讲义一元一次不等式组应用题
一元一次不等式组应用题解析版ppt精讲教学教材
测试卷2
解:(1)规划区的总面积:20×150÷(85%- 60%)=12000(平方米)
需搬迁的农户的户数:12000×60%÷150=32 (户)
(2)设需要退出x户农民。 150x≥5%×12000 x≥4
答:最初需搬迁的农户有32户,政府规划的建 房区域总面积是12000平方米;为了保证绿色环境 占地面积不少于区域总面积的20%,至少需要退出 4户农户。
测试卷3
解:设养甲鱼的亩数为x亩,则养黄鳝的亩数为(10-x)亩,由表格可以看出:
养甲鱼的收益为2.5-1.5+0.2=1.2(万元/亩) 养黄鳝的收益为1.8-1+0.1=0.9(万元/亩)
{ 根据题意得: 1.5x+10-x≤14, 1.2x+0.9(10-x)≥10.8 解得6≤x≤8
所以该农户可以这样安排养殖:养甲鱼6亩,黄鳝4亩;或养甲鱼7亩, 黄鳝3亩;或养甲鱼8亩,黄鳝2亩
2电视机:38台;洗衣机62台。 3.电视机:37台;洗衣机63台。 4电视机:36台;洗衣机64台。 5电视机:35台;洗衣机65台。 6.电视机34台;洗衣机66台。 (2)每台电视机的利润是200元,而每台洗衣机的利润是100元, 故进电视机越多,利润越高,故选择方案1利润最高。最高是: 39×(2000-1800)+61×(1600-1500)=13900(元)
Байду номын сангаас
接待一世博旅行团有290名游客,共有100件行李。计划租用
甲,乙两种型号的汽车共8辆。甲种汽车每辆最多能载40人和
10件行李,乙种汽车每辆最多能载30人和20件行李。
(1)设租用甲种汽车 x辆,请你帮助设计可能的租车方案;
(2)如果甲,乙两种汽车每辆的租车费用分别为2000元,
用一元一次不等式(组)解决生活中的实际问题
用一元一次不等式(组)解决生活中的实际问题用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4、解不等式(组);5、根据题意,写出合理答案。
一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?解析:利润 = 售价-进价。
设可以打x折,则:400×0.1x-200≥120解之得,x≥8答:最低可以打8折。
二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?解析:甲队总得分= 甲队胜场的得分+甲队平场的得分。
设甲队胜了x场,则:3x+1×(12-x)>26解之得,x>7∴x的最小整数值是8 。
答:甲队至少胜了8场。
三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?解析:设需要买x块肥皂,第一种方法的购价为:2+2×0.7×(x-1)元,第二种方法的购价为:2×0.8 = 1.6元。
则:2+2×0.7×(x-1)<1.6解之得,x>3∴x的最小整数值是4 。
答:最少需要买4块肥皂。
四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
解析:最后1名学生分得的苹果数= 苹果总数-7(学生数-1),设学生人数为x 名,则:44-(x-1)×7>0 ①44-(x-1)×7<3 ②解之得,<x<∵x是整数,∴x=7答:学生人数是7人。
第8讲 一元一次不等式(组)及其应用
元/千克,B种水果收购单价15元/千克.
(1)求A,B两种水果各购进多少千克.
(2)已知A种水果运输和仓储过程中质量损失4%,若合作社计划
A种水果至少要获得20%的利润,不计其他费用,求A种水果的
最低销售单价.
返回
教材回归
题型分类
解:(1)设A种水果购进x千克,B种水果购进y千克,
③从反面求解确定;④借助数轴确定.
返回
教材回归
题型分类
变式4-1 [2025·预测]若关于x的不等式组
+1
< -1,
3
2
<4
无
解,则m的取值范围是_________.
m≤2
【解析】
−1
解不等式
< -1,得x>8.
3
2
∵不等式组无解,∴4m≤8,解得m≤2.
返回
教材回归
题型分类
4-2 ≥ 0,
+2=110,
=50,
由题意,得
解得
=30.
2+3=190,
答:脐橙树苗的单价为50元/棵,黄金贡柚树苗的单价为30元/棵.
(2)设可以购买脐橙树苗m棵,则购买黄金贡柚树苗(1 000-m)棵,
由题意,得50m+30(1 000-m)≤38 000,解得m≤400.
答:最多可以购买脐橙树苗400棵.
正数
同一个负数,必须__________________,所得的不等式成立.
改变不等号的方向
返回
教材回归
题型分类
3.一元一次不等式
(1)一元一次不等式:不等号的两边都是整式,而且只含有一个
未知数,未知数的最高次数是_________次,这样的不等式叫
一元一次不等式组应用实例及答案
一元一次不等式组应用实例及答案本文介绍了一元一次不等式组的应用实例及其答案。
一元一次不等式组是用来解决不等式问题的数学工具。
它由多个一元一次不等式组成,其中每个不等式都含有一个未知数,并且未知数的指数为1。
应用实例下面是一些应用实例,展示了如何使用一元一次不等式组解决实际问题。
实例1:商店促销某商店打折销售苹果和橙子,苹果每个1元,橙子每个2元。
现有100元购物券,问最多可以购买多少个苹果和橙子?解析:设购买苹果的个数为x,购买橙子的个数为y。
根据题意,我们可以列出以下两个一元一次不等式:- 苹果总价为x元:1 * x ≤ 100- 橙子总价为2y元:2 * y ≤ 100接下来,我们可以求解这个不等式组,找到满足约束条件的x和y的取值范围。
实例2:生产计划某工厂有两个生产部门A和B,每天生产产品的数量不等。
已知部门A每天最多生产50个产品,部门B每天最多生产30个产品。
同时,工厂每天总共生产的产品数量不得超过80个。
问部门A和部门B每天生产的产品数量应如何分配,使得生产数量最大化?解析:设部门A每天生产的产品数量为x,部门B每天生产的产品数量为y。
根据题意,我们可以列出以下三个一元一次不等式:- 部门A每天最多生产50个产品:x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80通过求解这个不等式组,我们可以找到生产数量最大化时部门A和部门B每天生产的产品数量的合理分配方案。
答案实例1的答案:- 苹果总价不得超过100元:1 * x ≤ 100,解得x ≤ 100- 橙子总价不得超过100元:2 * y ≤ 100,解得y ≤ 50根据题意,购买苹果和橙子的个数必须是整数,所以最多可以购买的苹果个数为100个,最多可以购买的橙子个数为50个。
实例2的答案:- 部门A每天最多生产50个产品:x ≤ 50,解得x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30,解得y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80,解得x + y ≤ 80通过求解这个不等式组,我们可以得到合理的生产方案,例如部门A每天生产50个产品,部门B每天生产30个产品,总产量为80个产品。
14第14讲__一元一次不等式(组)应用题
第14讲 一元一次不等式(组)应用题本讲重点:列一元一次不等式(组)解决简单的实际问题.【考点链接】1.列不等式解应用题的特征:列不等式解应用题,一般所求问题有“至少”“最多”“不低于”“不大于”“不小于”等词,要正确理解这些词的含义.2.列不等式解应用题的一般步骤:列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:①设未知数;②找不等关系;③列不等式(组);④解不等式(组);⑤检验.其中 是正确求解的必要环节.【典例探究】考点1 列一元一次不等式解应用题『例1』(2012益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1220元,问购进A 、B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.『解析』(1)设购进A 种树苗x 棵,则购进B 种树苗(17﹣x )棵,根据题意得: 80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7.答:购进A 种树苗10棵,B 种树苗7棵;(2)设购进A 种树苗x 棵,则购进B 种树苗(17﹣x )棵,根据题意得:17﹣x <x ,解得:x >.购进A 、B 两种树苗所需费用为80x+60(17﹣x )=20x+1020,则费用最省需x 取最小整数9,此时17﹣x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵.这时所需费用为1200元.『备考兵法』解含不等式问题时,关键是掌握有关概念的含义,正确地列不等式, 常见的概念有:(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.(3)正数、负数、非负数、非正数等概念.考点2 列一元一次不等式组解应用题『例2』(2012福州)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?『解析』(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68.解得:x =16.答:小明答对了16道题.(2) 设小亮答对了y 道题,依题意得:⎩⎪⎨⎪⎧5y -3(20-y )≥705y -3(20-y )≤90.因此不等式组的解集为1614≤y ≤1834.∵ y 是正整数,∴ y =17或18. 答:小亮答对了17道题或18道题.『备考兵法』用一元一次不等式组解应用题的一般步骤(1)审:审题,分析题目中已知什么,求什么,明确各数量之间的关系(2)设:设适当的未知数(3)找:找出题目中的所有不等关系(4)列:列不等式(组)(5)解:求出不等式(组)的解集(6)答:写出符合题意的答案考点3 综合应用『例3』(2012铜仁)为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元? 『解析』(1)设该商店购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,根据题意得方程组得:⎩⎨⎧=+=+8006595038b a b a , 解方程组得:⎩⎨⎧==50100b a , ∴购进一件A 种纪念品需要100元,购进一件B 种纪念品需要50元;(2)设该商店购进A 种纪念品x 个,则购进B 种纪念品有(100﹣x )个,∴⎩⎨⎧≤-+≥-+7650)100(501007500)100(50100x x x x ,解得:50≤x≤53, ∵x 为正整数,∴共有4种进货方案;(3)因为B 种纪念品利润较高,故B 种数量越多总利润越高,因此选择购A 种50件,B 种50件. 总利润=50×20+50×30=2500(元)∴当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元.『备考兵法』不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.有时需根据问题情境选取边界解.【当堂过关】1. (2012•恩施州)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A. 40% B.33.4% C.33.3% D.30%『解析』设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥,∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.『答案』B2. (2011湖南永州)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A.6.0元 B.7.0元 C.8.0元 D.9.0元『解析』列不等式求解.『答案』B3. (2012南京模拟)甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A. 1℃~3℃ B. 3℃~5℃ C. 5℃~8℃ D. 1℃~8℃『解析』找公共部分.『答案』B4. (2012昆山一模)宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有种.『解析』列不等式求解.『答案』25. (2012温州模拟)某班级从文化用品市场购买了签字笔和圆珠笔共l5支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了支.『解析』列不等式求解.『答案』86. (2012张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A.B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?解:设某游客一年中进入该公园x次,依题意得不等式组:,解①得:x >10,解②得:∴不等数组的解集是:x >25.答:某游客一年进入该公园超过2x=25次时,购买A 类年票合算.7. (2012江苏无锡前洲中学模拟)张先生前年在美美家园住宅小区订购了一套住房,图纸如图所示.已知:①该住房的价格15000 a 元/平方米;②楼层的电梯、楼梯及门厅前室面积由两户购房者平均负担;③每户配置车库16平方米,每平方米以6000元计算;根据以上提供的信息和数据计算:(1)张先生这次购房总共应付款多少元?(2)若经过两年,该住房价格变为21600元/平方米,那么该小区房价的年平均增长率为多少?(3)张先生打算对室内进行装修,甲、乙两公司推出不同的优惠方案:在甲公司累计购买10000元材料后,再购买的材料按原价的90%收费;在乙公司累计购买5000元材料后,再购买的材料按原价的95%收费.张先生怎样选择能获得更大优惠?解:(1)室内面积=4.65×4.2+5×6.6+8.4×5.7=100.41(平方米), 楼梯电梯面积=3.9×4.2+3.6×5=34.38(平方米),需张先生负担的面积=100.41+34.38÷2=117.6(平方米),总费用=117.6×15000+16×6000=1860000(元).(2)设年增长率为x ,则有15000(1+x )2=21600∴x 1=0.2,x 2=-2.2(舍去).年增长率为0.2(或20%).(3)①如果累计购物不超过5000元,两个公司购物花费一样多;②如果累计购物超过5000元而不超过10000元,在乙公司购物省钱;③如果累计购物超过10000元,设累计购物为x 元(x >10000).如果在甲公司购物花费小,则5000+0.95(x-5000)>10000+0.9(x-100)x >15000.如果在乙公司购物花费小,则5000+0.95(x-5000)<10000+0.9(x-100)x <15000而当花费恰好是15000元时,在两个店花费一样多.所以,累计购物超过10000元而不到15000元时,在乙公司购物省钱;累计购物等于15000元,两个公司花费一样多;而累计购物超过15000元时,在甲公司购物省钱.8. (2012韶山市初三质量检测)某电脑经销商计划同时购进一批电脑音箱和液晶显示器,若购进电脑音箱10台和液晶显示器8台,共需要资金7000元;若购进电脑音箱2台和液晶显示器5台,共需要资金4120元.(1)每台电脑音箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金 不超过 22240元.根据市场行情,销售电脑音箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于 4100元.试问:该经销商有哪几种进货方案? 哪种方案获利最大? 最大利润是多少?解:(1)设每台电脑音箱的进价是x 元,液晶显示器的进价是y 元,得1087000254120x y x y +=⎧⎨+=⎩,解得60800x y =⎧⎨=⎩. 答:每台电脑音箱的进价是60元,液晶显示器的进价是800元.(2)设购进电脑音箱x 台,得60800(50)2224010160(50)4100x x x x +-≤⎧⎨+-≥⎩,解得24≤x≤26. 因x 是整数,所以x=24,25,26.利润10x+160(50-x)=8000-150x ,可见x 越小利润就越大,故x=24时利润最大为4400元答:该经销商有3种进货方案:①进24台电脑音箱,26台液晶显示器;②进25台电脑音箱,25台液晶显示器;③进26台电脑音箱,24台液晶显示器.第①种方案利润最大为4400元.【浙江两年中考】1.(2012绍兴)在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10cm ,如图,第一棵树左边5cm 处有一个路牌,则从此路牌起向右510m ~550m 之间树与灯的排列顺序是( )A.B.C.D.『解析』根据题意得:第一个灯的里程数为10米,第二个灯的里程数为50,第三个灯的里程数为90米…第n个灯的里程数为10+40(n﹣1)=(40n﹣30)米,由51040n30550≤≤﹣,解得1113n1422≤≤,∴n=14.当n=14时,40n﹣30=530米处是灯,则510米、520米、540米处均是树.∴从此路牌起向右510m~550m 之间树与灯的排列顺序是树、树、灯、树.故选B.『答案』B2. (2012湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,∴乙种树每棵200元,丙种树每棵32×200=300(元).(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵.根据题意:200·2x+200x+300(1000-3x)=210000,解得x=30.∴2x=600,1000-3x=100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵.(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,根据题意得:200(1000-y)+300y≤210000+10120,解得:y≤201.2.∵y为正整数,∴y最大为201.答:丙种树最多可以购买201棵.3. (2011绍兴)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案. 解:(1)7206=120÷ ,∴光明厂平均每天要生产120套单人课桌椅.(2)设x 人生产桌子,则(84)x -人生产椅子,则125720,584245720,4x x ⨯⨯≥-⨯⨯≥⎧⎨⎩ 解得6060,60,8424x x x ≤≤∴=-=,∴生产桌子60人,生产椅子24人.4. (2012宁波)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计(说明:+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a 、b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?(2)当用水量为30吨时,水费为:17×3+13×5=116元,9200×2%=184元, ∵116<184,∴小王家六月份的用水量超过30吨.设小王家六月份用水量为x 吨,由题意,得17×3+13×5+6.8(x ﹣30)≤184,6.8(x ﹣30)≤68,解得x≤40. ∴小王家六月份最多能用水40吨.【命题趋势提醒】 本节内容在中考中题目越来越多,有填空、选择、解答题等,将会在不等式的实际应用问题、情境设计、设问方式等有新的突破,一大批具有较强的时代气息、格调清新、设计自然、紧密联系日常生活实际的应用题将会不断涌现【迎考精炼】一、选择题(本大题共5小题,每小题5分,共20分.每小题只有一个选项是正确的,不选,多选,错选均不给分)1. (2012广东南塘二模)已知ab >15,且a =-5,则b 的取值范围是 ( )A 、b >3B 、b <3C 、b >-3D 、b <-3 『解析』由-5b >15得b <-3.『答案』D2. (2012菏泽市模拟)某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( )A .6折B .7折C .8折D .9折『解析』列不等式求解.『答案』B3. (2012西宁市)西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )A .至少20户B .至多20户C .至少21户D .至多21户『解析』列不等式求解.『答案』C4. (2011绥化市)现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性到达赛场的租车方案有( )A.3种B.4种C.5种D.6种『解析』列不等式组求解.『答案』B5. (2012黄石)有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( )A. 1x =,3y =B. 3x =,2y =C. 4x =,1y =D. 2x =,3y =『解析』根据题意得:7x+9y ≤40,则x ≤9740x -,∵40-9y ≥0且y 是非负整数,∴y 的值可以是:0或1或2或3或4.当x 的值最大时,废料最少,因而当y=0时,所剩的废料是40-5×7=5mm ;当y=1时,所剩的废料是40-1×9-4×7=3mm ;当y=2时,所剩的废料是:40-2×9-3×7=1mm ;当y=3时,所剩的废料是:40-3×9-7=6mm ;所剩的废料是:40-4×9=4mm .则最小的是:x=3,y=2.『答案』B二、解答题(本大题共8小题,共80分.解答应写出文字说明、证明过程或演算过程) 6. (10分)(2012德州三模)先化简分式23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,再从不等式组⎩⎨⎧+<-≥--15242)2(3x x x x 的解集中取一个合适的值代入,求原分式的值. 解:原式=42+x .解不等式组得:23≤<-x ,若2=x 时,原式=8.(x 为23≤<-x 中不为0、1、-1的任意数)7. (10分)(2012南昌十五校联考)某幼儿园在六一儿童节购买了一批牛奶.如果给每个小朋友分5盒;则剩下38盒,如果给每个小朋友分6盒,则最后小朋友不足5盒,但至少分得1盒.问:该幼儿园至少有多少名小朋友?最多有多少名小朋友.解:设该幼儿园有x 名小朋友.依题意得:1≤5x +38 - 6(x - 1)<5 ∴不等式组的解集为:39<x ≤43. 又∵x 为整数,∴x =40,41,42,43. 答:该幼儿园至少有40名小朋友,最多有43名小朋友.8. (10分) (2012广东二模)为鼓励学生参加体育锻炼,学校计划拿出不超过3 200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3∶2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?解:(1)设篮球的单价为x 元,则排球的单价为23x 元,据题意得x +23x =160, 解得x =96.故23x =23×96=64.所以篮球和排球的单价分别是96元、64元. (2)设购买的篮球数量为n 个,则购买的排球数量为(36-n )个.由题意得:⎩⎨⎧ 36-n <1196n +6436-n ≤3 200, 解得25<n ≤28.而n 是整数,所以其取值为26,27,28,对应36-n 的值为10,9,8,所以共有三种购买方案:①购买篮球26个,排球10个;②购买篮球27个,排球9个;③购买篮球28个,排球8个.9.(10分)(2012金华四模)产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶(1)则可采鲜茶叶“炒青” 千克,尖” 千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?解:(1)设安排x 人采“炒青”,20x ;5(30-x ).(2)设安排x 人采“炒青”,y 人采“毛尖”,则30205(30)10245x y x x +=⎧⎪-⎨+=⎪⎩,解得:1812x y =⎧⎨=⎩. 即安排18人采“炒青”,12人采“毛尖”.(3)设安排x 人采“炒青”,205(30)11045205(30)10045x x x x -⎧+≤⎪⎪⎨-⎪+≥⎪⎩,解得:17.5≤x ≤20, ①18人采“炒青”,12人采“毛尖”.②19采“炒青”,11人采“毛尖”.③20采“炒青”,10人采“毛尖”.所以有3种方案.计算可得第(1)种方案获得最大利润.18×204×40+12×55×120=5040元最大利润是5040元.10.(10分)(2012荆门东宝区模拟)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.解:( 1)甲、乙工程队每天分别能铺设70米和50米.(2)设分配给甲工程队y 米,则分配给乙工程队(1000y -)米.由题意,得10,70100010.50yy⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y≤≤.所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米;方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.11.(10分)(2012丽水一模)现有一个种植总面积为540m2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:(1)若设草莓共种植了x垄,通过计算说明共有几种种植方案?分别是哪几种?(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?解:(1)根据题意西红柿种了(24-x)垄15x+30(24-x)≤540,解得x≥12 .∵x≤14,且x是正整数,∴x=12,13,14.共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄;方案二:草莓种植13垄,西红柿种植11垄;方案三:草莓种植14垄,西红柿种植10垄 .(2)方案一获得的利润:12×50×1.6+12×160×1.1=3072(元);方案二获得的利润:13×50×1.6+11×160×1.1=2976(元);方案三获得的利润:14×50×1.6+10×160×1.1=2880(元).由计算知,种植西红柿和草莓各12垄,获得的利润最大,最大利润是3072元.12.(10分)(2011温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于...85%,求其中所含碳水化合物.....质量的最大值.解:(1) 400×5%=20.答:这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x克,由题意得:x+4x+20+400×40% =400,∴x=44,∴4x=176.答:所含蛋白质的质量为176克.(3)解法一:设所含矿物质的质量为y克,则所含碳水化合物的质量为(380-5y)克,∴4y+(380-5y)≤400×85%,∴y≥40,∴380-5y≤180,∴所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为而克,则n≥(1-85%-5%)×400,∴n≥40,∴4n≥160,∴400×85%-4n≤180,∴所含碳水化合物质量的最大值为180克.13.(10分)(2011湖州)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元?(收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?解:(1)2011年王大爷的收益为:20.+.(3-24)10(25-2)=17(万元).⨯⨯(2)设养殖甲鱼x亩,则养殖桂鱼(30-x)亩.由题意得2.42(30)70,+-≤解得25x xx≤,又设王大爷可获得收益为y 万元,则0.60.5(30)y x x =+-,即11510y x =+. ∵函数值y 随x 的增大而增大,∴当x =25,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg ,由(2)得,共需饲料为50025+700516000⨯⨯=(kg ),根据题意,得160001600022a a-=,解得4000()a kg =. 答:王大爷原定的运输车辆每次可装载饲料4000kg.。
一元一次不等式组的应用题终极的课件
2、 3
2
7(x 5) 2(x 1) 15
1、请同学们注意不等式的常见步骤: 去分母,去括号,移项,合并同类 项,系 数化为1。
2、在确定不等式组的解集时,可以借助数
轴或利用口诀。
1.不等式组
的解集是x 2 ,则m的
取值范围是_______。
2.已知不等式组
是
.
2x 的智慧: 某工厂工人经过第一次改进工作方法,每人每天
平均加工的零件比原来多10个,因而每人在8天 内加工的零件超过200个,第二次又改进工作方法, 每人每天平均又比第一次改进方法后多做27个, 这样只做了4天,所做的零件就超过前8天所做的 数量.试问每个人原来每天平均做多少个零件?
你能根据下列的不等关系列出不等 式组吗?
甲、乙两种货车可一次性运到销售地且运费最 省?
1.(2007.湖南)若不等式3x<5与不等式ax<10的
解集相同,则a=
.
2.(2007南安)已知不等式4x-a≤0的正整数解是
1,2,则a的取值范围是
.
3集.(,20则07a黄、岗b的)若大不小等关式系组是xx
a b
的解集是空 .
为了加强学生的交通安全意识,某中学和交 警大队联合举办了“我当了一日小交警”活 动,星期天选派部分学生到交通路口值勤, 协助交通警察维护交通秩序。若每一个路口 安排4人,那么还剩下78人;若每个路口安 排8人,那么最后一个路口不足8人,但不少 于4人。求这个中学选派值勤学生多少人? 共有多少个交通路口安排值勤?
算一算
小明的年龄的2倍不大于31,但又不小于29,求小明
的年龄?
解:设小明的年龄为x岁
2x 31
2x 29
解得 14 1 x 15 1
一元一次不等式(组)应用题及练习(含答案)
一元一次不等式组的典型应用题例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。
一元一次不等式组应用题及答案
一元一次不等式应用题一.分配问题:1.把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?4. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?5.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?答案解:设猴子有x只,则花生有(3x+8)颗,由题意得:5(x-1)<(3x+8)<5(x-1)+5,解得:4<x<6.5,∵x取整数,∴x=5或6,①当x=5时,3x+8=3×5+8=23(颗),②当x=6时,3x+8=3×6+8=26(颗),答:①若有5只猴子,则花生23棵.②若有6只猴子,花生26棵.1、设有X名学生,那么有(3X+8)本书,于是有0< (3x+8)-5(x-1)<30<-2x+13<3-13<-2x<-105<x<6.5因为x整数,所以X=6。
(完整版)一元一次不等式组的实际应用
精心整理一元一次不等式组的实际应用1、某市召开的出租汽车价格听证会上,物价局拟定了两套客运出租汽车运价调整方案.方案一:起步价调至7元/2公里,而后每公里1.6元;方案二:起步价调至8元/3公里,而后每公里1.8元.若某乘客乘坐出租车(路程多于3公里)时用方案一比较合算,则该乘客乘坐出租车的路程7、在植树活动中,老师把一批树苗分给各组同学去栽树,如果每组分3棵,还剩8棵;如果每组分5棵,那么最后一组可以分得树苗,但数量少于3棵,则植树的学生________组,这批树苗有________棵.8、工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需要甲种原料9千克,乙种原料3千克;生产一件B种产品需要甲种原料4千克,乙种原料10千克.则安排A、B两种产品的生产件数有________种方案.9、宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为________种16、大明眼镜店的某种近视镜,进价每副800元,零售价每副1200元.六一儿童节期间,该店经理对学生开展优惠活动,但利润仍不低于5%,那么学生购买价格最低打________折17、如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是acm,若铁钉总长度为6cm ,则a 的取值范围是________.1、解析:由题意可知,方案一所花的前是少于方案二的,所以就可以列一个不等式,可设设该乘客乘坐出租车的路程是x 千米,根据题意得7+1.6(x-2)<8+1.8(x-3),解得:x>6.因此x>52、解析:设李明跑步需要x 分钟,由题意可知,李明在18分钟之内所走的路程一定要大于等于家到学校的距离,否则就迟到了,所以可列不等式子为。
一元一次不等式组应用题(公开课)ppt课件
因为宿舍间数是整数所以 x=6; 4x+20=44
答:该班有6间宿舍及44人住宿。
8
例2 讨论交流---方案选择与设计
已知某工厂现有70米,52米的两种布料。
现计划用这两种布料生产A、B两种型号的时
装共80套,已知做一套A、B型号的时装所需
的布料如下表所示,利用现有原料,工厂能否
完成任务?若能,有几种生产方案?请你设计
6 ×2000+2×1800=15600元
甲汽车载行李件数+乙汽车载行李件数≥ 100 ∴ 选择第一种租车方案
18
19
解:设有x个学生,则有(3x+8)个桃子.
(3x+ - 5(x-1) >0 8) (3x+8)-5(x-1) <3
整理得:
解得:
2x<13 2x>10
x<6.5 x>5
即:5<x<6.5
∵x表示人数 ∴x取正整数
∴ x=6
∴ 3x+8= 26
答:共有6个学生,26个桃子。 7
练习3 某班有若干学生住宿,若每间住4人,则有 20人没宿舍住;若每间住8人则有一间没有住满 人,试求该班宿舍间数及住宿人数?
x (1)设租用甲种汽车 辆,请你帮助设计可能的租车
方案; (2)如果甲,乙两种汽车每辆的租车费用分别为2000 元,1800元,你会选择哪种租车方案。
17
接待一世博旅行团有290名游客,共有100件行李。计划租用
甲,乙两种型号的汽车共8辆。甲种汽车每辆最多能载40人和
10件行李,乙种汽车每辆最多能载30人和20件行李。
(1)审(找) :审题,分析题目中已知什么,求什 么,明确各数量之间的关系;找出不等关系。 (2)设:设适当的未知数; (3)列:根据不等关系列出不等式组; (5)解:求出这个不等式组的解集; (6)检:检验答案是否符合题意。 (6)答:作答。
(完整版)《一元一次不等式组的应用》典型例题
《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
人教版七年级数学下册第九章《一元一次不等式(组)的应用(二)》讲义第22讲(无答案)
第22讲一元一次不等式组的应用(二)类型一积分问题例1、某次数学测验共20道题(满分100分)。
评分标准是:答对1道给5分,答错1道扣2分,不答不给分。
某学生有1道未答。
那么他至少答对几道题才能及格(60分及格)?举一反三:【变式1】在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不低于60分,至少要答对多少道题目?【变式2】一次知识竞赛共有15道题。
竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。
结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题?类型二分配问题例2、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?举一反三:【变式1】把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?【变式2】“六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩类型三方案选择巩固例3、某商店需要购进甲、乙两种商品共160件,其进价和售价如下表.(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,问有哪几种购货方案?并直接写出其中获利最大的购货方案.举一反三:【变式1】某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【变式2】“向阳”中学某班计划用勤工俭学收入的66元,同时购买单价分别为3元、2元、1元的甲乙丙三种纪念品,奖励参加校“艺术节”活动的同学.已知购买的乙种纪念品比购买的甲种纪念品多2件,而购买的甲种纪念品不少于10件,且购买甲种纪念品费用不超过总费用的一半,若购买的甲、乙、丙三种纪念品恰好用了66元钱,问可有几种购买方案,每种方案中购买甲乙丙三种纪念品各多少件?巩固练习1.现用甲、乙两种运输车将46t抗旱物资运往灾区,甲种运输车载重5t,乙种运输车载重4t,安排车辆不A.4辆B.5辆C.6辆D.7辆2.某班有学生48人都会下棋,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人B.19人C.11人或13人D.20人或19人3.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.4. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
七年级数学第21讲一元一次不等式组的应用培优讲义试题
第21讲 一元一次不等式〔组〕的应用制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅……日期:2022年二月八日。
考点·方法·破译1.进一步稳固一元一次不等式和一元一次不等式组的解法及它们的解集的意义,并会简单运用•2.会列不等式或者不等式组解决一些典型的实际问题•经典·考题·赏析【例1】当x 取何有理数时,代数式3221--x 的值不大于1? 【解法指导】从题目中找出不等关系来,并依此列出不等式,解此不等式即可求出此题所求“不大于〞,即是小于或者等于,类似的还有“不超过〞、“不多于〞、“顶多为〞,另外,“不少于〞、“不低于〞、“至少为〞等,即为“大于或者等于〞•解:依题意得 12123x --≤ 去分母,得 3-2(x -2)≤6去括号,得 3-2x +4≤6合并同类项,得 -2x ≤6-3-4即 -2x ≤-1系数化为1,得 12x ≥∴ 当x 取值不小于12时,3221--x 的值不大于1• 【变式题组】01.假如2(1)3x --的值是非正数,那么x 的取值范围是〔 〕 A .x ≤-1 B .x ≥-1 C .x ≥1 D .x ≤102.当x 取何值时,代数式2x -5的值:⑴大于0? ⑵等于0? ⑶不大于-3?03.假设代数式1132x x +--的值不小于16x -的值,求正整数x 的值• 【例2】〔〕某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午他又买了20斤,价格为每斤y 元•他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是〔 〕 A .x <y B .x >y C .x ≤y D .x ≥y【解法指导】假设要比拟两个有理数a 和b 的大小,有一种方法就是判断a -b 的值的正负:假设a -b =0,那么a =b ;假设a -b <0,那么a <b ,反之亦然•用这种方法比拟两数大小,称之为作差比拟法•此题本质就是比拟30x +20y 与502x y +⋅的大小的问题,所谓“赔了钱〞,就是进价3020502x y x y ++<⋅,也就是30205002x y x y ++-⋅<变形可得x >y ,应选B • 【变式题组】01.假如2213x x --比23-大,那么x 的取值范围是〔 〕 A .x >1 B .x <1 C .x ≤1 D .x ≠102.试比拟两个代数式322x x x +-与31x -的大小•03.假设代数式2321x x -+比231x x +-大,求x 的取值范围•【例3】某校餐厅方案购置12张餐桌和一批餐椅,从甲、乙两商场理解到统一餐桌每张均为200元,餐椅报价每把均为50元•甲商场称:每购置一张餐桌赠餐椅;乙商场称:所有的餐桌、餐椅均按报价的八五折销售,那么什么情况下到甲商场购置更优惠?什么情况下到乙商场购置更优惠?【解法指导】餐椅的购置数量是个变量,到哪个商场购置更优惠,取决于餐椅的数量多少•把餐椅数量设为x 把,到甲、乙两商场购置所需费用分别设为y 甲、y 乙,它们分别用含x 的式子表示,再比拟y 甲、y 乙的大小即可,在求y 甲是,应注意x 减去12后,在乘以50,即y 甲=200×12+50(x -12);同理y 乙=(200×12+50x )×85%•解:设方案购置x 把餐椅,到甲、乙两商场购置所需费用分别为y 甲元、y 乙元•根据题意,得:y甲=200×12+50(x-12),即y甲=1800+50x,y乙=(200×12+50x)×85%,即8520402y x=+乙•①当y甲<y乙时,85 18005020402x x+<+,解这个不等式,得x<32•即当购置的餐椅少于32把时,到甲商场购置更优惠•②当y甲>y乙时,85 18005020402x x+>+,解这个不等式,得x>32•即当购置的餐椅多于32把时,到乙商场购置更优惠•③当y甲=y乙时,85 18005020402x x+=+,解这个不等式,得x=32•即当购置的餐椅等于32把时,到两家商场购置均可•【变式题组】•请问,用那种缴费方式比拟适宜?02.某单位方案在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的效劳质量一样,且报价都是每人200元•经协商,甲旅行社表示可以给予每位游客七五折优惠;乙旅行社表示可以免去一位游客的旅游费用,其余游客八折优惠,该单位选择哪一家旅行社支付的旅游费用较少?03.〔〕某蔬菜加工厂承当出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱•供给这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购置,每个纸箱价格为4元;•⑴假设需要这种规格的纸箱x个,请用含x的代数式表示购置纸箱的费用y1〔元〕和蔬菜加工厂自己加工制作纸箱的费用y 2〔元〕;⑵假设你是决策者,你认为应该选择哪种方案?并说明理由•【例4】〔〕为了美化校园环境,建立绿色校园,某准备对校园中30亩空地进展绿化•绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32,那么种植草皮的最小面积是多少? 【解法指导】应用题中,要充分挖掘题目中所蕴含的不等关系,一个也不能遗漏,否那么就会出错•注意到题中表示不等关系的关键词语“不少于〞,这是列不等式的根据•显然,此题中有三个不等式关系:①种植草皮与种植树木的面积都不少于10亩;②种植草皮面积不少于种植树木面积的32,根据这三个不等关系可以求出种植草皮的面积的范围•解:设种植草皮的面积为x 亩,那么种植树木的面积为(30-x )亩, 那么有1030103(30)2x x x x -⎧⎪⎪⎨⎪⎪-⎩≥≥≥,解得18≤x ≤20•故x 的最小值为18•答:种植草皮的最小面积为18亩•【变式题组】01.2021年某厂制定某种产品的年度消费方案,现有如下数据供参考:⑴消费此产品的现有工人为400人;⑵每名工人的年工时约计2200小时;⑶预测2021年的销售量在10万箱到17万箱之间;⑷每箱需用工4小时,需用料10千克;⑸目前村料1000吨,2021年还需用料1400吨,到2021年底可补充原料2000吨•试根据以上数据确定2021年可能消费的产量,并根据产量确定工人人数•02.某公司在下一年度方案消费出一种新型环保冰箱,下面是公司各部门提出的数据信息;HY :明年消费工人不多于80人,每人每年工作时间是2400h 计算;营销部:预测明年年销量至少为10000台;技术部:消费1台电冰箱平均用12个工时,每台机器需要安装5个某种主要部件;供给部:今年年终库存主要部件1000件,明年能采购到这种主要部件80000件•根据上述信息,下一年度消费新型冰箱数量应该在什么范围内?【例5】〔襄樊〕“六一〞儿童节前夕,某消防官兵理解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购置了一些送给这个小学的小朋友作为节日礼物•假如每班分10套,那么余5套;假如前面的班级每个班分13套,那么最后一个班虽然分得有福娃,但缺乏4套•问:该小学有多少个班级?奥运福娃一共有多少套?【解法指导】抓住题中的关键词“虽然分有福娃,但缺乏4套〞来建立不等式组,这是此题的关键所在•解:设该小学有x 个班,那么奥运福娃一共有(10x +5)套,根据题意,得10513(1)410513(1)x x x x +<-+⎧⎨+>-⎩①②解①得x >143,解②得x <6• 因为x 只能取正整数,所以x =5,此时10x +5=55•答:该小学有5个班级,奥运福娃一共有55套•【变式题组】01.幼儿园有玩具假设干份,分给小朋友,假如每个小朋友分3件,难么还剩59件;假如每个小朋友分5件,那么最后一个小朋友还少几件,这个幼儿园有多少玩具?有多少个小朋友?02.某校为了奖励在数学竞赛中获奖的学生,买了假设干本课外读物准备送给他们•假设每名学生送3本,那么还余8本;假设前面每名学生送5本,那么最后一名学生得到的课外读物缺乏3本•设该校买了m 本课外读物,有x 名学生获奖,请你解答以下问题•⑴用含x 的代数式表示m ;⑵求出该校的获奖人数及所买的课外读物的本数•【例6】某工厂现有甲种原料360千克,乙种原料290千克,现方案用这两种原料消费A 、B 两种产品一共50件,消费一件A 产品需要甲种原料9千克,乙种原料3千克;消费一件B 产品,需要甲种原料4千克,乙种原料10千克,那么工厂安排A 、B 两种产品的消费件数,有哪几种方案?请你设计出来•【解法指导】此为典型的材料供给类设计方案的应用题,题中的不等关系不很明显,但经过认真分析,结合生活实际仍可挖掘出题中所蕴含的不等关系,即消费所使用的甲种原料总量不得超过360千克,乙原料总量不得超过290千克,据此可以列出两个一元一次不等式,从而组成一元一次不等式组•此类题的不等关系不非常显眼,开掘不等关系是解决此类题之关键所在•解:设安排消费A 种产品x 件,那么消费B 种产品(50-x )件•根据题意,得36029094(50)310(50)x x x x +-⎧⎨+-⎩≤≤,解这个不等式组,得30≤x ≤32• 因为x 需要取整数,所以x 可以取30、31、32,对应50-x 应取20、19、18•故可设计三种方案:A 种产品30件,B 种产品20件;A 种产品31件,B 种产品19件;A 种产品32件,B 种产品18件•【变式题组】01.〔〕近期以来,大蒜和绿豆的场价格离奇攀升,网民戏称“蒜你狠〞、“豆你玩〞•以绿豆为例,5月上旬某绿豆的场价已达16元/千克•政府决定采取价格临时干预措施,调进绿豆以平抑场价格•经场调研预测,该每调进100吨绿豆,场价格就下降1元/千克•为了既能平抑绿豆的场价格,又要保护豆农的消费积极性,绿豆的场价格控制在8元/千克到10元/千克之间〔含8元/千克和10元/千克〕•问调进绿豆的吨数应在什么范围内为宜?02.〔〕迎接亚运,美化,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺找些一共50个摆放在迎宾大道两侧•搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆•⑴某校九年级⑴班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;⑵假设搭配一个A 种造型的本钱是800元,搭配一个B 种造型的本钱是960元,试说明⑴中哪种发案本钱最低?最低本钱是多少元?03.〔〕某校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,那么正好坐满;假设只租用42座客车,那么能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元•⑴该校初三年级一共有多少人参加春游?⑵请你帮该校设计一种最钱..的租车方案• 【例7】〔第17届竞赛题〕假如关于x 的不等式组0607x n x m -<-⎧⎨⎩≥的整数解仅为1,2,3,那么合适这个不等式组的整数对(m ,n )一共有( )对A .49B .42C .36D .13【解法指导】此题属于“由不等式的解集中包含的整数解来确定字母系数的值〞这类题,此类题首先根据不等式组的解集包含哪些整数来确定每个边界点的范围,据此求出符合条件的字母系数的值• 解:由此不等式组得到其解集是76x m n <≤• ∵此解集中仅含有整数1,2,3•∴107m <≤,即70m <≤,且436n <≤ 即2418n <≤ 故m =1,2,3,4,5,6,7,n =19,20,21,22,23,24故符合此不等式组的整数对(m ,n )一共有6×7=42对,即此题选B •【变式题组】01.〔赛题〕:关于x 的不等式组302x a b x -≥⎧⎪⎨<⎪⎩的整数杰有且仅有4个:-1,0,1,2,那么合适这个不等式组的所有可能的整数对(a ,b )一共有多少个?演练稳固 反应进步01.用不等式表示:⑴x 与2的和小于5________________;⑵a 与b 的差是非负数_________________•02.假设x <y ,那么x -y ______y -2;5-x _______5-y ;a 2x _______a 2y ;-x 3_____-y 5; x (a 2+1)______ y (a 2+1)•03.不等式组12305x x +>-⎧⎨⎩≤的解集是___________,其整数解是__________• 04.关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解一共有6个,那么a 的取值范围是 •05.:三角形的两边为3和4,那么第三边a 的取值范围是_________________•06.假设不等式(a -5)x >1的解集是x >1a -5,那么a 的取值范围是__________________• 07.假如不等式组737x x x n +<-⎧⎨>⎩的解集是x >7,那么n 的取值范围是〔 〕 A .n ≥7 B .n ≤ C .n =7 D .n <708.假设abcd >0,a +b +c +d >0,那么a 、b 、c 、d 中负数的个数至少有〔 〕A .1个B .2个C .3个D .4个09.假如2(1)3x--是非正数,那么x的取值范围是〔〕A.x≤1 B.x≥1 C.x≥1 D.x≤110.:关于x的不等式组152x ax->-⎧⎨⎩≥无解,那么a的取值范围是〔〕A.a>3 B.a≥3 C.0<a<3 D.a≤311.〔〕甲、乙两家超以一样的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超累计购置商品超过300元之后,超出局部按原价8折优惠;在乙超累计购置商品超过200元后,超出局部按原价8.5折优惠,设顾客预计累计购物x元〔x>300〕•⑴请用含x的代数式分别表示顾客在两家超购物所需费用;⑵试比拟顾客到哪家超购物更优惠?说明你的理由•12.七⑵班一共有50名学生,教师安排每人制作一件A型或者B型的陶艺品,现有甲种制作材料36kg,乙种制作材料29kg,制作A、B两种型号的陶艺品用料情况如下表:⑴设制作B型陶艺品x件,求x的取值范围;⑵请你根据现有的材料分别写出七⑵班制作A型和B型陶艺品的件数•13.〔〕某校准备组织290名学生进展野外考察活动,行李一共有100件,方案租用甲、乙两种型号的汽车一共8辆,经理解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李•⑴设租用甲种汽车x辆,请你帮助设计所有可能的租车方案;⑵假如甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助选择哪一种租车方案更节费用•14.〔〕响应“家电下乡〞的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购置三种电冰箱的总金额不超过132000元•甲、乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元/台•⑴至少购进乙种电冰箱多少台?⑵假设要求甲种电冰箱的台数不超过丙种电冰箱的台数,那么有哪些购置方案?15.〔〕某组织340名师生进展长途考察活动,带有行李170件,方案租用甲、乙两种型号的汽车10辆•经理解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李•⑴请你帮助设计所有可行的租车方案;⑵假如甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最•培优晋级奥赛检测01.假如不等式组809x bx a-<-⎧⎨⎩≥的整数解仅为1,2,3,那么合适这三个不等式组的整数a、b的有序数对(a,b)一共有〔〕对•A.17 B.64 C.72 D.8102.〔全国数学竞赛题〕设a、b、c的平均数为M,a与b的平均数为N,N与C的平均数为P,假设a>b>c,那么M与P的大小关系是〔〕A.M=P B.M>P C.M<P D.不确定的03.〔第18届竞赛题〕a1、a2、…、a2021都是正数,假如M=(a1+a2+…+a2021)(a2+a2+…+a2021),N=(a1+a2+…+a2021)( a2+a2+…+a2021),那么M、N的大小关系是〔〕A.M>N B.M=N C.MN D.不确定的04.〔“希望杯〞邀请赛试题〕设23ama+=+,12ana+=+,1apa=+,假设a<-3,那么〔〕A.m<n<p B. n<p<m C. p<n<m D.p<m<n05.〔“希望杯〞邀请赛试题〕:a、b、c、d都是整数,且a<2b,b<3c,c<4d,d<50,那么a的最大值是〔〕A.1157 B.1167 C.1191 D.119906.〔“CHSIO杯〞竞赛题〕关于x的不等式组4132x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,那么a的取值范围是________________•07.〔复赛题〕正六边形轨道ABCDEF的周长为,甲、乙两只机器鼠分别冲A、C两点同时出发,均按A →B→C→D→E→F→A→…方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过_______秒钟时,甲、乙两只机器鼠第一次出如今同一条边上•08.〔“CHSIO杯〞竞赛题〕为了保护环境,某企业决定购置10台污水处理设备•现有A、B两种型号的设备,其中每台的价格、月处理污水及年消消耗如下表•经计算,该企业购置设备的资金不高于105万元,请你设计,该企业购置方案有_______种•09.〔竞赛题〕大、中、小三个正整数,大数与中数之和等于2021,中数减小数之差等于1000,那么这三个正整数的和为_____________•10.〔竞赛题〕不等式ax+3≥0的正整数解为1,2,3,那么a的取值范围是______•11.〔选拔赛试题〕小慧上宝塔观光,他发现:假设上了7阶楼梯时,剩下的楼阶梯数是已上的阶数的3倍多,假设再多上15阶楼梯时,已上阶数是剩下的楼梯阶数的3倍多,那么,此宝塔的楼梯一一共有多少阶•12.假设正整数x<y<z,k为整数,且111kx y z++=,试求x、y、z的值•13.〔华杯决赛题〕:a1+2a3≥3a2,a2+2a4≥3a3,a3+2a5≥3a4,…,a8+2a10≥3a9,a9+2a1≥3a10,a10+2a2≥3a1,且有a1+a2+a3+…+a10=100,求a1,a2,a3,…,a9,a10的值•制卷人:打自企;成别使;而都那。
一元一次不等式(组)应用解析(含答案)
一元一次不等式(组)应用◆ 课前热身1.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为__________克.2.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤3.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 .4.不等式组250112x x -<⎧⎪⎨+⎪⎩≥所有整数解的和是 . 【参考答案】1.22. D3.500.31200x +≤4.3◆考点聚焦知识点一元一次不等式组应用大纲要求能应用一元一次不等式(组)的知识分析和解决简单的数学问题和实际问题.考查重点与常见题型考查解一元一次不等式(组)的能力,有关试题多为解答题◆备考兵法判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.◆考点链接1.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.2.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为x ;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).◆典例精析例1.(2009年湖南长沙)已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .【答案】23-≤<-a【解析】本题考查了不等式组的解法。
2015-1-7一元一次不等式(组)基础讲义含答案
一元一次不等式(组)(讲义)一、知识点睛1. 不等式的概念:用符号>,<,≥,≤,≠连接的式子叫做不等式.“≥”叫大于或等于,也叫不小于;“≤”叫小于或等于,也叫不大于.2.不等式的基本性质:..4.①不等式的两边都加上(或减去)同一个代数式,不等号的方向不变; ②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解与不等式的解集:使不等式成立的未知数的值;,叫做不等式的解;含有未知数的不等式的所有解,组成这个不等式的解集,通常用“xa >”或“x a <”的形式表示.不等式的解集可以在数轴上表示,需要注意实心圆点和空心圆圈的区别.4.求不等式解集的过程叫做解不等式.5. 一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.6.一元一次不等式组及其解法.一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.一元一次不等式组中各个不等式的解集的公共部分,叫做这个不等式组的解集.求不等式组解集的过程,叫做解不等式组. 二、精讲精练.1. a 的5倍与3的差不小于10,用不等式表示为____________.2. 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.已知小明在这次竞赛中的成绩超过90分,设他答对了n 道题,则根据题意可列不等式_______________.3.判断正误. (1)2≤3;( ) (2)由2x >-6,得3x <-; ( )(3)由ac bc >,且c ≠0,得a b >;( ) (4)如果0a b <<,则1ab<.( ) 4.已知ab >,c ≠0,则下列关系一定成立的是( )A .ac bc >B .a bc c> C .c a c b ->- D .c a c b +>+5. 若x a =是不等式5x +125≤0的解,则a 的取值范围是_________________.6. 不等式10x +<的解集在数轴上表示正确的是( )A .B .C .D .7.若关于x的不等式0x a -≤的解集如图所示,则a =_______.8. 若关于x 的不等式325m x -<的解集是2x >,则m =______.9. 不等式x ≤1的非负整数解是____________;不等式1x >-的最小整数解是___________. 10. 解下列不等式,并把它们的解集分别表示在数轴上.(1)2125x x --<; (2)53432x x ++-≤; (3)69251332x x x +-+-≤; (4)532122x x ++->.11. 在不等式0ax b +>中,a ,b 是常数,且a ≠0,当______时,不等式的解集是bx a>-;当_______时,不等式的解集是b xa<-. 12. 不等式84632x x x+->+的非负整数解为________________.13. 若不等式x a <只有4个正整数解,则a 的取值范围是________________. 14. 若不等式x a ≥只有2个负整数解,则a 的取值范围是________________. 15. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)213821x x x +>-⎧⎨--⎩≤; (2)239253x x x x+<-⎧⎨-<⎩; (3)211132x +-<-<; (4)513(1)2151132x x x x ->+⎧⎪-+⎨-⎪⎩≥;(5)273(1)234425533x x x x x x ⎧⎪-<-⎪+⎪<⎨⎪⎪--+⎪⎩≤.16. 若不等式组420x a x >⎧⎨->⎩的解集是12x -<<,则a =________.17. 如果不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,那么(1)(1)a b +-=_____________.18. 如果一元一次不等式组>2>x x a ⎧⎨⎩的解集是2x >,那么a 的取值范围是( )A .2a >B .2a ≥C .2a ≤D .2a <19. 如果不等式组8>41x x x m+-⎧⎨⎩≤的解集是3x <,那么m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <一元一次不等式(组(随堂测试)1. 解不等式组240312123x x x +⎧⎪+-⎨<⎪⎩≥,并把它的解集表示在数轴上.2. 不等式351222x x -++≤的最小整数解为_________. 3. 如果不等式组2223x a x b ⎧--⎪⎨⎪-⎩≤≤的解集是01x ≤≤,那么a b +的值为____________.一元一次不等式(组)基础(作业)20. 下列说法中,错误的是( )A .不等式2x <的正整数解有一个B .2-是不等式210x -<的一个解C .不等式39x ->的解集是3x >-D .不等式10x <的整数解有无数个 21. 若0a b >>,c ≠0,则下列式子一定成立的是( )A .a c b c -<-B .1a b <C .22a b ->-D .22a bc c>22. 已知点M (12m -,1m -)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B . C, D,23. 若一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组3050x x -⎧⎨->⎩≥的整数,则这组数据的平均数是___________.24. 若不等式22x a -+≥的解集是1x ≤,则a 的值是_________.25. 若不等式20x a -≤只有4个正整数解,则a 的取值范围是________________.26. 若不等式组2>31<1x n x m +⎧⎨+-⎩的解集是12x -<<,则m n -=____.27. 若关于x 的不等式组8236x x x a +>+⎧⎨⎩≤的解集是2x <,则a 的取值范围是_________.28. 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2013~2014赛季全部32场比赛中至少得到48分,才有希望进入季后赛.若设这个队在将要举行的比赛中胜x 场,则x 应满足的关系式是_____________.29. 解下列不等式,并把它们的解集分别表示在数轴上.(1)521293x x --≤; (2)3221145x x --+≤; (3)321132x x -+<-;(4)326381236x x x -----≤.30. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)73(1)5213122x x x x -+<-⎧⎪⎨-⎪⎩≥;(2)3(2)412>13x x x x --⎧⎪+⎨-⎪⎩≥;(3)4513777x -<--≤; (4)63315x xxx -⎧⎪-⎨<--⎪⎩≤.一元一次不等式(组)应用(讲义) 一、知识点睛1. 解一元一次不等式组的口诀:大大取大、小小取小、大小小大中间找、大大小小找不着.2.不等式应用题的三种常见类型①关键词型:不超过,至少,不低于,多于等;②不空不满型:不空也不满等;③方案设计型:原材料供应,容器容量. 二、精讲精练1.解下列不等式组.(1)42313(1)x x x x +⎧+⎪⎨⎪+<-⎩≥;(2)3(2)81213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)523132x x x +⎧⎪+⎨>⎪⎩≥;(4)12(1)2235xx x x ⎧+>-⎪⎪⎨+⎪⎪⎩≥.2.如果一元一次不等式组213(1)x x x m->-⎧⎨⎩≤的解集是2x <,那么m 的取值范围是( )A .2m =B .2m >C .2m <D .2m ≥3.若关于x 的一元一次不等式组712x ax x >⎧⎨+<-⎩有解,则a 的取值范围是( )A .2a -≤B .2a >-C .12a<-D .12a -≤ 4.若关于x 的一元一次不等式组122x ax x <⎧⎨-<-⎩无解,则a 的取值范围是( )A .1a -≥B .1a >-C .1a ≤D .1a <5.若关于x 的一元一次不等式组721x mx <⎧⎨-<⎩的整数解共有3个,则m 的取值范围是( )A .67m <<B .67m <≤C .67m ≤≤D .67m <≤6.为鼓励学生参加体育锻炼,学校计划购买一批篮球和排球,已知篮球的单价为96元,排球的单价为64元,若用不超过 3 200元去购买篮球和排球共36个,且要求购买的篮球多于25个,则至少购买排球_______________个.7. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.那么汽车共有___________辆.8.“亚洲足球俱乐部冠军联赛”期间,河南球迷一行56人从旅馆乘车到天河球场为广州恒大加油.现有A ,B 两个车队,A 队比B 队少3辆车.若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未坐满.则A 队有车___________辆.9.某工厂现有甲种原料360kg ,乙种原料290kg ,计划利用这两种原料生产A ,B 两种产品共50件.已知生产一件A ,B 产品所需原料如下表所示.(1)设生产x 件A 种产品,写出x 应满足的不等式组; (2)有哪几种符合题意的生产方案?请你帮助设计.10. 某工厂现有甲种布料70米,乙种布料52米,计划利用这两种布料生产A ,B 两种型号的时装共80套..利用现有布料,工厂能否完成任务?若能,请设计出所有可能的生产方案;若不能,请说明理由.11. 某仓库有甲种货物360吨,乙种货物290吨,计划用A ,B 两种货车共50辆将这批货物运往外地.若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B 种货车能装载甲种货物6吨和乙种货物8吨.则有哪几种运输方案?请设计出来.12. 在家电下乡活动中,某厂家计划将100台冰箱和54台电视机送到乡下.现租用甲、乙两种货车共8辆将这批家电全部运走,已知一辆甲种货车可同时装冰箱20台,电视机6台,一辆乙种货车可同时装冰箱8台,电视机8台.则将这批家电一次性运到目的地,有几种租用货车的方案?一元一次不等式(组)应用(随堂测试)4. 若关于x 的不等式组3352x x x a++⎧>⎪⎨⎪⎩≤的解集为3x <-,则a 的取值范围是( )A .3a =-B .3a >-C .3a <-D .3a -≥5. 某工厂现有甲种原料280kg ,乙种原料190kg ,计划利用这两种原料生产A ,B 两种产品50件.已知生产一件A 产品需甲种原料7kg ,乙种原料3kg ;生产一件B 产品需甲种原料3kg ,乙种原料5kg .则该工厂有哪几种生产方案?请你设计出来.一元一次不等式(组)应用(作业)31. 小美将某服饰店的促销活动内容告诉小明后,小明假设某件商品的定价为x元,并列出关系式0.3(2100) 1 000x -<,则下列哪个选项可能是小美告诉小明的内容?( )A 买两件相同价格的商品可减100元,再打3折,最后不到1 000元!B 买两件相同价格的商品可减100元,再打7折,最后不到1 000元!C 买两件相同价格的商品可打3折,再减100元,最后不到1 000元!D 买两件相同价格的商品可打7折,再减100元,最后不到1 000元!32. 把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生( ) A .4人B .5人C .6人D .5人或6人33. 若一元一次不等式组9551x x x m +<+⎧⎨>+⎩的解集是1x >,则m 的取值范围是_______________.34. 若关于x 的一元一次不等式组4132x xx m+⎧>+⎪⎨⎪>⎩有解,则m 的取值范围是_______________.35. 若关于x 的一元一次不等式组2113x x a -⎧>⎪⎨⎪<⎩无解,则化简32a a -+-的结果为_________________.36. 若关于x 的一元一次等式组0321x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是___________.37. “3·12”植树节,市团委组织部分中学的团员去郊区植树.某校八年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,最后一人有树植,但不足3棵.则这批树苗共有___________棵.38. 解下列不等式组:(1)201211233x x x -⎧⎪--⎨-<⎪⎩≤;(2)3(2)41213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩≥; (4)311224(1)x x x +⎧-⎪⎨⎪->+⎩≥.39. 某工厂现有甲种原料400千克,乙种原料450千克,计划利用这两种原料生产A ,B 两种产品共60件.已知生产一件A 种产品,需用甲种原料9千克、乙种原料5千克;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克.则有哪几种生产方案?请你设计出来.40. 某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李,学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.则如何安排甲、乙两种汽车,可一次性地将学生和行李全部运走?请你设计方案.1、【参考答案】 知识点睛1.>,<,≥,≤,≠.大于或等于,不小于;小于或等于,不大于. 2.①代数式,不变;②正数,不变;③负数,改变.3.使不等式成立的未知数的值;含有未知数的不等式的所有解.实心圆点和空心圆圈.4.求不等式解集的过程. 5.整式,未知数.6.关于同一未知数的几个一元一次不等式合在一起.一元一次不等式组中各个不等式的解集的公共部分.求不等式组解集的过程. 精讲精练1.5310a -≥ 2.105(20)90n n --> 3.(1)√;(2)×;(3)×;(4)×. 4.D5.25a -≤6.A7.1- 8.3 9.0,1;0. 10.(1)2x <; (2)2x -≤; (3)1x -≥; (4)12x <.解集在数轴上的表示略. 11.0a>;0a <.12.0,1,2,3. 13.45a <≤ 14.32a -<-≤ 15.(1)3x ≥; (2)52x -<<;(3)514x -<<; (4)无解; (5)46x -<<. 解集在数轴上的表示略. 16.1- 17.6-18.C 19.A2、【参考答案】1.21x -<-≤,解集在数轴上的表示略.2.2- 3.3-3、【参考答案1.C2.D3.A 4.55.46.810a <≤7.1-8.2a ≥9.23248x x +-≥10.(1)13x ≥; (2)2x -≤; (3)34x >-;(4)15x -≥. 解集在数轴上的表示略.11.(1)4x ≥;(2)1x ≤;(3)2255x <≤;(4)无解.解集在数轴上的表示略. 4、【参考答案知识点睛1.大大取大、小小取小、大小小大中间找、大大小小找不着. 2.①关键词型;②不空不满型;③方案设计型. 精讲精练1.(1)2x >;(2)1x -≤;(3)12x -<≤;(4)无解. 2.D 3.C 4.C 5.D 6.8 7.6 8.109.(1)94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤;(2)共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 10.工厂能完成任务,共有5种生产方案.方案一,生产A 型号时装36套,B 型号时装44套;方案二,生产A 型号时装37套,B 型号时装43套;方案三,生产A 型号时装38套,B 型号时装42套; 方案四,生产A 型号时装39套,B 型号时装41套;方案五,生产A 型号时装40套,B 型号时装40套. 11.共有3种运输方案.方案一,A 种货车20辆,B 种货车30辆;方案二,A 种货车21辆,B 种货车29辆;方案三,A 种货车22辆,B 种货车28辆.12.共有3种租车方案.方案一,租用甲种货车3辆,乙种货车5辆;方案二,租用甲种货车4辆,乙种货车4辆;方案三,租用甲种货车5辆,乙种货车3辆. 5、【参考答案】1.D 2.共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 6、【参考答案】1.A 2.C 3.0m ≤ 4.2m < 5.25a -+ 6.43a -<-≤7.1218.(1)2x ≥;(2)1x ≤;(3)21x -<≤;(4)无解.9.共有3种生产方案.方案一,生产A 种产品30件,B 种产品30件;方案二,生产A 种产品31件,B 种产品29件;方案三,生产A 种产品32件,B 种产品28件.10.共有3种方案.方案一,安排甲型汽车8辆,乙型汽车12辆;方案二,安排甲型汽车9辆,乙型汽车11辆; 方案三,安排甲型汽车10辆,乙型汽车10辆.。
一元一次不等式组与实际问题资料资料讲解
应用一元一次不等式组解决 实际问题的一般思路:
实际问题
找出
不等关系
列出
不等式
解 决
结合实际 因素
求解
组 成 不等式组
1、一本英语书共98页,张力读 了一周(7天)还没读完,而李 永不到一周就已读完。李永平均 每天比张力多读3页,张力平均 每天读多少页?(答案取整数)不等关系源自 张力7天读书的页数 < 98
练习
用若干辆载重为8吨的汽车运一批货物,若每 辆汽车只装4吨则剩下20吨货物,若每辆 汽车装满8吨则最后一辆汽车不空也不满 ,请问有多少辆汽车?有多少吨货物?
例3. 七年级4班元旦联欢时要分糖块,如 果每人分3块,那么多8块,如果前面每人分 5块,那么最后一位同学得到的糖少于3块。
几位同学? 几块糖?
练习:
为了加强学生的交通安全意识,我校与交 警大队联合举行了“我当一日小交警”活 动,星期天选派部分学生到交通路口执勤 ,协助交警维护秩序。若每个路口安排4 人那么剩下78人;若每个路口安排8人, 那么最后一个路口不足8人但不少于4人。 这个中学公选派执勤学生多少人?共有多 少个交通路口安排执勤?
李永7天读书的页数 > 98
解:设张力平均每天读 x 页,
李永平均每天读 x 3 页
由题中不等关系得:
7x 98
①
7(x3)98
②
由不等式①得: x 14 11x14
由不等式②得: x 11
根据题意,x 的值应是整数 x12,13
答:张力平均每天读12或13页.
练习:把一堆苹果分 给几个孩子,如果每 人分3个,那么多8个 ;如果前面每人分5 个,那么最后一人得 到的苹果少于3个, 问有几个孩子?有多 少只苹果?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用一元一次不等式组解决实际问题的步骤:
⑴审题,找出不等关系;
⑵设未知数;
⑶列出不等式;
⑷求出不等式的解集;
⑸找出符合题意的值;
⑹作答。
一.分配问题:
1.把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?
2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?
3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?
5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?
6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:
(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?
二速度、时间问题
1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?
2.王凯家到学校2.1千M,现在需要在18分钟内走完这段路。
已知王凯步行速度为90M/ 分,跑步速度为210M/分,问王凯至少需要跑几分钟?
3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?
三工程问题
1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天
完成,则以后平均每天至少要比原计划多完成多少方土?
2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
B型抽水机比A型抽水机每分钟约多抽多少吨水?
3.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?
4.某同学要在4小时内,从甲地赶到相距15公里的乙地,他从甲地出发后,以每小时3公里的速度走了1小时,以后至少平均每小时要走多少公里,才能按计划到达乙地?
5.一本英语书98页,张力读了7天(一周)还没读完,而李永不到一周就读完了.李永平均每天比张力多读3页,张力每天读多少页?
四价格问题
1商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;
(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?
2.水果店进了某中水果1t,进价是7元/kg。
售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。
如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?
3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?
4.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。
问刻录这批电脑光盘,该校如何选择,才能使费用较少?
5.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?
6.学校图书馆准备购买定价分别为8元和14元的杂志和小说共80本,计划用钱在750元到850元之间(包括750元和850元),那么14元一本的小说最少可以买多少本?
五其他问题
1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数
2.一次知识竞赛共有15道题。
竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。
结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题?
3.某公司需刻录一批光盘(总数不超过100张),若请专业公司刻录,每张需10元(包括空白光盘费);若公司自刻,除设备租用费200元以外,每张还需成本5元(空白光盘费)。
问刻录这批光盘,是请专家公司刻录费用省,还是自刻费用省?
4.考试共有25道选择题,做对一题得4分,做错一题减2分,不做得0分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?
5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个?
六方案选择与设计
1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:
现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,
(1)设需用x千克甲种原料,写出x应满足的不等式组。
(2)按上述的条件购买甲种原料应在什么范围之内?
2.红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资最少?此时每月工资为多少元?
3.某工厂接受一项生产任务,需要用10M长的铁条作原料。
现在需要截取3M长的铁条81根,4M长的铁条32根,请你帮助设计一下怎样安排截料方案,才能使用掉的10M长的铁条最少?最少需几根?
4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利4.8%。
方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问:
(1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的?
(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。
5.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。
年票分为A、B、C三种:A 年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票。
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少多少时,购买A类年票才比较合算。
6.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495员。
如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨?。