韦达定理(精品讲解与专题练习)
韦达定理全面练习题及答案
韦达定理全面练习题及答案1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b c x x x x a a+=-= 说明:定理成立的条件0?≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么nmx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ;(2)2111x x += ;(3)=-221)(x x = ;(4))1)(1(21++x x = .三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是()(A )0 (B )正数(C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ()(A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=()(A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是()(A )0322=-+x x (B ) 0322=+-x x(C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是() (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B) -6 (C ) 21 (D) -257、分别以方程122--x x =0两根的平方为根的方程是()(A )0162=++y y (B ) 0162=+-y y(C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。
专题12 韦达定理及其应用(解析版)
专题12 韦达定理及其应用1.一元二次方程根与系数的关系(韦达定理)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
2.根与系数的关系的应用,主要有如下方面: (1)验根;(2)已知方程的一根,求另一根; (3)求某些代数式的值; (4)求作一个新方程。
【例题1】(2020•泸州)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 . 【答案】2【分析】根据根与系数的关系求解. 【解析】根据题意得则x 1+x 2=4,x 1x 2=﹣7 所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2【对点练习】(2019湖北仙桃)若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10 C .4 D .﹣4【答案】A【解析】∵方程x 2﹣2x ﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12【例题2】(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【答案】-2【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解析】∵a=1,b=﹣k,c=﹣2,=−2.∴x1•x2=ca∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.【对点练习】已知方程的一个根是-1/2,求它的另一个根及b的值。
【答案】x1=3 b=-5【解析】设方程的另一根为x1,则由方程的根与系数关系得:解得:【点拨】含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。
韦达定理经典例题及解题过程
韦达定理经典例题及解题过程摘要:一、韦达定理简介二、韦达定理经典例题1.例题一2.例题二3.例题三三、韦达定理解题过程1.确定韦达定理的应用条件2.分析题目中给出的方程3.应用韦达定理求解方程4.总结解题过程并得出答案正文:一、韦达定理简介韦达定理,又称Vieta 定理,是一元二次方程根与系数关系的定理。
它指出,对于一元二次方程ax+bx+c=0(a≠0),其两个根x1 和x2 的和与积分别等于方程中一次项系数和常数项系数的相反数和倒数。
具体来说,韦达定理有以下两个公式:x1 + x2 = -b/ax1 * x2 = c/a二、韦达定理经典例题1.例题一题目:已知一元二次方程x-3x-4=0,求该方程的两个根。
2.例题二题目:已知一元二次方程2x-5x+3=0,求该方程的两个根。
3.例题三题目:已知一元二次方程x+2x-3=0,求该方程的两个根。
三、韦达定理解题过程假设我们有一个一元二次方程ax+bx+c=0(a≠0),我们想要求出它的两个根x1 和x2。
1.确定韦达定理的应用条件首先,我们需要确保方程有两个实数根,即b-4ac≥0。
如果b-4ac<0,则方程没有实数根。
2.分析题目中给出的方程对于每一个例题,我们首先需要将方程写成标准形式ax+bx+c=0。
然后,我们可以根据韦达定理的公式x1 + x2 = -b/a和x1 * x2 = c/a来求解。
3.应用韦达定理求解方程对于每一个例题,我们分别代入方程的系数,计算出x1 和x2 的值。
4.总结解题过程并得出答案最后,我们将求得的x1 和x2 的值代入原方程,验证它们是否是方程的根。
如果是,我们便成功求解了该方程。
综上所述,韦达定理是一种非常有用的解一元二次方程的方法。
韦达定理练习题初三
韦达定理练习题初三一、选择题1. 若一个一元二次方程的两个根分别是α和β,则下列选项中正确的是()A. α + β = 0B. αβ = 1C. α + β = b/aD. αβ = c/a2. 已知一元二次方程x^2 5x + 6 = 0的两个根为x1和x2,则x1 x2的值为()A. 5B. 6C. 5D. 63. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两个根为x1和x2,则下列说法错误的是()A. x1 + x2 = b/aB. x1 x2 = c/aC. 若a > 0,则方程有两个实数根D. 若b^2 4ac < 0,则方程有两个不相等的实数根二、填空题1. 已知一元二次方程2x^2 4x + 1 = 0的两个根为x1和x2,则x1 + x2 = _______。
2. 若一元二次方程x^2 3x + k = 0有两个实数根,则k的取值范围是_______。
3. 已知一元二次方程x^2 (2a+1)x + a^2 = 0的两个根为x1和x2,则x1 x2 = _______。
三、解答题1. 已知一元二次方程x^2 (k+3)x + 2k = 0的两个根为x1和x2,且x1 x2 = 6,求k的值。
2. 已知一元二次方程x^2 (a+2)x + a = 0的两个根为x1和x2,且x1 + x2 = 4,求a的值。
3. 设一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两个根为x1和x2,且x1 + x2 = 5,x1 x2 = 6,求a、b、c的关系。
4. 已知一元二次方程x^2 4x + m = 0的两个根为x1和x2,且x1和x2是两个连续的正整数,求m的值。
5. 已知一元二次方程x^2 (k+2)x + k^2 5 = 0有两个实数根,求k的取值范围。
四、应用题1. 小华解一元二次方程x^2 (3a+1)x + 2a^2 = 0时,发现两个根的和是7,请问a的值是多少?2. 在一个三角形中,三边的长度分别是x、x+1和x+2,已知x是方程x^2 (a+3)x + 6 = 0的一个根,求a的值。
初中数学韦达定理专项
2. 二、韦达定理的推导求根公式法推导一元二次方程²的求根公式为ax ²+bx +c =0 (a≠0)的求根公式为aac b b x 242-±-= 那么两个根aac b b x 2421-+-= aac b b x 2422---=+a ac b b 242---=a b 22-=ab -×a ac b b 242---=2224)4()(a ac b b ---=ac 三、韦达定理的应用1.已知方程求两根之和与两根之积例如,对于方程2x ²-5x +3=0,这里a =2,b =-5,c =3根据韦达定理,两根之和x 1+x 2 =a b -=25232.已知两根之和与两根之积构造方程若已知两根之和为m ,两根之积为n ,则可构造方程x ²-mx +n =0。
比如,两根之和为 4,两根之积为 3,那么构造的方程为x ²-4x +3=0。
3. 不解方程求与两根有关的代数式的值例如,求(x 1-x 2)²的值。
(x 1-x 2)²=(x 1+x 2)²-4x 1x 2 ,已知两根之和与两根之积,代入即可求解。
4. 利用韦达定理判断方程根的情况由韦达定理可知,当b ²-4ac >0时,方程有两个不相等的实数根,此时两根之和与两根之积均有确定的值。
当b ²-4ac=0时,方程有两个相等的实数根,两根之和为-当b ²-4ac <0时,方程无实数根,韦达定理在这种情况下无意义。
四、韦达定理的注意事项1. 韦达定理只有在一元二次方程有实数根的情况下才成立。
2. 在应用韦达定理时,要先确定方程中a 、b 、c 的值,且a ≠0。
3. 对于一些特殊的一元二次方程,如缺项方程(如ax ²+c =0),也可以利用韦达定理求解,但要注意分析具体情况。
五、韦达定理的典型例题及讲解 1.已知方程的一根,求另一根及字母系数的值例题:关于x 的一元二次方程02)1(2=---x x m ,若x=-1是方程的一个根,求m 的值及另一个根。
韦达定理专题训练
韦达定理专题训练一、韦达定理:若一元二次方程02=++c bx ax 有两实根21,x x ,则ac x x a b x x =-=+2121;。
使用前提:(1)0≠a ,(2)0≥∆。
逆定理:以21,x x 为根的一元二次方程是:0)(21212=⋅++-x x x x x x 二、韦达定理的应用:例1:在解方程x 2+px+q=0时,甲同学看错了p ,解得方程根为x=1与x=-3;乙同学看错了q ,解得方程的根为x=4与x=-2,你认为方程中的p=——,q=——。
例2:已知方程2290x kx +-=的一个根是 -3 ,求另一根及K 的值。
例3已知α,β是方程x 2-3x-5=0的两根,不解方程,求下列代数式的值 :(1)βα11+;(2)22βα+;(3)βα-例4:关于x 的方程04)2(2=+++k x k kx 有两个不相等的实数根. (1)求k 的取值范围。
(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由例5:讨论方程04)1(4)1(22=----x m x m 的根的情况并根据下列条件确定m 的值。
(1)两实数根互为倒数, (2)两实数根互为相反数, (3)两实数根中有一根为1。
1.一元二次方程2310x x --=及230x x -+=的所有实数根的和是( )A .-2B .-4C .4D .32.已知方程022=++m x x 的两根之差的平方和等于16,则m 的值为( ) A .-3 B .-6 C .3 D .-6或33.已知210αα+-=,210ββ+-=且αβ≠,则αβαβ++的值为( )A .2B .-2C .-1D .04.一元二次方程()06422=+--x kx x 没有实数根,k 的最小整数值是( )A .-1B .2C .3D .45.若方程()05212=-+-+k kx x k 有两个不相等的实根,则k 的取值为( )A .45-≥kB .45-≤kC .45->kD .145-≠->k k 且 6.设1x 、2x 是关于x 的方程20x px q ++=的两根,11x +、21x +是关于x 的方程20x qx p ++=的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .―1,―3D .―17.以3和-1为两根的一元二次方程是( )A .0322=-+x xB .0322=++x x C .0322=--x x D .0322=+-x x 8.设1x 、2x 是关于x 的方程01222=-+x x 的两个实数根,则21x x -等于( )A .3B .22C .5D .22 9.方程230x x m -+=__________。
韦达定理初三练习题
韦达定理初三练习题韦达定理是解决三角形问题的重要定理之一,在初中数学学习中起着关键的作用。
在本篇文章中,我们将通过一些实际的练习题来巩固和应用韦达定理的知识。
请您认真阅读题目,并按照题目要求进行解答。
练习一:已知三角形的两个边长和夹角,求第三边的长度。
1. 已知一个三角形的两条边长分别为5cm和8cm,夹角为60度。
请计算第三边的长度。
解答:根据韦达定理,我们可以使用以下公式求解:c² = a² + b² - 2abcosC。
其中,c代表第三边,a和b分别代表已知的两个边长,C代表已知的夹角。
根据题目信息,已知的两条边分别为5cm和8cm,夹角为60度。
我们可以将这些数据代入韦达定理的公式中进行计算。
c² = 5² + 8² - 2 × 5 × 8 × cos60°= 25 + 64 - 80 × 0.5= 89 - 40= 49因此,第三边的长度为√49,即7cm。
练习二:已知三角形的两个边长和一条高的长度,求另一条高的长度。
2. 已知一个三角形的两边长分别为6cm和10cm,其中一条高的长度为8cm。
请计算另一条高的长度。
解答:我们可以利用韦达定理的性质来求解这个问题。
首先,我们需要找到一个关系式来表示两条高的长度。
根据韦达定理,我们可以得到以下关系式:(a² - b²)/ (a² + b²)= (h₁² - h₂²)/ (h₁² + h₂²)。
其中,a和b代表已知的两边长,h₁和h₂分别代表已知的两条高的长度。
根据题目中的信息,已知两边长分别为6cm和10cm,其中一条高的长度为8cm。
假设另一条高的长度为h₂。
根据关系式,我们可以将这些数据代入,得到以下等式:(6² - 10²)/ (6² + 10²)= (8² - h₂²)/ (8² + h₂²)我们可以通过化简这个等式,解得h₂的值。
专题 韦达定理(解析版)
专题02 韦达定理韦达定理虽是初二一元二次方程时的内容,但因为考试没有要求,很多学校都没怎么系统的讲过,很多学生还不是很了解韦达定理,更别提掌握和灵活运用了。
而韦达定理在高中阶段运用的非常频繁,许多知识点都要结合韦达定理来做,希望通过本章学习让学生能够理解掌握韦达定理.韦达定理实际上就是一元二次方程中根与系数的关系,韦达定理简单的形式中包含了丰富的数学内容,应用广泛,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.【例1】已知方程5x 2+kx -6=0的一个根是2,求它的另一个根及k 的值. 【难度】★★ 【答案】见解析【解析】由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.设方程的另一个根为1x,知识梳理知识结构模块一: 运用韦达定理,求方程中参数典例剖析则5621-=x ,531-=∴x .由52)53(k-=+-,得7-=k .所以,方程的另一个根为53-.k 的值为-7.1.1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 的值范围是 . 【难度】★★ 【答案】5132m -<≤2.0519998081999522=++=+-b b a a 及已知,求ba的值. 【难度】★★ 【答案】58 【解析】由方程的结构可知a 、b 1是方程08199952=+-x x 的两根,由韦达定理可得58=b a【例2】若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1) 求|x 1-x 2|的值; (2) 求222111x x +的值; (3) 求31x +32x 的值. 【难度】★★ 【答案】见解析【解析】分析:分别变形为可以利用x 1+x 2和x 1x 2来表示的形式.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,2521-=+∴x x ,2321-=x x .(1)∵|x 1-x 2|2=21x +22x -2x 1x 2=(x 1+x 2)2-4x 1x 2)23(4)25(2-⨯--=6425+=449=, 27||21=-∴x x . 对点精练模块二:运用韦达定理,求代数式的值典例剖析(2)493425)23()23(2)25()(2)(112222121221222122212221+=--⨯--=-+=⋅+=+x x x x x x x x x x x x 937=. (3)31x +32x =(x 1+x 2)(21x -x 1x 2+22x )=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]8215)]23(3)25[()25(2-=-⨯--⨯-=.评析:利用根与系数的关系求值,要熟练掌握以下等式变形:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题(相关地,抛物线与x 轴两交点间的距离),为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则a acb b x 2421-+-=,aacb b x 2422---=,||4|242||2424|||222221a acb a ac b a ac b b a ac b b x x -=-=-----+-=-∴||a ∆=. 于是有下面的结论:【例3】已知α、β是方程x 2+2x -5=0的两个实数根,则α2+αβ+2α的值为_______. 【难度】★★ 【答案】见解析【解析】分析:运用根的意义和根与系数关系解题.解:由于α、β是方程x 2+2x -5=0的实数根,∴α2+2α-5=0,αβ=-5,∴α2+2α=5 ∴α2+αβ+2α=α2+2α+αβ =5-5=0评析:注意利用变形为可以用根系关系表示的形式.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1) 恰当组合;(2) 根据根的定义降次; (3) 构造对称式.【例4】关于x 的方程240x x m ++=的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值. 【难度】★★ 【答案】31.已知α、β是方程210x x --=的两个实数根,则代数式)2(22-+βαα的值为 . 【难度】★★ 【答案】02.设a ,b 是相异的两实数,满足ab b a b b a a 2222,34,34++=+=求的值. 【难度】★★ 【答案】3100-3.设实数a ,b 分别满足,01999,01991922=++=++b b a a 且ba ab ab 14,1++≠求的值. 【难度】★★ 【答案】-5【例5】已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值. 【难度】★★ 【答案】见解析【解析】分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此其根的判别式应大于等于零.解:设x 1,x 2是方程的两根,由韦达定理,得对点精练模块三:利用韦达定理并结合根的判别式,讨论根的情况典例剖析x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵21x +22x -x 1·x 2=21, ∴(x 1+x 2)2-3x 1·x 2=21, 即[-2(m -2)]2-3(m 2+4)=21,化简,得m 2-16m -17=0,解得m =-1,或m =17. 当m =-1时,方程为x 2-6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m = -1.评析:在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或等于零.因为,韦达定理成立的前提是一元二次方程有实数根.【例6】已知x 1、x 2是关于x 的一元二次方程4x 2+4(m -1)x +m 2=0的两个非零实数根,问x 1和x 2能否同号?若能同号,请求出相应的m 的取值范围;若不能同号,请说明理由. 【难度】★★ 【答案】见解析【解析】分析:利用判别式和根与系数关系共同解决本题. 解:由Δ=-32m +16≥0得21≤m .x 1+x 2=-m +1,041221≥=m x x . ∴x 1与x 2可能同号,分两种情况讨论:(1)若x 1>0,x 2>0,则⎩⎨⎧>>+002121x x x x ,解得m <1且m ≠0.21≤∴m 且m ≠0. (2)若x 1<0,x 2<0,则⎩⎨⎧><+002121x x x x ,解得m >1,与21≤m 相矛盾.综上所述:当21≤m 且m ≠0时,方程的两根同号.【例7】一元二次方程240x x a -+=有两个实根,一个比3大,一个比3小,求a 的取值范围.【难度】★★ 【答案】【解析】构造二次函数()a x x x f +-=42,由()03<f 即可满足题意【例8】已知一元二次方程222(9)560x a x a a +-+-+=一个根小于0,另一根大于2,求a 的取值范围. 【难度】★★ 【答案】【解析】构造二次函数()()659222+-+-+=a a x a x x f ,由()00<f 且()02<f 即可满足题意1.已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 . 【难度】★★ 【答案】m >72.设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x + 有最小值?并求出这个最小值. 【难度】★★ 【答案】见解析 【解析】3<a 382<<a 对点精练3.已知关于x 的方程:04)2(22=---m x m x .(1) 求证:无论m 取什么实数值,这个方程总有两个不相等的实根.(2) 若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 【难度】★★ 【答案】见解析【解析】分析: 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手. 解:(1)△=2m 2-4m +4=2(m -1)2+2>0, ∴方程总有两个不相等的实数根;(2) ∵x 1·x 2=24m -≤0,∴1x 、2x 异号或其中一根为0,∴对212+=x x 可分两种情况讨论,去掉绝对值.当x 1≥0,x 2<0时,-x 2-x 1=2,即-(m -2)=2,解得m =0, 此时,方程为x 2+2x =0,解得x 1=0,x 2=-2; 当x 1≤0,x 2>0时,x 2+x 1=m -2=2,解得m =4, 当m =4时,x 2-2x -4=0,解得151x =-+,251x =+.4.若关于x 的方程20x x a ++=的两个根,一个大于1、另一根小于1,求实数a 的取值范围. 【难度】★★ 【答案】2a <-【例9】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么baa b +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 【难度】★★模块四:利用韦达定理逆定理,构造一元二次方程辅助解题等典例剖析【答案】B【解析】评析 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.【例10】解方程121193482232222=+-++-++x x x x x x x x . 【难度】★★ 【答案】-1,-4,28952895-+,. 【解析】分析:观察方程左边两式的关系,用换元法,令t x x xx =-++4322代入求解.1.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 . 【难度】★★ 【答案】11182m <≤ 【解析】提示:根据两边之和、两边之差的关系及△≥0得到.2.已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根.(1) 当m =2和m >2时,四边形ABCD 分别是哪种四边形? 并说明理由;(2) 若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ=1,且AB<CD ,求AB 、CD 的长;(3) 在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan ∠BDC 和tan ∠BCD . 【难度】★★★ 【答案】见解析【解析】(1)当m =2时,x 2-4x +4=0. ∵△=0,方程有两个相等的实数根.∴AB=CD ,此时AB ∥CD ,则该四边形是平行四边形; 当m >2时,△=m -2>0,对点精练又∵AB+CD=2m >0, AB•CD=217()24m -+ >0, ∴AB≠CD . 该四边形是梯形.(2) 根据三角形的中位线定理可以证明:连接梯形的两条对角线的中点的线段等于梯形的上下底的差的一半.则根据PQ=1,得CD -AB=2. 由CD -AB=||||21a x x ∆=-解得m =3 当m =3时,则有x 2-6x +8=0, ∴x =2或x =4, 即AB=2,CD=4(3)根据该梯形是等腰梯形,平移一腰,则得到等边△BEC . ∴∠BCD=60°,∠BDC=30°.∵tan ∠BDC+tan ∠BCD=tan ∠BDC•tan ∠BCD=1.∴所求作的方程是y 2-+1=0. 评析:对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.3.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD=m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求:m ,n 为整数时,一次函数y =mx +n 的解析式.【难度】★★★【答案】见解析 【解析】解:易证△ABC ∽△ACD ,∴AC ABAD AC=,AC 2=AD•AB ,同理BC 2=BD•AB , ∵2221AC BC =,∴21m n = ∴m =2n …①, ∵关于x 的方程14x 2-2(n -1)x +m 2-12=0有两实数根, ∴△=[-2(n -1)]2-4×14×(m 2-12)≥0,∴4n 2-m 2-8n +16≥0,把①代入上式得n ≤2…②, 设关于x 的方程14x 2-2(n -1)x +m 2-12=0的两个实数根分别为x 1,x 2, 则x 1+x 2=8(n -1),x 1•x 2=4(m 2-2),依题意有(x 1-x 2)2<192,即[8(n -1)]2-16(m 2-12)<192, ∴4n 2-m 2-8n +4<0,把①式代入上式得n >12…③, 由②、③得12<n ≤2, ∵m 、n 为整数,∴n 的整数值为1,2,当n =1,m =2时,所求解析式为y =2x +1,当n =2,m =4时,解析式为y =4x +2.韦达定理在高中阶段是一种非常常用且重要的解题手段,同学们一定要在充分理解的基础上加以掌握及灵活运用.同学们要能掌握根与系数的关系,知道韦达定理的常见变式与常规题型,注重设而不解,注重整体,通过整体带入来解决问题.一、选择题1.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程的两根,则02=++p qx x 反思总结课后练习p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,3 【难度】★★ 【答案】C2.在R t △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( ) A .23 B .25C .5D .2 【难度】★★ 【答案】B3.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p的值是 ( )A .1B .-lC .21-D .21 【难度】★★ 【答案】C4.两个质数a 、b 恰好是整系数方程x 2-99x +m =0的两个根,则baa b +的值是 ( ) A .9413 B .1949413 C .999413 D .979413【难度】★★ 【答案】B5.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为 ( ) A .0232=---m x x B .0232=--+m x x C .02412=---x m x D .02412=+--x m x 【难度】★★ 【答案】D6.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( ) A .0≤m ≤1 B .m ≥43 C .143≤<m D .43≤m ≤1【答案】C二、填空题7.关于x 的一元二次方程22(1)10m x x m -++-=有一根为0,则m 的值为______ 【难度】★★ 【答案】-18.CD 是R t △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 . 【难度】★★ 【答案】69.已知α、β是方程012=--x x 的两个根,则βα34+的值为 . 【难度】★★ 【答案】510.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 . 【难度】★★ 【答案】见解析【解析】解:设x 1,x 2是方程的两个根,则①x 1+x 2=-p ,②x 1x 2=q , ∵②-①得:p+q=28, ∴x 1x 2-x 1-x 2=28, ∴x 1x 2-x 1-x 2+1=28+1, ∴x 1(x 2-1)-(x 2-1)=29, 即(x 1-1)(x 2-1)=29, ∵两根均为正整数,∴x 1-1=1,x 2-1=29或x 1-1=29,x 2-1=1,∴方程的两个根是:x 1=2,x 2=30.或x 1=30,x 2=2. 故答案为:x 1=30,x 2=2.三、解答题11. 若关于x 的一元二次方程3x 2+3(a +b )x +4ab =0的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?【答案】见解析【解析】解:(a +b )2≤4正确.理由:原式可化为(x 1+x 2)2-=3x 1x 2+1, ∴(a +b )2=4ab +1,∵△=9(a +b )2-4×3×4ab ≥0, ∴3(a +b )2-4×4ab ≥0, ∴(a +b )2≥163ab ,即4ab +1≥163ab ∴4ab ≤3,∴4ab +1≤4,即(a +b )2≤4.12.已知关于x 的方程01)32(22=++--k x k x . (1) 当k 为何值时,此方程有实数根;(2) 若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值. 【难度】★★ 【答案】(1)512k ≤;(2) 0.13.设m 是不小于1-的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x . (1) 若62221=+x x ,求m 的值.(2) 求22212111x mx x mx -+-的最大值. 【难度】★★ 【答案】见解析【解析】解:∵方程有两个不相等的实数根,∴△=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1, 结合题意知:-1≤m <1.(1)∵x 12+x 22=(x 1+x 2)2-2x 1x 2=4(m -2)2-2(m 2-3m +3)=2m 2-10m +10=6 ∴m=,∵-1≤m <1,∴m=∴当m =-1时,式子取最大值为10.14.设a 、b 、c 为三个不同的实数,使得方程210x ax ++=和20x bx c ++=有一个相同的实数根,并且使方程20xx a ++=和20x cx b ++=也有一个相同的实数根,试求a b c ++的值.【难度】★★★ 【答案】见解析【解析】解:设x 12+ax 1+1=0,x 12+bx 1+c =0,两式相减,得(a -b )x 1+1-c =0,解得x 1=1c a b--, 同理,由x 22+x 2+a =0,x 22+cx 2+b =0,得x 2=(1)1a bc c -≠- ∴x 2=11x , 由韦达定理的两根之积的关系知,11x 是第一个方程的根, ∴x 2是方程x 2+ax +1=0和x 2+x +a =0的公共根, 因此两式相减有(a -1)(x 2-1)=0, 当a =1时,这两个方程无实根, 故x 2=1,从而x 1=1, 于是a =-2,b +c =-1, 所以a +b +c =-3.。
韦达定理的应用专题(供初三复习用)
韦达定理的应用专题训练★热点专题诠释1.熟练掌握一元二次方程根与系数的关系(韦达定理及逆定理). 2.能够灵活运用一元二次方程根与系数关系确定字母系数的值;求关于两根的对称式的值;根据已知方程的根,构作根满足某些要求的新方程.★典型例题精讲考点1 求待定字母的值或范围【例1】关于x 的一元二次方程2210x x k +++=的实数解是1x 、2x .如果12121x x x x +-<-,且k 为整数,求k 的值.解:由韦达定理,得122x x +=-,121x x k =+. ∵12121x x x x +-<-,∴2(1)1k --+<-,∴2k >-. 又∵原方程有实数解,∴224(1)0k -+≥,0k ≤. ∴20k -<≤.而k 为整数,∴1,0k =-.【方法指导】当运用一元二次方程的根与系数的关系时,前提条件是方程有根,即判别式△≥0. 【例2】(2012·包头)关于x 的一元二次方程25(5)0x mx m -+-=的两个正实数根分别为1x 、2x ,且1227x x +=,则m 的值是( B )A .2B .6C .2或6D .7解:由韦达定理,得12125(5)x x mx x m +=⎧⎨=-⎩ ,消去m ,得121255250x x x x --+=,∴12(5)(5)0x x --= ,∴15x =或25x =.又∵1227x x +=,∴1253x x =⎧⎨=-⎩或1215x x =⎧⎨=⎩.又∵原方程有两个正实根,12125(5)0x x m x x m +=>⎧⎨=->⎩,∴5m >.∴126m x x =+=.【方法指导】对一元二次方程的根与系数的关系要善于从方程(组)的角度来把握.【例3】已知方程22(2)430x m x m ++++=,根据下列条件求m 的取值范围或值. (1)方程两根互为相反数; (2)方程有两个负根;(3)方程有一个正根,一个负根.解:(1)2(2)0430m m -+=⎧⎨+≤⎩,∴2m =-.(2)2[2(2)]4(43)02(2)0430m m m m ⎧+-+≥⎪-+<⎨⎪+>⎩,∴34m >-.(3)430m +<,∴34m <-. 【方法指导】一元二次方程:有两个正根:△≥0且120x x +>,120x x >;有两个负根:△≥0且120x x +<,120x x >; 一正一负根:120x x <;两根互为相反数:120x x +=,120x x ≤; 两根互为倒数:△≥0且121x x =.考点2 求两根的对称式的值【例4】设1x 、2x 是方程2310x x +-=的两个实数根,求下列代数式的值:(1)2221x x +; (2)2112x x x x +; (3)212()x x - 解:由韦达定理,得123x x +=-,121x x =-.(1)2212x x +=21212()2x x x x +-=11(2)2112x x x x +=2121212()2x x x x x x +-=-11 (3)212()x x -=21212()4x x x x +-=13【方法指导】只要代数式符合两根的对称式,经过适当的变形可得到只含“两根和”、“两根积”的代数式,代入求值即可.考点3 利用根与系数的关系及根的定义求代数式的值【例5】已知m 、n 是一元二次方程2210x x --=的两个实数根.求下列代数式的值. (1)222441m n n +--; (2)35m n +.解:(1)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,1mn =-,221n n -=. ∴222441m n n +--=2222()2(2)1m n n n ++-- =222[()2]2(2)1m n mn n n +-+-- =2(42)211++⨯-=13.(2)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,221m m =+.∴35m n +=(21)5m m n ++=225m m n ++ =2(21)5m m n +++=5()2m n ++=522⨯+=10. 【方法指导】此类代数式不属于对称式,仅仅用根与系数的关系是不够的.常常需要结合根的定义,将式中的高次降低,直至出现对称式,再利用根与系数的关系求值.考点4 构造一元二次方程求值【例6】 (1)已知21550a a --=,21550b b --=,求a bb a+的值; (2) 已知22510m m --=,21520nn +-=,且m n ≠,求11m n+的值.解:(1)当a b =时,2a bb a+=; 当a b ≠时,由已知可把a 、b 看作是一元二次方程21550x x --=的两根.∴15a b +=,5ab =-.∴222()2a b a b a b ab b a ab ab ++-+===2152(5)5-⨯--=47-. (2)由21520n n +-=,得22510n n --=,而22510m m --=,m n ≠,∴可把m 、n 看作是一元二次方程22510x x --=的两根.∴52m n +=,12mn =-. ∴11m n +=m nmn+=5-. 【方法指导】构造一元二次方程的依据是方程根的定义,能用此法解题,必须是题目中两个方程的形式相同,或经过适当的变形后可变成形式相同的两个方程,便可利用根与系数的关系.考点5 韦达定理与抛物线的结合 【例7】若1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的两个根,则方程的两个根1x 、2x 和系数a 、b 、c 有如下关系:12b x x a +=-,12cx x a=.把它称为一元二次方程根与系数关系定理.如果设二次函数2(0)y ax bx c a =++≠的图象与x 轴的两个交点A (1x ,0),B (2x ,0).利用根与系数关系定理可以得到A 、B 两个交点间的距离为:AB=12||x x -=21212()4x x x x +-=24()bc a a--=24||b aca -.参考以上定理和结论,解答下列问题:设二次函数2(0)y ax bx c a =++>的图象与x 轴的两个交点A (1x ,0),B (2x ,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求24b ac -的值; (2)当△ABC 为等边三角形时,求24b ac -的值.解:(1)当△ABC 为直角三角形时,过C 作CE ⊥AB 于E ,则AB =2CE .∵抛物线与x 轴有两个交点,∴240b ac ∆=->,则22|4|4ac b b ac -=-.∵0a >,∴2244b ac b acAB --==又∵2244||44ac b b acCE a a--==, ∴224424b ac b aca--=⨯, ∴22442b ac b ac --,∴222(4)44b ac b ac --=,而240b ac ->,∴244b ac -=.(2)当△ABC 为等边三角形时,由(1)知3CE AB =, ∴224344b ac b ac a --=240b ac ->, ∴2412b ac -=.★解题方法点睛一元二次方程根与系数关系作为升学考试的考点之一,在试卷中频频出现,只要同学们掌握了根与系数的关系的常见应用,就能化难为易迅速找到解题的方法.运用中: 1.要善于运用整体思想求两根的对称式的值; 2.已知两根的有关代数式的值求待定字母的值时,一定别忘了判别式的限制作用; 3.要注意从方程(组)的角度看待韦达定理.4.注意由此及彼的思维方法的运用.★中考真题精练1.(2014·玉林)1x 、2x 是关于x 的一元二次方程220x mx m -+-=的两个实数根,是否存在实数m 使12110x x +=成立?则正确的结论是( A ) A .0m =时成立 B . 2m =时成立 C .0m =或2时成立 D .不存在2.(2014·呼和浩特)已知函数1||y x =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程20ax bx c ++=的两根1x 、2x 判断正确的是( C ) A .121x x +>,120x x > B .120x x +<,120x x > C .1201x x <+<,120x x >D .12x x +与12x x 的符号都不能确定 3.(2015·泸州)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 27 .4.(2015·江西)已知一元二次方程2430x x --=的两根是m ,n ,则22m mn n -+= 25 .5.(2014·德州)方程222210x kx k k ++-+=的两个实数根1x 、2x 满足22124x x +=,则k 的值为 1 .6.(2014·济宁)若一元二次方程2(0)ax b ab =>的两个根分别是1m +与24m -,则ba= 4 . 7.已知关于x 的一元二次方程2(3)10x m x m ++++=.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若1x 、2x 是原方程的两根,且12||22x x -=,求m 的值.(1)证明:△=2(3)4(1)m m +-+=225m m ++ =2(1)4m ++.无论m 取何值,2(1)440m ++≥>,即0∆>. ∴无论m 取何值,原方程总有两个不相等的实数根. (2)由韦达定理,得12(3)x x m +=-+,121x x m =+, ∴2121212||()4x x x x x x -=+-=2[(3)]4(1)m m -+-+=225m m ++,而12||22x x -=,∴22522m m ++=,即2230m m +-=, ∴1m =或3m =-.8.已知关于x 的方程222(1)0x k x k --+=有两个实数根1x 、2x .(1)求k 的取值范围;(2)若1212||1x x x x +=-,求k 的值. 解:(1)由已知,得0∆≥,即22[2(1)]40k k ---≥,∴12k ≤. (2)∵12k ≤,∴122(1)10x x k +=-≤-<,∴1212||()2(1)x x x x k +=-+=--.而212x x k =,1212||1x x x x +=-, ∴2221k k -+=-,即2230k k +-= , ∴1k =或3k =-.而12k ≤,∴3k =-. 9.请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x = ,∴2y x =. 把2y x =代入已知方程,得2()1022y y+-=,化简,得2240y y +-=.故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”. 请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程220x x +-=,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为: ;(2)己知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数. 解:(1)设所求方程的根为y ,则y x =-,∴x y =-. 把x y =-代入已知方程,得220y y --=,∴所求方程为220y y --=;(2)设所求方程的根为y ,则1y x=(0x ≠), ∴1x y=(0y ≠ ) 把1x y =代入方程20ax bx c ++=,得20a bc y y++=,∴20cy by a ++=.若0c =,有20ax bx +=,∴方程20ax bx c ++=有一个根为0,不符合题意,∴0c ≠.∴所求方程为20cy by a ++=(0c ≠). 10.(2014•孝感)已知关于x的方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)试说明10x <,20x <;(3)若抛物线22(23)1y x k x k =--++与x 轴交于A 、B 两点,点A 、点B 到原点的距离分别为OA 、OB ,且23OA OB OA OB +=⋅-,求k 的值. 解:(1)由题意,得0∆>,即22[(23)]4(1)0k k ---+> ,解得512k <. (2)∵512k <,∴12230x x k +=-<, 而21210x x k =+>,∴10x <,20x <.(3)由题意,不妨设A (1x ,0),B (2x ,0). ∴OA +OB =1212|||()(23)x x x x k +=-+=--,21212||||1OA OB x x x x k ⋅===+.∵23OA OB OA OB +=⋅-,∴2(23)2(1)3k k --=+-,解得1k =或2k =-.而512k <,∴2k =-. ★课后巩固提高1.已知方程23(4)10x m x m ++++=的两根互为相反数,则m = -42.关于x 的方程222(1)0x m x m +++=的两根互为倒数,则m = 1 .已知12x x ≠,且满足211320x x +-=,222320x x +-=,则12(1)(1)x x -- = 2 .3.(2014·呼和浩特)已知m ,n 是方程2250x x +-=的两个实数根,则23m mn m n -++= 8 . 4.(2015·荆门)已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 -1或-3 .5.(2014•襄阳)若正数a 是一元二次方程250x x m -+=的一个根,a -是一元二次方程250x x m +-=的一个根,则a的值是 5 .6.设2210a a +-=,42210b b --=,且210ab -≠,则22531()ab b a a+-+= -32 .7.(2014·扬州)已知a 、b 是方程230x x --=的两个根,则代数式32223115a b a a b ++--+的值为 23 .8.已知方程230x x k ++=的两根之差为5,则k = -4 .9.已知抛物线2y x px q =++与x 轴交于A 、B 两点,且过点(-1,-1),设线段AB 的长为d ,当p = 2 时,2d 取得最小值,最小值为 4 .10.已知1x 、2x 是关于x 的方程22(21)(1)0x m x m ++++=的两个实数根.(1)用含m 的代数式表示2212x x +; (2)当221215x x +=时,求m 的值.解:由韦达定理,得12(21)x x m +=-+,2121x x m =+. ∴2212x x +=21212()2x x x x +-=22[(21)]2(1)m m -+-+ =2241m m +-.(2)由(1)得,224115m m +-=,解得14m =-,22m =. 当4m =-时,原方程无实根;当2m =时,原方程有实根. ∴2m =.11.(2014·鄂州)一元二次方程2220mx mx m -+-=. (1)若方程有两实数根,求m 的范围.(2)设方程两实数根为1x 、2x ,且12||1x x -=,求m . 12.已知方程23730x x -+=的两根1x 、2x (12x x >).求下列代数式的值. (1(2)2212x x -.解:由韦达定理,得1273x x +=,121x x =. (1. (2)∵12x x >,∴120x x ->.∴12x x -=∴2212x x -=1212()()x x x x +-=73=13.(2015·湖北孝感)已知关于x 的一元二次方程:2(3)0x m x m ---=.(1)试判断原方程根的情况;(2)若抛物线2(3)y x m x m =---与x轴交于1(,0)A x ,2(,0)B x 两点,则A ,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由. 解:(1)22[(3)]4()29m m m m ∆=----=-+ =2(1)8m -+ ∵2(1)m -≥0,∴2(1)80m ∆=-+> ∴原方程有两个不相等的实数根. (2)存在.由题意知1x 、2x 是原方程的两根. ∴12123,x x m x x m +=-=- ∵12||AB x x =-∴222121212()()4AB x x x x x x =-=+- 22(3)4()(1)8m m m =---=-+ ∴当1m =时,2AB 有最小值8 ∴AB有最小值,即AB =14.(2014·荆门)已知函数2(31)21y ax a x a =-+++(a 为常数).(1)若该函数图象与坐标轴只有两个交点,求a 的值; (2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (1x ,0),B (2x ,0)两点,与y 轴相交于点C ,且212x x -=. ①求抛物线的解析式;② 作点A 关于y 轴的对称点D ,连结BC 、DC ,求sin DCB ∠的值.解:(1)①当a =0时,1y x =-+,其图象与坐标轴有两个交点(0,1),(1,0);②当a ≠0且图象过原点时,210a +=,∴12a =-,有两个交点(0,0),(1,0);③当a ≠0且图象与x 轴只有一个交点时,令y =0,则有0∆=,即2[(31)]4(21)0a a a -+-+=.解得a =-1,有两个交点(0,-1),(1,0);综上:a =0或12-或1-时,函数图象与坐标轴有两个交点. (2)①由题意令y =0时,123a x x a ++=,1221a x x a+=.∵212x x -=,∴221()4x x -=,∴21212()44x x x x +-= ,则(24(21)31()4a a a a ++-=,解得113a =-,21a =由题意,得00a >⎧⎨∆>⎩,即20[(31)]4(21)0a a a a >⎧⎨-+-+>⎩, ∴13a =-应舍去.1a =符合题意. ∴抛物线的解析式为243y x x =-+.②令y =0得2430x x -+=,解得1x =或3x =.w W∴A (1,0),B (3,0).由已知可得,D (-1,0),C (0,3). ∴OB =OC =3,OD =1,BD =4. 如图,过D 作DE ⊥BC 于E ,则有∴sin 45DE BD =⋅︒=而CD∴在Rt △CDE 中,sin ∠DCB =DE CD.。
韦达定理公式介绍及典型例题
韦达定理公式介绍及典型例题韦达定理公式介绍及典型例题韦达定理说明了一元n次方程中根和系数之间的关系。
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
这里讲一元二次方程两根之间的关系。
一元二次方程aX²+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+X2=-b/a ,X1·X2=c/a【定理内容】一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,设两个根为x1 ,x2 那么X1+X2= -b/aX1·X2=c/a1/X1+1/X2=X1+X2/X1·X2用韦达定理判断方程的根一元二次方程ax²+bx+c=0 (a≠0)中,假设b²-4ac<0 那么方程没有实数根假设b²-4ac=0 那么方程有两个相等的实数根假设b²-4ac>0 那么方程有两个不相等的实数根【定理拓展】(1)假设两根互为相反数,那么b=0(2)假设两根互为倒数,那么a=c(3)假设一根为0 ,那么c=0(4)假设一根为1 ,那么a+b+c=0(5)假设一根为-1 ,那么a-b+c=0(6)假设a、c异号,方程一定有两个实数根【例题】p+q=198 ,求方程x^2+px+q=0的整数根. (94祖冲之杯数学邀请赛试题)解:设方程的两整数根为x1、x2 ,不妨设x1≤x2.由韦达定理,得x1+x2=-p ,x1x2=q.于是x1·x2-(x1+x2)=p+q=198 ,即x1·x2-x1-x2+1=199.∴运用提取公因式法(x1-1)·(x2-1)=199.注意到(x1-1)、(x2-1)均为整数,解得x1=2 ,x2=200;x1=-198 ,x2=0.。
中考专题训练(韦达定理)—解析版
中考专题训练(韦达定理)1.若1x 、2x 是方程22340x x −−=的两个根,则1212x x x x ++的值为 12− . 【解答】解:根据题意得1232x x +=,122x x =−, 所以121231222x x x x ++=−+=−. 故答案为12−.2.若1x 、2x 为方程2210x x −−=的两根,则1212x x x x +−= 3 . 【解答】解:由根与系数的关系可得121x x =−,122x x +=. 12122(1)3x x x x ∴+−=−−=.3.已知m ,n 是方程2250x x +−=的两个实数根,则m mn n −+= 3 . 【解答】解:根据题意得2m n +=−,5mn =−, 所以2(5)3m n mn +−=−−=. 故答案为3.4.已知方程2430x x −+=的两根分别为1x 、2x ,则2212211x x x x =+ 112.【解答】解:根据题意得124x x +=,123x x ⋅=, 所以2212211x x x x +12121()x x x x =+134=⨯ 112=, 故答案为112. 5.已知:1x 、2x 是方程2430x x +−=的两根,则1211x x +=43. 【解答】解:1x 、2x 是方程2430x x +−=的两根, 124x x ∴+=−,123x x ⨯=−,那么121212114433x x x x x x +−+===−. 故填空答案:43.6.已知一元二次方程21)10x x −++=的两根为1x 、2x ,则1211x x += 2+ 【解答】解:一元二次方程21)10x x −++=的两根为1x 、2x , 121x x ∴+=+,121x x =−,∴121212112x x x x x x ++====+. 故答案为:2+.7.若非零实数m ,()n m n ≠满足220160m m −−=,220160n n −−=,则11m n += 12016−. 【解答】解:由题意可知:m 、n 是方程220160x x −−=,1m n ∴+=,2106mn =−,∴原式12016m n mn +==−故答案为:12016−8.若非零实数a ,()b a b ≠满足220130a a −−=,220130b b −−=,则11a b += 12013−. 【解答】解:非零实数a ,()b a b ≠满足220130a a −−=,220130b b −−=,ab ∴是方程220130x x −−=的解, 1a b ∴+=,2013ab =−,∴1112013a b a b ab ++==−; 故答案为:12013−.9.设1x ,2x 是方程2330x x +−=的两个实数根,则2112x x x x +的值为 5− . 【解答】解:1x ,2x 是方程2330x x +−=的两个实数根, 123x x ∴+=−,123x x =−,∴222221121212121212()2(3)2(3)53x x x x x x x x x x x x x x ++−−−⨯−+====−−. 故答案为5−.10.已知1x ,2x 是一元二次方程2210x x −−=的两实数根,则12112121x x +++的值是 6 . 【解答】解:1x 、2x 是一元二次方程2210x x −−=的两实数根, 122x x ∴+=,121x x =−,21121x x =+,22221x x =+,∴22221212122222212121212()2111122(1)62121()()(1)x x x x x x x x x x x x x x ++−−⨯−+=+====++−. 故答案为:6.11.已知α、β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=−,则m 的值是 3 .【解答】解:α、β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根; 23m αβ∴+=−−,2m αβ=;∴211231m m βααβαβ+−−+===−; 2230m m ∴−−=;解得3m =或1m =−;一元二次方程22(23)0x m x m +++=有两个不相等的实数根;∴△22(23)411290m m m =+−⨯⨯=+>;34m ∴>−;1m ∴=−不合题意舍去; 3m ∴=.12.如果1x ,2x 分别是一元二次方程2240x x −−=的两个根,那么2212x x +的值是 12 .【解答】解:1x ,2x 分别是一元二次方程2240x x −−=的两个根, 122x x ∴+=,124x x =−,2212x x ∴+21212()2x x x x =+−48=+12=.故答案为:12.13.设1x ,2x 是方程2530x x +−=的两个实数根,则2212x x +值为 31 .【解答】解:1x ,2x 是方程2530x x +−=的两个实数根, 125x x ∴+=−,123x x ⋅=−,222121212()2252(3)31x x x x x x ∴+=+−⋅=−⨯−=.故答案为:31.14.已知1x ,2x 是一元二次方程2470x x −−=的两个实数根,则2211224x x x x ++的值是 2 .【解答】解:根据题意得124x x +=,127x x =−所以,222112212124()216142x x x x x x x x ++=++=−= 故答案为2.15.设1x ,2x 是一元二次方程2310x x −−=的两个实数根,则2212124x x x x ++的值为 7 . 【解答】解:1x ,2x 是一元二次方程2310x x −−=的两个实数根, 12331x x −∴+=−=,12111x x −==−, 则222121212124()2x x x x x x x x ++=++232(1)=+⨯−7=. 故答案为:7.16.设a ,b 是方程220180x x +−=的两个实数根,则(1)(1)a b −−的值为 2016− . 【解答】解:a ,b 是方程220180x x +−=的两个实数根,1a b ∴+=−,2018ab =−,(1)(1)1()12018(1)12016a b ab a b ab a b ∴−−=−−+=−++=−−−+=−,故答案为:2016−.17.已知1x ,2x 是一元二次方程240x x −−=的两实根,则12(4)(4)x x ++的值是 16 . 【解答】解:1x ,2x 是一元二次方程240x x −−=的两实根, 121x x ∴+=,124x x =−, 12(4)(4)x x ∴++ 12124416x x x x =+++ 12124()16x x x x =+++44116=−+⨯+ 4416=−++ 16=,故答案为:16.18.若1x ,2x 是方程220190x x +−=的两个实数根,则2212(1)(1)x x +++的值是 4039 . 【解答】解:1x ,2x 是方程220190x x +−=的两个实数根, 121x x ∴+=−,122019x x =−,22222121212121212(1)(1)2()2()22()214038224039x x x x x x x x x x x x ∴+++=++++=+−+++=+−+=,故答案为:4039.19.已知方程11x x+=的两根为1x 、2x ,则12x x += 1 . 【解答】解:把方程11x x+=化为210x x −+=,可得121x x +=. 故答案为:1.20.关于x 的一元二次方程240x x m −+=的两实数根分别为1x ,2x ,且1235x x +=,则m 的值是 74. 【解答】解:124x x +=,12122232425x x x x x x ∴+=++=+=,212x ∴=, 把212x =代入240x x m −+=得:211()4022m −⨯+=, 解得:74m =. 故答案为:74.21.设a ,b 是方程220190x x +−=的两个实数根,则22a a b ++的值为 2018 ; 【解答】解:设a ,b 是方程220190x x +−=的两个实数根,1a b ∴+=−,220190a a +−=,22019a a ∴+=,222()()2019(1)2018a a b a a a b ∴++=+++=+−=, 故答案为:2018.22.设a ,b 是方程220130x x +−=的两个不相等的实数根,则22a a b ++的值为 2012 . 【解答】解:a ,b 是方程220130x x +−=的两个不相等的实数根,220130a a ∴+−=,22013a a ∴+=,又111a b +=−=−,222()()201312012a a b a a a b ∴++=+++=−=.故答案为:2012.23.关于x 的一元二次方程2210x mx m −+−=的两个实数根分别是1x 、2x ,且22127x x +=,则m 的值是 1− . 【解答】解:根据题意得12x x m +=,1221x x m =−,22127x x +=,21212()27x x x x ∴+−=,22(21)7m m ∴−−=,解得11m =−,25m =,当1m =−时,原方程变形为230x x +−=,△14(3)0=−⨯−>,方程有两个不等实数根; 当5m =时,原方程变形为2590x x −+=,△25490=−⨯<,方程没有实数根;m ∴的值为1−.故答案为1−.24.若关于x 的方程22(21)10x a x a +−+−=的两根是1x 、2x ,且1212(3)(3)210x x x x −−+=,则a 的值为 5− . 【解答】解:22(21)10x a x a +−+−=的两根是1x 、2x ,∴△22(21)4(1)450a a a =−−−=−+,54a ∴, 1212x x a ∴+=−,2121x x a =−, 1212(3)(3)210x x x x −−+=,2211223103210x x x x ∴−++=,212123()16210x x x x ∴+−+=,223(12)16(1)210a a ∴−−−+=, 23100a a ∴+−=, 15a ∴=−,22a =,54a , 5a ∴=−,故答案为5−.25.设一元二次方程2830x x −+=的两实数根分为1x 和2x ,则21121135x x x −−+= 22− . 【解答】解:一元二次方程2830x x −+=的两实数根分为1x 和2x ,211830x x ∴−+=,即21183x x −=−, 128x x +=,21121135x x x ∴−−+ 2111283()5x x x x =−−++3385=−−⨯+22=−.故答案为22−.26.若α,β是方程2220050x x +−=的两个实数根,则23ααβ++的值为 2003 . 【解答】解:α,β是方程2220050x x +−=的两个实数根,则有2αβ+=−.α是方程2220050x x +−=的根,得2220050αα+−=,即:222005αα+=.所以22232()22200522003ααβαααβαα++=+++=+−=−=. 故答案为:2003.27.设1x 、2x 是一元二次方程2430x x +−=的两个根,21222(53)2x x x a +−+=,则a = 8 . 【解答】解:根据题意可得124bx x a+=−=−,123c x x a ==−,又21222(53)2x x x a +−+=, 21212121062x x x x x a ∴+−+=,212161062x x x x a −+−+=, 12126()102x x x x a −+++=,6(4)10(3)2a −⨯−+⨯−+=,8a ∴=.故答案为:8.28.如果方程2510x x −−=两根为1x ,2x ,则221122272x x x x −+−= 18 . 【解答】解:方程2510x x −−=两根为1x ,2x ,211510x x ∴−−=,222510x x −−=,125x x +=,21151x x ∴−=,22251x x −=,221122272x x x x ∴−+−221122122(5)(5)3()x x x x x x =−+−++21135=⨯++⨯ 18=.故答案为18.。
人教九上:专题三--韦达定理的应用(含解析)
专题三韦达定理的应用1.设x1、x2是关于x的方程x2+kx+2=0的两个实数根,求代数式1x1+1x2+k2的值.2.已知关于x的一元二次方程x2−(k+3)x+3k=0.(1)求证:无论k为何值,此方程总有一个根是定值;(2)若直角三角形的一边为4,另两边恰好是这个方程的两根,求k的值.3.已知关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2.(1)求k的取值范围;(2)若x1,x2满足x21+x22=1+x1⋅x2,求实数k的值.4.已知关于x的方程x2−2x+m−1=0.有一个实数根是5,求此方程的另一个根以及m的值.5.关于x的一元二次方程x2−6x+k=0,若方程的一个根x1=2,求k的值和方程的另一个根x2.6.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.7.关于x的一元二次方程x2+2x−3m=0有两个不相等的实数根.(1)求m的取值范围;(2)当m=1时,求方程的根.8.已知x1,x2是关于x的一元二次方程.x2+2x+c=0的两个不相等的实数根.(1)求c的取值范围;(2)若x1x2=−1,直接写出c的值;(3)若x1=−3,直接写出c的值.9.若关于x的一元二次方程x2+4x+m−1=0有两个相等的实数根,求m的值及方程的根.10.已知3,t是方程2x2+2mx−3m=0的两个实数根,求m及t的值.11.若关于x的一元二次方程x2+bx−6=0有一个根是x=2,求b的值及方程的另一个根.12.已知关于x的一元二次方程x2−(m+1)x+m+6=0的其中一个根为3.求m的值及方程的另一个根.13.关于x的一元二次方程x2−8x+m=0有一个根是x=3,求m的值及方程的另一个根.14.已知关于x的方程x2−kx+12=0的一个根为3,求k的值及它的另一个根.15.若关于x的一元二次方程x2−4x+m+3=0有两个相等的实数根,求m的值及此方程的根.16.关于x的一元二次方程x2+2x−m=0有两个不相等的实数根.(1)求m的取值范围:(2)当m=8时,求方程的根.17.已知:关于x的方程x2+mx−8=0有一个根是−4,求另一个根及m的值.18.已知x=−1是一元二次方程x2−2x+c=0的一个根,求c的值及方程另一个根.参考答案1.0【分析】利用根与系数的关系求出x1+x2=−k,x1x2=2,然后根据分式的加减对原式进行变形,整体代入计算即可求出答案.【详解】解:∵x1、x2是关于x的方程x2+kx+2=0的两个实数根,∴x1+x2=−k,x1x2=2,又∵边长k>0,∴k=7,综上所述,k的值为5或7.3.(1)k≤1312(2)k=1【分析】本题主要考查了一元二次方程根的判别式,一元二次方程根与系数的关系,解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2−4ac>0,则方程有两个不相等的实数根,若Δ=b2−4ac=0,则方程有两个相等的实数根,若Δ=b2−4ac<0,则方程没有实数根,若x1,x2是该方程的两个实数根,则x1+x2=−b,x1x2=c a.a(1)根据题意可得Δ=(2k−3)2−4(k2−1)≥0,据此可得答案;(2)根据根与系数的关系得到x1+x2=−(2k−3),x1⋅x2=k2−1,再由已知条件和完全平方公式的变形得到(2k−3)2−3(k2−1)=1,解方程即可得到答案.【详解】(1)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴Δ=(2k−3)2−4(k2−1)≥0,∴4k2−12k+9−4k2+4≥0,∴k≤13;12(2)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴x1+x2=−(2k−3),x1⋅x2=k2−1,∵x21+x22=1+x1⋅x2,∴x21+x22−x1⋅x2=1∴(x1+x2)2−3x1x2=1,∴(2k−3)2−3(k2−1)=1,∴4k2−12k+9−3k2+3=1,∴k2−12k+11=0解得:k1=1,k2=11(舍去)∴k=1.4.x2=−3;m=−14.【分析】本题考查了一元二次方程的解以及根与系数的关系,代入x=5可求出m的值,再利用两根之和等于−b,即可求出方程的另一个根,解题的关键是熟练掌握一元二次方程根与系数的关系.a【详解】解:当x=5时,原方程为52−2×5+m−1=0,解得:m=−14,设方程的另一个实数根为x2,∵5+x2=2,∴x2=−3,∴方程的另一个根为−3,m的值为−14.5.k=8,x2=4【分析】利用根与系数的关系表示出两根之和与两根之积,由一个根为2,求出另一根,进而确定出k的值.【详解】设另一根为x2,∴2+x2=6,2x2=k,则x2=4,k=8,则6∴1把则7(2)((【详解】(1)解:∵一元二次方程有两个不相等的实数根,∴Δ=b2−4ac=4−4×1×(−3m)>0,解得:m>−1,3(2)当m=1时,方程为x2+2x−3=0,(x+3)(x−1)=0,解得x1=−3,x2=1.8.(1)c<1(2)c=−1(3)c=−3【分析】本题考查了根与系数的关系、根的判别式以及一元二次方程的解.(1)根据方程的系数,结合根的判别式Δ<0,可得出关于c的一元一次不等式,解之即可得出c的取值范围;(2)利用根与系数的关系,可得出x1x2=c,结合x1x2=−1,即可得出c的值;(3)代入x1=−3,即可求出c的值.【详解】(1)解:∵关于x的一元二次方程x2+2x+c=0有两个不相等的实数根,∴Δ=22−4×1×c>0,解得:c<1,∴c的取值范围是c<1;(2)解:∵x1,x2是关于x的一元二次方程x2+2x+c=0的两个不相等的实数根,∴x1x2=c,又∵x1x2=−1,∴c=−1;(3)解:将x1=−3代入原方程得9+2×(−3)+c=0,解得:c=−3,∴若x1=−3,则c的值为−3.9.m=5,x1=x2=−2【分析】本题考查一元二次方程根的判别式及解法,根据当Δ=0时,方程有两个相等的实数根求得m 值,进而解一元二次方程即可求解.【详解】解:∵一元二次方程x2+4x+m−1=0有两个相等的实数根,∴Δ=42−4(m−1)=0,则m=5,∴x2+4x+4=0,解得x1=x2=−2.10.t=3,m=−6【分析】利用根与系数的关系,建立二元一次方程组进行求解.【详解】解:∵3,t是方程2x2+2mx−3m=0的两个实数根,∴3+t=−2m2,3t=−3m2,3+t=−m①2t=−m②,∴3+t=2t,解得:t=3,∴m=−2×3=−6,答:t=3,m=−6.【点睛】本题考查了根与系数的关系,二元一次方程组,解题的关键是能利用根与系数的关系建立二元一次方程组.11.b=1,方程的另一个根为−3【分析】本题考查了一元二次方程的根及解一元二次方程.将x=2代入x2+bx−6=0求得b的值,然后解方程组即可.【详解】∵x=2是方程x2+bx−6=0有一个根,∴4+2b−6=0,∴b=1当b=1时,原方程为x2+x−6=0,解得x1=2,x2=−3.∴b=1,方程的另一个根为−3.12.m=6,另一个根为4【分析】把x=3代入方程求出m的值,然后解方程求出另一个根即可.【详解】解:把x=3代入x2−(m+1)x+m+6=0,得9−3(m+1)+m+6=0,解得m=6,把m=6代入原方程得x2−7x+12=0,∴(x−3)(x−4)=0,∴x1=3,x2=4,即方程的另一个根为4.【点睛】本题考查了一元二次方程的解,以及一元二次方程的解法,熟练掌握一元二次方程的解法是解答本题的关键.13.m的值为15,另一根为5【分析】本题考查一元二次方程的根与系数的关系,掌握ax2+bx+c=0(a≠0)的两根为x1,x2,则有x1+x2=−ba ,x1x2=ca是解题的关键.【详解】解:设另一根为a,则a+3=8,3a=m,解得:a=5,m=15,∴m的值为15,另一根为5.14.k=7,另一根为4【分析】由于一根为3,把x=3代入方程即可求得k的值.然后根据两根之积即可求得另一根.【详解】解:∵方程x2−kx+12=0的一个根为3,∴32−k×3+12=0,解得k=7,设另一根为x,∵3x=12,∴x=4,∴另一根为4.【点睛】本题考查了一元二次方程的解和根与系数的关系,解题时可利用根与系数的关系使问题简化,难度不大.15.m=1,x1=x2=2【分析】本题考查的是一元二次方程根的判别式的应用以及解一元一次方程,根据Δ=0时,方程有两个相等的两个实数根列出方程,解方程求出m,利用因式分解法解方程求出方程的根.【详解】解:∵关于x的方程x2−4x+m+3=0有两个相等的实数根,∴△=b2−4ac=(−4)2−4×1×(m+3)=4−4m=0,解得,m=1,∴方程为x2−4x+4=0,∴(x−2)2=0解得:x1=x2=2.16.(1)m>−1(2)x1=−4,x2=2【分析】本题考查一元二次方程根的判别式及解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),判别式Δ>0时方程有两个不相等的实数根;Δ=0时方程有两个相等的实数根;Δ<0时方程没有实数根;熟练掌握一元二次方程根与判别式的关系及解一元二次方程的方法是解题关键.(1)根据方程x2+2x−m=0有两个不相等的实数根可得判别式Δ>0,列不等式求出m的取值范围即可;(2)把m=8代入x2+2x−m=0,利用因式分解法解一元二次方程即可.【详解】(1)解:∵关于x的一元二次方程x2+2x−m=0有两个不相等实数根,∴Δ=b2−4ac=22−4×1×(−m)>0,解得:m>−1.∴m的取值范围为m>−1.(∴∴x17∴∴18∴1∴c设另一个根为x2,则−1⋅x2=−3,∴x2=3,∴c的值是−3,另一个根是x=3.。
韦达定理全面练习题及答案
韦达定理全面练习题及答案
下面是几道关于韦达定理的练题及答案,供大家练和参考。
问题一
已知两边长为18cm和24cm的直角三角形的斜边是多少?
答案:
根据韦达定理,直角三角形的斜边的平方等于其他两边的平方和。
因此,斜边长为:
√(18^2 + 24^2) = √(324 + 576) = √900 = 30cm
问题二
已知一个平行四边形的两边长分别为10cm和15cm,以及对角线之间的夹角为60度,求另外两边长。
答案:
根据韦达定理,平行四边形的两对角线长度的平方和等于平行四边形的两边长度的平方和的两倍。
因此,另外两边长分别为:
√(10^2 + 15^2 - 2 * 10 * 15 * cos(60°)) = √(100 + 225 - 300 * 0.5) = √(100 + 225 - 150) = √175 = 5√7 cm
问题三
已知一个三角形的边长分别为7cm、8cm和9cm,求其面积。
答案:
根据海伦公式,已知三角形的三条边长可以计算出其面积。
公式如下:
面积= √(s * (s - a) * (s - b) * (s - c))
其中,s = (a + b + c) / 2 是三角形的半周长,而a、b和c分别是三角形的三条边长。
带入已知边长,可以计算出面积:
面积= √(12 * (12 - 7) * (12 - 8) * (12 - 9)) = √(12 * 5 * 4 * 3) = √720 = 12√5 cm²。
初中物理竞赛:韦达定理(附练习题及答案)
初中物理竞赛:韦达定理(附练习题及答案)韦达定理是物理学中的一个重要定理,用于求解力学问题。
它是基于能量守恒和功的定义推导出来的。
韦达定理的表达式为:\[W = \Delta KE \]其中,W表示外力做的功,\(\Delta KE\)表示物体动能的变化。
韦达定理可以应用于各种力学问题,帮助我们分析和计算物体的运动情况和动能的变化。
下面是一些韦达定理的练题及答案,供参考:1. 一个质量为2kg的物体在力为10N的作用下沿着力的方向移动了5m,求外力所做的功。
解答:根据韦达定理,外力做的功等于物体动能的变化。
由于力与物体的位移方向相同,所以力做正功。
根据韦达定理的表达式,可以得到:\[W = \Delta KE\]由于物体的质量和加速度未知,无法直接计算动能的变化。
但我们可以利用力和位移的关系求出力所做的功。
根据功的定义,可以得到:\[W = F \cdot s\]代入已知的数值可以计算出外力所做的功:\[W = 10N \cdot 5m = 50J\]所以外力所做的功为50焦耳。
2. 一个质量为1kg的物体从静止开始,受到一个恒力为5N的作用力,沿着力的方向移动了10m,求外力所做的功和物体的末速度。
解答:根据韦达定理,外力做的功等于物体动能的变化。
由于力与物体的位移方向相同,所以力做正功。
根据韦达定理的表达式,可以得到:\[W = \Delta KE\]由于物体的初始速度为零,加速度未知,无法直接计算动能的变化。
但我们可以利用力和位移的关系求出力所做的功。
根据功的定义,可以得到:\[W = F \cdot s\]代入已知的数值可以计算出外力所做的功:\[W = 5N \cdot 10m = 50J\]所以外力所做的功为50焦耳。
根据动能定理,可以得到:\[W = \Delta KE = \frac{1}{2} mv^2 - 0\]由此可以求解出物体的末速度:\[50 = \frac{1}{2} \cdot 1kg \cdot v^2\]\[v^2 = 100\]\[v = 10m/s\]所以物体的末速度为10米每秒。
韦达定理练习题(含答案)
韦达定理练习题一.填空题(共16小题)1.方程x2+x﹣1=0的两根为x1、x2,则x1+x2的值为.2.已知实数x1,x2是方程x2+x﹣1=0的两根,则x1x2=.3.已知a,b是方程x2+x﹣3=0的两个不相等的实数根,则ab﹣2022a﹣2022b的值是.4.设x1、x2是方程x2﹣mx=0的两个根,且x1+x2=﹣3,则m的值是.5.若m,n是方程x2+2021x﹣2022=0的两个实数根,则m+n﹣mn的值为.6.一元二次方程x2﹣3x+1=0的两个实数根为α、β,则αβ﹣α﹣β的值为.7.已知α,β是一元二次方程x2﹣x﹣9=0的两个实数根,则代数式α2﹣2α﹣β+3的值为.8.设a、b为x2+x﹣2021=0的两个实数根,则a3+a2+3a+2024b=.9.已知x1,x2是方程x2﹣x﹣1=0的根,则的值是.10.α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为.11.关于x的一元二次方程3x2﹣10x﹣17=0的两个根分别为x1和x2,则=.12.已知a,b是关于x的一元二次方程x2+(m+3)x﹣2=0的两个不相等的实数根,且满足=﹣1,则m的值是.13.已知m,n是方程x2+2x﹣5=0的两个实数根,则mn+m+n=.14.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.15.已知方程x2﹣2x﹣2=0的两根分别为x1,x2,则x12﹣x22+4x2的值为.16.关于x的一元二次方程x2﹣kx+4=0的两个实数根分别是x1、x2,且满足x12+x22﹣2x1﹣2x2﹣7=0,则k的值为.二.解答题(共4小题)17.已知关于x的方程2x2+2kx+k﹣1=0.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)若x=﹣1是该方程的一个根,求方程的另一个根.18.已知:关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0.(1)证明无论k取何值时方程总有两个实数根.(2)△ABC中,BC=5,AB、AC的长是这个方程的两个实数根,求k为何值时,△ABC 是等腰三角形?19.已知关于x的方程x2﹣4mx+4m2﹣4=0.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,且x1=3x2,求m的值.20.阅读材料并解决下列问题:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=﹣,x1x2=.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1,得m+n=1,mn=﹣1,∴+====﹣3.根据上述材料解决下面的问题:(1)一元二次方程5x2+10x﹣1=0的两根为x1,x2,则x1+x2=,x1x2=.(2)已知实数m,n满足3m2﹣3m﹣1=0,3n2﹣3n﹣1=0,且m≠n,求m2n+mn2的值.(3)已知实数p,q满足p2=7p﹣2,2q2=7q﹣1,且p≠2q,求p2+4q2的值.参考答案与试题解析一.填空题(共16小题)1.方程x2+x﹣1=0的两根为x1、x2,则x1+x2的值为﹣1.【分析】根据一元二次方程根与系数的关系直接可得答案.【解答】解:∵方程x2+x﹣1=0的两根为x1、x2,∴x1+x2=﹣1,故答案为:﹣1.【点评】本题考查一元二次方程根与系数的关系,解题的关键是掌握一元二次方程根与系数的关系.2.已知实数x1,x2是方程x2+x﹣1=0的两根,则x1x2=﹣1.【分析】根据根与系数的关系解答.【解答】解:∵方程x2+x﹣1=0中的a=b=1,c=﹣1,∴x1x2==﹣1.故答案是:﹣1.【点评】此题主要考查了根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.3.已知a,b是方程x2+x﹣3=0的两个不相等的实数根,则ab﹣2022a﹣2022b的值是2019.【分析】由a,b是方程x2+x﹣3=0的两个不相等的实数根,利用根与系数的关系即可求出两根之和和两根之积,代入代数式即可求解.【解答】解:∵a,b是方程x2+x﹣3=0的两个不相等的实数根,∴a+b=﹣1,ab=﹣3.∴ab﹣2022a﹣2022b=ab﹣2022(a+b)=﹣3﹣2022×(﹣1)=2019,故答案为:2019.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.4.设x1、x2是方程x2﹣mx=0的两个根,且x1+x2=﹣3,则m的值是﹣3.【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=m,而x1+x2=﹣3,所以m=﹣3.故答案为:﹣3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.5.若m,n是方程x2+2021x﹣2022=0的两个实数根,则m+n﹣mn的值为1.【分析】利用根与系数的关系可得出m+n=﹣2021,mn=﹣2022,再将其代入m+n﹣mn 中即可求出结论.【解答】解:∵m,n是方程x2+2021x﹣2022=0的两个实数根,∴m+n=﹣2021,mn=﹣2022,∴m+n﹣mn=﹣2021﹣(﹣2022)=1.故答案为:1.【点评】本题考查了根与系数的关系,牢记“两根之和等于﹣,两根之积等于”是解题的关键.6.一元二次方程x2﹣3x+1=0的两个实数根为α、β,则αβ﹣α﹣β的值为﹣2.【分析】根据根与系数的关系得到α+β=3,αβ=1,然后利用整体代入的方法计算.【解答】解:根据根与系数的关系得到α+β=3,αβ=1,所以αβ﹣α﹣β=αβ﹣(α+β)=1﹣3=﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=﹣,x1x2=.7.已知α,β是一元二次方程x2﹣x﹣9=0的两个实数根,则代数式α2﹣2α﹣β+3的值为11.【分析】利用一元二次方程的根及根与系数的关系可得出α2﹣α=9,α+β=1,再将其代入α2﹣2α﹣β+3=α2﹣α﹣(α+β)+3中即可求出结论.【解答】解:∵α,β是一元二次方程x2﹣x﹣9=0的两个实数根,∴α2﹣α﹣9=0,α+β=1,∴α2﹣α=9,所以α2﹣2α﹣β+3=α2﹣α﹣(α+β)+3=9﹣1+3故答案为:11.【点评】本题考查了一元二次方程的根以及根与系数的关系,利用一元二次方程的根及根与系数的关系,找出α2﹣α=9,α+β=1是解题的关键.8.设a、b为x2+x﹣2021=0的两个实数根,则a3+a2+3a+2024b=﹣2024.【分析】先根据一元二次方程根的定义得到a2=﹣a+2021,再用a表示a3得到a3=2022a ﹣2021,所以原式变形为2024(a+b),接着根据根与现实的关系得到a+b=﹣1,然后利用整体代入的方法计算.【解答】解:∵a为x2+x﹣2021=0的根,∴a2+a﹣2021=0,即a2=﹣a+2021,∴a3=a(﹣a+2021)=﹣a2+2021a=a﹣2021+2021a=2022a﹣2021,∴a3+a2+3a+2024b=2022a﹣2021﹣a+2021+3a+2024b=2024(a+b),∵a、b为x2+x﹣2021=0的两个实数根,∴a+b=﹣1,∴a3+a2+3a+2024b=2024×(﹣1)=﹣2024.故答案为:﹣2024.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.9.已知x1,x2是方程x2﹣x﹣1=0的根,则的值是﹣1.【分析】利用根与系数的关系求出两根之和与两根之积,将所求式子通分并利用同分母分式的加法法则计算,把求出的两根之和与两根之积代入计算,即可求出值.【解答】解:∵x1,x2是方程x2﹣x﹣1=0的根,∴x1+x2=1,x1x2=﹣1,∴===﹣1.故答案为:﹣1.【点评】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题10.α、β是关于x的方程x2﹣x+k﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k的值为﹣4.【分析】α2﹣2α﹣β=α2﹣α﹣(α+β)=4,然后根据方程的解的定义以及一元二次方程根与系数的关系,得到关于k的一元一次方程,即可解得答案.【解答】解:∵α、β是方程x2﹣x+k﹣1=0的根,∴α2﹣α+k﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k+1﹣1=﹣k=4,∴k=﹣4,故答案是:﹣4.【点评】本题考查了一元二次方程的解以及根与系数的关系,掌握根与系数的关系是解题的关键.11.关于x的一元二次方程3x2﹣10x﹣17=0的两个根分别为x1和x2,则=.【分析】根据一元二次方程根与系数的关系可得,,再由进行求解即可.【解答】解:∵一元二次方程3x2﹣10x﹣17=0的两根是x1,x2,∴,,∴.故答案是:.【点评】本题主要考查了一元二次方程根与系数的关系,解题的关键在于能够熟练掌握一元二次方程根与系数的关系.12.已知a,b是关于x的一元二次方程x2+(m+3)x﹣2=0的两个不相等的实数根,且满足=﹣1,则m的值是﹣5.【分析】根据根与系数的关系结合=﹣1,即可得出关于m的方程,解之即可得出m的值,再由根的判别式Δ>0,即可确定m的值.【解答】解:∵a,b是关于x的一元二次方程x2+(m+3)x﹣2=0的两个不相等的实数根,∴a+b=﹣(m+3),ab=﹣2,∵=﹣1,即==﹣1,解得:m=﹣5.∵原方程有两个不相等的实数根,∴Δ=(m+3)2﹣4×(﹣2)=(m+3)2+8>0,∴m=﹣5.故答案为:﹣5.【点评】本题考查了根与系数的关系以及根的判别式,根据根与系数的关系结合=﹣1,找出关于m的方程是解题的关键.13.已知m,n是方程x2+2x﹣5=0的两个实数根,则mn+m+n=﹣7.【分析】根据根与系数的关系得到m+n=﹣2,mn=﹣5,然后利用整体代入的方法计算即可.【解答】解:根据题意得:m+n=﹣2,mn=﹣5,所以mn+m+n=﹣5+(﹣2)=﹣7.故答案为:﹣7.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.14.已知m,n是方程x2﹣3x=2的两个根,则式子的值是27.【分析】利用一元二次方程解的定义和根与系数的关系,采用整体代入求解.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.【点评】本题考查了一元二次方程解的定义和根与系数的关系,利用整体思想代入求值是解题的关键.15.已知方程x2﹣2x﹣2=0的两根分别为x1,x2,则x12﹣x22+4x2的值为4.【分析】利用一元二次方程解的定义得到x12=2x1+2,x22=2x2+2;然后由根与系数的关系求得x1+x2=2;最后代入所求的代数式求值即可.【解答】解:∵方程x2﹣2x﹣2=0的两根分别为x1,x2,∴x12=2x1+2,x22=2x2+2,x1+x2=2.∴x12﹣x22+4x2=(2x1+2)﹣(2x2+2)+4x2=2(x1+x2)=2×2=4.故答案是:4.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.16.关于x的一元二次方程x2﹣kx+4=0的两个实数根分别是x1、x2,且满足x12+x22﹣2x1﹣2x2﹣7=0,则k的值为5.【分析】由根与系数的关系可得:x1+x2=k,x1x2=4,再把已知的条件进行整理,整体代入运算即可求解.【解答】解:∵一元二次方程x2﹣kx+4=0的两个实数根分别是x1、x2,∴x1+x2=k,x1x2=4,∵x12+x22﹣2x1﹣2x2﹣7=0,∴(x1+x2)2﹣2x1x2﹣2(x1+x2)﹣7=0,∴k2﹣2×4﹣2k﹣7=0,整理得:k2﹣2k﹣15=0,解得:k=5或k=﹣3,当k=﹣3时,Δ=32﹣4×1×4=9﹣16=﹣7<0,则原方程无实数解,故k=5.故答案为:5.【点评】本题主要考查根与系数的关系,解答的关键是熟记根与系数的关系并灵活运用.二.解答题(共4小题)17.已知关于x的方程2x2+2kx+k﹣1=0.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)若x=﹣1是该方程的一个根,求方程的另一个根.【分析】(1)根据方程的系数结合根的判别式Δ=b2﹣4ac,可得出Δ4(k﹣1)2+4>0,由此可证出方程有两个不相等的实数根;(2)把x=﹣1代入方程,求得k=1,即可得出2x2+2x=0,然后解方程即可求出方程的另一个根.【解答】(1)证明:Δ=b2﹣4ac=(2k)2﹣4×2×(k﹣1)=4k2﹣8k+8=4(k﹣1)2+4>0,∴方程有两个不相等的实数根.(2)解:∵x=﹣1是该方程的一个根,∴2﹣2k+k﹣1=0,解得k=1,∴方程为2x2+2x=0,解得:x1=﹣1,x2=0,∴方程的另一个根为x=0.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:牢记“当Δ>0时,方程有两个不相等的实数根”.18.已知:关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0.(1)证明无论k取何值时方程总有两个实数根.(2)△ABC中,BC=5,AB、AC的长是这个方程的两个实数根,求k为何值时,△ABC 是等腰三角形?【分析】(1)表示出方程根的判别式,根据根的判别式的正负即可确定出方程根的情况;(2)由(1)得到AB≠AC,分AC=BC与AB=BC两种情况求出k的值即可.【解答】(1)证明:∵Δ=[﹣(2k+3)]2﹣4×1×(k2+3k+2)=1>0,∴无论k取何值时方程总有两个实数根.(2)解:∵方程x2﹣(2k+3)x+k2+3k+2=0的解为:x==,即x1=k+2,x2=k+1,∵AB、AC是方程的两个实数根,∴AB≠AC,∵BC=5,∴当k+2=5,或k+1=5时,△ABC是等腰三角形,∴k=3或4,故当k为3或4时,△ABC是等腰三角形.【点评】此题考查了根与系数的关系,涉及的知识有:一元二次方程根与系数的关系,根的情况判断,以及等腰三角形的性质,熟练掌握运算法则是解本题的关键.19.已知关于x的方程x2﹣4mx+4m2﹣4=0.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,且x1=3x2,求m的值.【分析】(1)求出一元二次方程根的判别式,判断Δ与0的关系.(2)利用一元二次方程根与系数的关系求出x1+x2与x1x2,再利用x1=3x2形成关于m 的方程,然后求解即可.【解答】(1)证明:关于x的方程x2﹣4mx+4m2﹣4=0,∵a=1,b=﹣4m,c=4m2﹣4.∴Δ=(﹣4m)2﹣4×1×(4m2﹣4)=16>0.∴此方程有两个不相等的实数根;(2)解:若此方程的两个根分别为x1,x2,由题意得,x1+x2=4m,x1x2=4m2﹣4.∵x1=3x2,∴3x2+x2=4m,即x2=m,∴x1=3m,∴3m•m=4m2﹣4,即m2=4,解得m=±2.当m=﹣2时,x1=﹣6,x2=﹣2.此时x1<x2,不符合题意.∴m=﹣2舍去故m的值为2.【点评】本题考查了一元二次方程根的判别式,及根与系数的关系,根据根与系数的关系及两个根的关系得到方程中有关参数的方程是解题的关键.20.阅读材料并解决下列问题:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=﹣,x1x2=.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1,得m+n=1,mn=﹣1,∴+====﹣3.根据上述材料解决下面的问题:(1)一元二次方程5x2+10x﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1x2=﹣.(2)已知实数m,n满足3m2﹣3m﹣1=0,3n2﹣3n﹣1=0,且m≠n,求m2n+mn2的值.(3)已知实数p,q满足p2=7p﹣2,2q2=7q﹣1,且p≠2q,求p2+4q2的值.【分析】(1)5x2+10x﹣1=0中,a=5,b=10,c=﹣1,则x1+x2=﹣=﹣2,x1x2==﹣.(2)由题意m,n可以看作3x2﹣3x﹣1=0的两个不等的实数根,由此可得结论;(3)由题意知p与2q即为方程x2﹣7x+2=0的两个不等的实数根,由此可得结论.【解答】解:(1)在5x2+10x﹣1=0中,a=5,b=10,c=﹣1,∴x1+x2=﹣=﹣2,x1x2==﹣.故答案为:﹣2,﹣;(2)∵m,n满足3m2﹣3m﹣1=0,3n2﹣3n﹣1=0,m≠n,∴m,n可以看作3x2﹣3x﹣1=0的两个不等的实数根,∴m+n=1,mn=﹣,∴m2n+mn2=mn(m+n)=﹣×1=﹣;(3)由题意知p与2q即为方程x2﹣7x+2=0的两个不等的实数根,∴p+2q=7,2pq=2,∴p2+4q2=(p+2q)2﹣4pq=72﹣2×2=45.【点评】本题考查根与系数的关系,解题的关键是掌握根与系数的关系,灵活运用所学知识解决问题.。
韦达定理全面练习题及答案
1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b c x x x x a a+=-= 说明:定理成立的条件0∆≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ; (2)2111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = .三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )(A )0 (B )正数 (C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( )(A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( )(A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是( )(A )0322=-+x x (B ) 0322=+-x x(C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是() (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B) -6 (C ) 21 (D) -257、分别以方程122--x x =0两根的平方为根的方程是( )(A )0162=++y y (B ) 0162=+-y y(C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。
韦达定理专题训练
韦达定理专题训练导言韦达定理是数学中一个重要且基础的定理,它与向量、多项式和线性代数等领域密切相关。
本文将为您详细介绍韦达定理的定义、应用及相关习题训练。
希望通过本文的阅读,您能对韦达定理有一个全面、深入的了解。
一级标题一:韦达定理的定义韦达定理,又称为韦达根定理(Viète’s root theorem),是由法国数学家弗朗索瓦·韦达在16世纪提出的。
它是解高阶多项式方程的一个重要定理。
二级标题一:韦达定理的表述韦达定理可以用以下方式表述:设多项式方程的形式为:a n x n+a n−1x n−1+⋯+a1x+a0=0其中,a n,a n−1,…,a1,a0是实数或复数,a n≠0,n是一个正整数。
如果x1,x2,…,x n是此方程的n个根,那么有如下关系:x1+x2+⋯+x n=−a n−1 a nx1x2+x1x3+⋯+x n−1x n=a n−2 a n⋮x1x2…x n=(−1)n a0 a n二级标题二:韦达定理的示例为了更好地理解韦达定理,我们来看一个简单的示例。
考虑一个二次方程:x2+3x+2=0根据韦达定理的第一个关系,我们可以得到:x1+x2=−a n−1a n=−31=−3根据韦达定理的第三个关系,我们可以得到:x1x2=a n−2a n=21=2通过这个示例,我们可以看到韦达定理的应用是非常直观且有效的。
一级标题二:韦达定理的应用韦达定理在解多项式方程、求根与系数的关系等方面有着广泛的应用。
二级标题一:解多项式方程韦达定理可以帮助我们解多项式方程。
对于一个已知的高阶多项式方程,我们可以利用韦达定理的关系式求解方程的根,从而得到方程的解。
二级标题二:求根与系数的关系通过韦达定理,我们可以建立方程的根与系数之间的关系。
根据韦达定理的第一个关系,我们可以将方程的根与系数建立起对应关系,进而得到有关根与系数的重要信息。
二级标题三:揭示多项式的性质韦达定理的应用还可以帮助我们揭示多项式的性质。
中考“韦达定理”
中考“韦达定理”(专题练习-分两次)(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一元二次方程的根与系数的关系(提高练习1)1、已知2x =是方程04mx 2x 2=+-的一个解,求的m 值以及方程的另一个解。
〈解法一〉:把2x =代入原方程得:=m ,∴ 原方程可化为:044x x 2=+-,解之得:=1x ,=2x ; ∴ 方程的另一个解为:=x 。
〈解法二〉:设2x 1=,另一根为2x ,由“韦达定理”可知:a b x x 21-=+,即=+2x 2 .①;ac x x 21=•,即=22x .② 由②得=2x ,代入①得=m ;2、韦达定理的“思维习惯”:在使用“韦达定理”时,一定要多加关注:∆ 0,且二次项系数a 0.3、已知关于x 的方程()02x 2x 1k 2=+--有两个不相等的实数根,则k 的取值范围是:;4、若关于x 的一元二次方程()()03m m 21x 3m 2=++---有两个正实数根,则m 的取值范围是: ;A 、47m ≥B 、m >47C 、47m ≥,且3m ≠ D 、m >47且3m ≠ E 、m 47≤<3 F 、21<m <35、已知关于x 的方程()01k x 1k 2x 22=++++有两个实数根1x 和2x , ①、求实数k 的取值范围; ②、若2121x x 3x x -=+,求k 的值;6、已知α和是β关于x 的方程()0m x 3m 2x 22=+++的二根,且111-=+βα, 求m 的值;7、已知关于x 的方程14k kx 4x 22=+-,①、求证无论k 取何值,方程都有两个不相等的实根;②、若ABC ∆是等腰三角形,5BC =,且另外两边是方程的根,求ABC ∆的周长;一元二次方程的根与系数的关系(提高练习2)1、若m 、n 是方程02x 5x 2=--的二根,则=+n m ,=mn ;2、若关于x 的方程0n mx x 2=+-的二根都是负数,则m 0,n 0;3、若关于x 的方程()0k x 2k x 22=++-的二根互为倒数,则=k ;4、若关于x 的方程()0n x 2n x 22=++-的二根互为相反数,则 ;A 、2n =B 、2n -=C 、2n ±=D 、n 无解5、已知关于x 的方程()02k x 1k 2x 22=+++-的两个实数根为1x 和2x . ①、求k 的最小整数值; ②、若()21k x x 2221=+-,求k 的值;6、已知关于x 的方程0m 2x 5x 2=+-有两个不相等实数根1x 和2x . ①、求实数m 的取值范围; ②、若()4x 4x x 2x 212221=++-,求m 的值;7、已知关于x 的一元二次方程()3k x k 62x 2=+-,①、求证无论k 取何值,方程都有实根;②、若方程两根都小于0,求k 的取值范围;8、若1x 、2x 是方程()03k x 4k 2x 22=++--的二根,且1x >2x >0,求k 的取值范围(参考数据:不等式2k >3的解集是:k >3,或k <3-).9、已知在关于x 的分式方程①:21x 1m =+-,以及关于x 的一元二次方程②:01m mx 3mx 2=+--中,m 为常数,且方程①的根是非负数.(1)、求m 的取值范围;(2)、若整数m 使得方程②的两个实数根1x 和2x 都是整数,求此时方程②的根;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 ●2= 3k x1 =-3
k =-2
答:方程的另一个根是-3 , k的值是-2。
1、韦达定理及证明
2、利用韦达定理解决有关一元二次方程 根与系数问题时,注意隐含条件: 根的判别式△ ≥0
1、已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值。
解:设方程的另一个根为x1, 19 则x1+1= 3 , ∴ x1=
韦达定理
韦达(1540-1603) 法国数学家 十六世纪最有影响的 数学家之一,被尊称为 “代数学之父”。 他是第一个引进系统的 代数符号,并对方程论 做了改进的数学家。
韦达定理
一:思考、发现, 噢,是这样哎!
二:疑问,为什么会是这样呢?能证明吗?
三:疑问,我学习它有什么用呢?
第一段
做准备:
1.一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
b b 2 4ac 2a
X=
2.方程合家欢,(
十字相乘 )
是首选。
第一段
解下列方程并完成填空: (1)x2-7x+12=0 (2)x2+3x-4=0 两根 x1 x2 4 -4
1 2
(3) 2x2+3x-2=0 两根和 X1+x2 7 -3 3 - 2 两根积 x 1x 2 12 -4 -1
又x1 1=
●
m 3
16 3,
,
∴ m= 3x1 = 16 x1+x2= - 2 , x1 · x2=
3 2 3 )+1= 2
2、设x1,x2是方程2x2+4x-3=0的两个根,求(x1+1)(x2+1)的值。
解: 由韦达定理,得
∴ (x1+1)(x2+1) = x1 x2 + (x1+x2)+1 =-2+(
5 2
1、当k为何值时,方程2x2-(k+1)x+k+3=0的两根差为1。
解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1 ∵ (x2-x1)2=(x1+x2)2-4x1x2 由韦达定理得x1+x2= k 1 2 k 3 ( ) 4 1 ∴ 2 2 解得k1=9,k2= -3
k 1 ,x 2 1x2= k 3 2
当k=9或-3时,由于△≥0,∴k的值为9或-3。
2、设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且x12+x22=4, 求k的值。
解:由方程有两个实数根,得
4(k 1) 2 4k 2 0
即-8k+4≥0
由韦达定理得x1+x2= 2(k-1) , x1x2=k2 ∴ X12+x22=(x1+x2)2-2x1x2=4(k-1)2-2k2=2k2-8k+4 由X12+x22 =4,得2k2-8k+4=4
经检验, k2=4不合题意,舍去。 ∴ k=0
1 k 2
解得k1=0 , k2=4
如果方程x2+px+q=0的两根是 X1 ,X2,那么X1+X2= -P , X1X2= q
已知x1,x2是方程3x2+px+q=0的两个根, 分别根据下列条件求出p和q的值: (1) x1 = 1, x2 =2 (2) x1 = 3, x2 = -6 (3) x1 = 7
4ac 4a 2
=
(b) 2 ( b 2 4ac) 2 4a 2
=
c = a
(一用):说出下列各方程的两根之和与两根之积:
1、 x2 - 2x - 1=0 2、 2x2 3x +
1 =0 2
x1+x2=2 x1+x2=
3 2
x1x2=-1 x1x2= x1x2=0
4 x1x2= 3 1 4
第二段 韦达定理的证明:
b b 2 4ac x1 2a
X1+x2=
b b 2 4ac x2 2a
b b 2 4ac 2a
b b 2 4ac 2a
+
=
2b 2a
X1x2=
=
b a
b b 2 4ac 2a
●
b b 2 4ac 2a
解这方程,得 k= - 2 由韦达定理,得x1●2=3k ∴ x1 =-3 即2 x1 =-6
答:方程的另一个根是-3 , k的值是-2。
例2、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值。
解二: 设方程的另一个根为x1. 由韦达定理,得
x1 +2= k+1
解这方程组,得
, x2 =
7
(4) x1 = -2+ 5 , x2 = -2p q 3
5
x1+x2= - 3 , x1 · x2= 解: 由韦达定理,得 ∴p= -3(x1+x2) q=3 x1 · x2 (1)p= -9 q= 6 (2)p= 9 q= -54 (3)p= 0 (4)p= 12 q= -21 q= -3
方程
x2-7x+12=0 x2+3x-4=0 2x2+3x-2=0
3
1 -2
第一段的总结
一元二次方程的根与系数的关系: 那么X1+x2=
b , X1 a
(韦达定理) 如果方程ax2+bx+c=0(a≠0)的两个根是X1 , X2 ,
-
x2=
X1+x2=
c a
X1x2=
2x2-4x+10=0
提示你:能用韦达定理的条件为△≥0
1
2
(2)∵ (x1+x2)2= x12+x22 +2x1x2 ∴x12+x22
=(x1+x2)2
-2x1x2
=(-
22 ) 3
-2×(-3)=6
4 9
例2、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值。
解: 设方程的另一个根为x1. 把x=2代入方程,得 4-2(k+1)+3k=0
3、 2x2 - 6x =0
4、 3x2 =4
x1+x2=3 x1+x2=0
例1、已知3x2+2x-9=0的两根是x1 , x2 1 1 2 2 求: (1) x x (2) x +x
1 2
。
解: 由题意可知x1+x2= -
,
(1)
1 x 1
1 x 2
=
x1 31 · 2 2 3 3 = 9