用牛顿第二定律解决问题(二)

合集下载

牛顿第二定律例子

牛顿第二定律例子

牛顿第二定律例子牛顿第二定律的例子包括:1.高空自由落体:一个物体在高空中自由落体,只受到重力作用。

根据牛顿第二定律,物体的加速度与它所受的合外力之间成正比。

在这个例子中,合外力就是物体所受的重力。

根据牛顿第二定律的公式F = ma,其中F表示合外力(即重力),m表示物体的质量,a表示物体的加速度。

2.斜劈A的例子:静止于粗糙的水平面上的斜劈A的斜面上,一物体B沿斜面向上做匀减速运动。

把A和B看作一个系统,在竖直方向受到向下的重力和竖直向上的支持力,在水平方向受到的摩擦力的方向未定。

劈A的加速度,物体B的加速度沿斜面向下,将分解成水平分量和竖直分量,,对A、B整体的水平方向运用牛顿第二定律有:与同方向。

而整体在水平方向的合外力只有受到的摩擦力,故的方向水平向左。

3.连接体问题:巧用牛顿第二定律解决连接体问题。

把研究对象看作一个整体,应用牛顿第二定律列式,然后对整体内的各个物体进行隔离分析,单独列出牛顿第二定律的方程。

4.跨过定滑轮的绳的一端挂一吊板:已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。

取重力加速度g =lOm/s2.当人以440 N的力拉绳时,人与吊板的加速度 a和人对吊板的压力F分别为() A.a=1.0m/s,F=260N B.a=1.0m/s,F=330N C.a=3.0m/s,F=110N D.a=3.0m/s,F=50N5.气球的问题:科研人员乘气球进行科学考察,气球、座舱、压舱物和科研人员的总质量为990kg。

气球在空中停留一段时间后,发现气球漏气而下降,及时堵住。

堵住时气球下降速度为1m/s,且做匀加速运动,4s内下降了12m。

为使气球安全着陆,向舱外缓慢抛出一定的压舱物,此后发现气球做匀减速运动,下降速度在5分钟内减少了3m/s。

以上就是运用牛顿第二定律解决的一些实际例子,希望对您有帮助。

牛顿第二定律难题例题及解答

牛顿第二定律难题例题及解答

1. 在粗糙的水平面上,物体在水平推力的作用下,由静止开始做匀加速直线运动,经过一段时间后,将水平推力逐渐减小到零(物体不停止),那么,在水平推力减小到零的过程中A. 物体的速度逐渐减小,加速度逐渐减小B. 物体的速度逐渐增大,加速度逐渐减小C. 物体的速度先增大后减小,加速度先增大后减小D. 物体的速度先增大后减小,加速度先减小后增大变式1、2. 如下图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则A. 物体从A到O先加速后减速B. 物体从A到O加速,从O到B减速C. 物体运动到O点时,所受合力为零D. 以上说法都不对变式2、3. 如图所示,固定于水平桌面上的轻弹簧上面放一重物,现用手往下压重物,然后突然松手,在重物脱离弹簧之前,重物的运动为A. 先加速,后减速B. 先加速,后匀速C. 一直加速D. 一直减速问题2:牛顿第二定律的基本应用问题:4. 2003年10月我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家,在某一次火箭发射实验中,若该火箭(连同装载物)的质量,启动后获得的推动力恒为,火箭发射塔高,不计火箭质量的变化和空气的阻力。

(取)求:(1)该火箭启动后获得的加速度。

(2)该火箭启动后脱离发射塔所需要的时间。

5. 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,球和车厢相对静止,球的质量为1kg。

(g取,,)(1)求车厢运动的加速度并说明车厢的运动情况。

(2)求悬线对球的拉力。

6. 如图所示,固定在小车上的折杆∠A=,B端固定一个质量为m的小球,若小车向右的加速度为a,则AB杆对小球的作用力F为()A. 当时,,方向沿AB杆B. 当时,,方向沿AB杆C. 无论a取何值,F都等于,方向都沿AB杆D. 无论a取何值,F都等于,方向不一定沿AB杆问题3:整体法和隔离法在牛顿第二定律问题中的应用:7. 一根质量为M的木杆,上端用细线系在天花板上,杆上有一质量为m的小猴,如图所示,若把细线突然剪断,小猴沿杆上爬,并保持与地面的高度不变,求此时木杆下落的加速度。

牛顿第二定律应用题型

牛顿第二定律应用题型

整体法、隔离法求解连接体问题(两个或以上物体具有相同的加速度)例1:如图所示,在两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为A.4mg、2mg B.2mg、0 C.2mg、mg D.4mg、mg例2:如图所示,木块A、B质量分别为m、M,用一轻绳连接,在水平力F的作用下沿光滑水平面加速运动,求A、B间轻绳的张力T。

例3:如图所示,五个木块并排放在水平地面上,它们的质量相同,与地面的摩擦不计。

当用力F推第一块使它们共同加速运动时,第2块对第3块的推力为__________。

例4:如图所示,A、B质量分别为m1,m2,它们在水平力F的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A、B间的摩擦力和弹力。

例5:如图所示,质量为M 的斜面A在水平向左的推力F 作用下,A 与B 物体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g aD. g m M F g a )(,cot +==μθ例6:如图所示,质量为m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m 1的物体,与物体1相连接的绳与竖直方向成θ角,则( )A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gmC. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m例1总质量为M,环的质量为m面的压力为()A. Mg + mgB. Mg—例2:如图所示,一只质量为mA. gB.gMmC.gMmM+极限法:例1:如右图,质量m=lkg的物块放在倾角为θ的斜面上,斜面体质量M=2kg,斜面与物块的动摩擦因数μ=0.2,地面光滑,θ=370,现对斜面体施一水平推力F,要使物体m相对斜面静止,力F 应为多大?(设物体与斜面的最大静摩擦力等于滑动摩擦力,g取10m/s2例2:小车内固定有一个倾角为370的光滑斜面,用—根平行于斜面的细线系住一个质量为m=2kg的小球(如右图所示).若①小车向右的加速度a l=5m/s2时;②小车向右的加速度为a2=15m/s2时,求细线上的拉力的大小.例3:质量为M的木板上放一质量为m的木块,木块与木板间动摩擦因数为μ1,木板与水平地面间动摩擦因数为μ2,现加木板上力F,问F至少多大才能将木板从木块下抽出?共点力的平衡:静态平衡:例1:沿光滑的墙壁用网兜把一个足球挂在A点(右图所示),足球的质量为m,网兜的质量不计,足球与墙壁的接触点为B,悬绳与墙壁的夹角为α,求悬绳对球的拉力和墙壁对球的支持力.动态平衡:例1:如右图所示.挡板AB和竖直墙之间夹有小球,球的质量为m,则挡板与竖直墙壁之间的夹角θ缓慢增加至θ=90°时,AB板及墙对球压力如何变化?例2:如右图所示,电灯悬挂于两墙壁之间,更换水平绳OA使连接点A向上移动而保持O点的位置和OB绳的位置不变,则在A点向上移动的过程中( )A.绳OB的拉力逐渐增大B.绳OB的拉力逐渐减小C.绳OA的拉力先增大后减小D.绳OA的拉力先减小后增大例3:如图:固定在水平面上的光滑半球,球心正上方固定一小定滑轮,细线一端拴一小球A,另一端过定滑轮,今将小球将图球位置缓慢拉至竖直方向,在到达竖直方向之前的过程中,小球对半球的压力及细线的拉力的变化情况()A.变大,变小B.变小,变大C.不变,变小D.变大,变大传送带专题:例1:如图所示为水平传送带装置,绷紧的皮带始终保持以υ=3m/s的速度移动,一质量m=0.5kg的物体(视为质点)。

15第3章 第2讲 应用牛顿第二定律处理“四类”问题

15第3章 第2讲  应用牛顿第二定律处理“四类”问题

第2讲应用牛顿第二定律处理“四类”问题一、瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受决定,加速度的方向与物体所受的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别:(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力.自测1如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是()图1A.1.5g,1.5g,0B.g,2g,0C.g,g,gD.g,g,0二、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力) 的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.自测2关于超重和失重的下列说法中,正确的是()A.超重就是物体所受的重力增大了,失重就是物体所受的重力减小了B.物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用C.物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态D.物体处于超重或失重状态时,物体的重力始终存在且不发生变化三、动力学图象1.类型(1)已知图象分析运动和情况;(2)已知运动和受力情况分析图象的形状.2.用到的相关知识通常要先对物体受力分析求合力,再根据求加速度,然后结合运动学公式分析.自测3(2016·海南单科·5)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图2所示.已知物体与斜面之间的动摩擦因数为常数,在0~5 s,5~10 s,10~15 s内F的大小分别为F1、F2和F3,则()图2A.F1<F2B.F2>F3C.F1>F3D.F1=F3命题点一超重与失重现象1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.(4)尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重现象.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重②物体向下加速或向上减速时,失重例1(2018·四川省乐山市第二次调研)图3甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的O表示人的重心.图乙是根据传感器采集到的数据画出的F-t图线,两图中a~g各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10 m/s2,根据图象分析可知()图3A.人的重力为1 500 NB.c点位置人处于失重状态C.e点位置人处于超重状态D.d点的加速度小于f点的加速度变式1广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t 图象如图4所示.则下列相关说法正确的是()图4A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零变式2(2018·广东省深圳市三校模拟)如图5,将金属块用压缩的轻弹簧卡在一个箱子中,上顶板和下底板装有压力传感器.当箱子随电梯以a=4.0 m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0 N,下底板的传感器显示的压力为10.0 N.取g=10 m/s2,若下底板示数不变,上顶板示数是下底板示数的一半,则电梯的运动状态可能是()图5A.匀加速上升,a=5 m/s2 B.匀加速下降,a=5 m/s2C.匀速上升D.静止状态命题点二瞬时问题的两类模型1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.解题思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度3.两个易混问题(1)如图6甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则图甲中的轻质弹簧和图乙中的下段绳子的拉力将如何变化呢?(2)由(1)的分析可以得出什么结论?(2)绳的弹力可以突变而弹簧的弹力不能突变.图6例2(2019·河北省衡水中学第一次调研)如图7所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端.开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为()图7A.a A=a B=g B.a A=2g,a B=0C.a A=3g,a B=0 D.a A=23g,a B=0例3(多选)如图8所示,倾角为θ的斜面静置于地面上,斜面上表面光滑,A、B、C三球的质量分别为m、2m、3m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,现突然剪断细线.下列判断正确的是()图8A.细线被剪断的瞬间,A、B、C三个小球的加速度均为零B.细线被剪断的瞬间,A、B之间杆的弹力大小为零C.细线被剪断的瞬间,A、B球的加速度沿斜面向上,大小为g sin θD.细线被剪断的瞬间,A、B之间杆的弹力大小为4mg sin θ变式3(2018·山西省吕梁市第一次模拟)如图9所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有()图9A.图甲中A球的加速度为g sin θB.图甲中B球的加速度为2g sin θC.图乙中A、B两球的加速度均为g sin θD.图乙中轻杆的作用力一定不为零命题点三动力学图象问题1.常见的动力学图象v-t图象、a-t图象、F-t图象、F-a图象等.2.图象问题的类型(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.(3)由已知条件确定某物理量的变化图象.3.解题策略(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.(3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.例4(2018·广东省湛江市第二次模拟)如图10甲所示,在光滑水平面上,静止放置一质量为M的足够长木板,质量为m的小滑块(可视为质点)放在长木板上.长木板受到水平拉力F 与加速度的关系如图乙所示,重力加速度大小g取10 m/s2,下列说法正确的是()图10A.长木板的质量M=2 kgB.小滑块与长木板之间的动摩擦因数为0.4C.当F=14 N时,长木板的加速度大小为3 m/s2D.当F增大时,小滑块的加速度一定增大变式4(多选)(2019·福建省三明市质检)水平地面上质量为1 kg的物块受到水平拉力F1、F2的作用,F1、F2随时间的变化如图11所示,已知物块在前2 s内以4 m/s的速度做匀速直线运动,取g=10 m/s2,则(最大静摩擦力等于滑动摩擦力)()图11A.物块与地面的动摩擦因数为0.2B.3 s末物块受到的摩擦力大小为3 NC.4 s末物块受到的摩擦力大小为1 ND.5 s末物块的加速度大小为3 m/s2变式5(2018·安徽省池州市上学期期末)如图12所示为质量m=75 kg的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v-t图象,图中的OA直线是t=0时刻速度图线的切线,速度图线末段BC平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k.设最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,则()图12A.滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速运动B.t=0时刻运动员的加速度大小为2 m/s2C.动摩擦因数μ为0.25D.比例系数k为15 kg/s命题点四动力学中的连接体问题1.连接体的类型(1)弹簧连接体(2)物物叠放连接体(3)轻绳连接体(4)轻杆连接体2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等.3.处理连接体问题的方法整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”例5(多选)(2018·广东省湛江市第二次模拟)如图13所示,a、b、c 为三个质量均为m的物块,物块a、b通过水平轻绳相连后放在水平面上,物块c放在b上.现用水平拉力作用于a,使三个物块一起水平向右匀速运动.各接触面间的动摩擦因数均为μ,重力加速度大小为g.下列说法正确的是()图13A.该水平拉力大于轻绳的弹力B.物块c受到的摩擦力大小为μmgC.当该水平拉力增大为原来的1.5倍时,物块c受到的摩擦力大小为0.5μmgD.剪断轻绳后,在物块b向右运动的过程中,物块c受到的摩擦力大小为μmg变式6(多选)(2019·河南省郑州市质检)如图14所示,在粗糙的水平面上,质量分别为m 和M的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x1;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是()图14A.若m>M,有x1=x2B.若m<M,有x1=x2C.若μ>sin θ,有x1>x2D.若μ<sin θ,有x1<x2变式7(多选)如图15所示,倾角为θ的斜面放在粗糙的水平地面上,现有一带固定支架的滑块m正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为θ,斜面体始终保持静止,则下列说法正确的是()图15A.斜面光滑B.斜面粗糙C.达到稳定状态后,地面对斜面体的摩擦力水平向左D.达到稳定状态后,地面对斜面体的摩擦力水平向右1.(多选)一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图1所示,以竖直向上为a的正方向,则人对地板的压力()图1A.t=2 s时最大B.t=2 s时最小C.t=8.5 s时最大D.t=8.5 s时最小2.(2018·湖北省黄冈市质检)如图2所示,电视剧拍摄时,要制造雨中场景,剧组工作人员用消防水枪向天空喷出水龙,降落时就成了一场“雨”.若忽略空气阻力,以下分析正确的是()图2A.水枪喷出的水在上升时超重B.水枪喷出的水在下降时超重C.水枪喷出的水在最高点时,速度方向斜向下D.水滴在下落时,越接近地面,速度方向越接近竖直方向3.(2019·广东省东莞市调研)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图3所示.当此车匀减速上坡时,乘客(仅考虑乘客与水平面之间的作用)( )图3A .处于超重状态B .不受摩擦力的作用C .受到向后(水平向左)的摩擦力作用D .所受合力竖直向上4.(2019·安徽省淮北市质检)如图4甲所示,在光滑的水平面上,物体A 在水平方向的外力F 作用下做直线运动,其v -t 图象如图乙所示,规定向右为正方向.下列判断正确的是( )图4A .在3 s 末,物体处于出发点右方B .在1~2 s 内,物体正向左运动,且速度大小在减小C .在1~3 s 内,物体的加速度方向先向右后向左D .在0~1 s 内,外力F 不断增大5.如图5所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量均为m,2、4质量均为m 0,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )图5A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +m 0m 0g D .a 1=g ,a 2=m +m 0m 0g ,a 3=0,a 4=m +m 0m 0g6.(2018·福建省四地六校月考)如图6所示,A 、B 两物块质量均为m ,用一轻弹簧相连,将A 用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B 物块恰好与水平桌面接触,此时轻弹簧的伸长量为x ,现将悬绳剪断,则( )图6A .悬绳剪断瞬间A 物块的加速度大小为gB .悬绳剪断瞬间B 物块的加速度大小为gC .悬绳剪断后A 物块向下运动距离2x 时速度最大D .悬绳剪断后A 物块向下运动距离x 时加速度最小7.(多选)(2018·河北省张家口市上学期期末)质量为2m 的物块A 和质量为m 的物块B 相互接触放在水平地面上,如图7所示,若对A 施加水平推力F ,两物块沿水平方向做匀加速运动,关于A 对B 的作用力,下列说法中正确的是( )图7A .若水平地面光滑,物块A 对B 的作用力大小为FB .若水平地面光滑,物块A 对B 的作用力大小为F 3C .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为μmgD .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为F +2μmg 38.(2018·河南省鹤壁市第二次段考)如图8所示,表面光滑的斜面体固定在匀速上升的升降机上,质量相等的A 、B 两物体用一轻质弹簧连接着,B 的上端用一平行斜面的细线拴接在斜面上的固定装置上,斜面的倾角为30°,当升降机突然处于完全失重状态时,则此瞬间A 、B 两物体的瞬时加速度大小分别为(重力加速度为g )( )图8A.12g 、g B .g 、12g C.32g 、0 D.32g 、g 9.(2018·江西省临川二中第五次训练)如图9甲所示,用一水平外力F 推物体,使其静止在倾角为θ的光滑斜面上.逐渐增大F ,物体开始做变加速运动,其加速度a 随F 变化的图象如图乙所示.取g =10 m/s 2.根据图中所提供的信息不能计算出的是( )图9A .物体的质量B .斜面的倾角C .使物体静止在斜面上时水平外力F 的大小D .加速度为6 m/s 2时物体的速度10.(多选)(2018·内蒙古赤峰二中月考)如图10甲所示,物块的质量m =1 kg ,初速度v 0=10 m /s ,在一水平向左的恒力F 作用下从O 点沿粗糙的水平面向右运动,某时刻后恒力F 突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g =10 m/s 2.下列选项中正确的是( )图10A .2秒末~3秒末内物块做匀减速运动B .在t =1 s 时刻,恒力F 反向C .物块与水平面间的动摩擦因数为0.3D .恒力F 大小为10 N11.(2018·广东省深圳市高级中学月考)如图11所示,A 、B 两滑环分别套在间距为1 m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1 m 的轻弹簧将两环相连,在A 环上作用一沿杆方向的、大小为20 N 的拉力F ,当两环都沿杆以相同的加速度a 1运动时,弹簧与杆夹角为53°,已知sin 53°=0.8,cos 53°=0.6,求:图11(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F,在撤去拉力F的瞬间,A的加速度为a2,则a1∶a2为多少?12.(2018·四川省攀枝花市第二次统考)如图12所示,质量m1=500 g的木板A静止放在水平平台上,木板的右端放一质量m2=200 g的小物块B.轻质细线一端与长木板连接,另一端通过定滑轮与物块C连接,长木板与滑轮间的细线水平.现将物块C的质量由0逐渐增加,当C的质量增加到70 g时,A、B恰好开始一起匀速运动;当C的质量增加到400 g时,A、B 开始发生相对滑动.已知平台足够长、足够高,接触面间的最大静摩擦力等于滑动摩擦力,滑轮质量及摩擦不计.求木板与平台间、木板与物块B间的动摩擦因数.图12。

牛顿第二定律的两类基本问题已知受力情况求运动情况

牛顿第二定律的两类基本问题已知受力情况求运动情况

G
由运动学公式vt2-v02=2as2,得:
物体的滑行距离 s2
0
v
2 2
2a2
0 1.22 m
2 (2)
0.36m
※应用牛顿运动定律解题的一般步骤:
1、明确研究对象和研究过程 2、画图分析研究对象的受力和运动情况;(画图 很重要,要养成习惯) 3、进行必要的力的合成和分解,并注意选定正方向 4、根据牛顿运动定律和运动学公式列方程求解; 5、对解的合理性进行讨论
由运动学公式:
4s末的速度 vt v0 at 0 1.1 4 4.4m / s
4s内的位移
s
v0t
1 2
at 2
1 2
1.1 42
8.8m
例2:如图,质量为2kg的物体静止在水平地面上, 物体与水平面间的动摩擦因数为0.2,现对物体施 加一个大小F=5N、与水平方向成θ=370角的斜向 上的拉力(如图),已知:g=10m/s2,求: (1)物体在拉力的作用下4s内通过的位移大小 (2)若4s后撤去拉力F,则物体还能滑行多远?
例3:一个滑雪的人,质量m=75kg,以 V0=2m/s的初速度沿山坡匀加速地滑下, 山坡的倾角θ=300,在t=5s的时间内滑下 的路程s=60m,求滑雪人受到的阻力(包 括滑动摩擦力和空气阻力)。
解:对人进行受力分析画受力图,如下 因为:V0=2m/s,x=60m,t=5s
N f
取沿钭面向下方向为正
G2
则:根据运动学公式:
x
V0t
1 2
at
2
60
2
5
1 2
a
52
求得a = 4m/s2
G1 mg
再由牛顿第二定律可得:
G2 f m gsin f m a f m( g sin a)

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。

根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。

2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。

2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。

1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。

将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。

2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。

将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。

3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。

掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。

利用牛顿第二定律解决动力学问题

利用牛顿第二定律解决动力学问题

利用牛顿第二定律解决动力学问题动力学是物理学中研究物体受力运动规律的学科,而牛顿第二定律则是动力学中最重要的定律之一,它描述了一个物体所受力的效果。

本文将探讨如何利用牛顿第二定律解决动力学问题,并提供一些实际例子来加深读者对该定律的理解。

1. 牛顿第二定律的表达式牛顿第二定律可以通过以下公式来表达:F = ma其中,F代表物体所受合外力的大小,m表示物体的质量,a表示物体的加速度。

牛顿第二定律指出,物体所受合外力的方向与物体的加速度方向相同。

2. 加速度与力的关系根据牛顿第二定律的公式F = ma,我们可以看出,物体的加速度与所受合外力成正比,质量越大,加速度越小;质量越小,加速度越大。

同时,加速度与力的大小也成正比,当所受力增大时,加速度也会增大。

3. 计算物体受力问题的步骤(1)明确物体受力的方向和大小;(2)根据牛顿第二定律的公式F = ma,利用所给条件求得物体的质量和加速度;(3)利用牛顿第二定律的公式求解物体所受合外力的大小。

下面,我们通过几个实际例子来应用牛顿第二定律解决动力学问题:例子一:小车加速问题假设有一辆质量为500kg的小车,在一个水平路面上受到一个200N的向前的恒力作用。

问小车的加速度是多少?解答:根据牛顿第二定律公式F = ma,已知F = 200N,m = 500kg,代入公式可得:200N = 500kg * a解方程可得小车的加速度a = 0.4m/s²。

例子二:摩擦力问题一块质量为2kg的物体受到一个水平方向的力F = 10N,物体与地面之间的动摩擦系数为0.5。

问物体的加速度是多少?解答:首先,我们需要明确物体所受合外力。

在水平方向上,物体所受力包括推力和摩擦力。

推力F = 10N,摩擦力的大小可以通过动摩擦系数和物体所受重力来计算。

根据牛顿第二定律公式F = ma,我们可以得到以下方程:F - μmg = ma其中,μ为动摩擦系数,m为物体的质量,g为重力加速度9.8m/s²。

4-7用牛顿运动定律解决问题(二)

4-7用牛顿运动定律解决问题(二)
和水球组成的系统其重心有向下的加速度,整个系统将处 于失重状态,故台秤的示数将变小. 答案:A
一个人站在体重计的测盘上,在人下蹲的过程中(如下
图所示),指针示数变化应是____________.
答案:先减小,后增加,再还原 解析:人蹲下的过程经历了加速向下、减速向下和静
止这三个过程.
一种巨型娱乐器械——“跳楼机”(如图所示)可以使人 体验超重和失重.一个可乘十多个人的环形座舱套装在竖 直柱子上,由升降机送上几十米的高处,然后让座舱自由
两力的合力与第三力等大、反向求源自,可以据力三角形求 解,也可用正交分解法求解.
解法1 用合成法
取足球作为研究对象,它们受重力G=mg、墙壁的支 持力F1和悬绳的拉力 F2三个共点力作用而平衡,由共点力 平衡的条件可知,F1和F2的合力F与G大小相等、方向相反, 即F=G,从图中力的平行四边形可求得:
Fx合=0 零.即 Fy合=0
特别提醒: 正确区分“静止”和“v=0”.物体处于静止状态时, v=0,a=0是平衡状态;但是,当v=0时,物体不一定处
于平衡状态,如自由落体运动初始状态或竖直上抛运动物
体到达最高点时v=0,但a=g,不是平衡状态.
如图所示,斗牛将人高高挑起处于静止状态,则下列 说法正确的是 ( )
点评:相对解析法而言,作图法比较直观,本题是定
性比较问题,选用作图法较为方便,平行四边形是由两个 全等的三角形构成,因而在分析动态变化问题时选用三角 形定则更为方便.
(安徽阜阳一中09-10学年高一上学期期末)在固定于
地面的斜面上垂直安放了一个挡板,截面为圆的柱状物体 甲放在斜面上,半径与甲相等的光滑圆球乙被夹在甲与挡 板之间,没有与斜面接触而处于静止状态,如图所示.现 在从球心O1处对甲施加一平行于斜面向下的力F,使甲沿

2025届高考物理一轮复习资料第三章牛顿运动定律第2讲牛顿第二定律的基本应用

2025届高考物理一轮复习资料第三章牛顿运动定律第2讲牛顿第二定律的基本应用

第2讲牛顿第二定律的基本应用学习目标 1.会用牛顿第二定律分析计算物体的瞬时加速度。

2.掌握动力学两类基本问题的求解方法。

3.知道超重和失重现象,并会对相关的实际问题进行分析。

1.2.3.4.1.思考判断(1)已知物体受力情况,求解运动学物理量时,应先根据牛顿第二定律求解加速度。

(√)(2)运动物体的加速度可根据运动速度、位移、时间等信息求解,所以加速度由运动情况决定。

(×)(3)加速度大小等于g的物体一定处于完全失重状态。

(×)(4)减速上升的升降机内的物体,物体对地板的压力大于物体的重力。

(×)(5)加速上升的物体处于超重状态。

(√)(6)物体处于超重或失重状态时其重力并没有发生变化。

(√)(7)根据物体处于超重或失重状态,可以判断物体运动的速度方向。

(×)2.(2023·江苏卷,1)电梯上升过程中,某同学用智能手机记录了电梯速度随时间变化的关系,如图所示。

电梯加速上升的时段是()A.从20.0 s到30.0 sB.从30.0 s到40.0 sC.从40.0 s到50.0 sD.从50.0 s到60.0 s答案A考点一瞬时问题的两类模型两类模型例1 (多选)(2024·湖南邵阳模拟)如图1所示,两小球1和2之间用轻弹簧B相连,弹簧B与水平方向的夹角为30°,小球1的左上方用轻绳A悬挂在天花板上,绳A与竖直方向的夹角为30°,小球2的右边用轻绳C沿水平方向固定在竖直墙壁上。

两小球均处于静止状态。

已知重力加速度为g,则()图1A.球1和球2的质量之比为1∶2B.球1和球2的质量之比为2∶1C.在轻绳A突然断裂的瞬间,球1的加速度大小为3gD.在轻绳A突然断裂的瞬间,球2的加速度大小为2g答案BC解析对小球1、2受力分析如图甲、乙所示,根据平衡条件可得F B=m1g,F B sin30°=m2g,所以m1m2=21,故A错误,B正确;在轻绳A突然断裂的瞬间,弹簧弹力未来得及变化,球2的加速度大小为0,弹簧弹力F B=m1g,对球1,由牛顿第二定律有F合=2m1g cos 30°=m1a,解得a=3g,故C正确,D错误。

利用牛顿第二定律解决问题

利用牛顿第二定律解决问题

利用牛顿第二定律解决问题牛顿第二定律是经典物理学中最为重要的定律之一,它提供了描述物体运动和力的关系的基本原理。

根据牛顿第二定律,物体的加速度直接与作用在其上的合力成正比,反比于物体的质量。

通过运用牛顿第二定律,我们可以解决许多与力有关的问题。

本文将通过几个实例,展示如何利用牛顿第二定律解决问题。

1. 弹簧的伸长问题设想在一块光滑的地面上放置了一个质量为m的物体,上面连接着一个弹簧。

现在我们开始将物体推向弹簧的方向,施加一个力F。

根据牛顿第二定律,物体的加速度与作用力成正比,反比于物体的质量。

因此,可以得出如下等式:F = ma,其中a表示物体的加速度。

当物体与弹簧连接时,可以发现,弹簧对物体施加了一个阻力,该阻力与物体与弹簧伸长的距离成正比。

假设弹簧对物体的阻力为-kx,其中k为弹簧的劲度系数,x为物体与弹簧伸长的距离。

那么根据牛顿第二定律,可以得出以下方程:F - kx = ma。

通过解这个方程,我们可以求解出物体的加速度。

进一步,我们还可以通过运用牛顿第二定律,确定物体在任意位置上受到的力。

2. 自由落体问题自由落体是物理学中的一个经典问题。

当一个物体在重力的作用下自由下落时,我们可以利用牛顿第二定律来描述其运动。

根据牛顿第二定律,物体的加速度与所受合力成正比,反比于物体的质量。

在自由落体的情况下,合力为物体的重力,可以表示为F = mg,其中m为物体的质量,g为重力加速度。

将重力代入牛顿第二定律的等式中,可以得到如下方程:mg = ma。

由于在自由落体的情况下,物体所受的阻力可以忽略不计,因此合力就等于物体的重力。

根据这个方程,我们可以求解物体的加速度a,并进一步了解物体的速度和位移。

3. 斜面上的物体滑动问题考虑一个质量为m的物体放置在一个光滑的斜面上,倾角为θ。

如果我们施加一个平行于斜面的力F,那么根据牛顿第二定律,物体的加速度与作用力成正比,反比于物体的质量。

可以得到如下方程:F - mg sinθ = ma。

牛顿第二定律及两类基本问题-PPT课件

牛顿第二定律及两类基本问题-PPT课件
31
解析:(1)物体做初速度为零的匀加速直线运动,设其加速度为 a0.
则有
L=
1 2
a0
t02
由牛顿第二定律得 F-Ff=ma0,Ff=μmg
联立以上三式,并代入数据得:μ=0.5. (2)有力作用时,设物体的加速度大小为 a,由牛顿第二定律 得:Fcos 37°-μ(mg-Fsin 37°)=ma
二、动力学两类基本问题
1.由受力情况判断物体的运动情况:处理这类问题 的基本思路是:先求出几个力的合力,由牛顿第二定 律(F 合=ma)求出加速度,再由运动学的有关公式求 出速度或位移.
4
2.由运动情况判断物体的受力情况:处理这类问题的 基本思路是:已知加速度或根据运动规律求出加速度, 再由牛顿第二定律求出合力,从而确定未知力.
27
(3)选取正方向或建立坐标系.通常以加速 度的方向为正方向或以加速度方向为某一 坐标轴的正方向. (4)求合力 F 合. (5)根据牛顿第二定律 F 合=ma 列方程求解, 必要时还要对结果进行讨论.
28
【例 3】(2013 菏泽模拟) 如图,质量 m=2 kg 的物体 静止于水平地面的 A 处,A、B 间距 L=20 m.用大小为 30 N,沿水平方向的外力拉此 物体,经 t0=2 s 拉至 B 处.(已知 cos 37°=0.8,sin 37°=0.6, 取 g=10 m/s2). (1)求物体与地面间的动摩擦因数μ; (2)用大小为 30 N,与水平方向成 37°的力斜向上拉此物体, 使物体从 A 处由静止开始运动并能到达 B 处,求该力作用的最 短时间 t.
木块 2 根据牛顿第二定律可得(m+M)g=Ma2,即
mM
a2=
g,因此选项 C 正确,选项 A、B、D 错误.

高三物理 动力学两类基本问题

高三物理 动力学两类基本问题
的速度竖直向上抛出一个小球,小球上升到最高点时比平台高出 h=6 m,若空气阻力 f 大 小不变,g=10 m/s2.求:
(1)空气阻力与小球重力大小的比值mfg; (2)小球从抛出到落到地面所经过的时间 t.
思路点拨:根据运动情况确定加速度利用牛顿第二定律结合运动中的受力情况求解. 规范解答:(1)从抛出到最高点,2a1h=v20(1 分) 代入数据求得 a1=12 m/s2(1 分) 根据牛顿第二定律:mg+f=ma1(1 分) mfg=0.2.(1 分) (2)上升过程所用时间 t1=va10=1 s(1 分) 下落过程加速度 a2=mgm-f=mg-m0.2mg=8 m/s2(1 分) 下落过程所用时间 t2,则有 h+H=12a2t22(1 分) 得 t2=2 s(1 分) 总时间 t=t1+t2=3 s.(2 分)
8s 3g.
答案:(1)0.5 (2)
8s 3g
考点二:连接体问题的应用
【例2】 (综合题)如图所示,倾角为θ的光滑斜面固 定在水平地面上,质量为m的物块A叠放在物体B 上,物体B的上表面水平.当A随B一起沿斜面下 滑时,A、B保持相对静止.求B对A的支持力N和 摩擦力f.
解析:当A随B一起沿斜面下滑时,物块A受到竖直向下的重力mg、B对A竖直向上的支 持力N和水平向左的摩擦力f的作用而一起做加速运动,如图(甲). 设B的质量为M,以A、B为整体,根据牛顿第二定律,有 (m+M)·gsin θ=(m+M)a,得a=gsin θ. 将加速度沿水平方向和竖直方向进行分解,如图(乙)所示,则ax=acos θ=gsin θcos θ, ay=asin θ=gsin2 θ
(1)小球的加速度;
(2)最初2 s内小球的位移.
解析:(1)小球在斜杆上受力分析如图所示. 垂直杆方向:Fcos θ=mgcos θ+N① 沿杆方向:Fsin θ-mgsin θ-f=ma② 其中:f=μN③ ①②③联立,并代入数据,得 a=0.4 m/s2. (2)最初 2 s 内的位移 s=12at2=0.8 m.

有关牛顿第二定律的动力学问题(原卷版)-2023年高考物理压轴题专项训练(全国通用)

有关牛顿第二定律的动力学问题(原卷版)-2023年高考物理压轴题专项训练(全国通用)

压轴题01有关牛顿第二定律的动力学问题考向一/选择题:有关牛顿第二定律的连接体问题考向二/选择题:有关牛顿第二定律的动力学图像问题考向二/选择题:有关牛顿第二定律的临界极值问题考向一:有关牛顿第二定律的连接体问题1.处理连接体问题的方法:①当只涉及系统的受力和运动情况而不涉及系统内某些物体的受力和运动情况时,一般采用整体法。

②当涉及系统(连接体)内某个物体的受力和运动情况时,一般采用隔离法。

2.处理连接体问题的步骤:3.特例:加速度不同的连接体的处理方法:①方法一(常用方法):可以采用隔离法,对隔离对象分别做受力分析、列方程。

②方法二(少用方法):可以采用整体法,具体做法如下:此时牛顿第二定律的形式: +++=x x x x a m a m a m F 332211合;+++=y y y y a m a m a m F 332211合说明:①F 合x 、F 合y 指的是整体在x 轴、y 轴所受的合外力,系统内力不能计算在内;②a 1x 、a 2x 、a 3x 、……和a 1y 、a 2y 、a 3y 、……指的是系统内每个物体在x 轴和y 轴上相对地面的加速度。

考向二:有关牛顿第二定律的动力学图像问题常见图像v ­t 图像、a ­t 图像、F ­t 图像、F ­a 图像三种类型(1)已知物体受到的力随时间变化的图线,求解物体的运动情况。

(2)已知物体的速度、加速度随时间变化的图线,求解物体的受力情况。

(3)由已知条件确定某物理量的变化图像。

解题策略(1)问题实质是力与运动的关系,要注意区分是哪一种动力学图像。

(2)应用物理规律列出与图像对应的函数方程式,进而明确“图像与公式”“图像与物体”间的关系,以便对有关物理问题作出准确判断。

破题关键(1)分清图像的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图像所反映的物理过程,会分析临界点。

(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等。

牛顿第二定律的独立性问题

牛顿第二定律的独立性问题

牛顿第二定律的独立性问题
(1)因果性:力是产生加速度的原因.若不存在力,则没有加速度.
(2)矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定.牛顿第二定律数学表达式∑F= ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同.根据他的矢量性可以用正交分解法讲力合成或分解.
(3)瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小或方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系.牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应.
(4)相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系.地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立.
(5)独立性:物体所受各力产生的加速度,互不干扰,而物体的实际加速度则是每一个力产生加速度的矢量和,分力和分加速度在各个方向上的分量关系,也遵循牛顿第二定律.
(6)同一性:a与F与同一物体某一状态相对应.。

12 第三章 第2讲 牛顿第二定律的基本应用

12 第三章 第2讲 牛顿第二定律的基本应用
第三章 牛顿运动定律
第2讲 牛顿第二定律的基本应用
内容 索引
➢考点一 瞬时加速度问题 ➢考点二 超重与失重问题 ➢考点三 动力学的两类基本问题 ➢聚焦学科素养 形异质同快解题——物体在三类光滑斜面上的“赛跑” ➢课时精练(十二) 牛顿第二定律的基本应用
01
考点一 瞬时加速度问题
(重难共研类)
【重难诠释】
原理 F-mg=ma F= 方程 _m_g_+__m__a_
mg-F=ma F= _m_g_-__m__a_
mg-F=mg F=0
【微判断】 (1)超重就是物体的重力变大的现象。(×) (2)失重时物体的重力小于mg。(×) (3)加速度大小等于g的物体一定处于完全失重状态。(×)
【重难诠释】
判断超重和失重的方法
规律方法
求解瞬时加速度问题的基本思路 1.分析原状态(给定状态)下物体的受力情况,求出各力大小(①若物 体处于平衡状态,则利用平衡条件;②若处于非平衡状态,则利用牛 顿第二定律)。 2.分析当状态变化时(剪断细线、剪断弹簧、抽出木板、撤去某个力 等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的 弹力,发生在被撤去物接触面上的弹力都立即消失)。 3.求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬 时加速度。
2.【轻弹簧、轻杆模型】 如图所示,光滑斜面的倾角为θ,A球质量为2m、B球质量为m,图甲 中A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,挡板C 与斜面垂直,轻弹簧、轻杆均与斜面平行,在系统静止时,突然撤去 挡板的瞬间有 A.图甲中A球的加速度为g sin θ B.图甲中B球的加速度为0 C.图乙中A、B两球的加速度均为0
返回
03
考点三 动力学的两类基本问题

2021届高中物理二轮复习(大题)2 牛顿运动定律的综合应用问题 含解析

2021届高中物理二轮复习(大题)2 牛顿运动定律的综合应用问题 含解析

2 牛顿运动定律的综合应用问题一、典例例1.传送带被广泛应用于各行各业。

如图所示,一倾斜放置的传送带与水平面的夹角θ=37°,在电动机的带动下以v =2 m/s 的速率顺时针方向匀速运行。

M 、N 为传送带的两个端点,M 、N 两点间的距离L =7 m ,N 端有一离传送带很近的挡板P 可将传送带上的物块挡住。

在传送带上的O 处由静止释放质量为m =1 kg 的木块,木块可视为质点,若木块每次与挡板P 发生碰撞时间极短,碰后都以碰前的速率反方向弹回,木块与传送带间的动摩擦因数μ=0.5,O 、M 间距离L 1=3 m ,传送带与轮子间无相对滑动,不计轮轴处的摩擦。

求:(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)(1)木块轻放上传送带后瞬间的加速度大小;(2)木块第一次反弹后能到达的最高位置与挡板P 的距离;(3)木块做稳定的周期性运动后的周期。

【解析】(1)放上的后瞬间,根据牛顿第二定律:mg sin θ-μmg cos θ=ma 1解得木块轻放上传送带后瞬间的加速度a 1=2 m/s 2。

(2)设木块与挡板P 碰撞前的速度v 1,由运动学知识:v 12=2a 1(L -L 1)解得v 1=4 m/s木块与挡板P 碰后向上减速到共同速度之前:mg sin θ+μmg cos θ=ma 2解得a 2=10m/s 2木块向上的位移x 1=22122v v a =0.6m 共同速度之后,摩擦力反向,加速度为a 1木块向上的位移x 2=212v a =1 m 木块第一次反弹后能到达的最高位置与挡板P 的距离x m =x 1+x 2=1.6 m 。

(3)木块做稳定的周期性运动后,每次与挡板碰前的速度为v =2m/s则稳定后周期为T =21v a =2 s 。

例2.如图所示,在水平地面上建立x 轴,有一个质量m =1 kg 的木块(可视为质点)放在质量M =2 kg 的长木板的左端A 点,木板长L =2 m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1 2
gt
2
G
例与练
1、从塔上以20m/s的初速度竖直向上抛 一个石子,不考虑空气阻力,求5s末石子 速度和5s内石子位移。(g=10m/s2)。
以向上方向为正方向。
vt v0 gt
x正
V0
20m / s 105m/ s 30m/ s
x

v0t

1 2
gt 2
20 5m 1 10 52 m 25m x 2
运动情况
向上 运动
加速 减速
加速度方 向
拉力和重力的 关系
F>G F<G
现象 超重 失重
向下 运动
加速 减速
F<G F>G
失重 超重
思考:1.在超重、失重现象中物体的实际重力变化了没有?
2.物体的超重和失重是取决于速度还是取决于加速度?
3.根据表格的结果能得到什么实验结论?
超重的原因:物体具有竖直向上的加速度
课堂小结
定义 超重 F视>G
条件
实例
a向上或分量向上 (斜)向上加速
(斜)向下减速
失重
↓ 完全失重
F视<G F视=0
a向下或分量向下 (斜)向下加速 (斜)向上减速
a =g竖直向下 抛体运动
F视=G a=0
静止
(斜)向上、下匀速
特别提醒: 1.超重、失重的条件:只与a的方向有关,与v 的方向无关 2.超重、失重的实质:物体处于超重与失重状 态时,其重力并没改变,只是它对支持物的压 力(或悬挂物的拉力)变大或变小。
Vt
变式训练3 如图所示,A、B两物体叠放在一起, 以相同的初速度上抛(不计空气阻力).下列说法
正确的是( A )
A.在上升和下降过程中A对B的压力一定为零 B.上升过程中A对B的压力大于A物体受到的重力 C.下降过程中A对B的压力大于A物体受到的重力 D.在上升和下降过程中A对B的压力等于A物体受到的 重力
小了?
N
X 1牛顿
10
2
8 4 中 国 制 造 MADE IN CHINA 6
(二)失重现象
例3、弹簧秤竖直悬挂、台秤水平放置都向上减速运动。求
弹簧秤和台秤的读数大小。
N
以物体为研究对象,受力如左图
由牛顿第二定律
a
mg-F=ma F=m(g-a)
N’ mg
a 弹簧的读数就是重物对弹簧
拉力F`的大小
机的运动可能是:
( BC )
A、加速上升
B、减速上升
C、加速下降
D、减速下降
F=k x f
二、从动力学看落体运动
1、自由落体运动
(1)自由落体运动定义
物体只在重力作用下从静止开始下落
的运动。
V0=0
(2)自由落体加速度
G
F合 =G=mg
a F合 mg g mm
2、竖直上抛运动
(1)竖直上抛运动定义
失重的原因:物体具有竖直向下的加速度
受力角度 加速度角度
规 超重状态 视重 > 重力 α 向上 律 失重状态 视重 < 重力 α 向下
物体处于超重或失重状态物体的重力不变
问题情境:已知人的质量为50kg,若该人和升降机 一起自由下落,测力计的示数又是多少?
解:对人进行受力分析
FN
有牛顿第二定律得:
F=G
N
G
N’
由牛顿第三定律
F=F` 所以弹簧的读数就是重力的大小。
G=N N=N` G=N`
视重
弹簧秤的读数是物体对弹簧秤的拉力大小 体重计的读数是物体对体重计的压力大小 我们把弹簧秤或体重计的读数叫做视重
超重和失重
静止 恢复原值
减速 示数变小
上升
匀速 恢复原值
上升
加速 示数变大
上升
静止 原值
3.升降机中站在测力计上的人,发现测力
计示数比自己的体重小,则B(D )
A.人受到的重力减小了 B.人受到的重力不变 C.升降机可能正在加速上升 D.升降机可能正在加速下降
4、原来做匀速运动的升降机内,有一被拉长弹簧拉
住的具有一定质量的物体A静止在底板上,如图,现
发现A突然被弹簧拉向右方,由此可以判断,此升降
G-FN=ma 代入数据得测力计对物体的拉力
V a=g
G
FN=0
由牛顿第三定律知测力计的示数为0
当物体向下的加速度a=g时,物体对支持物的压力
(或对悬挂物的拉力)将等于零,这种状态称为完全失重现 象。
让我想想……
瓶中的水为什么不会流出?
因为液体受到重力而使 内部存在压力,小孔以 上部分的水对以下部分 的水的压力造成小孔处 的水流出。
a mg
N’
F
由牛顿第三定律
F=F`
所以弹簧的读数为m(g+a) 。
N-mg=ma N=m(g+a) N=N`
F’
N`=m(g+a)
mg 总结:物体对悬挂物的拉力(或对支持物的 压力)大于物体所受重力的现象叫超重.
静止 恢复原值
减速 上升
示数变小
匀速 恢复原值
上升
加速 上升
示数变大
静止 原值
思考:示数变 小说明什么变
当瓶子自由下落时,瓶中 的水处于完全失重状态, 小孔以上部分的水对以下 部分的水的没有压力,小 孔没有水流出。
在完全失重状态下,平常由重力产生的一切物理现象都 会完全消失,比如天平失效,液体不再产生向下的压强(液 体气压计失效),单摆停摆,浸在水中的物体不受浮力等。
下列物体中,你觉得不能在太空舱中使用的仪器是:
如果人下蹲后又突然站起,情况又会怎样?
1.一个人站在医用体重计的测盘上不动时测得重为G,当此人
突然下蹲时,秤的读数( B )
A 先大于G,后小于G B 先小于G,后大于G C 大于G D 小于G
2、关于超重和失重,下列说法中正确的是( CD ) A、超重就是在某种情况下,物体的重、物体向下减速运动,处于超重状态 D、物体做自由落体运动时处于完全失重状态
物体以一定的初速度竖直向上抛出后
只在重力作用下的运动。
(2)竖直上抛运动加速度
V0
F合 =G=mg
a
F合
mg
g
G 方向竖直向下。
mm
(3)竖直上抛运动研究方法
以向上方向为正方向,竖直向上抛运动
是一个加速度为-g的匀减速直线运动。
(4)竖直上抛运动规律公式
V0
vt v0 gt
x

v0t
用 牛 顿 (定 二律 )解 决 问 题
你能解释这种 现象吗?……
思考:
1、瓶静止时,瓶中的水为什么 能流出?
2、瓶自由下落时,瓶中的水为 什么不可以流出?
重力怎样测量?
例1、弹簧秤竖直悬挂、台秤水平放置都处于静止状态。证 明弹簧秤和台秤的读数等于物体重力的大小。
F F’
G
证明: 弹簧的读数就是重物对弹簧 拉力F`的大小 以物体为研究对象,受力如左图
思考: 示数变大说明什么
变大了?
N
X 1牛顿
10
2
8 4 中 国 制 造 MADE IN CHINA 6
(一)超重现象
N
例2、弹簧秤竖直悬挂、台秤水平放置都向上加速运动。求 弹簧秤和台秤的读数。
以物体为研究对象,受力如左图 由牛顿第二定律
F-mg=ma F=m(g+a)
a 弹簧的读数就是重物对弹簧 拉力F`的大小
由牛顿第三定律
mg-N=ma
F
F=F`
N=m(g-a)
F’
所以弹簧的读数为m(g-a) 。
N=N` N`=m(g-a)
总结:物体对悬挂物的拉力(或对支持
mg
物的压力)小于物体所受重力的现象叫失重.
做做看: 在同学们的桌子上都放有弹簧秤和钩码, 请两个同学为一组利用这两个实验仪器做 实验,观察超重与失重现象。
弹簧测力计 天平
体重计 铅笔 摆钟
(能 ) (不能) (不能 ) (能) (不能)
(三)、从物理走向生活
在体重计上做下蹲的过程中,体重计的示数怎样 变化?
过程分析: 由静止开始向下运动,
速度增加,具有向下的加速 度(失重);蹲下后最终速 度变为零,故还有一个向下 减速的过程,加速度向上 (超重)。
相关文档
最新文档