二元一次方程组一人教版(含答案)

合集下载

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。

注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。

注:①在方程组中 相同未知数必须代表同一未知量。

②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。

例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。

人教版七年级数学下册实际问题与二元一次方程组(一)(基础) 典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册实际问题与二元一次方程组(一)(基础)  典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】实际问题与二元一次方程组(一)(基础)知识讲解责编:杜少波【学习目标】1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型;2. 熟练掌握用方程组解决和差倍分,配套,工程等实际问题.【要点梳理】要点一、常见的一些等量关系(一) 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价.要点二、实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形; 答:写出答案. 要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、和差倍分问题1.(2016•长春二模)电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【思路点拨】设茶壶的单价为x 元,茶杯的单价为y 元,根据题意可得,1个茶壶和10个茶杯共花去220元,茶壶的单价比茶杯的单价的4倍还多10元,据此列方程组求解. 【答案与解析】解:设茶壶的单价为x 元,茶杯的单价为y 元,由题意得,,解得:.答:茶壶的单价为70元,茶杯的单价为15元.【总结升华】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.举一反三: 【变式】(2015•茂名模拟)根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元 【答案】C .解:设水壶单价为x 元,杯子单价为y 元, 则有 ,解得.答:一个热水瓶的价格是45元. 类型二、配套问题2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【思路点拨】本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).【答案与解析】解:设用x 米布料做衣身,用y 米布料做衣袖才能使衣身和衣袖恰好配套.根据题意,列方程组得⎪⎩⎪⎨⎧=⨯=+y x y x 25223132解方程组得⎩⎨⎧==7260y x答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.【总结升华】生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.【:实际问题与二元一次方程组(一)409143 例2】 举一反三:【变式】某家具厂生产一种方桌,设计时13m 的木材可做50个桌面或300条桌腿.现有103m 的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 【答案】解:设有3xm 的木材生产桌面,3ym 的木材生产桌腿,由题意得,10300504x y y x +=⎧⎪⎨=⎪⎩ , 64x y =⎧∴⎨=⎩.∴方桌有50x =300(张).答:有63m 的木材生产桌面,43m 的木材生产桌腿,可生产出300张方桌. 类型三、工程问题3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件? 【思路点拨】本例由分析知,有两个相等关系:(1)甲4天的工作量+甲乙合做8天的工作量=工作总量;(2)乙4天的工作量+甲、乙合做9天的工作量=工作总量,根据这两个相等关系可列方程求解. 【答案与解析】解:设甲每天做x 个机器零件,乙每天做y 个机器零件.根据题意,得(48)88409(49)840x y x y ++=⎧⎨++=⎩,解之,得5030x y =⎧⎨=⎩.答:甲、乙两人每天做机器零件分别为50个、30个.【总结升华】解答这类问题的基本关系式是:工作量=工作效率×工作时间.工程问题一般分为两类:一类是一般的工程问题,一类是工作总量为1的工程问题. 类型四、利润问题4. (2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示: 类别/单价 成本价 销售价(元/箱) 甲 24 36 乙 33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元? 【思路点拨】(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,根据投入13800元资金购进甲、乙两种矿泉水共500箱,列出方程组解答即可; (2)总利润=甲的利润+乙的利润. 【答案与解析】 解:(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱. (2)300×(36﹣24)+200×(48﹣33) =3600+3000 =6600(元).答:该商场共获得利润6600元.【总结升华】本题考查了二元一次方程组的实际应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 【:实际问题与二元一次方程组(一)409143 例6】举一反三:【变式】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗? 【答案】解:设王师傅分别购进甲、乙两种商品x 件和y 件,则503520%2015%278x y x y +=⎧⎨⨯+⨯=⎩ 解得:3218x y =⎧⎨=⎩答:王师傅分别购进甲乙两种商品32件与18件.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

(精练)人教版七年级下册数学第八章 二元一次方程组含答案

(精练)人教版七年级下册数学第八章 二元一次方程组含答案

人教版七年级下册数学第八章二元一次方程组含答案一、单选题(共15题,共计45分)1、甲、乙、丙三辆车均在A、B两地间往返,三辆车在A、B两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A地视为第一次汇合,甲车先出发,1 小时后乙车出发,再经过2小时后丙车出发.那么丙车出发()小时后,三辆车第三次同时汇合于A地.A.50B.51C.52D.532、小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A. B. C. D.3、某县响应国家“退耕还林”号召,将一部分耕地改为林地,改还后,林地面积和耕地面积共有,耕地面积是林地面积的,设改还后耕地面积为,林地面积为,则下列方程组中正确的是A. B. C. D.4、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50B.100C.150D.2005、若是方程组的解,那么a-b的值是( )A.5B.1C.-1D.-56、如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣27、小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A.他身上的钱会不足95元B.他身上的钱会剩下95元C.他身上的钱会不足105元D.他身上的钱会剩下105元8、已知方程组:的解x,y满足x+3y≥0,则m的取值范围是()A.﹣≤m≤1B.m≥C.m≥1D.m≥﹣9、若方程组的解满足方程,则的值为()A. B. C. D.10、由方程组可得出x与y的关系是( )A.2x+y=4B.2x-y=4C.2x+y=-4D.2x-y=-411、已知关于x、y的方程组和方程组有相同的解,那么(a+b)2007的值为()A.﹣2007B.﹣1C.1D.200712、方程■x﹣2y=x+5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的()A.不可能是﹣1B.不可能是﹣2C.不可能是1D.不可能是213、把一根长的钢管截成长和长两种规格的钢管,如果保证没有余料,那么截取的方法有()A.2种B.3种C.4种D.5种14、若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是()A. B. C. D.15、解方程组时,某同学把c看错后得到,而正确的解是,那么a,b,c的值是( )A.a=4,b=5,c=2B.a,b,c的值不能确定C.a=4,b=5,c=-2D.a,b不能确定,c=-2二、填空题(共10题,共计30分)16、已知2x+3y=5,用含x的式子表示y,得:________.17、把方程3x+y-1=0写成用含x的代数式表示y的形式,则y=________.18、方程组的解中,x 与 y 的和等于 5,则 m=________.19、县城3路公交车每隔一定时间发车一次,一天小明在街上匀速行走,发现背后每隔15分钟开过来一辆公交车,而迎面每隔10分钟有一辆公交车驶来,则公交车每隔________分钟发车一次.20、二元一次方程3x+2y=15的正整数解为________21、若=0是关于x、y的二元一次方程,则a的值是________.22、已知关于x,y的二元一次方程组满足,则a的取值范围是________.23、已知是方程的一个解,则的值为________.24、二元一次方程组的解是:________ .25、在关于x,y的方程组:① :② 中,若方程组①的解是,则方程组②的解是________.三、解答题(共6题,共计25分)26、解方程组27、当k取何值时,等式的b是负数.28、将若干吨分别含铁和含铁的两种矿石混合后配成含铁的矿石70吨.求两种矿石分别需要多少吨?29、一农妇在市场卖葱,当时市场上的葱价是1.00元一斤,一葱贩对农妇说:“我想把你的葱分开来买,葱叶0.50元一斤,葱白0.50元一斤.”农妇听了葱贩的话,不假思索就把葱全部卖完.当农妇数过钱之后才发现只卖了一半钱.此时葱贩已不见踪影.聪明的你,请运用数学语言揭穿葱贩的把戏.过程如下:设总量z斤,葱叶x斤,葱白y斤,列方程∵x+y=z,∴卖给葱贩的钱为0.5x+0.5y=0.5z,而实际应卖的钱为1.0x+1.0y=1.0z,结果一目了然,那葱贩只用了一半钱就买了所有葱.(1)生活常识告诉我们,人们在吃葱的时候主要吃的是葱白,葱白应比葱叶卖的贵.假设一根葱的葱叶和葱白重量相同,葱叶和葱白的价钱之和仍是1.00元.请用数学语言说明此时农妇还是只卖了一半的钱.(2)假设一根葱的葱叶和葱白重量不同,且葱叶的重量大于葱白的重量,葱叶0.20元一斤,葱白0.80元一斤.请用数学语言说明此时农妇卖的钱少于一半.30、某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?参考答案一、单选题(共15题,共计45分)1、C2、B3、A4、C5、C6、B7、B8、D9、C10、A11、C12、C13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。

新人教版数学七年级下册期末复习(四) 二元一次方程组(含答案)

新人教版数学七年级下册期末复习(四)  二元一次方程组(含答案)

七年级下册期末复习(四) 二元一次方程组考点一 二元一次方程(组)的解的概念【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解,则2m-n 的算术平方根为( ) A.4 B.2D.±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a+=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二 二元一次方程组的解法【例2】解方程组:128.x y x y =++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩方法二:1,28.x y x y =++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩ 【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________.3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________. 考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩B.53323x y y x -==+⎧⎨⎩C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩ 2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21x y ==⎧⎨⎩,是方程组4,0ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( ) A.1,2 B.1,-2 C.-1,2 D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩ 6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( )A.8B.4C.-4D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221xyz===⎧⎪⎨⎪⎩B.211xyz===⎧⎪⎨⎪⎩C.281xyz⎧=-==⎪⎨⎪⎩D.222 xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩ 整理,得1,1.a b a b -=-+=⎧⎨⎩∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.1 5.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得 151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

人教版苏科版初中数学二元一次方程组(经典例题含答案)

人教版苏科版初中数学二元一次方程组(经典例题含答案)

班级小组姓名成绩(满分120)一、认识二元一次方程组例1.方程:①10x +=;②2x y +=;③24x =;④2x y z ++=;⑤322x y x -=;⑥1xy =;⑦154y x+=;中,属于二元一次方程的有.②⑤(两个)例1.变式1.甲班有男生x 人,女生y 人,其中男生比女生的2倍少8人,列出关于x ,y 的二元一次方程是.28x y =-例1.变式2.若22113102n m x y +--+=是关于,x y 的二元一次方程,则m =,n =.1,-1例1.变式3.下列方程组中,二元一次方程组的个数是(C)()()()()()()11112241541234562423267336x y x x y y y x x x y x y x z x y x y x y ⎧⎧+==+===+=⎧⎧⎧⎧⎪⎪⎨⎨⎨⎨⎨⎨-=+=-=+=⎩⎩⎩⎩⎪⎪+=-=⎩⎩A.1个 B.2个 C.3个 D.4个二、求解二元一次方程组(一)代入法解二元一次方程组(二)加减法解二元一次方程组例2.已知360x y +-=,用含x 的代数式表示y 为,用含y 的代数式表示x为.66,636333x xy x y y --==--或例2.变式1.解方程组:31328x y x y +=-⎧⎨-=⎩①②例2.变式2.解方程组:32725x y x y -=⎧⎨+=⎩①②()31331281,1221x y y y y y x x y =-----==-=-==⎧⎨=-⎩解:由①得 ③将③代入②得:解得:将,代入③得 则方程组的解为+1233325131x x x y y x y ===+===⎧⎨=⎩解:由①②得 4解得:将,代入②得 解得:则方程组的解为例2.变式3.长方形的周长为60cm,长和宽之差为20cm,则这个长方形的面积等于125cm².三、应用二元一次方程组——鸡兔同笼(一)列二元一次方程组解应用题例3.用一根绳子环绕一棵大树,若环绕大树4周,则绳子还多1尺;若环绕大树5周,则绳子又少3尺.设这根绳子有x 尺,环绕大树一周需要y 尺,则下列所列方程组正确的是(B)A.4153y x y x =+⎧⎨=-⎩ B.4153y x y x+=⎧⎨-=⎩ C.4153x y x y+=⎧⎨-=⎩ D.4153x y x y-=⎧⎨+=⎩例3.变式1.某车间有56名工人生产螺栓和螺母,每人每天平均生产螺栓16个或螺母24个,问怎样分配工人才能恰好使每天生产的螺栓和螺母按1∶2配套?设分配x 人生产螺栓,y 人生产螺母,依题意列方程组是(A )A.5621624x y x y+=⎧⎨⨯=⎩ B.5622416x y x y+=⎧⎨⨯=⎩ C.561624x y x y+=⎧⎨=⎩ D.562416x y x y+=⎧⎨=⎩例3.变式2.如下图,一个大长方形是由七个一样大小的小长方形拼成,已知大长方形的周长34cm,求小长方形的长和宽.()25525342.x y x y x x y y y ==⎧⎧⎨⎨++==⎩⎩∴解:设小长方形的长为 cm,宽为 cm,由题意得:解得:小长方形的长为 5 cm,宽为 2 cm 例3.变式3.8年前父亲的年龄是儿子年龄的4倍,从现在起8年后父亲的年龄成为儿子年龄的2倍,求父亲和儿子现在的年龄.解:设父亲现在的年龄是x 岁,儿子现在的年龄是y 岁,-8=4(y -8),+8=2(y +8).解得=40,=16.所以父亲现在40岁,儿子现在16岁.四、应用二元一次方程组——增收节支(一)行程问题的应用例4.某人骑摩托车从A 地到B 地,以20km/h 的速度前进.回来因有事绕道而行,因而多走了8km.这时骑车的速度比原来每小时多行2km,并且比去时多用了15分钟,求A、B 两地的距离及此人去时所花的时间.km/h 20251552286045km/h .4x y y x x y x y =⎧=⎧⎪⎪⎨⎨⎛⎫+=+= ⎪⎪⎪⎩⎝⎭⎩∴解:设A、B两地的距离为 ,去所花的时间为 小时,由题意得:解得:A、B两地的距离为 25 ,去所花的时间为 小时例4.变式1.从小华家到姥姥家,有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3km,下坡每小时行5km,他到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?解:设小华到姥姥家上坡路有xkm ,下坡路有ykm ,那么小华从姥姥家回来,需要走上坡路ykm ,下坡路xkm ,根据题意得:由①得:10x +6y =33③由②得:10y +6x =39④③×10得:100x +60y =330⑤④×6得:36x +60y =234⑥⑤﹣⑥得:x =1.5,将x =1.5代入③得:15+6y =33,∴y =3;∴,所以,小华到姥姥家有1.5km 上坡路,3km 下坡路,共有4.5km .答:姥姥家离小华家4.5km .例4.变式2.一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.解:设快车速度为x m /s ,慢车速度为y m /s .(x +y )=168+184,(x -y )=168+184,因此快车的速度为55m /s ,慢车的速度为33m /s .例4.变式3.已知某一铁路桥长1000m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1min,整列火车完全在桥上的时间为40s,求火车的长度和速度.解:设火车的长度为x m ,火车的速度为y m /s,则根据题意,得000+x =60y ,000-x =40y .=200,=20.所以火车的长度为200m ,火车的速度为20m /s .(二)工程问题的应用例5.某工厂接受一批订货,按计划规定的天数,如果每天平均生产26件,差38件不能完成任务;如果平均每天生产30件,可超额10件完成任务,则这批订货有多少件,原计划几天完成任务?26+38350301012.x y y x x y x y ==⎧⎧⎨⎨-==⎩⎩∴解:设这批订货有 件,原计划 天完成,由题意得:解得:这批订货有 350 件,原计划 12 天完成例5.变式1.零陵制衣厂某车间计划用10天时间加工一批出口童装和成人装共360件.该车间的加工能力是:每天能单独加工童装45件或成人装30件.①该车间安排几天加工童装,几天加工成人装,才能如期完成任务?②若加工一件童装可获利80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,共可获利多少元?解:①设该车间应安排x 天加工童装,y 天加工成人装,才能如期完成任务,则,解得:.答:该车间应安排4天加工童装,6天加工成人装,才能如期完成任务;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.例5.变式2.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设分配x名工人生产螺钉,y名工人生产螺母,则一天生产的螺钉数为1200x个,生产的螺母数为2000y个.根据题意,得+y=22,×1200x=2000y.+y=22,x=5y,=10,=12.所以为了使每天生产的产品刚好配套,应安排10名工人生产螺钉,12名工人生产螺母.例5.变式3.某地为了尽快排除堰塞湖险情,决定在堵塞体表面开挖一条泄流槽,经计算需挖出土石方13.4万立方米,开挖2天后,为了加快施工进度,又增调了大量的人员和设备,每天挖的土石方比原来的2倍还多1万立方米,结果共用5天完成任务,比计划时间大大提前.根据以上信息,求原计划每天挖土石方多少万立方米?增调人员和设备后每天挖土石方多少万立方米?解:设原计划每天挖土石方x万立方米,增调人员和设备后每天挖y万立方米,依据题意,可列出方程组:=2x+1,x+(5-2)y=13.4.=1.3,=3.6.所以原计划每天挖土石方1.3万立方米,增调人员和设备后每天挖3.6万立方米.(三)增收节支问题的应用例6.我校八年级一班和二班去年参加植树活动时,一班比二班多种了50棵,今年参加植树活动时,一班比去年多种了12%,二班比去年多种了15%,结果一班仍比2班多种了50棵树,一班、二班去年各种了多少棵树?()()50250112%115%50200.x y x y x x y y =+=⎧⎧⎨⎨+=++=⎩⎩∴解:一班去年种了 棵树,二班去年种了 棵树,由题意得:解得:一班去年种了 250 棵树,二班去年种了 200 棵树例6.变式1.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元.”爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%.”小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).()()()()()()()()3+2=3623150%+2120%=4515150%=150%2=3120%=120%15=18x y x y x x y y x y =⎧⎧⎨⎨++=⎩⎩++⨯++⨯解:上月萝卜的单价是 元/斤,排骨的单价是 元/斤,由题意得:解得:这天萝卜的单价是元/斤排骨的单价是元/斤例6.变式2.某工厂去年的总产值比总支出多500万元.由于今年总产值比去年增加15%,总支出比去年节约10%,因此,今年总产值比总支出多950万元.今年的总产值和总支出各是多少万元?解:设去年的总产值是x 万元,去年的总支出是y 万元,由题意,得-y =500,1+15%)x -(1-10%)y =950.=2000,=1500.所以(1+15%)x =2300,(1-10%)y =1350.所以今年的总产值是2300万元,总支出是1350万元.例6.变式3.学校书法兴趣小组准备到文具店购买A、B 两种类型的毛笔,文具店的销售方法是:一次性购买A 型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买B 型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.如果全组共有20名同学,若每人各买1支A 型毛笔和2支B 型毛笔,共支付145元;若每人各买2支A 型毛笔和1支B 型毛笔,共支付129元.这家文具店的A、B 两种类型毛笔的零售价各是多少?解:设该家文具店A 型毛笔的零售价为每支x 元,B 型毛笔的零售价为每支y元,根据题意,得x +15y +25(y -0.6)=145,x +20(x -0.4)+15y +5(y -0.6)=129.=2,=3.所以这家文具店A 型毛笔的零售价为每支2元,B 型毛笔的零售价为每支3元.五、应用二元一次方程组——里程碑上的数(一)数字问题的应用例7.一个两位数,个位数字为x ,十位数字为()2x +,则这个两位数可以表示为.()102+x x+如果将两个数字对调,则现在的两位数与原两位数的和为.2222x +例7.变式1.一个三位数,它的十位上的数字是百位上数字的3倍,个位上的数字是百位上数字的2倍,设这个三位数个位上的数字是x ,十位上的数字为y ,百位上的数字为z .(1)用含,,x y z 的代数式表示这个三位数:;10010z y x ++(2)用含z 的代数式表示这个三位数:;132z (3)写出所有满足条件的三位数:.132,264,396例7.变式2.一个两位数的十位数字与个位数字的和是8,如果这个两位数加上54,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数.+=8110+54107.x y x y x x y y x y =⎧⎧⎨⎨+=+=⎩⎩∴解:设原来的两位数十位数字为,个位数为,由题意得:解得:原来的两位数为17例7.变式3.有一个两位数,如果把这个数两个数位上的数字对调,那么所得的新数比原数小27;又若将这个两位数除以它的各位数字之和的2倍,商是3,余数是7,这个两位数是多少?()()1010=278103275.x y x y y x x x y x y y +-+⎧=⎧⎪⎨⎨+=⨯++=⎪⎩⎩∴解:设两位数十位数字为,个位数为,由题意得:解得:两位数为85六、三元一次方程组(一)三元一次方程组及其解的概念例8.三元一次方程组156x y y z z x +=⎧⎪+=⎨⎪+=⎩的解是(A )A.105x y z =⎧⎪=⎨⎪=⎩ B.124x y z =⎧⎪=⎨⎪=⎩C.104x y z =⎧⎪=⎨⎪=⎩D.410x y z =⎧⎪=⎨⎪=⎩例8.变式1.1039x y y z z x +=⎧⎪+=⎨⎪+=⎩的解为,它的解能使代数式8x my z -+的值为-16,则m =.82161x y z =⎧⎪=⎨⎪=⎩例8.变式2.解三元一次方程组232523z x yx y z x y z =+⎧⎪-+=⎨⎪+-=⎩①②③()()23254252333425223235235x y x y x y x y x y y y x y x x y z x y z -++=-=+-+===-=====+==⎧⎪∴=⎨⎪=⎩解:将①代入②得:即:将①代入③得:即:将代入得:将,代入①得:方程组的解为例8.变式3.已知()282413830x y y z x -+-+-=,求x y z ++的值.8041083021434132344x y y z x x y z x y z -=⎧⎪-=⎨⎪-=⎩⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩∴++=++=解:由题意得:解得※七、二元一次方程与一次函数(一)二元一次方程与一次函数例9.方程22x y -=的解有个,用含x 的代数式表示y 为,此时y 是x 的函数.22,y x =-无数,一次例9.变式1.函数21y x =-+与39y x =-的图象交点坐标为,这对数是方程组的解.()392,3,21y x y x =-⎧-⎨=-+⎩例9.变式2.图中的两直线1l 与2l 的交点P 的坐标可以看成是方程组的解.11222y x y x ⎧=-+⎪⎨⎪=--⎩例9.变式3.某地区一种商品的需求量1y (万件)、供应量2y (万件)与价格x (元/件)分别近似满足下列函数关系式:160y x =-+,2236y x =-.需求量为0时,即停止供应.当12y y =时,该商品的价格称为稳定价格,需求量称为稳定需求量.(1)求该商品的稳定价格与稳定需求量;(2)价格在什么范围时,该商品的需求量低于供应量?(3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴,才能使供应量等于需求量?解:(1)当12y y =时,有60236x x -+=-,解得32x =,此时326028y =-+=,即该商品的稳定价格为32元/件,稳定需求量为28万件.(2)因为“需求量为0时,即停止供应”,所以,当10y =时,有60x =.又由图象结合可知,当价格大于32元/件而小于60元/件时,该商品的需求量低于供应量;(3)设政府部门对该商品每件应提供a 元补贴.则()28460284236x x a +=-+⎧⎨+=+-⎩解得:286x a =⎧⎨=⎩所以政府部门对该商品每件应提供6元补贴.※八、用二元一次方程组确定一次函数表达式(一)用二元一次方程组确定一次函数表达式例10.已知函数3y x b =+的图象经过点(-1,2)和(a ,4),则a =.13-例10.变式1.一个一次函数的图象平行于直线2y x =-,且经过点A(-4,2),求这个函数的表达式.()()=224,224262 6.y kx b y x k b b y x +=-∴=--=-⨯-+=-∴=-- 解:设所求一次函数表达式为,它的图象平行于直线 又其图象过点由题意得:解得:所求一次函数表达式为例10.变式2.直线l 与直线21y x =+的交点的横坐标为-1,与直线2y x =-+的交点的纵坐标为1,求直线l对应的函数表达式.二元一次方程组经典例题答案第11页共11页()()1211211,121,1=1110.x y x y l y x l y x y kx b k b k k b b y x =-=+=-∴=+--=-+++==⎧⎧⎨⎨-+=-=⎩⎩∴=解:将 代入 得 ,与直线 的交点坐标为同理可以求出: 与直线 的交点坐标为设所求一次函数表达式为,解得:所求一次函数表达式为例10.变式3.一天早晨6点钟,汪老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间t(h)的关系可用下图中的折线表示,根据图示提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)求出汪老师在返校途中路程s(km)与时间t (h)的函数关系式;(3)请你用一段简短的话,对汪老师从上午6点到中午12点的活动情况进行描述.解:(1)开会地点离学校有60千米;(2)设汪老师在返校途中s 与t 的函数关系式为()0s kt b k =+≠.由图可知,图象经过点(11,60)和点(12,0),116060120720k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得:则s 与t 的函数关系式为()607201112s t t =-+≤≤(3)如:汪老师由上午6点钟从学校出发,乘车到市里开会,行了40公里时,发生了堵车,堵了约30分钟才通车,在8点钟准时到达会场开了3个小时的会,会议一结束就返校,结果在12点钟到校.(言之有理即可)。

人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案) (69)

人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案) (69)

人教版七年级数学下册第八章第一节二元一次方程组复习题(含答案)(1)计算:322-+⎭; (2)解方程组:22345x y x y ⎧+=⎪⎨⎪-=⎩. 【答案】;(2)23x y =⎧⎨=⎩. 【解析】【分析】(1)根据实数的运算法则进行运算,即可得出结论;(2)将原方程组进行化简,化简后用加减消元法求解即可得出结论.【详解】解:(1)原式=3242=+⎭13222⎛=--+ ⎝=1;(2)方程组整理得:321245x y x y +=⎧⎨-=⎩①②, ①+②×2得:11x =22,解得:x =2,把x =2代入①得:6+2y =12,解得:y =3,则方程组的解为23x y =⎧⎨=⎩. 【点睛】此题考查了实数运算和解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.82.解下列方程组:(1)y x y 4x 15=⎧+=⎨⎩; (2)5x 2y 12x 3y 4-=⎧-=-⎨⎩. 【答案】(1){x 3y 3==;(2){x 1y 2==.【解析】【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)y x y 4x 15=⎧+=⎨⎩①②, 将①代入①得x+4x=15,解得:x=3,由①知y=3,则方程组的解为{x 3y 3==;(2)5x 2y 12x 3y 4-=⎧-=-⎨⎩①②,①×3得,15x-6y=3①,①×2得,4x-6y=-8①,由①-①得11x=11,解得:x=1,把x=1代入①得y=2,则方程组的解是{x1y2==.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.83.(1)计算:9×(﹣13)2﹣|﹣8|;(2)解方程组:371 x yx y-=⎧⎨-=-⎩.【答案】(1)-5;(2)45xy=⎧⎨=⎩.【解析】【分析】(1)原式利用乘方的意义,算术平方根定义,以及绝对值的代数意义计算即可求出值;(2)方程组利用加减消元法求出解即可.【详解】解:(1)原式=1+2﹣8=﹣5;(2)371x yx y-=⎧⎨-=-⎩①②,①﹣②得:2x =8,解得:x =4,把x =4代入①得:y =5,则方程组的解为45x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.84.下列方程:①257x y +=;②21x y=+;③21x y +=;④()()28x y x y +--=;⑤210x x --=;⑥132x y x y -+=-; (1)请找出上面方程中,属于二元一次方程的是:________(只需填写序号);(2)请选择一个二元一次方程,求出它的正整数解;(3)任意选择两个二元一次方程组成二元一次方程组,并求出这个方程组的解.【答案】(1)①④⑥;(2)选择①,正整数解为:11x y =⎧⎨=⎩;(3)选择①和④,方程组的解为:199x y =-⎧⎨=⎩. 【解析】【分析】(1)根据二元一次方程的定义,即可解答;(2)根据方程求出整数解,即可解答;(3)根据二元一次方程组的解法,即可解答.【详解】解:(1)方程中,属于二元一次方程的是①④⑥,故答案为:①④⑥;(2)选择①257x y +=,则正整数解为:11x y =⎧⎨=⎩; (3)选①和①,则()()25728y x x y x y +-+=⎧-=⎪⎨⎪⎩, 整理得:73825x y x y +=⎨=+⎧⎩①②, ②×2得:2616x y +=③,③-①得:9y =,把9y =代入①得:2597x +⨯=,解得:19x =-,∴方程组的解为:199x y =-⎧⎨=⎩. 【点睛】本题考查了二元一次方程、解二一次方程组,解决本题的关键是解二元一次方程组.85.若关于x ,y 的方程组3523518x y m x y m -=⎧⎨+=-⎩的解满足x <0且y <0,求m 的范围.【答案】﹣18<m <6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m 的范围.【详解】解:3523518x y m x y m -=⎧⎨+=-⎩①②, ①+②,得:6x =3m ﹣18,解得:x =m 62-, ②﹣①,得:10y =﹣m ﹣18,解得:y =m 1810--, ∵x <0且y <0, ∴60218010m m -⎧⎪⎪⎨--⎪⎪⎩<<, 解得:﹣18<m <6.【点睛】本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.86.解方程组:(1)729y x x y =+⎧⎨-=⎩(2)324237x y x y +=⎧⎨-=⎩【答案】(1) 1623x y =⎧⎨=⎩;(2) 21x y =⎧⎨=-⎩. 【解析】(1)将第一个方程代入第二个方程消去y求出x的值,进而求出y的值,即可确定出方程组的解;(2)先用加减消元法求出x的值,再用代入法求出y的值即可.【详解】(1)729y xx y=+⎧⎨-=⎩①②,把①代入②得:2x﹣7﹣x=9,解得:x=16,把x=16代入①得:y=23,则方程组的解为:1623xy=⎧⎨=⎩;(2)324237x yx y①②+=⎧⎨-=⎩,①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为:21xy=⎧⎨=-⎩.【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.87.解方程组:21 3211 x yx y+=⎧⎨-=⎩.【答案】31 xy=⎧⎨=-⎩【解析】【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【详解】解:213211x yx y①②+=⎧⎨-=⎩,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是31xy=⎧⎨=-⎩.【点睛】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.88.(1)233x-=12x+﹣1(2)20 346 x yx y+=⎧⎨+=⎩【答案】(1)x=79(2)63xy=⎧⎨=-⎩【解析】【分析】(1) 先去分母,再去括号,最后移项,化系数为1,从而解得方程;(2) 先利用加减消元法求出y,然后利用代入法求出x即可.【详解】(1) 233x-=12x+﹣1 2(2-3x)=3(x+1)-6,4-6x=3x+3-6,-9x=-7,x=79;(2)20346x yx y+=⎧⎨+=⎩①②, ①×3-②得6y-4y=-6,解得y=-3,把y=-3代入①得x-6=0,解得x=6,所以方程组的解为63xy=⎧⎨=-⎩.【点睛】本题考查了解一元一次方程和二元一次方程组,解题的关键是熟练掌握解一元一次方程的步骤和解二元一次方程组的基本方法.89.解方程组415 323x yx y+=⎧⎨-=⎩.【答案】33 xy=⎧⎨=⎩【解析】【分析】直接利用加减消元法解方程得出答案.【详解】解:415 323, x yx y+=⎧⎨-=⎩①②①×2+②得:11x=33,解得:x=3,把x=3代入①得:12+y=15,解得:y=3,故方程组的解为33xy=⎧⎨=⎩.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.90.(阅读理解)在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组2()3 +1x x yx y++=⎧⎨=⎩①②(2)已知432109+7525x y zx y z①②++=⎧⎨+=⎩,求x+y+z的值解:(1)把②代入①得:x+2×1=3.解得:x=1.把x=1代入②得:y=0.所以方程组的解为1xy=⎧⎨=⎩,(2)①×2得:8x+6y+4z=20.③②﹣③得:x+y+z=5.(类比迁移)(1)若133523x y zx y z++=⎧⎨++=⎩,则x+2y+3z=.(2)解方程组22025297x yx yy--=⎧⎪⎨-++=⎪⎩①②(实际应用)打折前,买39件A商品,21件B商品用了1080元.打折后,买52件A商品,28件B商品用了1152元,比不打折少花了多少钱?【答案】【类比迁移】(1)18;(2)34xy=⎧⎨=⎩;【实际应用】比不打折少花了288元.【解析】【分析】(1)133523x y zx y z++=⎧⎨++=⎩中的两式相加再除以2即可得出答案;(2)先对①移项得到2x﹣y=2,再将2x﹣y=2带入②,即可求出答案;【实际应用】设打折前A商品每件x元,B商品每件y元,由题意得:39x+21y=1080,即可求出答案.【详解】(1)133523x y zx y z++=⎧⎨++=⎩①②,(①+②)÷2,得:x+2y+3z=18.故答案为:18.(2)22025297x yx yy--=⎧⎪⎨-++=⎪⎩①②,由①得:2x﹣y=2③,将③代入②中得:1+2y=9,解得:y=4,将y=4代入①中得:x=3.∴方程组的解为34xy=⎧⎨=⎩.(实际应用)设打折前A商品每件x元,B商品每件y元,根据题意得:39x+21y=1080,即13x+7y=360,将两边都乘4得:52x+28y=1440,1440﹣1152=288(元).答:比不打折少花了288元.【点睛】本题考查解二元一次方程组和二元一次方程组的应用,解题的关键是掌握解二元一次方程组的方法和根据题意列二元一次方程组.。

(人教版)沈阳七年级数学下册第八单元《二元一次方程组》经典题(含答案解析)

(人教版)沈阳七年级数学下册第八单元《二元一次方程组》经典题(含答案解析)

一、选择题1.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的()A.23倍B.32倍C.2倍D.3倍B解析:B【分析】设一个苹果的重量为x,一个香蕉的重量为y,一个砝码的重量为a,根据两个图形建立方程组,再解方程组即可得.【详解】设一个苹果的重量为x,一个香蕉的重量为y,一个砝码的重量为a,由图得:2432x ay a x=⎧⎨=+⎩,解得243x ay a=⎧⎪⎨=⎪⎩,则23423x ay a==,即一个苹果的重量是一个香蕉的重量的32倍,故选:B.【点睛】本题考查了二元一次方程组的实际应用,依据题意,正确建立方程组是解题关键.2.如果2x3n y m+4与-3x9y2n是同类项,那么m、n的值分别为()A.m=-2,n=3 B.m=2,n=3 C.m=-3,n=2 D.m=3,n=2B 解析:B【分析】根据同类项的定义可得关于m、n的方程组,解方程组即可求出答案.【详解】解:由题意得:3942nm n=⎧⎨+=⎩,解得:23mn=⎧⎨=⎩.故选:B.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题型,熟练掌握基本知识是解题的关键.3.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5C解析:C【解析】∵2x+1·4y=128,27=128,∴x+1+2y=7,即x+2y=6.∵x,y均为正整数,∴22xy=⎧⎨=⎩或41xy=⎧⎨=⎩∴x+y=4或5.4.已知代数式x a﹣b y2与xy2a+b是同类项,则a与b的值分别是()A.a=0,b=1 B.a=2,b=1 C.a=1,b=0 D.a=0,b=2C 解析:C【分析】根据同类项的定义可得关于a、b的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a ba b-=⎧⎨+=⎩,解得:1ab=⎧⎨=⎩.故选:C.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.5.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是()A.5253x yx y+=⎧⎨+=⎩B.5352x yx y+=⎧⎨+=⎩C.5352x yx y+=⎧⎨=+⎩D.5=+352x yx y⎧⎨+=⎩B解析:B【分析】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组.【详解】设一个大桶盛酒 x 斛,一个小桶盛酒 y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩,故选B.【点睛】根据文字转化出方程条件是解答本题的关键.6.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( ) A .m=1,n=0 B .m=0,n=1C .m=2,n=1D .m=2,n=3C解析:C 【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可. 【详解】 解:根据题意,得121m n m n -=⎧⎨+-=⎩,解得21m n =⎧⎨=⎩. 故选:C .7.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③ B .①③C .②③D .①②A解析:A 【分析】根据二元一次方程组的解法逐个判断即可. 【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+=解得10k =,则结论②正确解方程组356310x yx ky+=⎧⎨+=⎩得:20231545xkyk⎧=-⎪⎪-⎨⎪=⎪-⎩又k为整数x、y不能均为整数∴结论③正确综上,正确的结论是①②③故选:A.【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.8.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x岁,小红今年y岁”,根据题意可列方程为()A.449x y yx y x-=+⎧⎨-=+⎩B.449x y yx y x-=+⎧⎨-=-⎩C.449x y yx y x-=-⎧⎨-=+⎩D.449x y yx y x-=-⎧⎨-=-⎩D解析:D【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.9.小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页.若小明、小颖平均每天分别阅读x页、y页,则下列方程组正确的是()A.485210x yy x-=⎧⎨=-⎩B.485210x yy x+=⎧⎨=+⎩C.458210x yy x=-⎧⎨=-⎩D.458210x yy x=+⎧⎨=+⎩A解析:A【分析】设小明、小颖平均每天分别阅读x页、y页,根据“小明4天里阅读的总页数比小颖5天里阅读的总页数多8页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页”得到两个等量关系,即可求解.【详解】解:设小明、小颖平均每天分别阅读x 页、y 页,根据题意可得:485210x yy x -=⎧⎨=-⎩,故选:A . 【点睛】本题考查列二元一次方程组,根据题意找出等量关系是解题的关键. 10.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( )A .32-B .32C .2-D .2A解析:A 【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得.【详解】由题意得:2215m -+⨯=, 解得32m =-, 故选:A . 【点睛】本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键.二、填空题11.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两解析:140 【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +, 从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+,()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+, 解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140. 【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键.12.若2(321)4330x y x y -++--=,则x y -=_____.4【分析】根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出xy 的值再代入原式中即可【详解】解:∵∴①×3-②×2得把代入①得解得∴故答案为:4【点睛】本题考查了非负数的性质及二元一次方解析:4 【分析】根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值,再代入原式中即可. 【详解】解:∵2(321)4330x y x y -++--=,∴32104330x y x y -+=⎧⎨--=⎩①②,①×3-②×2得,9x =-,把9x =-代入①得,27210y --+=, 解得13y =-, ∴9134x y -=-+=. 故答案为:4. 【点睛】本题考查了非负数的性质及二元一次方程组的解法.注意:几个非负数的和为零,则每一个数都为零.13.一天,小明从家出发匀速步行去学校上学,几分钟后,在家休假的爸爸发现小明忘带数学作业,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路回家(爸爸追上小明时交流时间忽略不计).小明拿到书后立即提速14赶往学校,并在从家出发后23分钟到校,两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.2080【分析】设小明原速度为(米/分钟)爸爸行进速度为(米/分钟)则小明拿到书后的速度为(米/分钟)然后根据题意和图形列二元一次方程组解答即可【详解】解:设小明原速度为(米/分钟)爸爸行进速度为(解析:2080 【分析】设小明原速度为x (米/分钟),爸爸行进速度为y (米/分钟),则小明拿到书后的速度为1.25x (米/分钟),然后根据题意和图形列二元一次方程组解答即可. 【详解】解:设小明原速度为x (米/分钟),爸爸行进速度为y (米/分钟),则小明拿到书后的速度为1.25x (米/分钟),则家校距离为()112311 1.2526x x x +-⨯=. 由题意及图形得:()()()1116111611 1.251380x y x y ⎧=-⎪⎨-⨯+=⎪⎩, 解得:80x =,176y =∴小明家到学校路程为:8011100122080⨯+⨯=(米). 故答案为:2080. 【点睛】本题主要考查了二元一次方程组的应用,审清题意、设出未知数、明确等量关系、列出二元一次方程组是解答本题的关键. 14.关于,x y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是41x y =⎧⎨=⎩,则关于,x y 的方程组111222(1)()2(1)()2a x b y c a x b y c -+-=⎧⎨-+-=⎩的解是_____________.【分析】将代入与得到再将①与结合即可求解【详解】解:将代入得:将①代入得∴x-1=8-y=2∴x=9y=-2∴方程组的解是故答案为:【点睛】本题考查了二元一次方程组的解熟练掌握二元一次方程组的解的定解析:92x y =⎧⎨=-⎩【分析】 将41x y =⎧⎨=⎩代入111222a x b y c a x b y c +=⎧⎨+=⎩,与得到11122244a b c a b c +=⎧⎨+=⎩①②,再将①与111(1)()2a x b y c -+-=结合,即可求解.【详解】解:将41x y =⎧⎨=⎩代入111222a x b y c a x b y c +=⎧⎨+=⎩得:11122244a b c a b c +=⎧⎨+=⎩①② , 将①代入111(1)()2a x b y c -+-=得111111(1)()2(4)82a x b y a b a b -+-=+=+, ∴x-1=8,11()2b y b -=,-y=2, ∴x=9,y=-2,∴方程组111222(1)()2(1)()2a x b y c a x b y c -+-=⎧⎨-+-=⎩的解是92x y =⎧⎨=-⎩.故答案为:92x y =⎧⎨=-⎩.【点睛】本题考查了二元一次方程组的解,熟练掌握二元一次方程组的解的定义是解题的关键. 15.甲、乙两码头相距180km ,某轮船从甲码头顺流航行到乙码头需要5h ,返回时需要6h ,那么这条河的水流速度是________.【分析】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意列二元二次方程组并求解即可得到答案【详解】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意得:即①-②得:∴即这条河的 解析:3/km h【分析】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h ,根据题意列二元二次方程组并求解,即可得到答案. 【详解】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h根据题意得:18051806 y xy x⎧+=⎪⎪⎨⎪-=⎪⎩即3630 y xy x+=⎧⎨-=⎩①②①-②,得:23630x=-∴3x=即这条河的水流速度是3/km h故答案为:3/km h.【点睛】本题考查了二元二次方程组的知识;解题的关键是熟练掌握二元二次方程组的性质,并运用到实际问题中,从而完成求解.16.已知方程组32223x y mx y m+=+⎧⎨+=⎩的解适合8x y+=,则m=_______.19【分析】将m看做已知数表示出x与y代入x+y=8中计算即可求出m的值【详解】解:得5x=m+6即得:-5y=4-m即代入x+y=8中得:去分母得:2m+2=40解得:m=19故答案为:19【点睛解析:19【分析】将m看做已知数表示出x与y,代入x+y=8中计算即可求出m的值.【详解】解:322 23x y mx y m++⎧⎨+⎩=①=②32⨯-⨯①②得5x=m+6,即65mx+ =23⨯-⨯①②得:-5y=4-m,即45my-=代入x+y=8中,得:648 55m m+-+=去分母得:2m+2=40,解得:m=19.故答案为:19【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.如图,在两个形状、大小完全相同的大长方形内放入四个如图③的小长方形后得到如图①、②,已知大长方形的长为m ,则(1)若记小长方形的长为a ,宽为()b a b >,则a 和b 之间的数量关系是_________;(2)图①中阴影部分的周长与图②中阴影部分的周长的和是________(结果用含m 的代数式表示).【分析】(1)根据图①可得两个小长方形的宽等于一个小长方形的长由此即可得;(2)先根据图①可得从而可得再分别求出图①与图②中阴影部分的周长然后根据整式的加法法则进行求和即可得【详解】(1)由图①得:解析:2a b = 112m 【分析】(1)根据图①可得两个小长方形的宽等于一个小长方形的长,由此即可得;(2)先根据图①可得2a b m +=,从而可得,24m ma b ==,再分别求出图①与图②中阴影部分的周长,然后根据整式的加法法则进行求和即可得. 【详解】(1)由图①得:2a b =;(2)由图①得:22a ba b m =⎧⎨+=⎩,解得24m a m b ⎧=⎪⎪⎨⎪=⎪⎩,图①中阴影部分的周长为()52242m b m m m ⎛⎫+=+=⎪⎝⎭, 图②中阴影部分的周长为()3223223244m m m m a b b m m ⎛⎫-++=-++= ⎪⎝⎭, 则图①中阴影部分的周长与图②中阴影部分的周长的和是511322m m m +=, 故答案为:2a b =,112m . 【点睛】本题考查了二元一次方程组的应用、整式的加减应用,依据图形,正确建立方程组和列出整式是解题关键.18.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________528【分析】分别将x=1和x=-1代入得到两个等式再用①-②整理即可得出的值【详解】解:当x=1时①当x=-1时②①-2得:即故答案为:528【点睛】本题主要考查了代数式求值和加减消元法的应用取x 解析:528【分析】分别将x=1和x=-1代入得到两个等式,再用①-②整理即可得出035a a a ++的值.【详解】解: 当x=1时,5432032a a a a a =++++ ①,当x=-1时,543201024a a a a a -=-+-+- ②,①-2得:5301056222a a a =++,即035++=528a a a .故答案为:528.【点睛】本题主要考查了代数式求值和加减消元法的应用.取x 的特殊值代入是解答此题的关键. 19.130+-++=x y y ,则x y -=________.7【分析】由绝对值的性质可以得到关于xy 的二元一次方程解方程求得xy 的值后即可算出x-y 的值【详解】解:由题意得:解之得:故答案为7【点睛】本题考查绝对值的应用理解绝对值为非负数的性质是解题关键解析:7【分析】由绝对值的性质可以得到关于x 、y 的二元一次方程,解方程求得x 、y 的值后即可算出x-y 的值.【详解】解:由题意得:1030x y y +-=⎧⎨+=⎩,解之得: 43x y =⎧⎨=-⎩,()437x y ∴-=--=, 故答案为7.【点睛】本题考查绝对值的应用,理解绝对值为非负数的性质是解题关键.20.如果28a b --与()21a b ++互为相反数,那么a b =________.9【分析】由题意可知得到二元一次方程组并求解即可【详解】解:∵与互为相反数∴∴解得∴故答案为:9【点睛】本题考查相反数之和为0绝对值的非负性二元一次方程组等根据题意列出二元一次方程组是解题的关键解析:9【分析】由题意可知()20281a b a b --+++=,得到二元一次方程组并求解即可.【详解】解:∵28a b --与()21a b ++互为相反数, ∴()20281a b a b --+++=, ∴28010a b a b --=⎧⎨++=⎩,解得23a b =⎧⎨=-⎩, ∴()239a b =-=, 故答案为:9.【点睛】本题考查相反数之和为0,绝对值的非负性,二元一次方程组等,根据题意列出二元一次方程组是解题的关键.三、解答题21.某环卫公司通过政府采购的方式计划购进一批A ,B 两种型号的新能源汽车据了解,2辆A 型汽车和3辆B 型汽车的进价共计80万元;3辆A 型汽车和2辆B 型汽车的进价共计95万元.(1)求A ,B 两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B 种型号的新能源汽车数量多于A 种型号的新能源汽车数量,请直接写出该公司的采购方案.解析:(1)A ,B 两种型号的汽车每辆进价分别为25万元,10万元;(2)购进A 型号的新能源汽车2台,B 型号的新能源汽车15台;购进A 型号的新能源汽车4台,B 型号的新能源汽车10台【分析】(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,根据“2辆A 型汽车、3辆B 型汽车的进价共计80万元, 3辆A 型汽车、2辆B 型汽车的进价共计95万元”,列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,根据总价=单价×数量,即可得出关于m ,n 的二元一次方程,结合m ,n 均为正整数即可得出各购买方案 .【详解】解:(1)设A ,B 两种型号的汽车每辆进价分别为x 万元,y 万元.依题意,列出的方程组为23803295x y x y +=⎧⎨+=⎩, 解这个方程组,得2510x y =⎧⎨=⎩. 答:A ,B 两种型号的汽车每辆进价分别为25万元,10万元.(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,m<n ,依题意,得:25m+ 10n=200,∴m=8-25n ∵m ,n 均为正整数,∴n 为5的倍数,∴m=6,n=5或m=4,n=10或m=2,n=15,∵m<n,∴m=6,n=5不合题意舍去,∴共2种购买方案方案一:购进A 型车4辆,B 型车10辆;方案二:购进A 型车2辆,B 型车15辆.答:购进A 型号的新能源汽车2台,B 型号的新能源汽车15台;购进A 型号的新能源汽车4台,B 型号的新能源汽车10台.【点睛】本题考查了二元一次方程组的运用以及二元一次方程的综合应用,解题的关键是找准等量关系,正确列出二元一次方程(组).22.有一片牧场原有的草量为akg ,草每天都匀速地生长,这片牧场每天牧草的生长量都为kg m .若在其上放牧24头牛,则6天吃完牧草.若放牧21头牛,则8天吃完牧草.若每头牛每天吃草的量也都是相等的,设每头牛每天吃草的量为kg x .问:(1)放牧24头牛,6天所吃的牧草量用含a ,m 的代数式表示为______kg ;放牧21头牛,8天所吃的牧草量用含a ,m 的代数式表示为______kg ;(2)试用x 表示a ,m ;(3)若放牧16头牛,则几天可以吃完牧草?解析:(1)()6a m +,()8a m +;(2)7212a x m x =⎧⎨=⎩;(3)若放牧16头牛,18天可以吃完牧草.【分析】(1)根据牧场原有的草量为akg ,每天牧草的生长量都为kg m 可解得本题;(2)根据“24头牛,6天所吃的牧草量相等”及“21头牛,8天所吃的牧草量相等”列出方程组求解即可;(3)设16头牛y 天可以吃完牧草,根据“16头牛y 天所吃的牧草量相等”列式求解即可.【详解】解:(1)放牧24头牛,6天所吃的牧草量为()6a m +kg ,放牧21头牛,8天所吃的牧草量为()8a m +;(2)由题意,得6246,8218.a m x a m x +=⨯⎧⎨+=⨯⎩解得72,12.a x m x =⎧⎨=⎩(3)设16头牛y 天可以吃完牧草,根据题意,得16a ym xy +=.即721216x xy xy +=.解得18y =.答:若放牧16头牛,18天可以吃完牧草.【点睛】本题考查了方程的应用,理解题意,找准等量关系是解题的关键.23.放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和卡通笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元.(1)求笔记本的单价和单独购买一支签字笔的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,小贤还剩2元钱,小艺还剩1元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.解析:(1)签字笔2元/支,笔记本3元/本.(2)见解析【分析】(1)设签字笔x 元/支,笔记本y 元/本,根据“小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)合买一盒签字笔,先求出两人带的总钱数,再算出两人合在一起购买签字笔和笔记本的总钱数,进而可得出它们合在一起购买签字笔和笔记本后剩余的钱数,剩余的钱数就可以再买两件小工艺品.【详解】(1)设签字笔x 元/支,笔记本y 元/本,依题意可得3212615x y x y +=⎧⎨+=⎩, 解得:23x y =⎧⎨=⎩, ∴签字笔2元/支,笔记本3元/本.(2)合买一盒签字笔,购买前:小贤有12214+=(元),小艺有15116+=(元),总共30元.由于整盒购买比单只购买每支可优惠0.5元,因此,小贤和小艺可一起购买整盒签字笔,费用为15元,3本笔记本费用为9元,2件工艺品需6元,总共需30元,∴他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.还多一只签字笔.【点睛】本题考察了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.如果(a ﹣2)x +(b +1)y =13是关于x ,y 的二元一次方程,则a ,b 满足什么条件? 解析:a ≠2,b ≠﹣1【分析】根据二元一次方程含有两个未知数可知a ﹣2≠0,b+1≠0,即可求出a ,b 所满足的条件.【详解】解:∵(a ﹣2)x +(b +1)y =13是关于x ,y 的二元一次方程,∴a ﹣2≠0,b +1≠0,∴a ≠2,b ≠﹣1.【点睛】此题考查了二元一次方程的定义:即含有两个未知数的方程,根据定义求参数满足的条件,难度一般.25.若方程12225m n m n x y --+-+=是二元一次方程,求m ,n 的值.解析:m=53,n=﹣13. 【分析】根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,列出等式,即可求解.【详解】解:根据题意,得 11221m n m n --=⎧⎨+-=⎩, 解得53m =,13n =-. 【点睛】本题考查了二元一次方程组的概念以及解方程组,明确二元一次方程的定义是解题的关键.26.解方程组:(1)2122x y x y y -=-⎧⎨-=-⎩(2)3242+37x y x y -=⎧⎨=⎩解析:(1)11x y =⎧⎨=⎩;(2)21x y =⎧⎨=⎩【分析】(1)利用加减法解方程组;(2)利用加减法解方程组.【详解】(1)2122x y x y y -=-⎧⎨-=-⎩①②, ②-①得,y=3-2y ,解得y=1,将y=1代入①,解得x=1,∴方程组的解是11x y =⎧⎨=⎩ ; (2)3242+37x y x y -=⎧⎨=⎩①②, 32⨯+⨯①②得,13x=26,解得x=2,将x=2代入①,得6-2y=4,解得y=1,∴方程组的解是21x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握方程组的解法:代入法和加减法的解法是解题的关键.27.若方程组 4x y a x y a+=⎧⎨-=⎩的解是二元一次方程35900x y --=的一个解,求a 的值. 解析:6a =【分析】求出方程组 4x y a x y a +=⎧⎨-=⎩的解,代入35900x y --=即可求出a 的值. 【详解】解:4x y a x y a +=⎧⎨-=⎩①②, ①+②得:25x a =,即25x a =.,把25x a =.代入①得:15y a =-., 把25x a =.,15y a =-.代入方程, 得:7575900a a +-=..,解得:6a =.【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.28.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩和2333211ax by x y +=⎧⎨+=⎩的解相同,求()20203a b +的值.解析:()202031a b +=【分析】 根据两方程的解相同可得方程组2333211x y x y -=⎧⎨+=⎩,解方程组得x 、y 的值,再代入原方程组中得关于a 、b 的方程组,解之可得a 、b 的值,代入所求代数式中求解即可.【详解】解:由题意可得2333211x y x y -=⎧⎨+=⎩,,解得31x y =⎧⎨=⎩,,将31x y =⎧⎨=⎩,代入1233ax by ax by +=-⎧⎨+=⎩,,得31633a b a b +=-⎧⎨+=⎩,,解得25a b =-⎧⎨=⎩,,∴ ()()202020203651a b +=-+=.【点睛】 本题考查解二元一次方程组、代数式求值,熟练掌握二元一次方程组的解法,根据题意得到方程组2333211x y x y -=⎧⎨+=⎩是解答的关键.。

人教版初中七年级数学下册第八单元《二元一次方程组》(含答案解析)

人教版初中七年级数学下册第八单元《二元一次方程组》(含答案解析)

一、选择题1.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( ) A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩ B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩ D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩ A 解析:A【分析】 根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组. 2.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或5C解析:C【解析】∵2x +1·4y =128,27=128,∴x +1+2y =7,即x +2y =6.∵x ,y 均为正整数, ∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩ ∴x +y =4或5.3.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t = C解析:C【分析】运用加减消元法求解即可.【详解】 解:解方程组232261s t s t +=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1), 即,9t=3,故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键. 5.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x 只,树有y 棵,由题意可列方程组( )A .3551y x y x +=⎧⎨-=⎩B .3551y x y x -=⎧⎨=-⎩C .15355x y y x ⎧+=⎪⎨⎪=-⎩D .5315x y x y -⎧=⎪⎪⎨⎪=-⎪⎩ D 解析:D根据“三个坐一棵,五个地上落;五个坐一棵,闲了一棵树”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设乌鸦有x只,树有y棵,依题意,得:5315xyxy-⎧=⎪⎪⎨⎪=-⎪⎩.故选:D.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.2256x yx y+=⎧⎨=⎩B.2265x yx y+=⎧⎨=⎩C.22310x yx y+=⎧⎨=⎩D.22103x yx y+=⎧⎨=⎩A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②A解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】 当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+= 解得10k =,则结论②正确 解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数 x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③故选:A .【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键. 8.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =- C解析:C将x 看做常数移项求出y 即可得.【详解】由2x-y=3知2x-3=y ,即y=2x-3,故选C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .9.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( ) A .2-B .2C .6-D .6C解析:C【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值.【详解】 2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-,∴()39336x y x y +=+=-,故选:C .【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键.10.方程组320x y x y +=⎧⎨-=⎩的解是( ) A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .30x y =⎧⎨=⎩ B 解析:B【分析】二元一次方程组的求解方法有两种:(1)加减消元法;(2)代入消元法,此题用加减消元法求解更为简便;【详解】 ∵320x y x y +=⎧⎨-=⎩①② , ①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为12x y =⎧⎨=⎩,【点睛】本题考查了二元一次方程组的解法,正确利用加减消元法求解是解题的关键.二、填空题11.重庆某快递公司规定:寄件不超过1kg 的部分按起步价计费,超过1kg 不足2kg ,按照2kg 收费;超过2kg 不足3kg 按照3kg 收费,以此类推.某产家分别寄快递到重庆市内和北京,其中,寄往重庆市内的起步价为a 元,超过部分b 元/kg ;寄往北京的起步价为()7a +元,超过部分()4b +元/kg .已知一个寄往重庆市内的快件,质量为2kg ,收费13元;一个寄往北京的快件,质量为4.5kg ,收费42元.如果一个寄往北京的快件,质量为2.8kg ,应收费______元.30【分析】根据分别寄快递到上海和北京的快递质量和费用即可得出关于ab 的二元一次方程组解之然后根据28kg 按照3kg 收费即可得出应收费【详解】解:依题意得:解得寄往北京市快件重28kg 按照3kg 收费解析:30【分析】根据分别寄快递到上海和北京的快递质量和费用,即可得出关于a ,b 的二元一次方程组,解之,然后根据2.8kg 按照3kg 收费即可得出应收费.【详解】解:依题意,得:137(51)(4)42a b a b +=⎧⎨++-+=⎩, 解得112a b =⎧⎨=⎩, 寄往北京市快件重2.8kg 按照3kg 收费,应收费:7(31)(4)1172(24)30a b ++-+=++⨯+=元,故答案为:30.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两 解析:140【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+, ()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+, 解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140.【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键. 13.若1,3x y =-⎧⎨=⎩是关于x ,y 的二元一次方程组5,x y m x my n +=⎧⎨-=⎩的解,则n 的值为______.5【分析】将代入方程组求解即可【详解】将代入方程组得解得故答案为:5【点睛】此题考查二元一次方程组的解解二元一次方程组正确计算是解题的关键 解析:5【分析】将13x y =-⎧⎨=⎩代入方程组求解即可. 【详解】 将13x y =-⎧⎨=⎩代入方程组5x y m x my n +=⎧⎨-=⎩,得 213m m n =-⎧⎨--=⎩解得25m n =-⎧⎨=⎩, 故答案为:5.【点睛】此题考查二元一次方程组的解,解二元一次方程组,正确计算是解题的关键.14.已知37m m n x y +-与653x y 是同类项,则m n -=_______.【分析】先根据同类项的定义可得mn 的值再代入计算即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了同类项二元一次方程组的应用熟练掌握同类项的定义是解题关键解析:1-【分析】先根据同类项的定义可得m 、n 的值,再代入计算即可得.【详解】由题意得:365m m n =⎧⎨+=⎩, 解得23m n =⎧⎨=⎩, 则231m n -=-=-,故答案为:1-.【点睛】本题考查了同类项、二元一次方程组的应用,熟练掌握同类项的定义是解题关键. 15.为落实习总书记“绿水青山就是金山银山”的发展理念,我区府部门决定由甲、乙、丙三个工程队负责完成一条总工作量为a 的公园改造的施工任务.经过一段时间,甲、乙、丙三个工程队完成的工程量之比是3:4:5为更合理的分任务,经测算,将剩余工程量的916交给了丙队,其余工程量由甲、乙两个工程队共同完成,乙工程队再工作一段时间后因另有任务先离开.工程结束时发现,丙队完成的工程量占总工程量的1940,甲、乙两队完成其余工程的工程量之比为4:3.则乙队完成的工程量与总工程量之比是:______.【分析】设一开始甲乙丙三个工程队完成的工程量为b 则剩余工程量为a-b 然后表示出丙队完成的工程量根据丙队完成的工程量占总工程量的列出等式从而得到a 与b 的数量关系再表示出乙队完成的工程量把a 与b 的数量关解析:11:40.【分析】设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b ,然后表示出丙队完成的工程量,根据丙队完成的工程量占总工程量的1940列出等式,从而得到a 与b 的数量关系,再表示出乙队完成的工程量,把a 与b 的数量关系代入计算即可.【详解】解:设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b ,∴丙队完成的工程量为()951612a b b -+, ∴()9519161240a b b a -+=, 解得,35b a =, 乙队一开始完成的工程量为412b ,后来完成的工程量为()()73316716a b a b -⨯=-, ∴乙队完成的工程量为()43433311121612516540b a b a a a a ⎛⎫+-=⨯+-= ⎪⎝⎭, ∴乙队完成的工程量与总工程量之比是11:40.故答案是:11:40.【点睛】本题考查工程问题,考查学生分析解决问题的能力,正确求出一开始完成的工程量与总工程量的数量关系是关键.16.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.【分析】设松鹤长春欢乐远长健康长寿三种花束的销量分别为:(单位:束)再分别求解一束松鹤长春欢乐远长健康长寿的单价根据重阳节当天销售这三种花束共2549元其中百合花的销售额为458元列方程组再求解剑兰解析:216.【分析】设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束),再分别求解一束“松鹤长春”“欢乐远长”“健康长寿”的单价,根据重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,列方程组,再求解剑兰的销量:22y z +,即可得到答案.【详解】解:设“松鹤长春”“欢乐远长”“健康长寿”三种花束的销量分别为:,,x y z (单位:束), 由题意可得:一束“松鹤长春”的单价为:318+16=204⨯⨯(元), 一束“欢乐远长”花束的单价为:316+16+52=284⨯⨯⨯(元), 一束“健康长寿”花束的单价为:314+12+25=234⨯⨯⨯(元),8644582028232549x y z x y z ++=⎧∴⎨++=⎩①② ②2⨯-①5⨯得:40564640302050982290,x y z x y z ++---=-26262808,y z ∴+=108,y z ∴+=22216,y z ∴+=即剑兰的销量为:216枝.故答案为:216.【点睛】本题考查的是三元一次方程组的应用,利用整体法求解方程组中的量是解题的关键. 17.一个两位数,交换个位与十位的数字之后,新得到的两位数比原数小63,则原来的两位数是________________.81或92【分析】结合题意设原来的两位数十位数字为x 个位数字为y 根据新得到的两位数比原数小63进行分析即可得到答案【详解】设原来的两位数十位数字为x 个位数字为y 根据题意得:∴∵一个两位数交换个位与十解析:81或92【分析】结合题意,设原来的两位数,十位数字为x ,个位数字为y ,根据新得到的两位数比原数小63进行分析,即可得到答案.【详解】设原来的两位数,十位数字为x ,个位数字为y根据题意得:()101063x y y x +-+=∴7x y -=∵一个两位数,交换个位与十位的数字之后,新得到的两位数比原数小63∴6x >当7x =时,0y =,即原两位数为:70,新得到的为:7,不是两位数,故不符合题意; 当8x =时,1y =,即原两位数为:81,新得到的为:18;当9x =时,2y =,即原两位数为:92,新得到的为:29;故答案为:81或92.【点睛】本题考查了二元一次方程的应用;解题的关键是熟练掌握用代数式表示两位数,从而完成求解.18.已知,方程12230a b x y -+-+=是关于,x y 的二元一次方程,则a b +=________.1【分析】利用二元一次方程的定义得出关于的方程解方程并代入代数式即可【详解】∵方程是关于的二元一次方程∴解得∴故答案为:1【点睛】本题考查了二元一次方程的定义熟练掌握二元一次方程的定义是解本题的关键【分析】利用二元一次方程的定义得出关于a ,b 的方程,解方程并代入代数式即可.【详解】∵方程12230a b x y -+-+=是关于x ,y 的二元一次方程,∴11a -=,21b +=,解得2a =,1b =-,∴211a b +=-=.故答案为:1.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键. 19.若方程2(3)31a a x y --+=是关于x ,y 的二元一次方程,则a 的值为_____.-3【分析】根据二元一次方程的定义:含有两个未知数并且含有未知数的项的次数都是1像这样的方程叫做二元一次方程可得|a|-2=1且a-3≠0再解即可【详解】解:由题得解得a=-3故答案为:-3【点睛】解析:-3【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程可得|a|-2=1,且a-3≠0,再解即可.【详解】 解:由题得,2130a a ⎧-⎨-≠⎩= , 解得a=-3,故答案为:-3.【点睛】本题考查了二元一次方程的定义.二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.20.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是______.【分析】先将所求的方程组变形为然后根据题意可得进一步即可求出答案【详解】解:由方程组可得∵关于xy 的二元一次方程组的解是∴解得故答案为【点睛】本题考查了二元一次方程组的解法正确理解题意合理变形得出是解析:105x y =⎧⎨=⎩先将所求的方程组变形为11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩,然后根据题意可得365225x y ⎧=⎪⎪⎨⎪=⎪⎩,进一步即可求出答案.【详解】解: 由方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可得11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩, ∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩, ∴365225x y ⎧=⎪⎪⎨⎪=⎪⎩,解得105x y =⎧⎨=⎩, 故答案为105x y =⎧⎨=⎩. 【点睛】 本题考查了二元一次方程组的解法,正确理解题意、合理变形、得出365225x y ⎧=⎪⎪⎨⎪=⎪⎩是解本题的关键.三、解答题21.某水果店有甲,乙两种水果,它们的单价分别为a 元/千克,b 元/千克.若购买甲种水果5千克,乙种水果2千克,共花费25元,购买甲种水果3千克,乙种水果4千克,共花费29元.(1)求a 和b 的值;(2)甲种水果涨价m 元/千克(02)m <<,乙种水果单价不变,小明花了45元购买了两种水果10千克,那么购买甲种水果多少千克?(用含m 的代数式表示).解析:(1)a 的值为3,b 的值为5;(2)52m- 【分析】(1)根据等量关系:购买甲5千克,乙2千克,共花费25元;购买甲3千克,乙4千克,共花费29元;列出方程组求解即可;(2)可设购买甲种糖果x 千克,则购买乙种糖果(10-x )千克,根据花了45元,列出方程即可求解;【详解】解:(1)依题意有52253429a b a b +=⎧⎨+=⎩,解得35a b =⎧⎨=⎩. 故a 的值为3,b 的值为5;(2)设购买甲种水果x 千克,则购买乙种水果(10)x -千克,依题意有:(3)5(10)45m x x ++-=, 解得:52x m=-; 故购买甲种水果52m-千克. 【点睛】 本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.22.解方程组:()()41622358x y x y ⎧+=-⎪⎨-=-⎪⎩①② 解析:9412x y ⎧=-⎪⎪⎨⎪=-⎪⎩【分析】将原方程化简整理后再运用加减消元法求解即可.【详解】解:原方程组可化为233,252,x y x y -=-⎧⎨-=-⎩③④③-④,得21y =-, 12y , 将12y 代入③,得94x =-. 所以原方程组的解是9,41.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(1)解方程组:21035x yx y+=⎧⎨-=⎩;(2)解不等式组:2(1)35423xxx+-<⎧⎪-⎨-≥⎪⎩.解析:(1)81xy=⎧⎨=⎩;(2) 13x≤<.【分析】(1)利用加减消元法,先消去x,求得y,后代入求得x,从而得到方程组的解;(2)分别求得不等式组中每一个不等式的解集,再确定出公共部分即可.【详解】(1)由21035x yx y+=⎧⎨-=⎩①②,①-②,得5y=5,解得y=1;把y=1代入①,解得x=8,所以原方程组的解为=81 xy⎧⎨=⎩.(2)由2(1)35423xxx+-<⎧⎪⎨--≥⎪⎩①②,解不等式①得 x<3;解不等式②得x≥1;所以原不等式组的解集为1≤x<3.【点睛】(1)考查了二元一次方程组的解法,熟练掌握加减消元法是解题的关键;(2)考查了一元一次不等式组的解法,熟练求解,利用数形结合思想,灵活确定解集是解题的关键.24.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x、y的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?解析:(1)6218x y ++;(2)3600元【分析】(1)根据长方形的面积=长×宽,表示各部分的面积,于是可表示出总面积.(2)根据已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,列出方程组求解,可求出总面积,再根据单价可求出铺地砖的总费用.【详解】解:(1)卧室的长=2+2=4,厨房的长=6-3=3,∴地面的总面积为:3×4+2y+2×3+6x=6x+2y+18.(2)由题意得64236218152x x y y =⨯⨯⎧⎨++=⨯⎩解得:41.5x y =⎧⎨=⎩∴地面总面积为:S=6x+2y+18=45(m 2),∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.【点睛】本题考查二元一次方程组的应用,关键是能根据等量关系列出方程组.25.若在一个两位正整数 N 的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为 N 的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数 M 加 2 后得到一个新数,我们称这个新数为 M 的“立达数”,如 34 的“立达数”为 36. (1)求证:对任意一个两位正整数 A ,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数 B 的“立达数”的各位数字之和是 B 的各位数字之和的一半,求 B 的值.解析:(1)见解析;(2) B 的值为68或59.【分析】(1)设A 的十位数字为a ,个位数字为b ,其“诚勤数”为100a+20+b 、“立达数”为10a+b+2,作差整理即可得;(2)设B=10a+b ,1≤a≤9,0≤b≤9(B 加上2后各数字之和变小,说明个位发生了进位),根据““立达数”的各位数字之和是B 的各位数字之和的一半”列出关于a 、b 的方程,求解可得.【详解】解:(1)设A的十位数字为a,个位数字为b,则A=10a+b,它的“诚勤数”为100a+20+b,它的“立达数”为10a+b+2,∴100a+20+b-(10a+b+2)=90a+18=6(15a+3),∵a为整数,∴15a+3是整数,则“诚勤数”与“立达数”之差能被6整除;(2)设B=10m+n,1≤m≤9,0≤n≤9(B加上2后各数字之和变小,说明个位发生了进位),∴B+2=10m+n+2,则B的“立达数”为10(m+1)+(n+2-10),∴m+1+n+2﹣10=12(m+n),整理,得m+n=14,∵1≤m≤9,0≤n≤9,∴m8n6=⎧⎨=⎩、m6n8=⎧⎨=⎩、m9n5=⎧⎨=⎩、m5n9=⎧⎨=⎩、m7n7=⎧⎨=⎩,经检验:77、86和95不符合题意,舍去,∴所求两位数为68或59.【点睛】本题主要考查了数字问题,根据题意表示出A、B两数的“立达数”、“诚勤数”及其变化是解题的关键.26.列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位.(1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱?解析:(1) 18辆;(2) 租45座的客车2辆,租60座客车最省钱.【分析】(1)设单租45座客车x辆,则参加春游的师生总人数为45x人,根据人数与客车的数量关系建立方程求出其解即可;(2)等量关系为:45座客车能坐的人数+60座客车能坐的人数=秋游的师生总人数,选取正整数解,比较即可.【详解】解:(1)设单租45座客车x辆,则参加春游的师生总人数为45x人.根据题意,得45x=60(x−4)−30,解得:x=18.答:只租45座的客车,需要18辆车;(2)解:45×18=810(人)设租45座客车x 辆,60座客车y 辆.根据题意得:45x +60y =810.∵x ,y 均为正整数,∴x =2,y =12;或x=6,y=9;或x=10,y=6;或 x=14,y=3.2500×2+3000×12=41000(元)2500×6+3000×9=42000(元)2500×10+3000×6=43000(元)2500×14+3000×3=44000(元)∵41000﹤42000﹤43000﹤44000∴租45座的客车2辆,租60座客车12辆最省钱.【点睛】本题主要考查了用一元一次方程及二元一次方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.27.解方程组:(1)379x y x y +=⎧⎨=-⎩; (2)5217345x y x y -=⎧⎨+=⎩. 解析:(1)54x y =-⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【分析】(1)利用代入消元法即可解方程求解;(2)利用加减消元法①×2+②得出x 的值,进而代入②求出y 的值即可.【详解】解:()3719x y x y +=⎧⎨=-⎩,①,② 把②代入①,得937y y -+=,解得4y =,把4y =代入②,得495x =-=-,所以方程组的解为54.x y =-⎧⎨=⎩, ()52172345x y x y -=⎧⎨+=⎩,①,② ①2⨯+②,得103345x x +=+,解得3x =,把3x =代入②,得945y +=,解得1y =-,所以方程组的解为31.x y =⎧⎨=-⎩, 【点睛】本题考查解二元一次方程组,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.28.把y ax b =+(其中a 、b 是常数,x 、y 是未知数)这样的方程称为“雅系二元一次方程”当y x =时,“雅系二元一次方程y ax b =+”中x 的值称为“雅系二元一次方程”的“完美值”.例如:当y x =时,雅系二元一次方程”34y x =-化为34x x =-,其“完美值”为2x =.(1)求“雅系二元一次方程”56y x =-+的“完美值”;(2)3x =是“雅系二元一次方程”3y x m =+的“完美值”,求m 的值;(3)“雅系二元一次方程”1y kx =+(0k ≠,k 是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.解析:(1)x =1;(2)m =﹣6;(3)当k =1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x =11k - 【分析】(1)由已知得到式子x=-5x+6,求出x 即可;(2)由已知可得x=3x+m ,将x=3代入即可求m ;(3)假设存在,得到x=kx+1,所以(1-k )x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x=11k -. 【详解】(1)由已知可得,x =-5x+6,解得x =1,∴“雅系二元一次方程”y =-5x+6的“完美值”为x =1;(2)由已知可得x =3x+m ,x =3,∴m =﹣6;(3)若“雅系二元一次方程”y =kx+1(k≠0,k 是常数)存在“完美值”,则有x =kx+1,∴(1﹣k )x =1,当k =1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x =11k-. 【点睛】本题考查新定义,能够理解题意,将所求问题转化为一元一次方程求解是关键.。

二元一次方程组(含答案)

二元一次方程组(含答案)

1) 66x+17y=3967 25x+y=1200答案:x=48 y=47 (2) 18x+23y=2303 74x-y=1998答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48 (7) 47x-40y=853 34x-y=2006答案:x=59 y=48 (8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=8259x+y=2183 答案:x=37 y=61(16) 91x+70y=584595x-y=4275答案:x=45 y=25(17) 29x+44y=528188x-y=3608答案:x=41 y=93(18) 25x-95y=-435540x-y=2000答案:x=50 y=59(19) 54x+68y=328478x+y=1404答案:x=18 y=34(20) 70x+13y=352052x+y=2132答案:x=41 y=50(21) 48x-54y=-318624x+y=1080答案:x=45 y=99(22) 36x+77y=761947x-y=799答案:x=17 y=91(23) 13x-42y=-271731x-y=1333答案:x=43 y=78(24) 28x+28y=333252x-y=4628答案:x=89 y=30(25) 62x-98y=-256446x-y=2024答案:x=44 y=54(26) 79x-76y=-438826x-y=832答案:x=32 y=91(27) 63x-40y=-82142x-y=546答案:x=13 y=41(28) 69x-96y=-120942x+y=3822答案:x=91 y=78(29) 85x+67y=733811x+y=308答案:x=28 y=74(30) 78x+74y=1292814x+y=1218答案:x=87 y=83(31) 39x+42y=533159x-y=5841答案:x=99 y=35(32) 29x+18y=191658x+y=2320答案:x=40 y=42(33) 40x+31y=604345x-y=3555答案:x=79 y=93(34) 47x+50y=859845x+y=3780答案:x=84 y=93(35) 45x-30y=-145529x-y=725答案:x=25 y=86(36) 11x-43y=-136147x+y=799答案:x=17 y=36(37) 33x+59y=325494x+y=1034答案:x=11 y=49(38) 89x-74y=-273568x+y=1020答案:x=15 y=55(39) 94x+71y=751778x+y=3822答案:x=49 y=41(40) 28x-62y=-493446x+y=552答案:x=12 y=85(41) 75x+43y=847217x-y=1394答案:x=82 y=54(42) 41x-38y=-118029x+y=1450答案:x=50 y=85(43) 22x-59y=82463x+y=4725答案:x=75 y=14(44) 95x-56y=-40190x+y=1530答案:x=17 y=36(45) 93x-52y=-85229x+y=464答案:x=16 y=45(46) 93x+12y=882354x+y=4914答案:x=91 y=30(47) 21x-63y=8420x+y=1880答案:x=94 y=30(48) 48x+93y=975638x-y=950答案:x=25 y=92(49) 99x-67y=401175x-y=5475答案:x=73 y=48(50) 83x+64y=929190x-y=3690答案:x=41 y=92(51) 17x+62y=321675x-y=7350答案:x=98 y=25(52) 77x+67y=273914x-y=364答案:x=26 y=11(53) 20x-68y=-459614x-y=924答案:x=66 y=87(54) 23x+87y=411083x-y=5727答案:x=69 y=29(55) 22x-38y=80486x+y=6708答案:x=78 y=24(56) 20x-45y=-352056x+y=728答案:x=13 y=84(57) 46x+37y=708561x-y=4636答案:x=76 y=97(58) 17x+61y=408871x+y=5609答案:x=79 y=45(59) 51x-61y=-190789x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60(75) 60x-44y=-35233x-y=1452答案:x=44 y=68(76) 79x-45y=51014x-y=840答案:x=60 y=94(77) 29x-35y=-21859x-y=4897答案:x=83 y=75(78) 33x-24y=190530x+y=2670答案:x=89 y=43(79) 61x+94y=1180093x+y=5952答案:x=64 y=84(80) 61x+90y=500148x+y=2448答案:x=51 y=21(81) 93x-19y=286x-y=1548答案:x=18 y=88(82) 19x-96y=-591030x-y=2340答案:x=78 y=77(83) 80x+74y=808896x-y=8640答案:x=90 y=12(84) 53x-94y=194645x+y=2610答案:x=58 y=12(85) 93x+12y=911728x-y=2492答案:x=89 y=70(86) 66x-71y=-167399x-y=7821答案:x=79 y=97(87) 43x-52y=-174276x+y=1976答案:x=26 y=55(88) 70x+35y=829540x+y=2920答案:x=73 y=91(89) 43x+82y=475711x+y=231答案:x=21 y=47(90) 12x-19y=23695x-y=7885答案:x=83 y=40(91) 51x+99y=803171x-y=2911答案:x=41 y=60(92) 37x+74y=440369x-y=6003答案:x=87 y=16(93) 46x+34y=482071x-y=5183答案:x=73 y=43(94) 47x+98y=586155x-y=4565答案:x=83 y=20(95) 30x-17y=23928x+y=1064答案:x=38 y=53(96) 55x-12y=411279x-y=7268答案:x=92 y=79(97) 27x-24y=-45067x-y=3886答案:x=58 y=84(98) 97x+23y=811914x+y=966答案:x=69 y=62(99) 84x+53y=1127570x+y=6790答案:x=97 y=59(100) 51x-97y=29719x-y=1520答案:x=80 y=39。

人教版 七年级数学下册 第8章 二元一次方程组 综合练习(包含答案)

人教版 七年级数学下册 第8章 二元一次方程组 综合练习(包含答案)

人教版 七年级数学下册 第8章 二元一次方程组综合练习(含答案)一、单选题(共有8道小题) 1.若方程6mx ny += 的两个解是12,11x x y y ==⎧⎧⎨⎨==-⎩⎩,则m,n 的值为( )A.4,2B.2,4C.-4,-2D.-2,-42.方程529x y +=-与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的解是( )A.21x y +=B.328x y +=-C.543x y +=-D.348x y -=-3.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A.3412x y x y +=⎧⎨+=⎩B.3421x y x y +=⎧⎨=+⎩C.3421x y x y +=⎧⎨=+⎩D.23421x y x y +=⎧⎨=+⎩4.若方程mx +ny =6的两个解是11x y =⎧⎨=⎩,⎩⎨⎧-==12y x ,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-45.已知()230x y -+=,则x y +的值为()A .0B .-1C .1D .5 6.若0125=+-+++b a b a ,则()2015b a -= ( )A .1-B .1C .20155D .20155-7.如果将满足方程的一对x ,y 值叫做方程的一组解,那么34x y +=的解的组数是( ).A .1组B .2组C .无数组D .没有解8.为推进课改,王老师把班级里40名学生分成若干小组,没小组只能是5人或6人,则有( )种分组方案A.4B.3C.2D.19.已知x ,y 满足方程组2523x y x y -=⎧⎨+=-⎩,则224x y -的值为 .10.方程组02x y x y +=⎧⎨-=⎩的解为_____.11.二元一次方程组7413563x y x y -=⎧⎨-=⎩的解________x y =⎧⎨=⎩.12.今年“五一”节,A 、B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组 . 13.已知21x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则3m n +的立方根为 。

新人教版数学人教版七年级下《8.1二元一次方程组》课时练习含答案

新人教版数学人教版七年级下《8.1二元一次方程组》课时练习含答案

新人教版数学七年级下册8.1二元一次方程组课时练习一、选择题:1.下列方程中,是二元一次方程的是( ) A .324x y z -= B .690xy += C .146y x += D .244y x -=答案:D知识点:二元一次方程的定义 解析:解答:A 中有三个未知数,所以是三元方程,B 中未知项的次数为2,C 中1x不是整式. 分析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 答案:A知识点:二元一次方程组的定义 解析:解答:B 中的方程组中含有三个未知数,C 中x 2这一项是二次的,D 中的x 2这一项是二次的,A 是符合二元一次方程组定义的.分析:二元一次方程组的三个必需条件:①方程组中一共含有两个未知数,②每个含未知数的项次数为1;③一共有两个方程且每个方程都是整式方程.3.二元一次方程51121a b -=( )A .有且只有一解B .有无数解C .无解D .有且只有两解 答案:B知识点:二元一次方程的解 解析:解答:不加限制条件时,一个二元一次方程有无数个解. 分析:不加限制条件时,一个二元一次方程有无数个解.4.方程1y x =-与325x y +=的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩答案:C知识点:二元一次方程的解 解析:解答:使两个二元一次方程都成立的两个未知数的值是它们的公共解,所以逐个代入验证. 分析:将选项中的未知数的值代入时,不能满足其中的任意一个都可以将答案排除.5.若()22320x y -++=,则xy的值是( ) A .-1 B .-2 C .-3 D .32答案:C知识点:绝对值的非负性;平方的非负性;解二元一次方程组;代数式求值 解析:解答:因为()22320x y ++=-,又因为()220,320x y ≥+≥-,所以20320x y =⎧⎨+=⎩-解得223x y =⎧⎪⎨=-⎪⎩,所以2233x y ⎛⎫=÷-=- ⎪⎝⎭. 分析:目前为止我们所学的具有非负性的只有绝对值与平方,这个要牢牢记住.6.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )A .2B .1C .6D .4 答案:B知识点:二元一次方程组的解 解析:解答:因为x 与y 的值相等,所以我们可以将方程组中的所有y 都换成x 即43235x x kx x -=⎧⎨+=⎩,那么1x kx =⎧⎨=⎩,所以k =1.分析:将方程组中的所有x 换成y 有一样的解法.7.下列各式,属于二元一次方程的个数有( ) ①27xy x y +-=; ②41x x y +=-; ③15y x+=; ④x y =; ⑤222x y -= ⑥62x y - ⑦1x y z ++= ⑧()2212y y x y x -=-+y A .1 B .2 C .3 D .4 答案:C知识点:二元一次方程的定义 解析:解答:其中②④⑧是二元一次方程,所以选择C .分析:根据二元一次方程的定义来判定,含有两个未知数且含未知数的项的次数是1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方 程组中符合题意的有( )246.22x y A y x +=⎧⎨=-⎩246.22x y B x y +=⎧⎨=+⎩216.22x y C y x +=⎧⎨=+⎩246.22x y D y x +=⎧⎨=+⎩ 答案:B知识点:二元一次方程组的应用 解析:解答:题目中的相等关系是①男生人数+女生人数=年级总人数,②男生人数比女生人数的2倍少2人则女生人数的2倍比男生人数多2,所以可以列出B . 分析:列二元一次方程组的关键是找到题目中的相等关系.9.如果21ax y +=是关于x 、y 的二元一次方程,那么a 的值应满足( )A .a 是有理数B .a ≠0C .a =1D .a 是正有理数答案:B知识点:二元一次方程的定义解析:解答:二元一次方程中含有两个未知数,所以a ≠0,若a=0,则等式中只含有y 一个未知数,这个等式就不是二元一次方程. 分析:紧扣二元一次方程的定义解题.10.若()()217a x b y -++=是关于x 、y 的二元一次方程,则( ) A .a ≠2 B .b ≠-1C .a ≠2且b ≠-1D .a ≠2或b ≠-1答案:C知识点:二元一次方程的定义解析:解答:二元一次方程中含有两个未知数,所以a ≠2且b ≠-1,若a=2或b =-2,则等式中只含有一个未知数或不含有未知数,这个等式就不是二元一次方程. 分析:紧扣二元一次方程的定义解题.11.已知二元一次方程组⎩⎨⎧=--=+②.643①,3y x y x 下列说法中,正确的是( )A.同时适合方程①、②的x 、y 的值是方程组的解B.适合方程①的x 、y 的值是方程组的解C.适合方程②的x 、y 的值是方程组的解D.同时适合方程①、②的x 、y 的值不一定是方程组的解 答案:A知识点:二元一次方程组的解解析:解答:二元一次方程组的解是二元一次方程组的两个方程的公共解,所以选A . 分析:紧扣二元一次方程组的解的定义解题.12.已知⎩⎨⎧-==11y x 是方程32=-ay x 的一个解,那么a 的值是( )A .1B .3C .-3D .-1答案:A知识点:二元一次方程的解;解一元一次方程解析:解答:将11x y =⎧⎨=-⎩代入方程23x ay -=得23a +=,解得1a =.分析:根据二元一次方程组的解的定义可以得到关于a 的一元一次方程,进而求得a 的值.13.方程4x +3y =16的所有正整数解的个数是( ) A .4 B . 3 C .2 D .1 答案:D知识点:二元一次方程的解解析:解答:因为要求的是方程的正整数解,所以可以将x 从1开始取值,同时y 的值也是正整数时,未知数x 、y 的值就是方程的正整数解,所以这个方程的正整数解为14x y =⎧⎨=⎩.分析:当2,3x =时,y 的值不是整数;当x 取大于3的整数时,y 的值不是正数,所以方程的正整数解只有14x y =⎧⎨=⎩.14.方程234mx y x -=+是关于x 、y 的二元一次方程,则m 的值范围是( ) A .m ≠0 B .m ≠−2 C .m ≠3 D .m ≠4 答案:D知识点:二元一次方程的定义 解析:解答:因为方程两边都含有x 的未知数,所以应该先将含有x 的项进行移项与合并得到()324m x y --=,又因为这个方程是关于x 、y 的二元一次方程,所以m -3≠0即m ≠3.分析:一个方程是关于x 、y 的二元一次方程则这个方程中的其它字母可以看作已知数进行运算,并且含未知数的项系数不为0.15.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有( ) A .4个 B .5个 C .6个 D .无数个 答案:B知识点:二元一次方程的应用;二元一次方程的解 解析:解答:设这个两位数十位与个位上的数字分别为x 、y ,那么根据题意可知即求5x y +=的非负整数解,其中0x ≠,所以解得14x y =⎧⎨=⎩,25x y =⎧⎨=⎩,32x y =⎧⎨=⎩,41x y =⎧⎨=⎩,50x y =⎧⎨=⎩,所以共有五个符合条件的两位数.分析:根据题意及两位数的实际意义将问题转化成求解二元一次方程的正整数解,但是实际中十位上的数字是不可以为0的,但是个位上的数字是可以为0的. 二、填空题16.已知方程2x +3y -4=0,用含x 的代数式表示y 为:y =_______;用含y 的代数式表示x 为:x =________. 答案:4243,32x y-- 知识点:二元一次方程的应用 解析:解答:因为2x +3y -4=0,所以3y =4-2x ,所以423x y -=,同理可得432yx -=. 分析:将一个二元一次方程写成用含x 的代数式表示y 时,可以将x 看作一个已知数,解一个关于y 的一元一次方程,用含y 的代数式表示x 时是一样的道理.17、在二元一次方程1322x y -+=中,当x =4时,y =_______;当y =-1时,x =______. 答案:43;-10知识点:二元一次方程的解 解析:解答:将x =4代入二元一次方程得14322y -⨯+=,解得43y =;将y =-1代入二元一次方程得()13122x -+⨯-=,解得x =-10.分析:根据二元一次方程的解,将一个未知数的值代入方程即可求得另一个未知数的解.18、若33125m n x y ---=是二元一次方程,则m =_____,n =______. 答案:43;2 知识点:二元一次方程的定义;解一元一次方程 解析:解答:因为33125m n xy ---=是二元一次方程,所以3m -3=1,n -1=1,所以43m =,n =2. 分析:根据二元一次方程的定义,所含未知数的次数都是1可列得3m -3=1,n -1=1. 19.已知2,3x y =-⎧⎨=⎩是方程x -ky =1的解,那么k =_______.答案:-1知识点:二元一次方程的解;解一元一次方程 解析: 解答:因为23x y =-⎧⎨=⎩ 是方程1x ky -=的解,所以231k --=,解得1k =-.分析:求方程中所含的字母系数的值,先把方程的解代入方程中,列出关于字母系数的方程,解之即可. 202157x y =⎧⎨=⎩为解的一个二元一次方程是_________. 答案:23x y -=;答案不唯一知识点:二元一次方程的解;二元一次方程的定义 解析:解答:符合二元一次方程的定义及所给的解即可,答案不唯一.分析:因为22573x y -=⨯-=,所以可列的二元一次方程23x y -=.三、解答题21.当y =-3时,二元一次方程3x +5y =-3和3y -2ax =a +2(关于x ,y 的方程)有相同的解,求a 的值. 答案:119-知识点:二元一次方程的解;解一元一次方程 解析:解答:解:∵y =-3时,3x +5y =-3,∴3x +5×(-3)=-3,∴x =4,∵方程3x +5y =-3•和3x -2ax =a +2有相同的解,∴3×(-3)-2a ×4=a +2,∴a =119-. 分析:根据题意先求得两个二元一次方程的公共解,再将公共解代入方程3y -2ax =a +2中从而求得a 的值.22.已知x ,y 是有理数,且()()221210x y -++=,则x -y 的值是多少?答案:12-知识点:二元一次方程的解;平方的非负性;绝对值 解析:解答:解:由()()221210x y -++=,可得10x -=│且210y +=,∴11,2x y =±=-. 当x =1,y =12-时,x -y =1+12=32;当x =-1,y =12-时,x -y =-1+12=12-.分析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数()21x -与()221y +都等于0,从而得到│x │-1=0,2y +1=0.23.已知方程1352x y +=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41x y =⎧⎨=⎩.答案: x -y =3知识点:二元一次方程的解;二元一次方程的定义 解析:解答:解:经验算41x y =⎧⎨=⎩是方程12x+3y=5的解,再写一个方程x -y =3.分析:任写一个关于x 、y 的二元一次代数式,将41x y =⎧⎨=⎩代入求得的值写在等式右边即可;注意答案不唯一.24.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去2021,•问明明两种邮票各买了多少枚?答案:解:设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩.(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼? 答案:解:设有x 只鸡,y 个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.知识点:二元一次方程组的应用解析:解答:解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得130.8220x y x y +=⎧⎨+=⎩.(2)设有x 只鸡,y 个笼,根据题意得415(1)y xy x +=⎧⎨-=⎩.分析:实际问题的关键在于找到相等关系,(1)的相等关系为:两种邮票共有13枚与共花去2021(2)中的相等关系为:每个笼中放4只鸡,则多余一只鸡与每个笼里放5只,则多一个笼子.25、是否存在整数m ,使关于x 的方程()2922x m x +=--在整数范围内有解,你能找到 几个m 的值?你能求出相应的x 的解吗?答案: 存在四个m 的值,使得这个方程在整数范围内有解;m =1,x =-7 ;m =-1,x =7 ;m =7,x =-1 ;m =-7,x =1 知识点:二元一次方程的应用解析:解答:解:存在四组,理由:∵原方程可化简为mx =-7,∴当m =1时,x =-7;m =-1时,x =7;m =7时,x =-1;m =-7时x =1.分析:原方程的化简过程为:移项得()2229x m x +-=-,合并同类项得()mx=-.+-=-,即7m x227。

二元一次方程组应用题(人教版)(含答案)

二元一次方程组应用题(人教版)(含答案)

二元一次方程组应用题(人教版)一、单选题(共9道,每道11分)1.某商店准备购进甲、乙两种商品,已知甲商品的进价是每件15元,乙商品的进价是每件35元,若同时购进两种商品100件,恰好用去2700元,求购进的甲、乙商品各多少件?若设购进甲商品x件,购进乙商品y件,根据题意可列方程组为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二元一次方程组的应用2.玉树地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶,乙种帐篷y顶,那么下面列出的方程组中正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:方程组应用题3.某景区门票价格为:成人票每张70元,儿童票每张35元.小明买了20张门票共花费了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:方程组应用题4.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:方程组应用题5.中国2010年上海世博会第三期平日出售门票分为普通票和优惠票,其中普通票每张150元人民币,优惠票每张90元人民币.某日一售票点共售出1000张门票,总收入12.6万元人民币,则当天售出的普通票和优惠票分别为多少张?( )A.500,500B.300,700C.400,600D.600,400答案:D解题思路:试题难度:三颗星知识点:二元一次方程组的应用6.小明:小红,你上周买的笔和笔记本的价格是多少啊?小红:哦,我也忘了,只记得先后买了两次,第一次买了5支笔和10本笔记本共花了42元钱,第二次买了10支笔和5本笔记本共花了30元.根据以上对话,可以求得小红所买的笔和笔记本的价格分别是( )A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本答案:D解题思路:试题难度:三颗星知识点:方程组应用题7.一列快车长168米,一列慢车长184米,如果两车相向而行,从相遇到离开需要4秒,如果同向而行,从相遇到离开需要16秒,设快、慢车的速度分别为x米/秒、y米/秒,则下列方程组正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:方程组应用题8.甲对乙说:“当我的岁数是你现在的岁数时,你才四岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将六十一岁.”则甲现在的年龄是( )A.19B.23C.38D.42答案:D解题思路:试题难度:三颗星知识点:方程组应用题9.某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,则晚会上男生、女生人数分别是( )A.3,5B.5,3C.12,21D.21,12答案:C解题思路:试题难度:三颗星知识点:方程组应用题。

《二元一次方程组》完整版 人教版1

《二元一次方程组》完整版 人教版1

小时的路程=拖拉机行

小时的路程;
相向而行时,汽车行驶 小时的路程+拖拉机行驶 小时的路程=160千米;同向而行时,汽车行驶 小时 的路程=拖拉机行驶 小时的路程. 故答案为 ; ; ; .
《二元一次方程组》完整版 人教版1
《二元一次方程组》完整版 人教版1
(3)全程汽车、拖拉机各自行驶了多少千米? 设汽车的速度为x千米/时,拖拉机的速度为y千米/时, 依题意,得
《二元一次方程组》完整版 人教版1
《二元一次方程组》完整版 人教版1
解:设甲数为x,乙数为y.根据题意,得 答:甲、乙两个数分别为24,12.
《二元一次方程组》完整版 人教版1
《二元一次方程组》完整版 人教版1
9. 两人骑自行车在400 m环形跑道上同一地点出发、 用不变的速度行驶,当他们按相反的方向行驶时,每 20 s相遇一次;若按同一方向行驶,那么每100 s相遇 一次,问两人的速度各是多少?
第五章 二元一次方程组
第8课 二元一次方程组的应用(3)—— 里程碑上的数
新课学习
知识探究 (1)一个两位数,个位数字是a,十位数字是b,则这 个两位数用代数式表示为 10b+a ;若交换个位 和十位上的数字得到一个新的两位数,用代数式表示 为 10a+b .
(2)一个两位数,个位上的数为x,十位上的数为y,
《二元一次方程组》完整版 人教版1
《二元一次方程组》完整版 人教版1
解:设平路的路程为x千米,坡路的路程为y千米,根 据题意可得, 答:平路的路程为12千米,坡路的路程为6千米.
《二元一次方程组》完整版 人教版1
《二元一次方程组》完整版 人教版1
重难易错
5. 甲乙两地相距160千米,一辆汽车和一辆拖拉机同 时由甲、乙两地相向而行,1小时20分相遇.相遇后, 拖拉机继续前进,汽车在相遇处停留1个小时后调头按 原速返回,汽车在返回后半个小时追上了拖拉机.

二元一次方程组(应用题一)(人教版)(含答案)

二元一次方程组(应用题一)(人教版)(含答案)

二元一次方程组(应用题一)(人教版)一、单选题(共6道,每道16分)1.某景区门票价格为:成人票每张70元,儿童票每张35元.小明买了20张门票共花费了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是(根据题意借助下面表格梳理条件,请先把表格填写完整,再列方程组)( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二元一次方程组应用题2.明明买了7本数学书和2本语文书共花了100元,亮亮买了4本语文书和3本数学书共花了90元.若设买一本语文书x元,买一本数学书y元,根据题意列表如下,补全表中的信息,则可列二元一次方程组为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二元一次方程组应用题3.第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有一人只取2支,则其余每人恰好各得6支.若设第一小组同学有x人,铅笔有y支,根据题意列表如下,补全表中的信息,则可列二元一次方程组为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:二元一次方程组应用题4.如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.设制成x吨产品,购买y吨原料,根据题意列表如下,补全表中的信息,则可列二元一次方程组为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二元一次方程组应用题5.原来甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数是乙车间人数的2倍.若设原来甲车间x人,乙车间y人,根据题意列表如下,补全表中的信息,则可列二元一次方程组为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二元一次方程组应用题6.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁了”.若设甲现在的岁数为x岁,乙现在的岁数为y岁.根据题意列表如下,补全表中的信息,并计算甲现在的岁数是( )A.42岁B.24岁C.36岁D.23岁答案:A解题思路:试题难度:三颗星知识点:二元一次方程组的应用。

人教版七年级数学下册二元一次方程组解法(一)--代入法(提高) 典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册二元一次方程组解法(一)--代入法(提高) 典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】二元一次方程组解法—代入法(提高)知识讲解责编:杜少波【学习目标】1. 理解消元的思想;2. 会用代入法解二元一次方程组.【要点梳理】要点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:1初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 2(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解; ②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组1.用代入法解方程组:237338x y x y +=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x 的系数较小,所以先把方程①中x用y 表示出来,代入②,这样会使计算比较简便. 【答案与解析】 解:由①得 732yx -=③初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 3将③代入② 733382y y -⨯-=,解得13y =. 将13y =代入③,得x =3 所以原方程组的解为313x y =⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”. 举一反三:【变式】m 取什么数值时,方程组的解(1)是正数;(2)当m 取什么整数时,方程组的解是正整数?并求它的所有正整数解. 【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.2.(2016春•九台市期末)对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,4初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 5则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算. 举一反三:【:二元一次方程组的解法369939 例7(1)】【变式1】解方程组2320,2352y 9.7x y x y --=⎧⎪-+⎨+=⎪⎩【答案】解: 232235297x y x y y -=⎧⎪⎨-++=⎪⎩①②将①代入②:25297y ++=,得 y=4, 将y=4代入①:2x -12=2 得 x=7,初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 6∴原方程组的解是74x y =⎧⎨=⎩.【:二元一次方程组的解法369939 例7(2)】 (2)45:4:3x y x y -=⎧⎨=⎩①②解:由②,设x=4k ,y=3k 代入①:4k -4·3k =5 4k -12k =5 -8k =558k =-∴542x k ==-,1538y k ==-,∴原方程组的解为52158x y ⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用3.(2015春•临清市期末)如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 84.已知2564x y ax by +=-⎧⎨-=-⎩①②和方程组35168x y bx ay -=⎧⎨+=-⎩③④的解相同,求2011(2)a b +的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y =-6和3x-5y =16的解.由于这两个方程的系数都已知,故可联立在一起,求出x 、y 的值.再将x 、y 的值代入ax-by =-4,bx+ay =-8中建立关于a 、b 的方程组即可求出a 、b 的值. 【答案与解析】 解:依题意联立方程组2563516①x y x y +=-⎧⎨-=⎩③①+③得5x =10,解得x =2.把x =2代入①得:2×2+5y =-6,解得y =-2,所以22x y =⎧⎨=-⎩,又联立方程组48ax by bx ay -=-⎧⎨+=-⎩,则有224228a b a b +=-⎧⎨-+=-⎩,初中奥数题试题一一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0 B .a ,b 之一是0 C .a ,b 互为相反数 D .a ,b 互为倒数 2.下面的说法中正确的是 ( ) A .单项式与单项式的和是单项式 B .单项式与单项式的和是多项式 C .多项式与多项式的和是多项式 D .整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B .没有最小的正有理数 C .没有最大的负整数 D .没有最大的非负数4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么 ( ) A .a ,b 同号 B .a ,b 异号 C .a >0 D .b >0 5.大于-π并且不是自然数的整数有 ( ) A .2个 B .3个 C .4个 D .无数个 6.有四种说法:甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 9解得13a b =⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键. 举一反三:【变式】(2015•江都市模拟)小明和小文解一个二元一次组小明正确解得小文因抄错了c ,解得已知小文除抄错了c 外没有发生其他错误,求a+b+c的值.【答案】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.10初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组(一)(人教版)一、单选题(共10道,每道10分)
1.若方程是关于x,y的二元一次方程,则a的值为( )
A.-3
B.±2
C.±3
D.3
答案:D
解题思路:
试题难度:三颗星知识点:二元一次方程的定义
2.下列方程组中是二元一次方程组的是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:二元一次方程组的定义
3.利用加减消元法解方程组,下列做法正确的是( )
A.要消去y,可以将①×5+②×2
B.要消去x,可以将①×3+②×(-5)
C.要消去y,可以将①×5+②×3
D.要消去x,可以将①×(-5)+②×2
答案:D
解题思路:
试题难度:三颗星知识点:解二元一次方程组
4.若用代入法解方程组,以下各式代入正确的是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:解二元一次方程组
5.二元一次方程组的解是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:解二元一次方程组
6.二元一次方程组的解为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:解二元一次方程组
7.已知方程组,则x+y的值为( )
A.2
B.3
C.4
D.5
答案:D
解题思路:
试题难度:三颗星知识点:解二元一次方程组
8.已知是关于的二元一次方程组的解,则( )
A.1
B.-3
C. D.0
答案:A
解题思路:
试题难度:三颗星知识点:解二元一次方程组
9.方程组的解为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:解二元一次方程组
10.三元一次方程组的解是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:解三元一次方程组。

相关文档
最新文档