二项式定理二项式定理的应用教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列、组合、二项式定理·二项式定理的应用·教案

教学目标

1.利用二项式定理及二项式系数的性质解决某些关于组合数的恒等式的证明;近似计算;求余数或证明某些整除或余数的问题等.

2.渗透类比与联想的思想方法,能运用这个思想处理问题.

3.培养学生运算能力,分析能力和综合能力.

教学重点与难点

数学是一门工具,学数学的目的就是为了应用.怎样建立起要解决的问题与数学知识之间的联系(如一个近似计算问题与二项式定理有没有联系,怎样联系),是这节课的难点,也是重点所在.

教学过程设计

师:我们已经学习了二项式定理及二项式系数,请大家用6分时间完成以下三道题:

(1)在(1-x3)(1+x)10的展开式中,x5的系数是多少?

(2)求(1+x-x2)6展开式中含x5的项.

(全体学生参加笔试练习)

6分钟后,用投影仪公布以上三题的解答:

(1)原式=(1+x)10-x3(1+x)10,可知x5的系数是(1+x)

(2)原式=[1+(x-x2)]6=1+6(x-x2)+15(x-x2)2+20(x-x2)3+15(x-x2)4+6(x-x2)5+(x-x2)6.

其中含x5的项为:20·3x5+15(-4)x5+6x5=6x5.

师:解(1),(2)两题运用了变换和化归思想,第(2)题把三项式化为二项式,创造了使用二项式定理的条件.

第(3)题的解法是根据恒等式的概念,a,b取任何数时,等式都成立.根据习题结构特征选择a,b的取值.这种用概念解题的思想经常使用.

下面我们看二项式定理的一些应用.

师:请同学们想一想,例1怎样解?

生甲:从结构上观察,则与练习的第(3)题有相似之处,只是组合数的系数成等

比数列,是否根据二项式定理令a=1,b=3,即可得到证明.

师:请同学们根据生甲所讲,写出证明.

(找一位同学板演)

证明:在(a+b)n的展开式中令a=1,b=3得:

师:显然,适当选取a,b之值是解这一类题的关键,再看练习题.

练习

生乙:这题与例1类比有共同点,仍是组合数的运算,不同点是缺

我考虑如能用二项式定理解,应对原题做以下变换:

师:分析得很透彻.这种敢想、会想精神是每位同学都要培养的.首先是敢字,不要一见题目有些生疏就采取放弃态度;要敢于分析,才能善于分析,将来才敢于创新,善于创新.

请大家把解题过程写在笔记本上.

(教师请一名同学板演)

在(a+b)6的展开式中令a=1,b=3,得

师:解题过程从“在(a+b)6的展开式中令a=1,b=3”写起就可以了.希望同学们再接再励,完成下个练习.

练习

师:大家议论一下,这道题能用二项式定理来解吗?

生丙:初步观察,与上节课我们学刁的:“在(a+b)n的展开式

解决.我们注意到组合数代数和的值为余弦值或正弦值,又注意到正项

…)或r=4m+1(m=0,1,2,…),负项出现在r=4m+2(m=0,1,2,…)或r =4m+3(m=0,1,2,…),而虚数单位i有以下性质:

i4m=1,i4m+1=i,i4m+2=-1,i4m+3=-i(m∈Z).

于是想在(a+b)n的展开式中令a=1,b=i.

师:分析得有道理,请同学们按生丙同学的意见进行演算.

(教师找一位同学板演)

证明:设i是虚数单位,在(a+b)n的展开式中令a=1,b=i中得:

另一方面,又有

由此得到

根据复数相等定义,有

师:认真分析习题的结构,运用类比与联想的思想方法,可以帮助我们找到解题的思路,下面我们研究二项式定理在数字计算方面的应用.

例2 计算:1.9975(精确到0.001).

生丁:这道题若用二项式定理计算,必须把1.997看作1+0.997,这样,1.9975=(1+0.997)5.

师:计算简单吗?

生戊:把1.9975化为(2-0.003)5,再展开,由于精确到0.001,不必各项都计算.

师:按生戊所谈的方法,大家在自己的笔记本上计算一下.

(教师找一位同学板演)

解:1.9975=(2-0.003)5

=25-5×24×0.003+10×23×0.0032-10×22×0.003+…

由于|T6|<|T5|<|T4|≈1.08×10-6,则|T4|+T5+T6|<0.000004.

所以1.9975≈32-0.24+0.000 72≈31.761.

师:1996年全国高考有这样一道应用题:

(用投影仪示出,老师读题)

某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?

稍候,教师问:

谁想出解法了,请讲一讲.

生己:设该地区现有人口为P人,粮食单产为M吨/公顷,耕地平均每年至多只能减少x公顷.

十年后耕地亩数:104-10x,

十年后总产量:M×(1+22%)(104-10x).

十年后人口:P×(1+1%)10,

依题意可以得到不等式

师:实际计算时,会遇到(1+0.01)10的计算问题,请全体同学在笔记本上迅速计算出来.

(教师请一同学板演)

师:真迅速啊!请同学们课下把这道高考题完成.

(答案:按规划该地区耕地平均每年至多只能减少4公顷)

现在,我们再讨论一个新的问题.

例3如果今天是星期一,那么对于任意自然数n,经过23n+3+7n+5天后的那一天是星期几?

生庚:先将此题转化为数学问题,即本题实际上寻求对于任意自然数n,23n+3+7n+5被7除的余数.

受近似计算题目启发,23n+3=8n+1=(7+1)n+1,这样可以运用

数,7n也是7的倍数,最后余数是1加上5,是6了.

师:请同学们在笔记本上完成此题的解答

(教师请一名同学板演)

解:由于23n+3+7n+5=8n+1+7n+5=(7+1)n+1+7n+5

则 23n+3+7n+5被7除所得余数为6

所以对于任意自然数n,经过23n+3+7n+5后的一天是星期日.

师:请每位同学在笔记本上完成这样一个习题:7777-1能被19整除吗?

(教师在教室内巡视,3分钟后找学生到黑板板演)

解:7777-1=(76+1)77

由于76能被19整除,因此7777-1能被19整除.

师:请生辛谈谈他怎样想到这个解法的?

相关文档
最新文档