
率大于死亡率,表示人口不断增长。 ②静止型人口:除高龄组构成较小外,其它各年龄 组构成相近,此类人口出生率基本等于死亡率,人 口总数基本稳定。 ③缩减型人口:人口金字塔呈现上下两头小,中间 大,一般多为死亡率大于出生率,人口总数不断减 少。
常用生育统计指标
1.粗出生率 (CBR)
2.总生育率(GFR)

3.年龄别生育率(ASFR) 4.总和生育率( TFR)
各种生育率的计算
年龄 15202530妇女数 126203 116960 77523 87190 活产数 2484 27327 11927 5798 年龄别生育率‰ 19.68 233.36 154.43 66.50
2012-9-18
医学统计学
9

2012-9-18
医学统计学
10
二、出生统计
出生和死亡是人类繁衍的两大基本要素。生育
是一个生理现象,也是一个人口现象。生理现 象是指一个妇女具有生育的能力,称为生育力; 人口现象是指一定人口中的生育水平。人口中 的生育水平总是与人口中的活产数相关联,测 量某一人口的生育水平,首先必须明确活产的 定义。为了世界各国便于比较,联合国对活产 作了如下定义:“妊娠的产物全部从母体排出 时,不论妊娠时间的长短,只要具有呼吸、心 跳、脐脉搏动、明确的随意肌运动等生命现象 之一的即为活产”。

某年某年龄组平均人口 数
年龄别死亡率消除了人口年龄构成不同对死亡水平的

人口统计学原理与方法分析

人口统计学原理与方法分析

1953年
1964年
1982年
1990年
1995年
2000年
2005年
中国出生性别比升高的原因探讨:
120 104 100 80 60 40 20 0 0 55~59 80~89 Age 90~99 100+ 55 35 26 97
数据分析:中国出生人口性别比变化
120 118 116 114 112 110 108 106 104 102 100 104.9 103.9 107.6 111.3 115.6 116.9 118.9
性别比
107.6 105.5 106.3
1990年 2000年
11.34 12.66
106.6 106.7
二. 年龄统计
1、年龄中位数(Median Age):
• 按年龄自然顺序排列的总人口构成一个连续的变 量数列,所谓年龄中位数,就是这个连续变量数 列的中间值。它恰好把总人口分成两半,一半在 年龄中位数以下,另一半在年龄中位数以上。 • 年龄中位数可用来分析人口年龄的分布状况或集 中趋势。如果按一岁一组顺序从小到大排列年龄 数列,从零岁起累计到总人口一半的年龄组,就 得到某个人口的年龄中位数。计算公式如下:
注意区别:“平均年龄”与“年龄中位 数”
平均年龄(Average Age)指标表示人口年龄 的平均水平,强调的是“年龄均值”;年龄中位 数(Median Age)则反映“人数均等”,通常也 称之为“中位年龄”。 尽管统计口径不同,但两指标在对人口年龄 结构的观测与解释上具有一致性。一般讲,人口 的平均年龄越大,该人口的年龄中位数将越高; 反之亦然。但要注意,AA不受年龄结构影响, MA则与人口年龄结构密切相关。对于年轻型人口, MA<AA;对于老年型人口,MA>AA

人口统计学知识:人口普查和民意调查中的数据收集与处理技术

人口统计学知识:人口普查和民意调查中的数据收集与处理技术

人口统计学知识:人口普查和民意调查中的数据收集与处理技术人口统计学知识:人口普查和民意调查中的数据收集与处理技术在现代社会,人口统计学越来越重要。

人口普查和民意调查是人口统计学的两个重要研究领域。

人口普查是一项全国性的、统计全国人口数量、结构、分布和通用生活状况的调查,而民意调查则是在特定的群体中进行的调查,以了解他们的看法和意见。

在人口普查和民意调查中,数据是收集和处理的关键。

本文将重点介绍数据收集和处理技术,以帮助人们更好地理解这些重要的人口统计学领域。

一、人口普查中的数据收集人口普查通常通过以下三种方式来收集数据:纸质问卷、个人面谈和电话访问。

纸质问卷法是人口普查中最常用的方法之一。

普查机构会将包含问卷的信封寄到每个家庭,居民填写后邮寄回普查机构。

由于纸质问卷法的优缺点各有,因此它也有一些局限性。

优点是:比较方便和低成本;问卷也可以像标准程序一样印刷和复制。

缺点是:人们填写问卷的精度不高,也有可能造成数据缺失或错误,人口普查员需要耗费体力和时间进行清点和核实。

个人面谈法质量较高,但成本也高。

在这种方式下,普查员会亲身拜访每个家庭,填写每个家庭的人口数、性别、年龄、教育水平等信息。

尽管这是最准确的方法之一,但它却是最昂贵和最费时的课题。

电话访问法是一种相对较新的方式。

这是通过电话与普查对象进行沟通,咨询一些人口统计数据。

这种方式虽然成本较低,但也存在缺点。

一些家庭可能没有电话,或者可能存在虚假回答,这将导致数据不准确。

二、人口普查的数据处理技术人口普查数据分析和处理也是必不可少的步骤。

这些数据可能包括人口数量、性别、年龄、婚姻状态、民族、职业、家庭收入和社会福利。

这些数据的分析和处理可以帮助政府和相关机构更好地了解人口的趋势和需要,从而做出科学和有效的决策。

1.数据输入:首先,需要将普查数据输入计算机,并对其进行数字化处理。

数字化处理是将普查信息转换为数码形式,以便更方便地存储、分析和处理这些数据。

人口统计学CH1新

人口统计学CH1新

2. 与其他人口学科的关系
人口统计学与其他人口学科一样,都处 于第二层次的地位上,是并列的关系 人口统计学为各门学科提供了分析研究 的有力手段,而各门学科的发展,也推 动了人口统计学的进一步发展和完善
3. 人口统计学的学科性质
人口统计学是一门方法论学科 从学科性质上说,是一门相对独立的社 会科学
2. 时间序列法和年龄序列法
利用时间的推移或年龄的增长与人口现 象之间的内在联系,进行动态序列的观 察分析
3. 生命表法
按分年龄死亡率编制生命表,来考察假 设一代人的完整生命过程
4. 静止人口和稳定人口分析法
静止人口模型:考察和比较一个现实人口结 构的参照系
稳定人口模型:确定人口发展目标、研究人 口演变过程、进行人口动态分析以及人口趋势 分析的有力工具
人口统计学
南京人口管理干部学院
统计教研室 编制
教学参考书
李永胜主编 《人口统计学》西南财经大学出版社
陈先淮主编 《人口统计学》江苏科学技术出版社
第一章 导论
本章内容
第一节 人口统计学的形成与发展 第二节 人口统计学的研究对象与方法 第三节 人口统计学的指标体系
第一节 人口统计学的形成
一、 人口统计实践的产生与发展
反映人口现象的性质不同,静态指标具 有相对独立性,而动态指标具有可加性
取得资料的方式不同,静态指标一般采 用一次性的调查方式,而动态指标一般 采用经常性登记的方式
指标数值与时间间隔的关系不同,时点 指标的指标数值不受时间间隔长短制约; 而时期指标的指标数值与其统计时期的 长短有直接关系
静态指标和动态指标的联系
5. 标准化法
排除人口结构不同的影响,按照标准的结构 对各种人口统计指标进行处理,保证指标的 可比性

人口统计学 表格 样例-概述说明以及解释

人口统计学 表格 样例-概述说明以及解释

人口统计学表格样例-范文模板及概述示例1:标题:人口统计学数据展示:示例表格引言:人口统计学是研究人口特征、组成和变动的科学,使用表格是人口统计学中常用的数据展示方式之一。

本文将为大家展示一些常见的人口统计学表格样例,帮助读者更好地理解和分析人口统计学数据。

表格一:人口年龄分布年龄段人口数量人口比例()0-4岁10,000 85-14岁30,000 2515-24岁50,000 4125-64岁40,000 3365岁以上5,000 4表格二:性别分布性别人口数量人口比例()男性60,000 50女性60,000 50表格三:人口教育水平教育水平人口数量人口比例()小学10,000 8初中20,000 17高中25,000 21本科45,000 37研究生20,000 17表格四:人口就业状况就业状况人口数量人口比例() 在职80,000 67失业10,000 8退休20,000 17自由职业10,000 8结论:以上是人口统计学中常见的表格样例,我们可以通过这些表格了解到人口的年龄分布、性别分布、教育水平和就业状况等重要信息。

通过对这些数据的分析,我们可以更好地理解和应对人口变动和特征,为决策制定和资源分配提供有力支持。

示例2:人口统计学是一门研究人口数量、结构、分布和变动等问题的学科,它通过收集、整理和分析大量的人口数据来揭示人口发展的规律和趋势。

在这篇文章中,我们将展示一个人口统计学表格样例,以便读者更好地理解和应用这些数据。

以下是一个简单的人口统计学表格样例:年份总人口城市人口农村人口出生率死亡率城市化率- -2000 1000 400 600 10‰5‰402005 1200 500 700 8‰4‰41.72010 1500 600 900 7‰3‰402015 1800 700 1100 6‰ 2.5‰38.92020 2000 800 1200 5‰2‰40在这个表格中,我们可以看到不同年份的总人口、城市人口、农村人口、出生率、死亡率和城市化率的数据。

人口统计-Life Table Note

人口统计-Life Table Note

1.11 The central rate of mortalityFrom above, we have seen that q represents the probability that a life of exact age dies before reaching exact age .x x ()1+x Then, q is often referred to as the initial rate of mortality at exact age . x xAn alternative definition of the rate of mortality is often used in demography. We define the central rate of mortality at exact age , denoted by , as follows:x x m ∫∫∫∫∫=µ=µ=++++11111dtp q dtp dtp dtldtlm x txx tt x x t tx t x t x x(1.11.1)In practice, the central rate of mortality represents a weighted average of the force of mortality applying over the year of age to (, and can be thought as the probability that a life alive between ages and ( dies before attaining exact age (). x m )1x +x x )1+x 1+xThe importance of the central rate of mortality arose because, historically, it was easier for actuaries to estimate this quantity from the observed data than either the initial rate of mortality, , or the force of mortality, . x m x q x µ1.12 Expectation of life1.12.1 Complete expectation of lifeFrom Section 1.2, the random variable T represents the complete future lifetime for a life of exact age .x x Then, the expected value of the random variable T , denoted by e , is the complete expectation of life for a life of age .x ox x From (1.5.4), the probability density function of the random variable T is given by:x ()t x x t x p t f +µ= for 0≥tNote that is the expected future lifetime after age , so that, for a life of exact age , theexpected age at death is .ox e x x+ox e x Now, by definition, we have:()()∫∫∞+∞µ×=×==0odt p t dt t f t T E e t x x t x x x(1.12.1)Then, from (1.5.5), we havet x x t x t p p t+µ=−∂∂, and using integration by parts, we obtain: ()[]()∫∫∫∫∞∞∞==∞∞+=−−−×= ∂∂−×=µ×=0000odtp dt p p t dt p t t dtp t e x tx t t t x t x t tx xtx(1.12.2)Example 1.12.12In a particular survival model, we have:xx 01.0101.0−=µ for 0<≤x100Find the complete expectation of life at exact age 20. SolutionFirstly, we must find t , the survival function for a life of exact age 20. 20p From (1.7.1), we have:()[]()()8012001.0101.012001.012001.0101.01ln exp 01.0101.0exp exp 20202020202020ttt s ds s ds p ts s t t s t−=×−−=×−+×−=−−−=−−=µ−=+==++∫∫As the limiting age in the survival model is 100, the complete future lifetime for a life of exact age 20 must be less than 80 years. Then, from (1.8.2), we have:4040801800280020-100020o20=−=−====∫∫t t tt t dt t dtp e 3Thus, the complete expectation of life for a life of exact age 20 is 40 years.The complete expectation of life, typically for a new-born life, is often used to compare the general level of health in different populations.For example, the life expectancy for a new-born male life in different countries is:Country Life expectancy Japan 77.5 United Kingdom 75.0 Germany 74.3 United States74.2Mexico 68.5 Russia 62.0 South Africa50.4Zimbabwe 39.2Source: US Bureau of the Census, International data base, June 2000Also, using integration by parts, it can also be seen that:()∫∫∞∞+××=µ×=0222dt p t dt p tTE x t t x x t xThus, the variance of the complete future lifetime for a life of exact age is given by:x ()()()[]200222var−××=−=∫∫∞∞dt p dt p t T E T E T x t x t x x x(1.12.3)41.12.2 Curtate expectation of lifeThe random variable is used to represent the curtate future lifetime for a life of exact age (i.e. the number of complete years lived after age ).x K x x Then, the random variable is the integer part of the complete future lifetime, T . x K x Clearly, is a discrete random variable taking values in the state space .x K …,2,1,0=J We can use the distribution function of T , denoted by , to derive the probability distribution function of as follows:x ()t F x x K ()(()()()(()))xk x kx x kx x kx k x kx k x k x x x x l d q p p p p p p p k F k F k T k k K +++++=×=−×=−=−−−=−+=+<≤==11111111Pr Pr(1.12.4)This result is intuitive.If the random variable takes the value , then a life of exact age must live for complete years after age . Therefore, the life must die in the year of age to ().x K k x ()k k x x +1++k x From above, we have seen that, for a life of exact age , the probability of death in the year of ageto is x ()k x +()1++k x ()k K l d q x xkx xk ===+Pr .5Now, the expected value of the random variable , denoted by , is known as the curtate expectation of life for a life of age . x K x e x Thus, we have:()()()()()∑∑∑∞=++++++++++++∞=+∞==+++=+−×+−×+−=+×+×+=×==×==1321433221321003232Pr k xkxx x x xx x x x x x xx x x k xkx k xx xp l l l l l l l l l l l l d d d l d k k Kk K E e ………(1.12.5)If required, we can also calculate the variance of the curtate future lifetime as follows:()()()[]()∑∞=+−×=−=02222var k x xk x xxx e l d kK E KE K (1.12.6)1.12.3 Relationship between e and ox x eAssuming that the function t is linear between integer ages, we have:x p 6()()212121211021100o+=+×=++×++×≈=∑∫∞=∞x k xk x x x x x x txe p p p p p p dtp e … (1.12.7)Thus, the complete expectation of life at age is approximately equal to the curtate expectation of life plus one-half of a year.x This is equivalent to the assumption that lives dying in the year of age to () do so,on average, half-way through the year at age ()k x +1++k x ().21++k x This assumption is known as the uniform distribution of death assumption.It should be noted that, whilst the curtate future lifetime is equal to the integer part of the complete future lifetime T , the curtate expectation of life is not equal to the integer part of the complete expectation of life . x K e x x ox e1.13 Interpolation for the life tableAs discussed previously, it is common for the standard life table functions such as l , or µ to be tabulated at integer ages only.x x q x However, the actuary may be required to calculate probabilities involving non-integer ages or durations.Then, given a life table { specified only at integer ages, how can we approximate the values of (where is an integer and )? }ω+αα=,,1,:…x l x t x l +x 10<<t We consider three possible approaches.71.13.1 Uniform distribution of deaths (UDD)In this case, we assume that any deaths over the year of age to occur uniformly over the year.x (1+x ))This is equivalent to the assumption that the function l is linear over the interval (). t x +1,+x x Thus, for 0, we have l 1<<t ()()x x x x x x x t x d t l l l t l l t l t ×−=−×−=×+×−=+++111.Hence, under the UDD assumption, dividing both sides by gives:x l x x t x t x x tq t p q q t p ×=−=⇒×−=11Then, under the assumption that the function l is linear over the interval (, we have:t x +1,+x x x ts x x s x tq t ds p q ×=µ=∫+0(1.13.1)Thus, as the function q is tabulated, we can estimate the probability t for any non-integer durations t .x x q Note that, differentiating both sides of this expression with respect to t , we obtain:()t f p ds p dt d q x t x x t ts x x s x =µ=µ=++∫0for 0<<t 1Thus, under the assumption that the function is linear over the interval , the distribution function of the complete future lifetime, T , is constant for 0. t x l +()1,+x x 1<t x <Hence, deaths are uniformly distributed over the year of age to . x ()1+x8We can extend this approach when both the age and the duration are non-integer values, so as to enable us to estimate the probability t where is an integer and 0). s x s q +−x 1<<<t s In this case, we can write xs xts x s t s x s t x s x p p p p p p =⇒×=+−+−t . Thus, we can express t as s x s q +−x s x t xs x ts x s t s x s q qp p p q −−−=−=−=+−+−11111.tAnd, using the UDD assumption, we have:()xxx x sx st q s q s t q s q t q ×−×−=×−×−−=+−1111 f 1or<<<t s (1.13.2)Also, using the UDD assumption, we can express the central rate of mortality at age , , in twodifferent ways:x x m (i)If the function t is linear for 0, then we have x p 1≤≤t x x t p dt p 11=∫ (i.e. the value ofthe function t at the mid-point of the interval). Thus, we have:x p x xx x xx x txx q q q q p q dtp q m ×−=−===∫2111111 (1.13.3)(ii)If the function is constant for 0, then we can put ()t x x t x p t f +µ=1≤≤t 21=t giving ()2121+µ=x x x p t f for all t . Thus, we have:[1,0∈]21121211212111110++++µ=×µ=µ=µ=∫∫∫∫x xx x xx x x tt x x t x p dtp p dtp dtp dtp m(1.13.4)1.13.2 Constant force of mortality9In this case, we assume that the function µ is constant over the year of age to (). t x +x 1+x i.e. for integer and , we have µ x 10<<t constant =µ=+t xNote that, in general, the value of µ, the constant force of mortality assumed over the year of age to , will not be equal to either of the tabulated values µ or µ. x (1+x )x 1+xUnder the assumption of a constant force of mortality between integer ages, we find the value of the constant µ using:()x t x x p e dt p ln exp 10−=µ⇒=µ−=µ−+∫ (1.13.5)Then, for 0, we have:1<<t µ−+−=µ−−=µ−−=−=∫∫t t t s x xt x te ds ds p q 1exp 1exp 1100 (1.13.6)Similarly, when we have a non-integer age and duration, we estimate the probability t , for , as follows:s x s q +−10<<<t s ()µ−−++−+−−=µ−−= µ−−=−=∫∫s t t s t s r x sx s t s x st e dr dr p q 1exp 1exp 11 (1.13.7)10Example 1.9.1Given , calculate 75.090=p 90121q and 121190121qassuming:(a) a uniform distribution of deaths between integer ages, and (b) a constant force of mortality between integer ages. Solution (a)Uniform distribution of deathsFrom (1.13.1), we have:()()020833.025.011211121121909090121=−×=−×=×=p q qAlso, from (1.13.2) with 1211=s and t , we have: 1=027027.025.01211125.012112111121119090121190121=×−×=×−× −=q q q(b)Constant force of mortalityFirst, we must find the value of , the constant force of mortality over the year of age (). µ91,90Then, from (1.13.5), we have µ. ()()287682.075.0ln ln 90=−=−=p From (1.13.6), we have:023688.0112190121=−=µ×−eqAlso, from (1.13.7) with 1211=s and t , we have: 1=11023688.01112112111121190121=−=−=µ−µ×−−e eqNote that, under the constant force of mortality assumption, the central rate of mortality at age , , is given by:x x m µ=×µ=µ=∫∫∫∫+11011dtp dtp dtp dtp m x tx t x tt x x t x(1.13.8)1.13.3 The Balducci assumptionThe Italian actuary Balducci proposed an alternative approach for estimating probabilities at non-integer ages and durations.The approach is based on the traditional actuarial method of constructing a life table, which will be considered in more detail later.The assumption is that the function l is in form hyperbolic between integer ages.t x +Note that, as mentioned previously, the UDD assumption implies that the function l is linear between integer ages, whereas the constant force of mortality assumption implies that the function is exponential between integer ages. t x +t x l +Then, for any integer and 0, using hyperbolic interpolation, we have x 1<<t 111+++−=x x tx l tl t l . Thus, for 0, we can write:1<<t 12()()()xx x x t x x x x xx tx l l l t l l l l l l t l t l 1111111++++++−×−−=⇒××+×−=Hence, the Balducci assumption is usually expressed as:()()()x t x t t x t x xxt x tq t p q q t l d t p ×−=−=⇒×−−=×−−=+−+−+−111111111 (1.13.9)Now, using the Balducci assumption, we have:()x xtx t x x t t x t xx t t x t x t x q t q p p q p p p p p p ×−−−−=−=⇒=⇒×=+−+−+−11111111Hence, for integer age and 0, the Balducci assumption gives:x 1<<t ()()xxx x x t q t q t q t q q ×−−×=×−−−−=111111 (1.13.10)By definition, the assumption of a constant force of mortality assumes that the function is constant over the year of age to ().t x +µx 1+x Now, combining (1.2.5) and (1.3.4), we have ()t x tx t x l dtdl +++×−=1µ.For the UDD assumption, we have ()()(11++++−−=⇒−×−=x x t x x x x t x l l l dt dl l t l ))l . Thus, using the UDD assumption, we can express the force of mortality at age as:(t x +()xxx x x x x t x q t q l l t l l l ×−=−×−−=µ+++111(1.13.11)13Thus, under the UDD assumption, the force of mortality is an increasing function over the year of age to .x ()1+x This result can be explained by general reasoning.Consider a group of lives who die at a uniform rate over a given year.Then, to maintain a constant number of deaths over the year, the force of mortality must increase to offset the fact that the number of survivors is decreasing over time.Also, this result is intuitive and consistent with the expected pattern for the force of mortality for human populations (i.e. we expect the force of mortality to be an increasing function of age).Similarly, for the Balducci assumption, it can shown that the force of mortality at age () is given by:t x +()xxt x q t q ×−−=µ+11(1.13.12)Thus, under the Balducci assumption, the force of mortality is a decreasing function over the year of age to .x ()1+x This result is counter-intuitive and inconsistent with the expected pattern for the force of mortality for human populations.However, as mentioned previously, the assumption is useful in the traditional actuarial method of constructing a life table (and will be considered further later).1.14 Simple analytical laws of mortalityIt may be possible to postulate an analytical form for one of the standard life table functions such as l , or µ.x x q x 14Such an approach simplifies the construction of a suitable life table from crude mortality data (as the number of parameters required to be estimated is substantially reduced), but the mathematical formulae used must be representative of the actual underlying mortality experience (and is now considered unlikely that a simple analytical expression can be proposed that will adequately represent human mortality over a large range of ages).However, before the recent advancements in computing speed and storage capacity, this approach was reasonably common and we now consider some of better-known laws of mortality proposed.1.14.1 De Moivre’s LawDe Moivre’s Law was proposed in 1729 and states that, for all ages such that 0, wehave:x ω<≤x xx −ω=µ1(1.14.1)Thus, as expected, the force of mortality is an increasing function of age.Then, we can derive the survival function as follows:()[]()()xt x s ds s ds p tx s x s t x x t x x s xt−ω+−ω=−ω= −ω−=µ−=+==++∫∫ln exp 1exp exp (1.14.2)1.14.2 Gompertz’ Law15Gompertz’ Law was proposed in 1829 and was based on the observation that, over a large range of ages, the function µ is log-linear. x Thus, for all ages , we have:0≥x x x Bc =µ(1.14.3)Then, assuming that the underlying force of mortality follows Gompertz’ Law, the parameter values and can be determined given the value of the force of mortality at any two ages. B c To ensure that the force of mortality is a non-negative increasing function of age, we require that the parameter values and are such that and . B c 0>B 1>cWe can derive the survival function as follows:()()()[]()()−−=−=−=−=µ−===++∫∫∫1ln exp ln exp exp exp exp 0ln 0ln 00t x t s s c s x t c s x t sx t s x xtc c c B e c c B ds e Bc ds Bc ds pNow, if we define the parameter such that g ()−=c B g ln exp , then we can express the survivalfunction as:()()[]()11ln exp −=−=tx c c t x x tg c c g p(1.14.4)16In practice, Gompertz’ Law is often found to be a reasonable approximation for the force of mortality at older ages.1.14.3 Makeham’s LawMakeham’s Law was proposed in 1860, and incorporated the addition of a constant term in the expression for the force of mortality.The rationale behind this is that an age-independent allowance is required for the incidence of accidental deaths.Thus, for all ages , we have:0≥x x x Bc A +=µ(1.14.5)Then, assuming that the underlying force of mortality follows Makeham’s Law, the parameter values , and can be determined given the value of the force of mortality at any three ages. A B c To ensure that the force of mortality is a non-negative increasing function of age, we require that the parameter values , and are such that , and . A B c B A −≥0>B 1>cWe can derive the survival function using the same approach adopted above for Gompertz’ Law to obtain:()1−=tx c c t x tg s p(1.14.6)where and (A s −=exp )()−=c B g ln exp .Example 1.14.1A survival model is assumed to follow Makeham’s Law for the force of mortality at age , µ.x x 17Then, given that , and , find the values of the parameters , and .70.0705=p 40.0805=p 15.0905=p A B c Hence, or otherwise, find the probability that a life of exact age 50 will die between exact ages 55 and 65. SolutionFrom (1.14.6), we have:()()()()()()315.0240.0170.0159051580515705590580570−−−==−−−==−−−==−−−c c c c c c g s p g s p g s pThus, we have:()()()()()()()()()()540.015.023470.040.01211115108051070−−−=⇒−−−=⇒−−−−c cc c c c g gThen, taking logarithms of (4) and (5) gives:()()()()()()()()740.015.0ln ln 11670.040.0ln ln 115108051070−−−=×−−−−−=×−−g c c c g c c cAnd, dividing ( by ( gives:)7)6057719.170.040.0ln 40.015.0ln 10=⇒=c c18Then, from , we have ()4()()()955824.0045181.01170.040.0ln 51070=⇒−=−− =g c c c g ln . Now, from (1.14.6), we have ()002535.0ln exp =⇒−=B c B g .And, taking the logarithm of (, gives:)1()()()()()077364.0ln ln 1ln 570.0ln 570=⇒×−+×=s g c c sFrom (1.14.6), we have . ()077364.0exp −=⇒−=A A sThus, the force of mortality at age is given by .x ()xx 057719.1002535.0077364.0×+−=µ1.15 The select mortality tableBefore being accepted for life assurance cover, potential policyholders are often required to undergo a medical examination to satisfy the insurer that they are in a ‘reasonable’ level of health. Lives who fail to satisfy the requirements laid down by the insurance company will often be refused cover (or required to pay a higher premium for the same level of cover).As a result of this filtering, lives who have recently been accepted for cover can be expected to be in better health (and, thus, experience lighter mortality) than the general population at the same age.This effect is known as selection (i.e. the process of choosing lives for membership of a defined group, rather than random sampling).19However, as the duration since selection increases, the extent of the lighter mortality experienced by the select group of lives can be expected to reduce (as previously healthy individuals are exposed to the same medical conditions as the general population).In practice, select lives are often assumed to experience lighter mortality for a period of, say,s years (known as the select period). However, once the duration since selection exceeds the select period, the lives are assumed to experience the ultimate mortality rates appropriate for the general population at the same age.Thus, we now consider the construction and application of a select life table, where mortality varies by age and duration since selection.The A1967-70 mortality table uses a select period of two years, so that select lives are assumed to experience lighter mortality for the first two years after selection (before reverting to the mortality experience of the general population, as represented by the ultimate portion of the table). However, the a(55) table uses a select period of one yearAnd, the ELT No. 15 – Males table is an ultimate life table only (i.e. there is no select period). This is commonly referred to as an aggregate mortality table.Examples of selection include:(a) temporary initial selection- that exercised by a life assurance company in deciding whether or not to accept a person for life assurance cover- selection takes place by producing satisfactory medical evidence- known as underwriting(b) self selection- that exercised by lives when choosing to purchase an annuity (i.e. exchanging a capital sum for the receipt of an income for life)20These are examples of positive selection , where the select lives are likely to experience lower mortality rates than the general (or ultimate ) population of the same age for a specified duration since selection only.However, a life retiring early on grounds of ill-health is likely to experience higher mortality than the ultimate population of the same age. This is an example of negative selection .1.15.1 Select, ultimate and aggregate mortality ratesMost select life tables are constructed to explore the effect of temporary initial selection (i.e. where selected lives experience lighter mortality than the general population studied for a specified duration since selection).Suppose that the select period is years.s Consider a life who is currently of exact age (, and who was selected at age . )))r x +x Thus, the duration since selection is years.r Now, if r , then we expect the life to experience lower mortality than the ultimate population at the same age and we define the select mortality rate at age as follows:s <(r x +[]()([]1 age before dies , age at group select joined who , aged now life Pr +++=+r x x r x q r xNote that is used to denote the age at selection and r is the duration since selection, so that the current age of the life is .[]x ()r x +Thus, as the life is expected to experience lower mortality than an ultimate life of the same age, we have:[]r x r x q q ++< for r <s (1.15.1)And, as before, we have [][]r x r x q p ++−=1.21Similarly, consider another life who is also currently of exact age , but who was selected at age ().(r x +))))])))1+x Thus, in this case, the duration since selection is years.(1−r We define the select mortality rate at age for this life as follows:(r x +[]()()()([]1 age before dies ,1 age at group select joined who , aged now life Pr 11++++=−++r x x r x q r xNote that, in this case, [ is used to denote the age at selection and ( is the duration since selection, so that the current age of the life is also (). 1+x 1−r r x +However, as this life has been selected more recently, we would expect this life to experience lighter mortality over the year of age to ( than the life selected at age . ()r x +1++r x x Thus, we have:[]()[]r x r x q q +−++<11 for s r <(1.15.2)However, if , then we expect lives of the same age who were selected or more years previously have the same rates of mortality, regardless of age at selection .s r ≥s In this case, all lives selected or more years previously will experience the rates of mortality of the ultimate population at the same age. sFor the A1967-70 life table, the select period is 2 years.Then, for lives of age ( and select durations of 2 years or more, we have:2+x [][][]242312++−+−+====x x x x q q q q …(1.15.3)22However, for select durations of less than two years, we have:[]211+++<x x q q and[][]2112++++<<x x x q q q (1.15.4)Select mortality table function are generally displayed in the form of an array. An extract from the A1967-70 table is shown below.age []x []x q[]1+x q2+x qage 2+x 60 0.00669904 0.00970168 0.01774972 62 61 0.00723057 0.01055365 0.01965464 63 62 0.00779397 0.01146756 0.02174310 64 63 0.00839065 0.01244719 0.02403101 65 64 0.00902209 0.01349653 0.0265355066The convention is that each row represents how mortality rates change as duration since selection increases.Thus, for a life selected at age 60, denoted by , the rate of mortality in the year of age 60 to 61 is ] and the rate of mortality in the year of age 61 to 62 is q .[60][60q []160+However, two years after selection, the lighter mortality experienced as a result of selection is assumed to wear off, and the rate of mortality experienced in the year of age 62 to 63 is simply that of the ultimate population at the same age, .62q Thereafter, the life is assumed to be an ultimate life and so, for any duration since selection , the rate of mortality experienced in the year of age () to is . 2≥r r x +()1++r x r x q +Also, the rates displayed on the upwards diagonal represent the rate of mortality experienced by lives of the same age but with a different duration since selection.23Thus, the rates of mortality ], and q all apply to the year of age 62 to 63, but the duration since selection is zero years, one year and two (or more) years respectively. [62q []161+q 62As expected, we can see that , so that lives selected more recently can be expected to experience lighter mortality rates over the particular year of age. [][]6216162q q q <<+Note the large difference that selection can make to mortality experience.For example, for a life of age 62, the rate of mortality for a newly-selected life, given by , is less than half that of an ultimate life of the same age, given by .[]00723057.062=q 01774972.062=q From inspection of the full table, this effect becomes more pronounced as the age at selection increases.1.15.2 Constructing a select mortality tableAs discussed previously, a life table is a convenient method of summarising the information contained within the survival model.The only difference now is that the survival probabilities depend not only on age but also on duration since selection.Given the select mortality rates, , for all possible ages at selection [ and durations since selection r (where is the chosen select period) and the ultimate mortality rates, , for all possible ultimate ages (, a life table representing the select and ultimate experience can be constructed.[]r x q +]x s <s x s x q +)s +Note that, in practice, the length of the select period would usually be determined from the observed data by finding the duration since selection after which the mortality experience did not appear to differ significantly from other lives of the same age but with a lower age at selection. 24Then, the ultimate mortality rates would be based on the grouped experience of all lives of the same age after the end of the chosen select period.。

人口学4

人口学4

2 .根据事先设计好的讨论提纲,展开讨论; 3 . 6~10名与会人员具有某些共同特征或共同 经历; 4 .会议由训练有素的一个主持人、一个记录 员主持,可选一个当地助手配合; 5 .对全部发言记录、录音。
优点:



1 .可营造可信赖气氛、有助于自由发表观点; 2 .不必每个人都回答每个问题,没有压力; 3 .可以制约说谎; 4 .轻松的讨论形式,可使主持人发现末预料 的问题; 5 .较短的时间内可获得大量的信息; 6 .花费较少; 7 .获取结果较快; 8 .可为研究者、讨论者双方提供便利交流过程;

四、人口调查的作用

是获取人口资料的重要手段,同时又是 萌发人口统计学的重要基础 是认识人口现状的重要途径 是人口统计工作的重要组成部分 是实施人口科学管理的重要前提

第二节 经常性人口登记
一、经常性人口登记的意义

经常性人口登记,即户口登记或户籍登记,包括公民的 姓名、性别、出生年月、民族、文化程度、职业、职 务、婚姻状况、宗教信仰、户主(与户主的关系)、 住址等项目的登记、注销、变更、更正,是国家和地 方行政管理的一个重要方面,也是人口调查和统计制 度的一项基础性工作。
• 在此期间,俄国、巴西、印度等人口较多的国家先 后进行了人口普查,普查的范围覆盖了世界人口的 76%。(韩国1925) • 战后重建时期(1950年以来)
• 在此期间,在全世界近200个国家和地区中,约有 185个国家和地区进行人口普查,,迄今为止,没 有进行过人口普查的国家或地区,其人口仅占世界 人口的1%。
资本主义时期人口普查的三个阶段
• 资本主义发展时期(1790—1870年)

• 美国于1970年开始第一次人口普查,根据人口比例 决定各州在联邦众议院的代表席位。先后有英国、 法国(1801年)、加拿大等63个国家和地区进行过 人口普查,普查的范围覆盖世界人口的20%

人口统计学题库讲解

人口统计学题库讲解

人口统计学题库一、填空1、人口统计学的研究对象包括3个方面:人口现象的数量特征及其关系、人口再生产过程及其模式、人口发展趋势。

2、人口统计学的研究方法主要包括一般研究方法和特殊研究方法。

3、人口统计指标必须具备3个基本要素:指标名称、指标计量、指标特定范畴。

4、按照指标所反映的人口现象的时间属性不同,可分为人口静态指标和人口动态指标。

5、按照指标所反映的人口现象的规模和数量关系不同,可分为绝对数指标和相对数指标。

6、按照指标所反映的研究对象的性质不同,可分为各个不同类别的指标族。

7、人口数具有确定的时间、确定的地点和确定的人口范畴等基本特点。

8、人口数按其反映的时间范围的不同,有时点人口数和时期人口数两种表现形式。

9、平均人口数反映一个国家或地区的人口在一定时期的平均规模,是人口研究中最基础的指标之一。

1、按统计分析的目的不同,描述人口性别构成关系的基本指标有两种,即性比重和性别比1、在我国计算年龄的口径基本上有周岁年龄、确切年龄和虚岁年种1、人口年龄构成的基本指标有平均年龄、年龄中位数、年龄众数、少年儿童人口系数、老年人口数和老化指数1人口年龄结构类型是根据不同年龄的人口在总体中的比重来划分的通常采用少年儿童人口系数老年人口系数老化指数和年龄中位数个指标把人口年龄结构类型划分为年轻型成年型和老年型1、从经济标志出发来研究人口构成可将人口总体划分为在业人口和非在业人口1、根据非劳动适龄人口的年龄构成,有少年儿童人口负担系数、老年人口负担系数和总负担系种1、死亡人数常以大写英文字表示。

在统计死亡人数时,往往需要进一步分析其构成,即可根死亡人口的性别、年龄和死亡原因等分别予以统计、死亡率分析主要包括以下几个指标:粗死亡率、年龄别死亡率、婴儿死亡率17.18、在死亡分析中常同时使用两类指标,即死亡人数和死亡率,前者说明死亡的规模,后者说明死亡的速度和趋势,两者相互联系、相互补充19、婴儿死亡率是反映一个国家或地区医疗卫生条件、社会经济实力、人民生活水平以及科技发展水平的重要指标,也是衡量人口素质的重要依据之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 生育分析
一、生育水平测量指标
1、(粗)出生率 (Crude Birth Rate, CBR)
公式:CBR = B / P x 1000‰ P:Mid-year population; B:number of live births; 1000‰ 注意: live births定义:pp. 111
资料来源: 2010年世界人口数据表
世界(206个ቤተ መጻሕፍቲ ባይዱ家/地区):
2010年:最高:7.4(尼日尔 Niger);
最低:1.0 (中国澳门、香港)
中国:2010年:TFR=1.5 ( 低 高:约20+位)
6. 终生生育率(Life-Time Fertility Rate, LTFR)
出生队列总和生育率(Cohort TFR); (Completed TFR) 含义:某时期出生的妇女,实际所经历的年龄别生育
年龄别 Bf/Bt
X Bf/Bt Bf/Bt
100/205 =0.4878
计算GRR:
GRR含义:假设按该年(时期)的年龄别(女孩) 生育率生育,平均每个或每千名妇女一生生育的女 孩子数。
3、净再生育率(Net Reproductive Rate, NRR) NRR = n x ΣASFRf x Px Px: 女性从0岁生存至x 岁期间的概率; 如果每1岁为组, Px = Lx / l0 ; ( Lx / l0: 寿命表中的生存人年) 如果以5岁为组, Px = 5Lx /( l0 x 5).
2010年世界(206国家/地区):
负增长,12个国家(以欧洲国家为主,俄罗斯、保加利 亚、乌克兰等);
零增长,奥地利、意大利等7个国家; 正增长, 其余国家,最高35‰(尼日尔);
2 粗再生育率(Gross Reproductive Rate, GRR)
GRR = n x ΣASFR(f); n: 组距;
ASFR (f): age-specific fertility rate for female births;
或,GRR = n x ΣASFR x Bf / Bt 或, GRR = TFR x Bf / Bt Bf : female Births; Bt : Total births 一般,Bf / Bt = 100/205 = 0.4878
mid-year number of women aged 15 to 49;
W15-49:mid-year number of women of reproductive ages; 一般育龄妇女占总人口的约25%; 关系:CBR & GFR ? 应用: 反映育龄妇女的生育水平;
3、年龄别生育率(Age-Specific Fertility Rate, ASFR) 公式:ASFRx = Bx / Wx x 1000‰ Wx:mid-year number of women aged x; Bx:live births to women aged x;
例, pp. 207
年龄别 Bf/Bt * Px=Lx/l0
* Bf/Bt Bf/Bt * Px=Lx/5l0 * Px=Lx/5l0 * Px=Lx/5l0
计算GRR:
因为,生存至x 岁期间的概率, 平均约为0.95, 简便计算: NRR = 0.95 x n x ΣASFRf ; NRR = 0.95 x GRR = 0.95 x 100/205 x TFR
1945
1950 1955 1960 1965 1970 1975* 1980* 1985*
50.5
79.4 90.4 91.0 73.3 69.7 55.6 53.0 51.3
131.9
190.0 231.3 246.1 190.0 163.1 113.0 115.1 108.9
131.2
164.4 186.4 196.0 157.3 138.9 108.2 112.9 110.5
5、 总和生育率(Total Fertility Rate, TFR)
TFR = n x ∑ASFR
ASFR, 某年(时期)的年龄别生育率; n, 年龄组组距,一般为5;
某年某地的生育数据
年龄别
计算总和生育率=
含义:假设按该年龄别生育率生育,平均每名/每 千名妇女一生生育的孩子数。 应用:反映该年(时期)的生育水平,不受年龄构 成的影响,常用于不同国家/不同地区之间比较。
三、生育水平的变化与差别
1、欧美国家生育水平的变化
2、发展中国家生育水平的变化
3、中国生育率的变化
The Fertility Transition
Definition:


Generally defined as having started in a country when there is at least 10% decline in fertility which begins an irreversible trend downwards Said to be “completed” when replacement level fertility levels are achieved
2010年世界各国总和生育率 50 40 国家个数 30 20 10 0 其他地区 总和生育率 1 33 2 45 3 3 23 0 4 18 0 5 20 0 6 6 0 7 1 0 其他地区 北美及欧洲
北美及欧洲 43
¼º Í £ 2000Ä Ê ½ ¸ ú ׺ É Ó Â ê À ç ÷¹ Ü Í ú ý Ê 50
3.0
3.2 2.9 2.5 2.2 2.0
二、人口发展与人口再生育的测量指标
1、自然增长率(Natural Increase Rate, NIR)
NIR = CBR – CDR ; 中国:2010年:CBR=12‰;CDR=7‰;NIR=5‰ 应用:说明某年某地人口的增长或减少频率。 可反映近期人口变化。
(2)利用调查或登记得到历年的年龄别生育率 资料进行估计。 Cohort TFR = n
x
∑ASFR
Age Specific Fertility Rates(‰) for the United States:1920 to 1985 Age Period 1920 1925 1930 1935 1940 15-19 62.6 62.5 56.7 50.8 53.4 20-24 168.7 158.6 136.8 123.1 131.1 25-29 167.2 152.4 128.6 111.6 119.7 30-34 122.9 112.6 93.3 79.0 78.6 35-39 90.5 80.3 63.3 51.4 45.1 40-44 34.5 30.6 24.0 18.7 15.0 Total Fertility Rates Period 3.2 3.0 2.5 2.2 2.2 Cohort 2.5 2.3 2.3 2.4 2.7
Why: How long:
4、 平均世代间隔 (Mean Length of Generation, MLG)
ΣX· ASFRf · x P MLG = ---------------------------
ΣASFRf · x P 例:pp. 208
表示:母亲与其女儿之间平均相隔的年数, 即,平均世代间隔。
国 家 个 数
µÐ ÏÁ1 µÐ ÏÁ2
其它地区
北美及欧 洲
0
其他地 区
总和生育率
1 2 3 4 5 6 7
µÐ Ï Á 1 19 42 22 24 27 23 4 北美及 µÐ ÏÁ 欧洲 2 40 3
3、中国生育率的变化
总和生育率
1
2
3
4
5
6
7
8
1950-1998年中国总和生育率
年份
19 50 19 52 19 54 19 56 19 58 19 60 19 62 19 64 19 66 19 68 19 70 19 72 19 74 19 76 19 78 19 80 19 82 19 84 19 86 19 88 19 90 19 92 19 94 19 96
MLG
应用:反映人口变化速度,结合NRR: 如果 NRR > 1, 且MLG小,人口增长快; 如果 NRR < 1, 且MLG大,人口下降快;
二、人口发展与人口再生育的测量指标
1、 NIR (Natural Increase Rate, )
2、 GRR (Gross Reproductive Rate ) 3、NRR(Net Reproductive Rate) 4 、MLG ( Mean Length of Generation)
率之和。
反映的是过去20-30 年的生育水平
计算: (1)利用对经历过整个育龄期的妇女进行调查的资料。 LTFR = 该 年 龄 妇 女 所 生 的 活 产 数 经历过整个育龄期的某年龄妇女数 1982年 (50岁):LTFR =5.6; 2001年 (45-49岁):LTFR =2.3 (农村2.5; 城市1.5);
The Demographic Transition Definition
高出生、高死亡 、低人口增长
高出生、低死亡、高人口增长
低出生、低死亡、低人口增长
1、欧美国家生育水平的变化
Fertility transition: 开始早:began in the late 19th or early 20th century and completed by early/ mid 20th century; 起点低: GFR: around 100 ; 一致性好: 欧美型:1950-60:“baby boom” 瑞 典 型 : Fertility “baby boom” 持续、缓慢下降,无明显
相关文档
最新文档