中考试题全等三角形专题复习

合集下载

中考数学复习《全等三角形》专题(卷1)

中考数学复习《全等三角形》专题(卷1)

《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。

人教版九年级中考数学 考点复习 全等三角形 专题练习

人教版九年级中考数学   考点复习   全等三角形   专题练习

人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。

全等三角形的判定中考题

全等三角形的判定中考题

全等三角形的判定中考题一、已知两个三角形两边及夹角分别相等,根据哪种全等判定定理可以确定这两个三角形全等?A. SSS(三边相等)B. SAS(两边及夹角相等)C. ASA(两角及夹边相等)D. AAS(两角及非夹边相等)(答案:B)二、在△ABC与△DEF中,若∠A=∠D,∠C=∠F,且AC=DF,则依据哪个判定定理可证明两三角形全等?A. SSSB. SASC. ASAD. AAS(答案:C)三、若△PQR与△STU中,PQ=ST,QR=TU,且∠Q=∠T,但∠Q并非PQ与QR的夹角,则根据哪个判定不能直接证明两三角形全等?A. SSSB. SASC. ASAD. 以上均不可(答案:D)四、两个三角形中,如果两个角和一条边分别相等,且这条边是这两个角的夹边,应使用哪个全等判定定理?A. SSSB. SASC. ASAD. AAS(答案:C)五、在△ABC与△MNP中,若AB=MN,BC=NP,且∠B=∠N,但∠B不是AB和BC的夹角,则不能直接通过哪个判定证明两三角形全等?A. SSSB. SASC. AASD. 以上都不是直接证明的依据(答案:B)六、若两个三角形的两个角及非夹边分别相等,应依据哪个全等判定定理来确定它们全等?A. SSSB. SASC. ASAD. AAS(答案:D)七、在△XYZ与△LMN中,若XY=LM,YZ=MN,且∠YZX=∠LMN,但∠YZX并非XY与YZ的夹角,则不能直接应用哪个全等判定?A. SSSB. SAS(答案)C. 这种情况无法判定三角形全等D. AAS八、已知△ABC与△DEF中,∠A=∠D,∠B=∠E,若要证明两三角形全等,还需满足以下条件中的哪一个?A. AB=DEB. AC=EF(非夹角对应的边)C. BC=DF(夹角对应的边,即SAS情况)(答案)D. ∠C=∠F(已有两角相等,再加一角无法判定全等)。

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。

初中中考复习之三角形全等(精编含答案)

初中中考复习之三角形全等(精编含答案)

中考复习之三角形全等一、选择题:1.图是一个风筝设计图,其主体部分(四边形ABCD ABCD)关于)关于BD 所在的直线对称,所在的直线对称,AC AC 与BD 相交于点O ,且AB≠AD,则下列判断不正确...的是【的是【 】】 A .△ABD≌△CBD .△ABD≌△CBD B B B.△ABC≌△ADC .△ABC≌△ADC .△ABC≌△ADC C C C.△AOB≌△COB .△AOB≌△COB .△AOB≌△COB D D D.△AOD≌△COD .△AOD≌△COD .△AOD≌△COD2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件是【的条件是【 】】A. AB=ACB. ∠BAC=90°C. BD=AC A. AB=AC B. ∠BAC=90° C. BD=ACD. ∠B=45°D. ∠B=45°D. ∠B=45°3.如图,已知点A 、D 、C 、F 在同一条直线上,在同一条直线上,AB=DE AB=DE AB=DE,,BC=EF BC=EF,要使△ABC≌△DEF,还需要添加一个条件,要使△ABC≌△DEF,还需要添加一个条件是【是【 】】 A A.∠BCA=∠F .∠BCA=∠F .∠BCA=∠F B B B.∠B=∠E .∠B=∠E .∠B=∠EC .BC∥EF .BC∥EFD .∠A=∠EDF .∠A=∠EDF4.如图,AB∥CD,如图,AB∥CD,E E ,F 分别为AC AC,,BD 的中点,若AB=5AB=5,,CD=3CD=3,则,则EF 的长是【的长是【 】】A .4B .3C .2D .15.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【等的是【 】】 (A) (A)两条边长分别为两条边长分别为4,5,它们的夹角为β (B) (B)两个角是两个角是β,它们的夹边为4(C) (C)三条边长分别是三条边长分别是4,5,5 (D)5 (D)两条边长是两条边长是5,一个角是β6.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO≌△NMO,则只需测出其长度的线段是【的线段是【 】】 A A..PO B .PQ C PQ C..MO D .MQ7.如图,在菱形ABCD 中,对角线AC AC,,BD 相交于点O ,且AC≠BD,则图中全等三角形有【AC≠BD,则图中全等三角形有【 】】A.4对B. 6对.C.8对D.10对二、填空题:1.在Rt△ABC 中,∠ACB=90°,中,∠ACB=90°,BC=2cm BC=2cm BC=2cm,CD⊥AB,在,CD⊥AB,在AC 上取一点E ,使EC=BC EC=BC,过点,过点E 作EF⊥AC 交CD 的延长线于点F ,若EF=5cm EF=5cm,则,则AE= cm AE= cm..2.如图所示,如图所示,AB=DB AB=DB AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件 ,, 使使ΔABC≌ΔDBE DBE.. ( (只需添只需添加一个即可加一个即可) )3.如图所示,已知点A 、D 、B 、F 在一条直线上,在一条直线上,AC=EF AC=EF AC=EF,,AD=FB AD=FB,要使△ABC≌△FDE,还需添加一个条件,,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是这个条件可以是 ..(只需填一个即可)(只需填一个即可)4.如图,点D ,E 分别在线段AB AB,,AC 上,上,BE BE BE,,CD 相交于点O ,AE=AD AE=AD,要使△ABE≌△ACD,需添加一个条,要使△ABE≌△ACD,需添加一个条件是件是 (只需一个即可,图中不能再添加其他点或线)(只需一个即可,图中不能再添加其他点或线).5.如图.点D 、E 在△ABC 的边BC 上,AB=AC AB=AC,,AD=AE AD=AE..请写出图中的全等三角形请写出图中的全等三角形 ( ( (写出一对即可写出一对即可写出一对即可)).6.如图,己知AC=BD AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是 ( ( (填一个即可填一个即可填一个即可) )三、解答题:1.已知:如图,AB AE =,1=2ÐÐ,=B E ÐÐ,求证:BC ED =2.如图,已知AB=DC AB=DC,,DB=AC(1)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.(2)在()在(11)的证明过程中,需要作辅助线,它的意图是什么?)的证明过程中,需要作辅助线,它的意图是什么?3.如图,点D 在AB 上,点E 在AC 上,上,AB=AC AB=AC AB=AC,∠B=∠C.求证:,∠B=∠C.求证:,∠B=∠C.求证:BE=CD BE=CD BE=CD..4.如图,AB∥CD,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB AB,,AC 于E ,F 两点,再分别以E ,F为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP AP,交,交CD 于点M 。

九年级数学中考专题复习全等三角形练习(有答案)

九年级数学中考专题复习全等三角形练习(有答案)

全等三角形一、单选题1.如图,若△OAD △△OBC ,且△O =65°,△C =20°,则△OAD = ( )A .65°B .75°C .85°D .95°2.在下列四组条件中,能判定△ABC△△A′B′C′的是( )A .AB=A′B′,BC=B′C′,△A=△A′B .△A=△A′,△C=△C′,AC=B′C′C .△A=△B′,△B=△C′,AB=B′C′D .AB=A′B′,BC=B′C′,△ABC 的周长等于△A′B′C′的周长3.到三角形三个顶点距离相等的点是( )A .三角形三条边的垂直平分线的交点B .三角形三条角平分线的交点C .三角形三条高的交点D .三角形三条边的中线的交点4.如图所示的是已知BOA ∠,求作B O A BOA '''∠=∠的作图痕迹,则下列说法正确的是( )A .因为边的长度对角的大小无影响,所以孤CD 的半径长度可以任意选取B .因为边的长度对角的大小无影响,所以弧CD ''的半径长度可以任意选取C .因为边的长度对角的大小无影响,所以弧E F ''的半径长度可以任意选取D .以上三种说法都正确5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个6.如图,在Rt ABC 中,90A ∠=,ABC ∠的平分线BD 交AC 于点D ,3AD =,10BC =,则BDC 的面积是( )A .10?B .15?C .20D .307.如图,已知AO=OB ,OC=OD ,AD 和BC 相交于点E ,则图中全等三角形有( )对.A.1对B.2对C.3对D.4对8.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带△去B.带△去C.带△去D.带△△去9.如图,点A、D、C、E在同一条直线上,AB△EF,AB=EF,△B=△F,AE=12,AC=8,则CD的长为()A.5.5B.4C.4.5D.310.工人师傅常用角尺平分一个任意角做法如下:如图所示,在△AOB的两边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是△AOB的平分线画法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL11.如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ△AD于Q,PQ=4,PE=1,则AD的长是()A.9B.8C.7D.612.如图,已知AB=AC,AF=AE,△EAF=△BAC,点C、D、E、F共线.则下列结论,其中正确的是()△△AFB△△AEC;△BF=CE;△△BFC=△EAF;△AB=BC.A.△△△B.△△△C.△△D.△△△△二、填空题13.如图,已知△1=△2,请你添加一个条件使△ABC△△BAD,你的添加条件是_______(填一个即可)。

2024年中考数学《全等三角形》专题练习附带答案

2024年中考数学《全等三角形》专题练习附带答案

2024年中考数学《全等三角形》专题练习附带答案学校:___________班级:___________姓名:___________考号:___________知识重点1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。

(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,△ABC≌△EDC,AC=3cm,DC=5cm,则BE=()A.1cm B.2cm C.3cm D.4cm3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.30°C.35°D.25°4.小亮设计了如下测量一池塘两端AB的距离的方案:先取一个可直接到达点A,B的点O,连接AO,BO,延长AO至点P,延长BO至点Q,使得OP=AO,OQ=BO再测出PQ的长度,即可知道A,B之间的距离.他设计方案的理由是()A.SAS B.AAS C.ASA D.SSS5.如图,点F,E在AC上AD=CB,∠D=∠B添加一个条件,不一定能证明△ADE≌△CBF的是()A.AD∥BC B.DE∥FB C.DE=BF D.AE=CF6.如图所示∠E=∠D,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD 7.如图,OD平分∠AOB,DE⊥AO于点E,DE=5 F是射线OB上的任意一点,则DF的长度不可能是()A.4 B.5 C.5.5 D.68.如图,AD是△BAC的平分线,DE⊥AB于点E,S△ABC=32,DE=4,AB=9,则AC的长是()A.5 B.6 C.7 D.8二、填空题9.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF 相等,那么判定△ABC与△DEF全等的依据是.10.若△ABC≌△DEF,A与D,B与E分别是对应顶点∠A=50°,∠B=60°则∠F=. 11.如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为;12.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知BC=8,DE=2则△BCE 的面积等于.13.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.三、解答题14.如图,点B,C,E,F在同一直线上,AB=DF,AC=DE,BE=CF.求证:AB∥DF.15.如图,在Rt△ABC中∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≅△ABC.16.如图,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE平分∠DAB.求证:CD+AB=AD.17.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:(1)OD=OE;(2)OB=OC.18.如图,在△ABC中AC>AB,射线AD平分∠BAC,交BC于点E,点F在边AB的延长线上AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.19.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.A2.B3.C4.A5.D6.B7.A8.C9.HL10.70°11.12.5cm212.813.1214.解:∵ BE=CF∴BE−CE=CF−CE∴BC=FE∵ AB=DF,AC=DE∴△ABC≌△DFE(SSS)∴∠B=∠F∴AB∥DF.15.证明:∵DE⊥AC,∠DEC=90°又∵∠B=90°∴∠DEC=∠B=90°∵CD∥AB,∴∠A=∠DCE在△CED和△ABC中{∠DCE=∠A CE=AB∠DEC=∠B∴△CED≅△ABC(ASA).16.证明:如图,过点E作EF⊥AD于F∵∠B=90°,AE平分∠DAB∴BE=EF在Rt△EFA和Rt△EBA中{EF=EBAE=AE∴Rt△EFA和≌Rt△EBA(HL).∴AF=AB∵E是BC的中点∴BE=CE=EF在Rt△EFD和Rt△ECD中{EF=ECDE=DE∴Rt△EFD和≌Rt△ECD(HL).∴DF=CD∴CD+AB=DF+AF=AD∴CD+AB=AD.17.(1)证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC ∴OD=OE(2)证明:∵CD⊥AB,BE⊥AC∴∠BDO=∠CEO=90°在△BDO和△CEO中{∠BDO=∠CEO DO=CO∠BOD=∠COE∴△BDO≌△CEO(ASA)∴OB=OC18.(1)证明:射线AD平分∠BAC∴∠CAE=∠FAE 在△AEC和△AEF中{AC=AF∠CAE=∠FAE AE=AE∴△AEC≌△AEF(SAS);(2)解:∵△AEC≌△AEF(SAS)∴∠AEC=∠AEF∵∠AEB=50°∴∠AEC=180°−∠AEB=180°−50°=130°∴∠AEF=∠AEC=130°∴∠BEF=∠AEF−∠AEB=80°∴∠BEF为80°.19.18.(1)解:∵∠BAC=90°,∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°,∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。

中考数学专题复习:三角形全等的判定

中考数学专题复习:三角形全等的判定

中考数学专题复习:三角形全等的判定一、单选题1.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD2.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC 和△DCB全等的是()A.∠ABC=∠DCB B.AB=DCC.AC=DB D.∠A=∠D二、填空题3.如图,点E,F在BC上,BE=CF,∠A=∠D.请添加一个条件__________,使△ABF≌△DCE.4.如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是________.(只需写出一个条件即可)5.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____________,使△ABC≌△ADC.三、解答题6.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.7.如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.8.如图,AB∥DE,B,C,D三点在同一条直线上,∠A=90°,EC⊥BD,且AB=CD.求证:AC=CE.9.如图,点D、E分别是AB、AC的中点,BE、CD相交于点O,∠B=∠C,BD=CE.求证:(1)OD=OE;(2)△ABE≌△ACD.10.如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE =DF.11.如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.12.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.13.如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.14.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.15.如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.16.如图.已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC=∠OCB.17.如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.18.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.19.如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.20.如图,树AB与树CD之间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,且两条视线的夹角正好为90°,EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,求小华行走到点E的时间.21.如图,△ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.22.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE 之间的数量关系与位置关系,并证明你的猜想.23.如图,已知:AB=DE且AB∥DE,BE=CF.求证:(1)∠A=∠D;(2)AC∥DF.24.如图,在△P AB中,P A=PB,∠APB=100°,点M,N,K分别是P A,PB,AB上的点,若MK=KN,∠MKN=40°,试判断线段AM,BN与AB之间的数量关系,并说明理由.25.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.26.已知:如图,A、B、C、D在同一直线上,且AE∥DF,AE=DF,AB=CD.求证:∠E=∠F.参考答案1.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.2.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.3.解:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,添加∠B=∠C,在△ABF和△DCE中,,∴△ABF≌△DCE(AAS),故答案为:∠B=∠C(答案不唯一).4.解:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为∠B=∠E或∠C=∠D或AB=AE.5.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).6.证明:∵∠AOC=∠BOD,∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,即∠COD=∠AOB,在△AOB和△COD中,,∴△AOB≌△COD(SAS).7.证明:∵AC∥DF,∴∠CAB=∠FDE(两直线平行,同位角相等),又∵BC∥EF,∴∠CBA=∠FED(两直线平行,同位角相等),在△ABC和△DEF中,,8.证明:∵AB∥DE,∴∠B=∠D,∵EC⊥BD,∠A=90°,∴∠DCE=90°=∠A,在△ABC和△CDE中,,∴△ABC≌△CDE(ASA),∴AC=CE.9.证明:(1)在△BOD和△COE中,,∴△BOD≌△COE(AAS),∴OD=OE;(2)∵点D、E分别是AB、AC的中点,∴AD=BD=AB,AE=CE=AC,∵BD=CE.∴AD=AE,AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).10.证明:∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∴AE=DF.11.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE,∵AC∥DF,∴∠A=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.12.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.13.证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),∴∠B=∠C.14.证明:(1)在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.15.证明:∵BD∥AC,∴∠ACB=∠EBD,在△ABC和△EDB中,,∴△ABC≌△EDB(SAS),∴∠ABC=∠D.16.证明:在△AOB与△COD中,,∴△AOB≌△DOC(AAS),∴OB=OC,∴∠OBC=∠OCB.17.证明:在△CDA和△DCB中,,∴△CDA≌△DCB(SSS),∴∠DAC=∠CBD.18.证明:在△ABE与△ACD中,∴△ABE≌△ACD(ASA).∴AD=AE.∴AB﹣AD=AC﹣AE,∴BD=CE.19.证明:在△ABE与△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的对应边相等).20.解:∵∠AED=90°,∴∠AEB+∠DEC=90°.∵∠ABE=90°,∴∠A+∠AEB=90°.∴∠A=∠DEC,在△ABE和△DCE中∵,∴△ABE≌△ECD(AAS),∴EC=AB=5m.∵BC=13m,∴BE=8m.∴小华走的时间是8÷1=8(s)21.证明:(1)∵AD⊥BC,BE⊥AC,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴∠DBH=∠DAC;(2)∵AD⊥BC∴∠ADB=∠ADC在△BDH与△ADC中,∴△BDH≌△ADC.22.解:猜想:CD=BE,CD⊥BE,理由如下:∵AD⊥AB,AE⊥AC,∴∠DAB=∠EAC=90°.∴∠DAB+∠BAC=∠EAC+∠BAC,即∠CAD=∠EAB,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∵∠AGD=∠FGB,∴∠BFD=∠BAD=90°,即CD⊥BE.23.证明:(1)∵AB∥DE,BE=CF,∴∠B=∠DEF,BC=EF,又AB=DE,∴△ABC≌△DEF(SAS),∴∠A=∠D;(2)由(1)知△ABC≌△DEF,∴∠ACB=∠F,∴AC∥DF.24.解:AM+BN=AB,理由如下:∵P A=PB,∠APB=100°,∴∠A=∠B=40°,∴∠AMK+∠AKM=140°,∵∠MKN=40°,∴∠AKM+∠BKN=140°,∴∠AMK=∠BKN,又∵MK=KN,∴△AMK≌△BKN(AAS),∴AM=BK,AK=BN,∴AB=AK+BK=AM+BN.25.证明:在△ABC与△DEB中,,∴△ABC≌△DEB(SSS)∴∠ACB=∠EBD,∴BF=CF.26.证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=CD+BC,∴AC=DB,在△EAC和△FDB中,,∴△EAC≌△FDB(SAS),∴∠E=∠F.。

中考数学复习考点题型专练19--全等三角形(解析版)

中考数学复习考点题型专练19--全等三角形(解析版)

中考数学复习考点题型专练专题19全等三角形(满分:100分时间:90分钟)班级_________ 姓名_________学号_________ 分数_________ 一、单选题(共10小题,每小题3分,共计30分)1.(2022·浙江湖州市·中考真题)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.D【答案】D【分析】根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN,利用勾股定理即可求得.【详解】于G.如图,EF为剪痕,过点F作FG EM∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点,∴,AF CN BF DN ==.易证PME PDN ∆∆≌,∴EM DN =,而AF MG =,∴1EG EM MG DN AF DN CN DC =+=+=+==.在Rt FGE ∆中,EF ==故选:D.2.(2022·黑龙江中考真题)如图,四边形ABCD 中,AB=AD ,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为( )A .15B .12.5C .14.5D .17【答案】B【分析】过A 作AE ⊥AC ,交CB 的延长线于E ,判定△ACD ≌△AEB ,即可得到△ACE 是等腰直角三角形,四边形ABCD 的面积与△ACE 的面积相等,根据S △ACE =12×5×5=12.5,即可得出结论. 【详解】如图,过A 作AE ⊥AC ,交CB 的延长线于E ,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×5×5=12.5,∴四边形ABCD的面积为12.5,故选B.3.(2022·青海中考真题)如图,把直角三角形ABO放置在平面直角坐标系中,已知30OAB∠=,B 点的坐标为()0,2,将ABO沿着斜边AB翻折后得到ABC,则点C的坐标是()A.()4B.(2,C.)D.【答案】C【分析】过点C 作CD ⊥y 轴,垂直为D ,首先证明△BOA ≌△BCA ,从而可求得BC 的长,然后再求得∠DCB=30°,接下来,依据在Rt △BCD 中,求得BD 、DC 的长,从而可得到点C 的坐标.【详解】OAB BAC 30∠∠==,BOA BCA 90∠∠==,AB AB =,BOA ∴≌BCA ,OB BC 2∴==,CBA OBA 60∠∠==,过点C 作CD y ⊥轴,垂直为D ,则DCB 30∠=,1DB BC 12∴==,DC BC 2== )C ∴, 故选C .4.(2022·新疆中考真题)如图,在△ABC 中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径的画弧,分别交BA ,BC 于点M 、N ;再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则下列说法中不正确的是()A .BP 是∠ABC 的平分线B .AD=BDC .:1:3CBD ABD S S D .CD=12BD 【答案】C【分析】A 、由作法得BD 是∠ABC 的平分线,即可判定;B 、先根据三角形内角和定理求出∠ABC 的度数,再由BP 是∠ABC 的平分线得出∠ABD =30°=∠A,即可判定;C ,D 、根据含30°的直角三角形,30°所对直角边等于斜边的一半,即可判定.【详解】解:由作法得BD 平分∠ABC ,所以A 选项的结论正确;∵∠C =90°,∠A =30°,∴∠ABC =60°,∴∠ABD =30°=∠A ,∴AD =BD ,所以B 选项的结论正确;∵∠CBD =12∠ABC =30°, ∴BD =2CD ,所以D 选项的结论正确;∴AD =2CD ,∴S △ABD =2S △CBD ,所以C 选项的结论错误.故选C .5.(2022·湖南张家界市·中考真题)如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .1【答案】C【分析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=,1DC AD 3=,1CD 8213∴=⨯=+, C 90∠︒=,BD 平分ABC ∠,DE CD 2∴==,即点D 到AB 的距离为2,故选C .6.(2022·山东潍坊市·中考真题)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 【答案】C【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE=∠DOE ,∵OC=OD ,OE=OE ,OM=OM ,∴△COE ≌△DOE ,∴∠CEO=∠DEO ,∵∠COE=∠DOE ,OC=OD ,∴CM=DM ,OM ⊥CD ,∴S 四边形OCED =S △COE +S △DOE =111222OE CM OE DM CD OE +=, 但不能得出OCD ECD ∠=∠,∴A 、B 、D 选项正确,不符合题意,C 选项错误,符合题意,故选C .7.(2022·山东临沂市·中考真题)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .2【答案】B【分析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】∵//CF AB ,∴A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CFE AAS ∆≅∆,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .8.(2022·广西河池市·中考真题)如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,BE CF =,则图中与AEB ∠相等的角的个数是()A .1B .2C .3D .4【答案】C【分析】根据正方形的性质,利用SAS 即可证明△ABE ≌△BCF ,再根据全等三角形的性质可得∠BFC=∠AEB ,进一步得到∠DAE=∠AEB ,∠BFC=∠ABF ,从而求解.【详解】证明:∵四边形ABCD 是正方形,∴,,90AB BC AB BC ABE BCF =∠=∠=︒∕∕,在ABE ∆和BCF ∆中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ABE BCF SAS ∆∆≌,∴BFC AEB ∠=∠,∴BFC ABF ∠=∠,又有EAD AEB ∠=∠故图中与AEB ∠相等的角的个数是3.故选C .9.(2022·四川宜宾市·中考真题)如图,,ABC ECD ∆∆都是等边三角形,且B ,C ,D 在一条直线上,连结,BE AD ,点M ,N 分别是线段BE ,AD 上的两点,且11,33BM BE AN AD ==,则CMN ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形【答案】C【分析】先证明BCE ACD ≅,得到BE AD =,根据已知条件可得AN BM =,证明△△BCM ACN ≅,得到=60MCN ∠︒,即可得到结果;【详解】∵,ABC ECD ∆∆都是等边三角形,∴BC AC =,CE CD =,60BCA DCE ∠=∠=︒,∴+BCA ACE DCE ACE ∠∠=∠+∠,∴BCE ACD ∠=∠,在BCE 和ACD △中,BC AC BCE ACD CE CD ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCE ACD SAS ≅,∴BE AD =,CBMACN ∠=∠, 又∵11,33BM BE AN AD ==, ∴BM AN =,在BCM 和ACN △中,BM AN CBM ACN BC AC ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCM ACNSAS ≅, ∴BCM ACN ∠=∠,MC NC =,∴+60BCM ACMACN ACM ∠∠=∠+∠=︒, ∴CMN ∆是等边三角形.故答案选C .10.(2022·广西中考真题)如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒【答案】C【分析】利用等腰三角形的性质和基本作图得到CG AB ⊥,则CG 平分ACB ∠,利用A B ∠=∠和三角形内角和计算出ACB ∠,从而得到BCG ∠的度数.【详解】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒, ∴1502BCG ACB ∠=∠=︒. 故选:C . 二、填空题(共5小题,每小题4分,共计20分)11.(2022·广西玉林市·中考真题)如图,将两张对边平行且相等的纸条交叉叠放在一起,则重合部分构成的四边形ABCD_________菱形(是,或不是).【答案】是【分析】 如图(见解析),先根据“两张对边平行且相等的纸条”得出//,//,AB CD AD BC BE DF =,再根据平行四边形的判定可得四边形ABCD 是平行四边形,然后根据三角形全等的判定定理与性质可得AB AD =,最后根据菱形的判定即可得.【详解】如图,过点B 作BE AD ⊥,交DA 延长线于点E ,过点D 作DF AB ⊥,交BA 延长线于点F 由题意得://,//,AB CD AD BC BE DF =∴四边形ABCD 是平行四边形在ABE △和ADF 中,90BAE DAF AEB AFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩(AAS)ABE ADF ∴≅AB AD ∴=∴平行四边形ABCD 是菱形故答案为:是.12.(2022·黑龙江鹤岗市·中考真题)如图,Rt ABC ∆和Rt EDF ∆中,//BC DF ,在不添加任何辅助线的情况下,请你添加一个条件______,使Rt ABC ∆和Rt EDF ∆全等.【答案】AB ED =,答案不唯一【分析】本题是一道开放型的题目,答案不唯一,可以是AB =ED 或BC =DF 或AC =EF 或AE =CF 等,只要符合全等三角形的判定定理即可.【详解】∵Rt ABC ∆和Rt EDF ∆中,∴90BAC DEF ∠=∠=︒,∵//BC DF ,∴DFE BCA ∠=∠,∴添加AB ED =,在Rt ABC ∆和Rt EDF ∆中DFE BCA DEF BAC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt Rt AAS ABC EDF ∆∆≌,故答案为:AB ED =答案不唯一.13.(2022·辽宁本溪市·中考真题)如图,在ABC ∆中,M ,N 分别是AB 和AC 的中点,连接MN ,点E 是CN 的中点,连接ME 并延长,交BC 的延长线于点D ,若4BC =,则CD 的长为_________.【答案】2【分析】依据三角形中位线定理,即可得到MN=12BC=2,MN //BC ,依据△MNE ≌△DCE (AAS ),即可得到CD=MN=2.【详解】解:∵M ,N 分别是AB 和AC 的中点,∴MN 是△ABC 的中位线,∴MN=12BC=2,MN ∥BC , ∴∠NME=∠D ,∠MNE=∠DCE ,∵点E 是CN 的中点,∴NE=CE ,∴△MNE ≌△DCE (AAS ),故答案为:2.14.(2022·甘肃天水市·中考真题)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.【答案】2【分析】根据旋转的性质可得AG=AF ,GB=DF ,∠BAG =∠DAF ,然后根据正方形的性质和等量代换可得∠GAE =∠F AE ,进而可根据SAS 证明△GAE ≌△F AE ,可得GE=EF ,设BE=x ,则CE 与EF 可用含x 的代数式表示,然后在Rt △CEF 中,由勾股定理可得关于x 的方程,解方程即得答案.【详解】解:∵将△ADF 绕点A 顺时针旋转90︒得到△ABG ,∴AG=AF ,GB=DF ,∠BAG =∠DAF ,∵45EAF ∠=︒,∠BAD =90°,∴∠BAE +∠DAF =45°,∴∠BAE +∠BAG =45°,即∠GAE =45°,∴∠GAE =∠F AE ,又AE=AE ,∴△GAE ≌△F AE (SAS ),设BE=x ,则CE =6-x ,EF=GE=DF+BE =3+x ,∵DF =3,∴CF =3,在Rt △CEF 中,由勾股定理,得:()()222633x x -+=+,解得:x =2,即BE =2.故答案为:2.15.(2022·黑龙江齐齐哈尔市·中考真题)如图,已知在△ABD 和△ABC 中,∠DAB =∠CAB ,点A 、B 、E 在同一条直线上,若使△ABD ≌△ABC ,则还需添加的一个条件是______.(只填一个即可)【答案】AD =AC (∠D =∠C 或∠ABD =∠ABC 等)【分析】利用全等三角形的判定方法添加条件即可求解.【详解】解:∵∠DAB =∠CAB ,AB =AB ,∴当添加AD =AC 时,可根据“SAS ”判断△ABD ≌△ABC ;当添加∠D =∠C 时,可根据“AAS ”判断△ABD ≌△ABC ;当添加∠ABD =∠ABC 时,可根据“ASA ”判断△ABD ≌△ABC .故答案为AD =AC (∠D =∠C 或∠ABD =∠ABC 等).三、解答题(共5小题,每小题10分,共计50分)16.(2022·柳州市柳林中学中考真题)如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB .求证:△AOC ≌△BOC .【答案】见解析【分析】根据角平分线的性质和全等三角形的判定方法可以证明结论成立.【详解】证明:∵OC 平分∠MON ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOC (SAS ).17.(2022·江苏连云港市·中考真题)如图,在四边形ABCD 中,//AD BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于M 、N .(1)求证:四边形BNDM 是菱形;(2)若24BD =,10MN =,求菱形BNDM 的周长.【答案】(1)见解析;(2)52【分析】(1)先证明BON DOM ≌△△,得到四边形BNDM 为平行四边形,再根据菱形定义证明即可; (2)先根据菱形性质求出OB 、OM 、再根据勾股定理求出BM ,问题的得解.【详解】(1)∵//AD BC ,∴CBD ADB ∠=∠.∵MN 是对角线BD 的垂直平分线,∴OB OD =,MB MD =.在BON △和DOM △中,CBD ADB OB OD BON DOM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BON DOM ASA ≌,∴MD NB =,∴四边形BNDM 为平行四边形.又∵MB MD =,∴四边形BNDM 为菱形.(2)∵四边形BNDM 为菱形,24BD =,10MN =.∴90BOM ︒∠=,1122OB BD ==,152OM MN ==. 在Rt BOM △中,13BM ===.∴菱形BNDM 的周长441352BM ==⨯=.18.(2022·湖南湘西土家族苗族自治州·中考真题)如图,在正方形ABCD 的外侧,作等边角形ADE ,连接BE 、CE .(1)求证:BAE CDE △≌△;(2)求AEB ∠的度数.【答案】(1)见解析;(2)15°.【分析】(1)利用正方形的性质得到AB=CD ,∠BAD=∠CDA ,利用等边三角形的性质得到AE=DE ,∠EAD=∠EDA=60°即可证明;(2)由AB=AD=AE ,得到△ABE 为等腰三角形,进而得到∠ABE=∠AEB ,且∠BAE=90°+60°=150°,再利用三角形内角和定理即可求解.【详解】解:(1)证明:∵四边形ABCD 是正方形,∴AB=CD ,且∠BAD=∠CDA=90°,∵△ADE 是等边三角形,∴AE=DE ,且∠EAD=∠EDA=60°,∴∠BAE=∠BAD+∠EAD=150°,∠CDE=∠CDA+∠EDA=150°,∴∠BAE=∠CDE ,在△BAE 和△CDE 中:=⎧⎪∠=∠⎨⎪=⎩AB CD BAE CDE AE DE ,∴()△≌△BAE CDE SAS .(2)∵AB=AD ,且AD=AE ,∴△ABE 为等腰三角形,∴∠ABE=∠AEB ,又∠BAE=150°,∴由三角形内角和定理可知:∠AEB=(180°-150°)÷2=15°.故答案为:15°.19.(2022·江苏宿迁市·中考真题)如图,在正方形ABCD 中,点E ,F 在AC 上,且AF=CE .求证:四边形BEDF 是菱形.【答案】见解析【分析】由正方形的性质可得AB=AD=CD=BC ,∠DAE=∠BAE=∠BCF=∠DCF=45°,由“SAS”可证△ABE ≌△ADE ,△BFC ≌△DFC ,△ABE ≌△CBF ,可得BE=BF=DE=DF ,可得结论.【详解】∵四边形ABCD 是正方形,∴AB=AD=CD=BC ,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE 和△ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADE (SAS ),∴BE=DE ,同理可得△BFC ≌△DFC ,可得BF=DF ,∵AF=CE ,∴AF-EF=CE-EF ,即AE=CF ,在△ABE 和△CBF 中,AB BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ),∴BE=BF ,∴BE=BF=DE=DF ,∴四边形BEDF 是菱形.20.(2022·江苏南通市·中考真题)(1)如图①,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C .求证:AB =AC .(2)如图②,A 为⊙O 上一点,按以下步骤作图:①连接OA ;②以点A 为圆心,AO 长为半径作弧,交⊙O 于点B ;③在射线OB 上截取BC =OA ;④连接AC .若AC =3,求⊙O 的半径.【答案】(1)见解析;(2)⊙O【分析】(1)根据“AAS “证明△ABE ≌△ACD ,然后根据全等三角形的性质得到结论;(2)连接AB ,如图②,由作法得OA=OB=AB=BC ,先判断△OAB 为等边三角形得到∠OAB=∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC=30°,然后根据含30度的直角三角形三边的关系求OA 的长.【详解】(1)证明:在△ABE 和△ACD 中B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS ),∴AB =AC ;(2)解:连接AB ,如图②,由作法得OA =OB =AB =BC ,∴△OAB 为等边三角形,∴∠OAB =∠OBA =60°,∵AB =BC ,∴∠C =∠BAC ,∵∠OBA =∠C+∠BAC ,∴∠C =∠BAC =30°∴∠OAC =90°,在Rt △OAC 中,OA =3AC =3×3即⊙O .。

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。

中考数学专题复习全等三角形

中考数学专题复习全等三角形
∵AE=AC,∠EAD=∠CAD,AD=AD
∴△ADE≌△ADC。DE=CD,∠AED=∠C
∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE
∠B=∠EDB
∠C=∠B+∠EDB=2∠B
12证明:
∵BE‖CF
∴∠E=∠CFM,∠EBM=∠FCM
∵BE=CF
∴△BEM≌△CFM
∴BM=CM
∴AM是△ABC的中线。
9作AG∥BD交DE延长线于G
AGE全等BDE
AG=BD=5
AGF∽CDF
AF=AG=5
所以DC=CF=2
10证明:
做BE的延长线,与AP相交于F点,
∵PA//BC
∴∠PAB+∠CBA=180°,
又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形
13证明:因为AB=AC,
所以∠EBC=∠DCB
因为BD⊥AC,CE⊥AB
所以∠BEC=∠CDB
BC=CB (公共边)
则有三角形EBC全等于三角形DCB
所以BE=CD
14
11.证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∵CF⊥AD
∴∠ACF+∠DCF=90°
∵∠ACF+∠CAF=90°
∴∠CAF=∠DCF
∵AC=CB∠ACG=∠B
∴△ACG≌△CBE
∴CG=BE
∵∠DCG=∠B CD=BD
∴△CDG≌△BDE

中考数学复习专项之三角形全等 (含答案)

中考数学复习专项之三角形全等 (含答案)

30°ABOCl D 第1题图C A P B D三角形全等一、选择题1、(2022年安徽省模拟六)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是…………【 】 A .AC = A ′C ′ B.BC = B ′C ′ C.∠B =∠B ′ D.∠C =∠C ′.答案:B2、(2022年江苏南京一模)如图,直线上有三个正方形a b c ,,,若a c ,的面积分别为3和4,则b 的面积为( ) A .3 B .4 C .5 D .7 答案:D3.(2022郑州外国语预测卷)如图,两个等圆⊙A 、⊙B 分别与直线l 相切于点C 、D ,连接AB 与直线l 相交于点O ,∠AOB =30°,连接AC 、BD ,若AB =4,则这两个等圆的半径为( ) A .21B .1C .3D .2 答案:B4、(2022河南沁阳市九年级第一次质量检测) 如图,把△ABC 绕着点C 顺时针旋转30°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC =90°,则∠A 的度数是【 】A.30°B.50°C.60°D.80°C5、(2022年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36°D6、 (2022年湖北宜昌调研)如图,AC ,BD 交于点E ,AE=CE ,添加以下四个条件中的一个,其中不能使△ABE ≌△CDE 的条件是( ) (A )BE=DE (B )AB ∥CD (C )∠A=∠C (D )AB=CDabclEABCD答案:D7、(2022年唐山市二模)在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ②当∠ABC =60°时,MN ∥BC ③ BN =2AN ④AN︰AB =AM ︰AC ,一定正确的有 ( )A 、1个B 、2个C 、3个D 、4个答案:C8.(2022年上海闵行区二摸)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是 (A )AC = A ′C ′; (B )BC = B ′C ′; (C )∠B =∠B ′; (D )∠C =∠C ′.答案:B二、填空题1、(2022云南勐捧中学二模)如图,AB CD ,相交于点O ,AO=CO ,试添加一个条件使得AOD COB △≌△,你添加的条件是 (只需写一个). 【答案】∠A= ∠C 、∠D= ∠B 、OD=OB (答案不唯一)2.(2022年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上)①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP . 答案:①②③④三、解答题1、(2022年湖北荆州模拟5)(本题满分8分)将两块斜边长度相等的等腰直角三角纸板如图(1)摆放,若把图(1)中的△BCN 逆时针旋转90°,得到图(2),图(2)中除△ABC ≌△CED 、△BCN ≌△ACF 外,你还能找到一对全等的三角形吗?写出你的结论并说明理由.AC BDO第1题答案:解:△FCM ≌△NCM ,理由如下: ∵把图中的△BCN 逆时针旋转90°, ∴∠FCN=90°,CN=CF , ∵∠MCN=45°, ∴∠FCM=90°-45°=45°, 在△FCM 和△NCM 中∵CM=CM ,∠FCM=∠NCM , FC=CN∴△FCM ≌△NCM (SAS ).2、(2022年湖北荆州模拟6)(本题满分8分)如图,正方形ABCD 和BEFG 在直线AB 的同侧,连接AG 、EC ,易证AG=EC ,现在将正方形BEFG 顺时针旋转30°,那么AG=EC 还成立吗?请作出旋转后的图形,并证明你的结论. 答案:解:成立. 理由如下:在ΔABG 与ΔCBE 中,0120AB CB ABG CBE BG BE =⎧⎪∠=∠=⎨⎪=⎩∴ ΔABG ≌ΔCBE ∴ AG=CE3、(2022年江苏南京一模)(7分)如图, AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1) 求证:AD =AE ;(2) 连接BC ,DE ,试判断BC 与DE 的位置关系并说明理由. 答案:(1)证明:在△ACD 与△ABE 中, ∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 2分 ∴ AD=AE . ……………………3分 (2) 互相平行 ……………………4分 在△ADE 与△ABC 中, ∵AD=AE ,AB=AC ,∴ ∠ADE=∠AED ,∠ABC=∠ACB ……………6分 且 ∠ADE =180-∠A =∠ABC.∴ DE ∥BC . ……………7分第1题图第2题图第2题解答CACBB第2题图14.(2022年北京房山区一模)如图,点C、B、E在同一条直线上,AB∥DE,∠ACB=∠CDE,AC=CD.求证:AB=CD .答案:证明:∵AB∥DE∴∠ABC=∠E ------------------------------1分∵∠ACB=∠CDE,AC=CD --------------------- --------3分∴△ABC≌△CED -------------------------4分∴AB=CD--------------------------5分5.(2022年北京房山区一模)(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE = AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.答案:(1)证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CE=CD,∠ACB=∠DCE=60°∴∠BCE=∠ACD∴△BCE≌△ACD(SAS)∴BE=AD--------------1分(2)①②③都正确--------------4分(3)证明:在PE上截取PM=PC,联结CM由(1)可知,△BCE≌△ACD(SAS)EDC BA第1题图ADAB∴∠1=∠2设CD 与BE 交于点G ,,在△CGE 和△PGD 中 ∵∠1=∠2,∠CGE =∠PGD∴∠DPG =∠ECG =60°同理∠CPE =60° ∴△CPM 是等边三角形--------------5分 ∴CP =CM ,∠PMC =60° ∴∠CPD =∠CME =120°∵∠1=∠2,∴△CPD ≌△CME (AAS )---6分 ∴PD =ME∴BE =PB +PM +ME =PB +PC +PD . -------7分即PB+PC+PD=BE .6.(2022年北京龙文教育一模)已知:如图,AB ∥CD ,AB =CD ,点E 、F 在线段AD 上,且AF=DE .求证:BE =CF . 答案:证明: AF=DE , ∴ AF-EF=DE –EF . 即 AE=DF .………………1分AB ∥CD ,∴∠A =∠D .……2分在△ABE 和△DCF 中 , AB =CD , ∠A =∠D , AE=DF .∴△ABE ≌△DCF .……….4分 ∴ BE =CF .…………….5分7. (2022年北京龙文教育一模)阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.FE ACDB第3题图答案:解:(1)22=BD . ……………………………… ………………………1分(2)把△ADC 沿AC 翻折,得△AEC ,连接DE , ∴△ADC ≌△AEC .∴∠DAC =∠EAC ,∠DCA =∠ECA , DC =EC . ∵∠BAD =∠BCA =2∠DAC =30°, ∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形. ……………………2分 ∴DC =DE .在AE 上截取AF =AB ,连接DF , ∴△ABD ≌△AFD . ∴BD =DF .在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF . ∴DF =DE .∴BD =DC =2. …………………………………………………………………3分 作BG ⊥AD 于点G , ∴在Rt △BDG 中, 2=BG . ……………………………………………4分∴在Rt △ABG 中,22=AB . ……………………………………………5分 8.(2022年北京平谷区一模)已知:如图,AB ∥CD ,AB =EC ,BC =CD . 求证:AC =ED .答案:证明:∵ AB //CD ,∴B DCE ∠=∠.………………… ………………………1分在△ABC 和△ECD 中,= =B DCE AB EC BC CD ∠∠⎧⎪=⎨⎪⎩,,, ∴ △ABC ≌△ECD . …………………… ………………4分∴ AC =ED .………………………… ……………………5分9.(2022年北京顺义区一模)已知:如图,CA 平分BCD ∠, 点E 在AC 上,BC EC =,AC DC =.求证:A D ∠=∠.答案:证明:∵CA 平分BCD∠∴ ACB DCE ∠=∠ ……………1分在ABC ∆和DEC ∆中∵BC EC ACB DCE AC DC =⎧⎪∠=∠⎨⎪=⎩……………3分 ∴ABC ∆≌DEC ∆ …………………………………………… 4分 ∴A D ∠=∠ ……………………………………………5分10.(2022年北京平谷区一模)(1)如图(1),△ABC 是等边三角形,D 、E 分别是 AB 、BC 上的点,且BD CE =,连接AE 、CD 相交于点P . 请你补全图形,并直接写出∠APD 的度数;= (2)如图(2),Rt △ABC 中,∠B =90°,M 、N 分别是 AB 、BC 上的点,且,AM BC =BM CN =,连接AN 、CM 相交于点P . 请你猜想∠APM = °,并写出你的推理过程.答案:解:(1)60° (2)45° ………………………………..2分 证明:作AE ⊥AB 且AE CN BM ==. 可证EAM MBC ∆≅∆. ……………………………..3分 ∴ ,.ME MC AME BCM =∠=∠∵ 90,CMB MCB ∠+∠=︒∴ 90.CMB AME ∠+∠=︒∴ 90.EMC ∠=︒∴ EMC ∆是等腰直角三角形,45.MCE ∠=︒ ……………….5分又△AEC ≌△CAN (s , a , s )∴ .ECA NAC ∠=∠ ∴ EC ∥AN.∴ 45.APM ECM ∠=∠=︒…………………………………………………………………..7分EDCBA第6题图第7题图11.(2022浙江东阳吴宇模拟题)(本题12分) 如图,平面直角坐标系中,点A (0,4),B (3,0),D 、E 在x 轴上,F 为平面上一点,且EF ⊥x 轴,直线DF 与直线AB 互相垂直,垂足为H ,△AOB ≌△DEF ,设BD =h 。

天津市河北区中考《全等三角形》复习练习题及答案

天津市河北区中考《全等三角形》复习练习题及答案

中考数学复习专题练习全等三角形一、选择题:1、如图,已知△ABC≌△ADE,∠D=55°,∠AED=76°,则∠C的大小是()A.50° B.6O° C.76° D.55°2、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA3、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ4、如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC△BPA,连接PQ,则以下结论错误的是()A. △BPQ是等边三角形B. △PCQ是直角三角形C. APB=150°D. APC=135°5、如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30° B.40° C.50° D.60°6、如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.AD∥BC B.DF∥BE C.∠D=∠B D.∠A=∠C7、玻璃三角板摔成三块如图,现在到玻璃店在配一块同样大小的三角板,最省事的方法()A.带①去 B.带②去 C.带③去 D.带①②③去8、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609、如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.2 C.5 D.410、如图所示,m∥n,点B,C是直线n上两点,点A是直线m上一点,AB与AC的长不相等,在直线m上另找一点D,使得以点D,B,C为顶点的三角形和△ABC全等,这样的点D()A.不存在 B.有1个 C.有3个 D.有无数个11、边长为7,24,25的△ABC内有一点P到三边的距离相等,则这个距离是()A.1 B. 3 C.4 D.612、如图,已知BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④二、填空题:13、如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为9,DE=2,AB=5,则AC长是.14、如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC面积是.15、如图△ABC≌△ADE,BC延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=15°,则∠DGB= .16、如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有个(不含△ABC).17、如图,矩形ABCD沿AE折叠,使D点落在BC边上点F处,如果∠BAF=60°,则∠DAE= 度.18、如图所示,△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,AB=8cm,BC=6cm,S△ABC=14cm2,则DE的长是 cm.19、如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.20、如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE=______.21、如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为.22、如图,在面积为4的等边△ABC的BC边上有一点D,连接AD,以AD为边作等边△ADE,连接BE.则四边形AEBD的面积是.23、如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD= .24、如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、简答题:25、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.求证:(1)△BEC≌△CDA;(2)DE=AD﹣BE.26、如图,锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,DF=DC.求证:BF=AC.27、两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.28、如图,画∠AOB=90°,并画∠AOB的平分线OC,将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F,试猜想PE、PF的大小关系,并说明理由.29、如图所示,在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE⊥AB 交 AB于点 E,点 F 在 AC 上,BD=DF.证明:(1)CF=EB;(2)AB=AF+2EB.参考答案1、C.2、D.3、B.4、B.5、B.6、C.7、C.8、B.9、D.10、B.11、B. 12、D.13、答案为:4 14、答案为:31.5.15、答案为:65°16、答案为:7.17、答案为:15.18、答案为:2.19、答案为:60°.20、答案为:60°.21、答案为:.22、答案为:4.23、答案为25.24、答案为:①②③⑤.25、【解答】证明:(1)∵∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)∵△CDA≌△BEC,∴CD=BE,CE=AD,∵DE=CE﹣CD,∴DE=AD﹣BE.26、【解答】证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠AEF=90°,∵∠AFE+∠CAD+∠AEF=180°,∠FBD+∠BFD+∠BDA=180°,∠AFE=∠BFD,∴∠FBD=∠CAD,在△BDF和△ADC中,∴△BDF≌△ADC(AAS),∴BF=AC27、解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CAD.∴∠DCA=∠B=45°.∵∠BCA=45°,∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.28、【解答】解:PE=PF,理由是:过点P作PM⊥OA,PN⊥OB,垂足是M,N,则∠PME=∠PNF=90°,∵OP平分∠AOB,∴PM=PN,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN,在△PEM和△PFN中∴△PEM≌△PFN,∴PE=PF.29、证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。

中考数学专题《全等三角形》

中考数学专题《全等三角形》

专题01 全等三角形一、单选题1.(2021·全国)在ABC V 中,B C ∠=∠,与ABC V 全等的三角形有一个角是100︒,那么在ABC V 中与这100︒角对应相等的角是( )A .A ∠B .BÐC .C ∠D .B Ð或C ∠2.(2021·山西襄汾县·七年级期末)如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE EC =B .BC EF =C .AC DF =D .ABC DEF △≌△3.(2021·山西七年级期末)下列说法:①两个形状相同的图形称为全等图形;②边、角分别对应相等的两个多边形全等;③全等图形的形状、大小都相同;④面积相等的两个三角形全等.其中正确的是()A .①②③B .①②④C .①③D .②③4.(2021·哈尔滨市第四十七中学)如图,ABD BAC ∆∆≌,若AD BC =,则BAD ∠的对应角( )A .ADB ∠B .BCD ∠C .ABC ∠D .CDA ∠5.(2021·全国八年级课时练习)如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒V V ≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒6.(2021·重庆巴南区·)已知△ABC 的三边的长分别为3,5,7,△DEF 的三边的长分别为3,7,2x ﹣1,若这两个三角形全等,则x 的值是( )A .3B .5C .﹣3D .﹣57.(2021·大连市第三十四中学八年级月考)如图,ABC A B C '''≅V V ,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .150︒B .120︒C .90︒D .60︒8.(2021·全国七年级课时练习)如图,在ABC V 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC V V V ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30°9.(2021·甘肃榆中县·七年级期末)如图,90A B ∠=∠=︒,6AB =,E 、F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为1:2,运动到某时刻同时停止,在射线AC 上取一点G ,使AEG △与BEF V 全等,则AG 的长为( )A .2B .3C .2或3D .2或610.(2021·全国)如图,锐角△ABC 中,D 、E 分别是AB 、AC 边上的点,△ADC ≌△ADC ′,△AEB ≌△AEB ′,且C ′D //EB ′//BC ,BE 、CD 交于点F ,若∠BAC =α,∠BFC =β,则( )A .2α+β=180°B .2β﹣α=180°C .α+β=150°D .β﹣α=60°11.(2021·全国八年级课时练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D ∠=∠=︒,记,,OAD ABO ABC ACB αβ∠=∠=∠=∠,当//BC OA 时,α与β之间的数量关系为( )A .αβ=B .2αβ=C .90αβ+=︒D .2180αβ+=︒12.(2021·河南川汇区·八年级期末)如图,点D ,E ,F 分别在ABC V 的边AB ,BC ,CA 上(不与顶点重合),设BAC α∠=,FED θ∠=.若BED CFE ≌△△,则α,θ满足的关系是( )A .90αθ+=︒B .2180αθ+=︒C .90αθ-=︒D .2180αθ+=︒第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·吉林铁西区·八年级期中)如图所示,ABC ECD ≌△△,48A ∠=︒,62D ∠=︒,则图中B Ð的度数是______度.14.(2021·全国八年级课时练习)如图,ABE ACD △≌△,且D ∠与E ∠是对应角,顶点C 与顶点B 对应,若10cm BE =,则CD =__________.15.(2021·全国)如图,长方形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,AD =7cm ,DM =5cm ,∠DAM =39°,则△ANM ≌△ADM ,AN =_____cm ,NM =_____cm ,∠NAB =_______.17.(2021·浙江东阳市·七年级期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3k cm,宽为2k cm,则(1)裁去的每个小长方形面积为___cm2;(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为___.18.(2021·山东莱州市·七年级期末)三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数等于_______.19.(2021·辽宁本溪市·七年级期末)如图,∠A=∠B=90°,AB=80,点E和点F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,点E和点F运动速度之比为2:3,运动到某时刻点E和点F同时停止运动,在射线AC 上取一点G,使△AEG与△BEF全等,则AG的长为________.20.(2021·全国)如图,在△ABC中,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为________厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.三、解答题21.(2021·全国八年级课时练习)已知:如图,,8cm,5cm ABC DEF BC EC ==V V ≌,求线段CF 的长.22.(2020·铜陵市第二中学八年级月考)如图,ABF V ≌CDE △,已知30B ∠=︒,25DCF ∠=︒,求EFC ∠的度数.23.(2021·河南邓州市·七年级期末)我们已经认识了图形的轴对称、平移和旋转,这是图形的三种基本变换,图形经过这样的变换,虽然位置发生了改变,但图形的形状与大小都不发生变化,反映了图形之间的全等关系.这种运用动态变换研究图形之间的关系的方法,是一种重要而且有效的方法.同学们学完了这些知识后,王老师在黑板上给大家出示了这样的一道题目:(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .试说明AD =BE ;聪明的小亮很快就找到了解决该问题的方法:请你帮小亮把说理过程补充完整.解:∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,(等边三角形的性质)∴∠ACD = (等式的性质)∴△ACD 绕点C 按逆时针方向旋转 度,能够与 重合∴△ACD ≌ (旋转变换的性质)∴AD =BE ( );(2)当同学们把这道题领会感悟后,王老师又在上题基础上追加了一问:试求∠AEB 的度数.聪明的同学们你会解决吗?请写出你的求解过程.(此题不用写推理依据即可). 24.(2021·全国八年级课时练习)如图,,ABF CDE B ∠V V ≌和D ∠是对应角,AF 和CE 是对应边.(1)写出ABF V 和CDE △的其他对应角和对应边;(2)若30,40B DCF ∠=︒∠=︒,求EFC ∠的度数;(3)若10,2BD EF ==,求BF 的长.25.(2021·河南伊川县·七年级期末)如图,点A、B、C、D在同一直线上,△ACE≌△DBF,AD =8,BC=2.(1)求AC的长;(2)求证:CE∥BF,AE∥DF.⊥于点B,26.(2021·辽宁铁西区·)如图,点B,C,E,F在同一直线上,AB BCCE=.BC=,3DEF ABCV V≌,且6(1)求CF的长;(2)判断DE与EF的位置关系,并说明理由.27.(2021·浙江浙江省·八年级期末)如图,已知正方形ABCD 边长为4cm ,动点M 从点C 出发,沿着射线CD 的方向运动,动点P 从点B 出发,沿着射线BC 的方向运动,连结,BM DP ,(1)若动点M 和P 都以每秒2cm 的速度运动,问t 为何值时DPC △和BCM V 全等?(2)若动点P 的速度是每秒3cm ,动点M 的速度是每秒1.5cm 问t 为何值时DPC △和BCM V 全等?28.(2020·浙江浙江省·)在56⨯的方格纸中,每格的边长为1,请按下列要求画图.(1)在图1中画一个格点ADE V ,使ADE V 与ABC V 全等,且所画格点三角形的顶点均不与点B ,C 重合.(2)在图2中画一个面积为7的格点四边形ABCD ,且BAD ∠为锐角.29.(2021·云南盘龙区·七年级期末)如图,在平面直角坐标系中,O 为坐标原点,ABC V 的边BC 在x 轴上,A 、C 两点的坐标分别为()0,A m ,(),0C n ,()5,0B -,且()231230m n -+-=点P 从B 出发,以每秒1个单位的速度沿射线BO 匀速运动,设点P 运动时间为t .(1)点A 的坐标为 ;点C 的坐标为 ;(2)连接PA ,当POA V 的面积等于ABC V 的面积的一半时,求t 的值;(3)当P 在线段BO 上运动时,在y 轴上是否存在点Q ,使POQ △与AOC △全等?若存在,请直接写出Q 点坐标;若不存在,请说明理由.30.(2021·江苏姑苏区·苏州草桥中学七年级期末)如图,将一副三角板按如图所示的方式放置,其中ABC V 中,90ACB ∠=︒,45BAC ∠=︒,ADE V 中,90ADE ∠=︒,30DAE ∠=︒,AB AD =,点C 在线段AE 上.射线AB '从AB 出发,绕点A 以5︒/秒的速度顺时针旋转;同时,射线DA '从DA 出发,绕点D 顺时针旋转.设射线AB '运动的时间为t 秒(09t <≤),AB '与BC 交于点M ,DA '与AB '交于点N .(1)若射线DA '旋转的速度为5︒/秒,则AND ∠=________︒;(2)设射线DA '旋转的速度为x ︒/秒,当射线AB '与DA '旋转到某处时,ABM V 与AND △全等,求相应的t 、x 的值.。

中考压轴全等三角形问题综合(解析版)

中考压轴全等三角形问题综合(解析版)

中考压轴:全等三角形问题综合(解析版)一、单选题1.如图,在四边形ABCD中,AD//BC,D90,AD8,BC6,分别以点A,C1为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若2点O是AC的中点,则CD的长为()A.4 2 B.6 C.210 D.8【标准答案】A【思路点拨】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD-AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【详解详析】解:如图,连接FC,∵点O是AC的中点,由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,FAO=BCOO A=OC ,AOF=COB∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,FD=AD-AF=8-6=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+22=62,∴CD=42.故选:A.【名师指导】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.2.如图,如图正方形ABCD内一点E,满足△CDE为正三角形,直线AE交BC于F点,过E点的直线GH AF,交AB于点G,交CD于点H.以下结论:①AFC105;AE EH 2②GH2EF;③2CE EF EH;④,其中正确的有()3A.①②③B.①③④C.①④D.①②③④【标准答案】A【思路点拨】根据等边三角形的性质求出CDE,然后求出ADE30,再根据等腰三角形的性质求出DAE75,然后求出BAF15,根据三角形的一个外角等于与它不相邻的两个内角的和求出AFC105,判断出①正确,过点H作HK AB,可得HK=AD,根据等角的余角相等求出ÐBAF=ÐKHG,再利用“角角边”证明ABF和DHKG,然后根据全等三角形对应边相等可得AF=GH,再根据等边三角形的性质,点E是AF的中点,从而得到GH2EF,判断出②正确;再求出ÐCEF=ÐCEH=45°,过点F作FM CE于M,过点H作HN^CE于N,解直角三角形分别用MF、CN表示出CE,可以得到MF=CN,再表示出CE,即可判AE定③正确;设MF=CN=x,表示出EF、EH,然后求出的值,判断出④错误.EH【详解详析】解:CDE为正三角形,CDE60,\ÐADE=90°-60°=30°,Q AD=DE=CD,1\ÐDAE=ÐDEA=(180°-30°)=75°,2\ÐBAF=90°-75°=15°,\ÐAFC=90°+15°=105°,故①正确;过点H作HK AB,则HK=AD,Q GH^AF,\ÐBAF+ÐAGE=90°,又QÐAGE+ÐKHG=90°,\ÐBAF=ÐKHG,在ABF和DHKG中,ìïÐBAF=ÐKHGïïïíÐB=ÐHKG=90°,ïïïHK=ABïî\DABF@DHKG(AAS),\AF=GH,CDE为正三角形,点E在CD的垂直平分线上,根据平行线分线段成比例定理,点E是AF的中点,AF2EF,\GH=2EF,故②正确;Q GH^AF,ÐDEA=75°,\ÐDEH=90°-75°=15°,\ÐCEH=60°-15°=45°,\ÐCEF=90°-45°=45°,过点F作FM CE于M,过点H作HN^CE于N,则MF=EM,NH=EN,CDE是等边三角形,DCE60,\ÐECF=90°-60°=30°,\CM=3MF,NH=3CN,\CE=3MF+MF=3CN+CN,\MF=CN,2 2\CE=EF+EH,2 2,故③正确;2CE EF EHAE EFEH2MF3CN×3===,故④错误.EH 2 3综上所述,正确的结论是①②③.故选:A.【名师指导】本题考查了四边形综合题型,主要利用了正方形的性质,等边三角形的性质,全等三角形的判断与性质,解直角三角形,等腰直角三角形的判定与性质,作辅助线构造出全等三角形与等腰直角三角形是解题的关键.3.(2021·广东福田·一模)如图,在矩形ABCD中,AD2AB,BAD的平分线交BC于点E.DH AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①AD AE;②AED CED;③OE OD;④BH HF;⑤BC CF2HE,其中正确=的有()A.2个B.3个C.4个D.5个【标准答案】D【思路点拨】(1)由角的平分线的性质和平行线的性质可证AB BE,再结合勾股定理加以判断;(2)在(1)的基础上,结合等腰三角形的性质,通过计算加以判断;(3)可通过在△DOH和△EOH 中计算有关角度加以判断;(4)通过证明△BEH 与HDF能否全等加以判断;(5)在上述判断的基础上,结合线段的和或差加以判断.【详解详析】解:(1)∵AE 平分BAD,1∴BAE DAE BAD45. 2∵AD//BC,∴DAE AEB45.∴AEB BAE45.∴AE 2AB.AB BE.∵AD 2AB,∴AD AE.故①正确;(2)∵AD=AE,∠EAD=45°,1∴ADE AED 1804567.5. 2∴CED 1804567.567.5.∴AED CED.故②正确;BAEDAE(3)在△ABE 和AHD中,ABE AHD,AE ADAAS∴△ABE≌△AHD.∴BE DH.∴AB BE AH HD.∵AB AH,1∵AHB1804567.5,OHE AHB(对顶角相2等),∴∠OHE67.5∠AED.∴OE OH.∵DHO9067.522.5,ODH67.54522.5,∴DHO ODH.∴OH OD.∴OE OD OH.故③正确;(4)∵∠EBH9067.522.5,∴∠EBH∠OHD.EBH OHD22.5在△BEH和HDF中,BE DH ,AEB HDF45∴△BEH≌△HDF ASA.∴BH HF,HE DF.故④正确;(5)∵HE AE AH BC CD,BC CF BC CD∴DFBC CDHEBC CDHE HE HE2HE.故⑤正确.故选:D.【名师指导】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理等知识点.对第一个结论的判断很重要,它是判断后续结论的基础;同时,紧紧围绕“由未知看需知,最后靠拢已知”的分析思路,寻找到解决问题的方法,应成为一种必备的能力.4.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF AE交CB的延长线于F,下列结论正确的有:()10①AP FP;②AE AO;③若四边形OPEQ的面积为4,则该正方形ABCD的面积为236;④CE EF EQDE.A.4个B.3个C.2个D.1个【标准答案】B【思路点拨】连接OE、AF,①利用四点共圆证明∠AFP=∠ABP=45°即可;②设BE=EC=a,求出AE,OA即可解决问题;③利用相似三角形的性质计算求得正方形ABCD的面积为48;④利用相似三角形的性质证明即可.【详解详析】解:如图,连接OE、AF∵四边形ABCD是正方形,∴AC BD,OA=OC=OB=OD,∴BOC=90,∵PF AE,∴APF=ABF=90,∴A,P,B,F四点共圆,∴AFP=ABP=45,∴PAF=PFA=45,∴PA=PF,故①正确,设BE=EC=a,则由勾股定理可得:AE5a,OA OC OB OD2a,AE AO 5a 2a 10 2 102∴ ,即 AEAO ,故②正确, 根据对称性可知, OPE ≌OQE ,1 ∴ SOEQS2,四边形OPEQ2 ∵OB OD ,BEEC ,∴CD2OE ,OE / /CD ,∴ OEQ ∽CDQEQ OE 12, DQ 2EQ∴DQ CD ∴ S ODQ 2SOEQ4,S CDQ4SOEQ8 ,∴ S CDO 12, ∴ S 正方形ABCD 4S CDO48,故③错误,∵EPF =DCE 90,PEFDEC ,∴EPF ∽ECD , EF PE ∴ , ED EC∵ EQPE ,∴CE • EF =EQ • DE ,故④正确, 故选 B 【名师指导】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,四点共圆的 性质等知识,解题的关键是熟练掌握相关基本性质,并灵活运用所学知识解决问题. 5.如图,正方形 ABCD 的边长为 2 ,点 E 从点 A 出发沿着线段 AD 向点 D 运动(不与点 A , D 重合),同时点 F 从点 D 出发沿着线段 DC 向点C 运动(不与点 D ,C 重合),点 E 与点 F 的 运动速度相同. BE 与 AF 相交于点G , H 为 BF 中点、则有下列结论:①BGF 是定值;② FB 平分AFC ;5 ③当 E 运动到 AD 中点时,GH ; 212④当 AG BG 6 时,四边形GEDF 的面积是 其中正确的是( A .①②④ )B .①②③ D .②③④C .①③④ 【标准答案】C 【思路点拨】根据题意很容易证得△BAE ≌△ADF ,即可得到AF=BE ,利用正方形内角为90°,得出AF ⊥BE , 即可判断①;②假设 BF 平分∠AFC ,则角平分线的性质得到 BG=BC ,则 BG=AB ,又由 ∠BGA =90°,得到 AB >BG ,由此即可判断②;③先利用勾股定理求出 BF 的长,然后根据 直角三角形斜边的中线等于斜边的一半即可求解;④根据△BAE ≌△ADF ,即可得到 S 四边形2S VABG ,然后根据 时,得到AG GBAG22 AG GB GB 6,再2 AGGB 6GEDF1 2 1 AG GB . 2由 AG2BG 2 AB24 即可得到2AG GB 2 ,则 S VABG 【详解详析】证明:∵E 在 AD 边上(不与 A ,D 重合),点 F 在 DC 边上(不与 D ,C 重合), 又∵点 E ,F 分别同时从 A ,D 出发以相同的速度运动, ∴AE=DF ,∵四边形 ABCD 是正方形, ∴ AB DA ,BAE D 90o 在△BAE 和△ADF 中,AE DFBAE ADF 90 , AB DA∴△BAE ≌△ADF(SAS),∴∠1=∠2, ∵23 90 ∴13 90∴BGF 90,即AGB 90 ,o即∠BGF 是定值,故①正确;假设 BF 平分∠AFC , ∵四边形 ABCD 是正方形, ∴BC ⊥FC ,BC=AB ∵BG ⊥AF , ∴BG=BC , ∴BG=AB , 又∵∠BGA =90°, ∴AB >BG , ∴假设不成立, ∴②不正确;③当 E 运动到 AD 中点时,则 F 运动到 CD 中点, 1∴CFCD 1,2∴ 2 2 , BF BC CF5∵∠BGF =90°,H 为 BF 的中点1 5∴GHBF ,故③正确; 2 2④∵△BAE ≌△ADF , ∴ S △BAE =S △ADF ∴S SABG,GEDF 四边形 2∴当 AG GB 6 时,AG GB AG22 AGGB GB6,2 ∵ AG 2 BG 2 AB 24 , 2AG GB2 ,11 ∵ S VABG AGGB ,221∴S = 故④正确; GEDF 四边形 2 故选 C . 【名师指导】考查正方形的性质,全等三角形的判定与性质,勾股定理等,角平分线的性质,直角三角形斜边上的中线,掌握全等三角形的判定定理是解题的关键.6.如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在DC边上,且CE=2DE,连接AE交BD于点G,过点D作DF⊥AE,连接OF并延长,交DC于点P,过点O作OQ⊥OP分别交AE、AD于点N、H,交BA的延长线于点Q,现给出下列结论:①∠AFO5=45°;②OG=DG;③DP2=NH•OH;④sin∠AQO=;其中正确的结论有()5A.①②③B.②③④C.①②④D.①②③④【标准答案】D【思路点拨】①由“ASA”可证△ANO≌△DFO,可得ON=OF,由等腰三角形的性质可求∠AFO=45°;②由“AAS”可证△OKG≌△DFG,可得GO=DG;AH HN③通过证明△AHN∽△OHA,可得,进而可得结论DP2=NH•OH;HO AHOG AG 5④由外角的性质可求∠NAO=∠AQO,由勾股定理可求AG,即可求sin∠AQO==.5 【详解详析】∵四边形ABCD是正方形,∴AO=DO=CO=BO,AC⊥BD,∵∠AOD=∠NOF=90°,∴∠AON=∠DOF,∵∠OAD+∠ADO=90°=∠OAF+∠DAF+∠ADO,∵DF⊥AE,∴∠DAF+∠ADF=90°=∠DAF+∠ADO+∠ODF,∴∠OAF=∠ODF,∴△ANO≌△DFO(ASA),∴ON=OF,∴∠AFO=45°,故①正确;如图,过点O作OK⊥AE于K,∵CE=2DE,∴AD=3DE,DE DF 1 ∵tan∠DAE=∴AF=3DF,,AD AF 3∵△ANO≌△DFO,∴AN=DF,∴NF=2DF,∵ON=OF,∠NOF=90°,1∴OK=KN=KF=FN,2∴DF=OK,又∵∠OGK=∠DGF,∠OKG=∠DFG=90°,∴△OKG≌△DFG(AAS),∴GO=DG,故②正确;∵∠DAO=∠ODC=45°,OA=OD,∠AOH=∠DOP,∴△AOH≌△DOP(ASA),∴AH=DP,∵∠ANH=∠FNO=45°=∠HAO,∠AHN=∠AHO,∴△AHN∽△OHA,AH HN∴,HO AH∴AH2=HO•HN,∴DP2=NH•OH,故③正确;∵∠NAO+∠AON=∠ANQ=45°,∠AQO+∠AON=∠BAO=45°,∴∠NAO=∠AQO,∵OG=GD,∴AO=2OG,∴AG= 2 2 =5OG,AO OGOG 5∴sin∠NAO=sin∠AQO=,故④正确,AG 5故选:D.【名师指导】本题考查了正方形的性质,全等三角形的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,灵活运用这些性质是解题关键.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM 上,2BE=DB,作EF⊥DE并截取EF=DE,连接AF并延长交射线BM于点C.设BE =x,BC=y,则y关于x的函数解析式是()12x 2x 3x 8xA.y=﹣B.y=﹣C.y=﹣D.y=﹣x 4 x 1 x 1 x 4【标准答案】A【思路点拨】作点F作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB =2x,然后证得△FGC∽△ABC,再根据相似三角形的性质即可求解.【详解详析】作点F作FG⊥BC于G,∵∠DEB+∠FEG=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中,BFGEBDE FEG,DE EF∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG =DB =2BE =2x , ∴GC =y ﹣3x , ∵FG ⊥BC ,AB ⊥BC , ∴FG ∥AB , ∴△FGC ∽△ABC , ∴CG :BC =FG :AB ,x y 3x 即 = ,. 4 y 12x ∴y =﹣x 4故选 A . 【名师指导】本题考查了三角形全等的判定和性质及相似三角形的判定与性质,正确作出辅助线是解决问 题的关键.8.如图,△ACD 和△AEB 都是等腰直角三角形,CAD EAB 90 .四边形 ABCD 是平行四边形,下列结论中错误的有()①ACE 以点 A 为旋转中心,逆时针方向旋转90后与△ADB 重合, ②ACE 以点 A 为旋转中心,顺时针方向旋转 270后与△DAC 重合,③沿 AB 所在直线折叠后,ACE 与ADE 重合, ④沿 AD 所在直线折叠后,△ADB 与ADE 重合,⑤ACE 的面积等于△ABE 的面积.A .1 个B .2 个C .3 个D .4 个【标准答案】B 【思路点拨】由△ACD 和△AEB 都是等腰直角三角形,∠CAD =∠EAB =90°,易证得△ACE ≌△ADB , 即可得①正确;又由四边形 ABCD 是平行四边形,易证得△EAC ≌△EAD ,即可得 △ACE ≌△ADB ≌△ADE ,即可判定③④正确;由平行四边形的中心对称性,可得②错误,1 1 1 1 1又由S△ACE=S△ADB=AD×BH=AD•AC=AC2,S△ABE=AE•AB=AB2,AB>AC,即22 2 2 2可判定②错误.继而求得答案.【详解详析】解:①∵△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,∴AE=AB,AC=AD,∠EAC=∠BAD,在△ACE和△ADB中,AE AB∵EACBAD,AC AD∴△ACE≌△ADB(SAS),∴△ACE以点A为旋转中心,逆时针方向旋转90°(旋转角为∠EAB=90°)后与△ADB重合;故①正确;②∵平行四边形是中心对称图形,∴要想使△ACB和△DAC重合,△ACB应该以对角线的交点为旋转中心,顺时针旋转180°,即可与△DAC重合,故②错误;③∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAC=∠ACD=45°,∴∠EAC=∠BAC+∠CAD=135°,∴∠EAD=360°﹣∠EAC﹣∠CAD=135°,∴∠EAC=∠EAD,在△EAC和△EAD中,AE AB∵EACEAD,AC AD∴△EAC≌△EAD(SAS),∴沿AE所在直线折叠后,△ACE与△ADE重合;故③正确;④∵由①③,可得△ADB≌△ADE,∴沿AD所在直线折叠后,△ADB与△ADE重合,故④正确;⑤过B作BH⊥AD,交DA的延长线于H,∵四边形ABCD是平行四边形,∴BH=AC,∵△ACE≌△ADB,1 1 1∵S△ACE=S△ADB=AD×BH=AD•AC=AC2,2 2 21 1∴S△ABE=AE•AB=AB2,AB>AC,2 2∴S△ABE>S△ACE;故⑤错误.故选:B.【名师指导】本题考查了等腰直角三角形的性质、全等三角形的判定与性质、平行四边形的性质、折叠的性质以及旋转的性质.注意数形结合思想的应用,证得△ACE≌△ADB≌△ADE是解此题的关键.9.如图,在平行四边形ABCD中,AD=2,AB=6,∠B是锐角,AE⊥BC于点E,F是AB的中点,连接DF,EF.若∠EFD=90°,则线段AE的长为()A.2 B.1 C. 3 D. 5【标准答案】D【思路点拨】延长EF交DA的延长线于Q,连接DE,设BE x,首先证明DQ DE x2,利用勾股定理构建方程即可求解.【详解详析】解:如图,延长EF交DA的延长线于Q,连接DE,设BE x,四边形 ABCD 是平行四边形,DQ / /BC ,Q BEF ,AFEB,AFQBFE ,QFA ≌EFB(AAS) , AQBEx,QF EF , EFD 90, DF QE ,DQ DEx 2 ,AEBC, BC / / AD ,AE AD,AEB EAD 90,AE 2 DE 2 AD 2 AB 2 BE 2 , (x 2) 24 6x ,2 解得: x 1, x 3(舍去)1 2 BE1,AE AB 2 BE 2 615故选:D . , 【名师指导】本题考查了平行四边形的性质、线段的垂直平分线的性质、勾股定理、全等三角形的判定与 性质,解题的关键是:掌握相关知识点,添加辅助线、构造全等三角形来解决问题. 10.如图,在△ABC 和△ADE 中,∠BAC=∠DAE =90°,AB=AC ,AD=AE ,点 C ,D ,E 在同一条直线上,连接 B ,D 和 B ,E .下列四个结论:①BD=CE , ②BD ⊥CE ,③∠ACE+∠DBC=30°,2 AB 2 .2 2AD④BE其中,正确的个数是()A.1 B.2 C.3 D.4【标准答案】B【思路点拨】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【详解详析】解:如图,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,AB=ACBAD=CAEA D=AE∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE 2=BD2+DE2=BD2+2AD2,在Rt△BDC中,BD BC,而BC2=2AB2,∴BD2<2AB2,2 AB2∴BE 2 2AD故④错误,综上,正确的个数为2个.故选:B.【名师指导】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.二、填空题111.如图,在平面直角坐标系中,点Q是一次函数y x4的图象上一动点,将Q绕点2C2,0顺时针旋转90到点P,连接PO,则PO PC的最小值_________.【标准答案】213.【思路点拨】1取D(2,-2),连接CD、DQ,作C′点与点C关于直线y x4对称,连接QC′,则由题2意可得△OCP≌△DCQ,CP=CQ=C′Q,所以当且仅当C′、Q、D共线时PO+PC=DQ+CQ=DQ+C′Q=DC′为最小.【详解详析】解:如图,取D(2,-2),则CD⊥x轴,即CD⊥OC且CD=OC=2,连结DQ,依题CQ顺时针旋转90得到CP,∴∠QCP=90°且CQ=CP,OC DC 2在△OCP 和△DCQ 中, OCP 90 DCP DCQCP CQ∴△OCP ≌△DCQ(SAS),∴OP=DQ ,1 作 C ′点与点 C 关于直线 y x 4对称,则有 CQ=C ′Q , 2∴CP=CQ=C′Q , 故 PO+PC=DQ+CQ=DQ+C ′Q ≥DC ′,当且仅当 C ′、Q 、D 共线时取等,由题意可以得到 A 、B 坐标分别为(0,4)、(8,0)设 C ′坐标为(x ,y ),则由 AC ′=AC ,BC ′=BC 可得: 2 y 4 20 2 x 2 x 8 y 2 36 22 24 解之可得 C ′为(2,0)( 与 C 同,舍去)或( , ), 5 52 2 22 24 2 ∴DC ′=2 5 5 2 2 12 34 2325 = = 2 13 5 5 5 ∴ PO PC 的最小值为 2 13 .故答案为 2 13 .【名师指导】本题考查一次函数的综合应用,方程组思想,一元二次方程的解法,构造全等三角形与轴对 称把 PO+PC 转化成 DQ+C ′Q 是解题关键.12.如图,平行四边形OABC 的顶点 A 在 x 轴的正半轴上,点 D(3, 2) 在对角线OB 上,反比k 15 例函数 y (k 0,x 0) 的图像经过 C 、D 两点,已知平行四边形OABC 的面积是 ,则点 B x 2的坐标为___.9【标准答案】2,3【思路点拨】过点B作BE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,过点C作CG⊥x轴,垂足15为G,则BE∥DF∥CG,根据平行四边形的性质,证明△COG≌△BAE,S△OAB= ,根据427反比例函数的性质,证明S△OCG=S△BAE=S△DOF=3,确定S△OEB= ,证明△ODF∽△OBE,根4据相似三角形面积之比等于相似比的平方计算即可.【详解详析】过点B作BE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,过点C作CG⊥x轴,垂足为G,则BE∥DF∥CG,∵四边形OABC是平行四边形,∴OC=AB,BC∥OA,∴CG=BE,∴△COG≌△BAE,∴S△OCG=S△BAE15∵平行四边形OABC的面积是,215∴S△OAB=,4k∵点D(3,2)在对角线OB上,反比例函数y(k0,x0)的图像经过C、D两点,x∴S△OCG=S△BAE=S△DOF=3,DF=2,OF=3,27∴S△OEB=,4∵BE∥DF,∴△ODF∽△OBE,DF BE 2742∴=3,32 2 3∴ , BE 即 BE=3,OF OE 2 3∴ ∴ , , 3 2 3OE 9 即 OE= , 29 ∴点 B 的坐标为( ,3). 29 故答案为:( ,3). 2【名师指导】本题考查了反比例函数的性质,平行四边形的性质,三角形相似的判定与性质,坐标与线段 的关系,三角形的全等,灵活构造辅助线,活用性质,证明三角形的相似是解题的关键.13.如图,在 Rt △ABC 中,∠BAC =90°,分别以 A ,B 为旋转中心,把边 AC ,BA 逆时针 旋转 60°,得到线段 AE ,BD ,连 接 BE ,CD 相交于点 P ,已 知 AB=3,AC=2 3 ,∠APB =120°, 则 PA+PB+PC 的大小为________.【标准答案】 39【思路点拨】连接 AD=CE ,利用旋转的性质得到△ABD 和△ACE 是等边三角形,可推出∠DAC=∠EAB , 利用 SAS 证明△ADC ≌△ABE ,利用全等三角形的性质可证得∠AEB=∠ACD ,可得到 ∠APF =60°,在 PE 上截取 PF=PA ,可推出△APF 是等边三角形,利用等边三角形的性质可 得到∠PAF =60°;再证明∠EAF=∠PAC ,可推出△AFE ≌△APC ,由此可证得 AP+BP+CP=BE ; 过点 E 作 EG ⊥BA ,交 BA 的延长线于点 G ,利用勾股定理求出 GE ,AG 的长,从而可求出 BG 的长,然后利用勾股定理求出 BE 的长,进而即可求解.【详解详析】连接 AD ,CE ,∵分别以A,B为旋转中心,把边AC,BA逆时针旋转60°,得到线段AE,BD,∴AB=BD,AE=AC,∠ABD=∠EAC=60°,∴△ABD和△ACE是等边三角形,∴∠DAC=∠EAB=90°+60°=150°,在△ADC和△ABE中AB BD∵DACEAB,AE AC∴△ADC≌△ABE(SAS)∴∠AEB=∠ACD,∵∠APB=120°,∴∠APF=60°,在PE上截取PF=PA,∴△APF是等边三角形,∴∠PAF=60°,∴∠EAF+∠BAP=150°-60°=90°,∠PAC+∠BAP=∠BAC=90°,∴∠EAF=∠PAC,∵AE=AC,∠AEB=∠ACD,∴△AFE≌△APC,∴PC=FE∴AP+BP+CP=PF+BP+FE=BE过点E作EG⊥BA,交BA的延长线于点G,∵∠GAE=180°-150°=30°,∵AE=AC=23,2 2∴GE=3,AG2333,∴BG=AB+AG=3+3=6,2∴BE 6 2 339,∴AP+BP+CP= 39 .故答案为: 39 .【名师指导】本题主要考查等边三角形的判定与性质,勾股定理,旋转的性质,三角形全等的判定和性质, 添加辅助线,构造全等三角形和等边三角形是解题的关键.14.黄金分割是指把一条线段分割为两部分,使较短线段与较长线段的比等于较长线段与 5 1 原线段的比,其比值等于 .如图,在正方形 ABCD 中,点 G 为边 BC 延长线上一动 2点,连接 AG 交对角线 BD 于点 H ,△ADH 的面积记为 S ,四边形 DHCG 的面积记为 S .如 1 2S 1 S 2果点 C 是线段 BG 的黄金分割点,则 的值为___. 3- 5 7 3 5 【标准答案】 【思路点拨】或 . 22 由 AD ∥BC ,得△DHG 的面积=△AHB 的面积,再由△AHB ≌△CHB (SAS ),得出 S = 2S 1 S 2 AD GB△GBH 的面积,然后证△ADH ∽△GBH ,得 =( ) 2 ,分两种情况:①点 C 是线段 BG 5 1 的黄金分割点,BC >CG ,则 BC = 3 5 BG ;②点 C 是线段 BG 的黄金分割点,BC <CG , 2则 BC = BG ;分别求解即可. 2【详解详析】解:∵四边形 ABCD 是正方形,∴AB =CB ,AD ∥BC ,∠ABH =∠CBH =45°,∴△ABD 的面积=△AGD 的面积,又∵BH =BH ,∴△AHB ≌△CHB (SAS ),∴△AHB 的面积=△DHG 的面积,∴S =△GBH 的面积,2 ∵AD ∥BC ,∴△ADH ∽△GBH ,S1 S2AD GB∴=()2,分两种情况:①点C是线段BG的黄金分割点,BC>CG,5 1则AD=BC=BG,2S1 ADGB 5 1 3-5∴=()2=()2=;S2 2 2②点C是线段BG的黄金分割点,BC<CG,3- 5则AD=BC=BG,2S1 ADGB 3- 5 73 5∴=()2=()2=;S2 2 2综上所述,如果点C是线段BG的黄金分割点,S1 3- 5 73 5则的值为或;S2 2 23- 5 73 5故答案为:或.2 2【名师指导】本题考查了黄金分割的定义、正方形的性质、相似三角形的判定与性质以及三角形面积等知识;熟练掌握黄金分割的定义和相似三角形的判定与性质是解题的关键.15.如图,在Rt ABC中,ABC90,AB5,BC8,点P是射线BC上一动点,连接AP,将ABP沿AP折叠,当点B的对应点B落在线段BC的垂直平分线上时,BP的长等于__________.5【标准答案】或10.2【思路点拨】①如图1,当点P在线段BC上时,②如图2,当点P在BC的延长线上时,过A,C分别作AD∥BC,CD∥AB两线交于D,得到四边形ABCD是矩形,求得AD=BC=8,过B′作B′F⊥BC于F,反向延长FB′交AD于E,根据勾股定理即可得到结论.【详解详析】解:①如图 1,当点 P 在线段 BC 上时,过 A ,C 分别作 AD ∥BC ,CD ∥AB 两线交于 D , 则四边形 ABCD 是矩形,∴AD=BC=8, 过 B′作 B′F ⊥BC 于 F ,反向延长 FB′交 AD 于 E , 则 AD ⊥EF ,∵点 B'落在线段 BC 的垂直平分线上,1∴AE=BF= BC=4,2 ∵将△ABP 沿 AP 折叠得到△AB′P ,∴AB′=AB=5,PB=PB′,∴EB′=3, ∴B′F=2,∴PF=4-PB ,∵ PB '2PF 2 B ' F 2 , ∴ BP 2 (4 BP) 2 2 , 2 5 解得: BP . 2②如图 2,当点 P 在 BC 的延长线上时, 过 A ,C 分别作 AD ∥BC ,CD ∥AB 两线交于 D , 则四边形 ABCD 是矩形,∴AD=BC=8, 过 B′作 B′F ⊥BC 于 F ,反向延长 FB′交 AD 于 E , 则 AD ⊥EF ,∵点 B'落在线段 BC 的垂直平分线上,1 ∴AE=BF= BC=4,2 ∵将△ABP 沿 AP 折叠得到△AB′P ,∴AB′=AB=5,PB=PB′,∴EB′=3, ∴B′F=8,∴PF=PB-4,∵ PB '2PF 2 B ' F 2 , ∴ BP (BP 4) 2 2 8 2 .解得:BP=10;5 综上所述,BP 的长等于 或 10, 25故答案为:或10.2【名师指导】本题考查了翻折变换(折叠问题),矩形的性质、勾股定理,线段的垂直平分线的性质,作出恰当的辅助线是解题的关键.16.如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交8于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF DE;②DG;③HD//BG;5④ABG DHF.其中正确的结论有________.(请填上所有正确结论的序号)【标准答案】①④【思路点拨】证明△ADF≌△DCE,再利用全等三角形的性质结合余角的性质得到∠DGF=90°,可判断①,再利用三角形等积法AD×DF÷AF可算出DG,可判断②;再证明∠HDF=∠HFD=∠BAG,求出AG,DH,HF,可判定ABG DHF,可判断④;通过AB≠AG,得到∠ABG和∠AGB 不相等,则∠AGB≠∠DHF,可判断③.【详解详析】解:∵四边形ABCD为正方形,∴∠ADC=∠BCD=90°,AD=CD,∵E和F分别为BC和CD中点,∴DF=EC=2,∴△ADF≌△DCE(SAS),∴∠AFD=∠DEC,∠FAD=∠EDC,∵∠EDC+∠DEC=90°,∴∠EDC+∠AFD=90°,∴∠DGF=90°,即DE⊥AF,故①正确;1∵AD=4,DF=CD=2,2∴AF= 2 2 ,422 54 5∴DG=AD×DF÷AF=,故②错误;5∵H为AF中点,1∴HD=HF=AF=5,2∴∠HDF=∠HFD,∵AB∥DC,∴∠HDF=∠HFD=∠BAG,8 5∵AG= 2 2 ,AB=4,AD DG5AB AB45AG∴,DH HF 5 DF∴ABG DHF,故④正确;∴∠ABG=∠DHF,而AB≠AG,则∠ABG和∠AGB不相等,故∠AGB≠∠DHF,故HD与BG不平行,故③错误;故答案为:①④.【名师指导】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,三角形的高,直角三角形斜边中线定理,知识点较多,有一定难度,解题时注意利用线段关系计算相应线段的长.17.如图,把矩形ABCD沿EF对折,使B与D重合,折痕EF交BD于G,连AG,若7tan AGE,BF8,P为DG上一个动点,则PF PC的最小值为________ 3【标准答案】10【思路点拨】先根据折叠的性质、三角形全等的判定定理与性质可得EF BD,BG DG,DE BF,EG FG,从而可得点E与点F关于BD对称,再根据两点之间线段最短得出PF PC的最小值为CE的长,过点A作AH BD于点H,根据平行线的性质、正切三角函数可得GH AH 7tan GAH,从而设GH7a,AH3a,再根据平行线分线段成比例定理分别3可求出AE的长,然后利用正切三角函数值可求出AB的长,从而可得CD的长,由此即可得出答案.【详解详析】如图,连接PE、CE,过点A作AH BD于点H由折叠的性质可知,BG DG,BGE DGE90四边形ABCD是矩形AD BC,AB CD,AD//BC,BAD ADC90EDG FBGEDGFBG在△DEG和BFG中,DG BGDGE BGFDEGBFG(ASA)DE BF8,EGFG点E与点F关于BD对称,即BD垂直平分EFPE PFPF PC PEPC由两点之间线段最短可知,当C,P,E三点共线时,PE PC取得最小值,最小值为CEAH BD,即AHG90AH//EGGAH AGE7tan AGE3GH AH 7在Rt AHG中,tan GAH3设 AH 3a(a 0) ,则GH7aAG AH BGDG2 GH4a2点 G 是矩形 ABCD 对角线的交点BG DG AG 4a , DHDG HG (47)aAH//EGDG DE4a 8 ,即HG AE7a AE 解得 AE2 7AD DE AE 82 7tan ADH AH 3a 3在 RtADH 中,DH (4 7)a 4 7AB AB AD 8 2 7在 Rt △ABD 中, tanADBAB 382 7 4 7解得 AB6CDAB6在 Rt △CDE 中, 2 2 22 CE DECD8 610则 PF PC 的最小值为 10故答案为:10.【名师指导】本题是一道较难的综合题,考查了矩形的性质、正切三角函数、平行线分线段成比例定理、 折叠的性质等知识点,利用折叠的性质、两点之间线段最短得出 PF PC 取得最小值时,点P 的位置是解题关键.18.如图,正方形 ABCD 的边长为 1,点 E ,F 分别为 BC ,CD 边的中点,连接 AE ,BF 1交于点 P ,连接 PD ,则下述结论:①AE ⊥BF ;②tan ∠DAP = ;③DA =DP ;④FD =FP 2 中,一定成立的有_____.【标准答案】①③【思路点拨】连接AF,根据正方形的性质和已知条件证明Rt ABE Rt BCF,进而可以判断①;结合①证明A、P、F、D四点共圆,根据圆周角定理可以判断③,根据锐角三角函数可以判断②,根据DA DP,只有当DA AP时,FD FP,进而可以判断④.【详解详析】解:连接AF,E,F分别是正方形ABCD边BC,CD的中点,ADCF BE,2,DF在ABE和BCF中,AB BCABE C,BE CFRt ABE Rt BCF(SAS),BAE CBF,又BAE BEA90,CBF BEA90,BPE APF90,AE BF,故①正确;APF90,ADF APF180,A、P、F、D四点共圆,AFD DPA,DAF DPF,DAB APF90,BAEDAF,DAP DPA ,DA DP,故③正确;DAP DPA AFD,ADtan DAP tan AFD2,故②错误;DFDA DP,只有当DA AP时,FD FP,故④不一定正确.故①③.故答案为:①③.【名师指导】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,圆周角定理,解决本题的关键是综合运用以上知识.19.如图,在四边形ABCD中,B C45,P是BC上一点,PA PD,APD90,AB CD______.BC2【标准答案】2【思路点拨】通过等腰直角三角形构建一线三等角模型求解即可.【详解详析】解:如图所示,分别过A、D作AE BC于E,DF BC于F∴AEP DFP90∴APE PAE 90,DPF PDF 90∵APD 90∴∠APE ∠DPF90∴APE DPF ,PAEDPF在△AEP与△DFP中APEDPFPA PDPAE DPF∴△AEP △DPFASA∴AE PF,PE DFC 45,FDC C45,DF FC PE,在Rt△ABE 中,B45∴ 2 2AB BE AE 2BE2AE同理可得:CD 2CF 2DFAB CD 2BE 2CF 2BECF2BECF 2∴BC BE PE PFCF22故答案为:.2【名师指导】本题考察特殊的直角三角形,灵活运用一线三等角模型及特殊直角三角形三边关系是解题的关键.20.如图,点P在以MN为直径的半圆上运动,(点P与M,N不重合)PQ MN,NE平分MNP,交PM于点E,交PQ于点F.PF PE___________________.(1)PQ PMMQ(2)若PN 2 PM MN,则___________________.NQ5 1【标准答案】12【思路点拨】(1)过E作GE MN于G,可得NGE90,根据圆周角的性质可得MPN90,又NE平分MNP,根据角平分线的性质可得PE GE;由PNE MNE,PNE PEN90,MNE QFN90,且QFN PFE,根据“等角的余角相等”可得PEN PFE,再根据等腰三角形的性质“等角对等边”可得PE PF,即有GE PF;由PQ MN,GE MN,EM GE可得GE//PQ,从而可得在PMQ中有,将EM PM PE、PE GE、GE PFPM PQPM PF PF PF PE代入可得,,既而可求得的值.PM PQ PQ PM【详解详析】(1)如图所示,过E作GE MN于G,则NGE90,∵MN为半圆的直径,∴MPN90,又∵NE平分MNP,NGE90,∴PE GE.∵NE平分MNP,∴PNE MNE,∵EPN FQN90,∴PNE PEN90,MNE QFN90,又QFN PFE,∴PNE PEN90,MNE PFE90,又∵PNE MNE,∴PEN PFE,∴PE PF,又∵PE GE,∴GE PF.∵PQ MN,GE MN,∴GE//PQ,EMGE ∴在 PMQ中, , PMPQ又∵ EMPMPE ,PM PE GE∴, PM PQPM PE GE PM PF PF∴将GEPF , PEPF ,代入PF PEPM PF PF ∴得, , PM PQ PM PQ1, PQ PM PM PMPF PE即1.PQ PM(2)∵PNQ MNP , NQPNPM ,∴NPQ ∽NMP ,PNQN ∴ , MNPN∴ PN ∵ PN2QN MN ,PM MN ,2∴ PM QN ,MQ MQ∴, NQ PMMQ PM ∵cosM, PMMNMQ PM ∴ ∴ , NQ MN MQ NQ NQMQ NQMQNQ 2 MQNQ∴ NQ2MQ 2MQ NQ ,即1 , 2MQ NQ设 x ,则 x 5 12 x 10,5 1 解得: x,或 x 0(舍去), 22MQ 5 1∴, NQ故答案为:【名师指导】25 1. 2本题综合考查了圆周角的性质、角平分线的性质、等腰三角形的性质、平行线分线段成比例的性质等知识.(1)中解题的关键是利用角平分线的性质和等腰三角形的性质求得GE PF,EM GEPE PF,再通过平行线分线段成比例的性质得到,进行等量代换和化简后即可PM PQ得解.三、解答题21.如图,在ABC中,AC BC12,ACB120,点D是AB边上一点,连接CD,以CD 为边作等边△CDE.(1)如图1,若CDB45,求等边△CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG AC于点G.①求证:CF^DF.②如图3,将CFD沿CF翻折得CFD,连接BD,求出BD的最小值.【标准答案】(1)62;(2)①见详解;②BD的最小值为6【思路点拨】(1)过点C作CH⊥AB于点H,由等腰三角形的性质和直角三角形的性质可得∠A=∠B=30°,AH=BH=63,CH=6,由∠CDB=45°,可得CD=2CH,进而即可求解;(2)①延长BC到N,使CN=BC,由“SAS”可证△CEN≌△CDA,可得EN=AD,∠N=∠A1=30°,由三角形中位线定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可证DG=CF,2DG∥CF,即可证四边形CFDG是矩形,可得结论;②由“SAS”可证△EFD≌∠BFD',可得BD'=DE=CD,则当CD取最小值时,BD有最小值,即可求解.【详解详析】解:(1)如图1,过点C作CH⊥AB于点H,。

全等三角形判定-专题复习50题(含答案)

全等三角形判定-专题复习50题(含答案)

A.一个锐角对应相等C.一条边对应相等B.两个锐角对应相等全等三角形判定、选择题:1-如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA2•方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形。

如图,在4X4的方格纸中,有两个格点三角形△ABC、ADEF,下列说法中成立的是()A.ZBCA=ZEDF CoZBAC=ZEFDB.ZBCA=ZEFDD.这两个三角形中,没有相等的角3•如图所示,△ABD9ACDB,下面四个结论中,不正确的是()A.△ABD和厶CDB的面积相等B.AABD和厶CDB的周长相等C.ZA+ZABD=ZC+ZCBDD.AD〃BC,且AD=BC4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5-使两个直角三角形全等的条件是()6•如图,在AABC和厶BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则Z AACB等于(B.ZBEDC.寺ZAFBD.2ZABFA.ZEDBBA B C DB.ZA=ZDC.AC=DD.ZACB=ZF7.在AABC 和厶A /B /C /中,已知ZA=ZA /,AB=A /B /,在下面判断中错误的是()A. 若添加条件AC=A /C /,则厶ABC^^^A /B /C /B. 若添加条件BC=B /C /,则厶ABC^^^A /B /C /C 。

若添加条件ZB=ZB /,则△ABC^^^A /B /C /D 。

若添加条件ZC=ZC /,则△ABC^^^A /B /C /8•如图,AABC 和厶DEF 中,AB=DE 、ZB=ZDEF,添加下列哪一个条件无法证明厶ABC^^DEF ()9•如图,在△ABC 中,ZABC=45°,AC=8cm,F 是高AD 和BE 的交点,则BF 的长是()A.4cmB.6cmC.8cmD.9cm1°.在如图所示的5X5方格中,每个小方格都是边长为1的正方形,AABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形个数是()11.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N.若正方形ABCD 的边长为a,则重叠部分四边形EMCN 的面积为( A.AC 〃DF12-在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是(C、填空题:I3•如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上—块,其理由是.14.如图示,点B在AE上,ZCBE=ZDBE,要使AABC^AABD,还需添加一个条件是,(填上你认为适当的一个条件即可)15•如图,已知Z1=Z2,AC=AD,请增加一个条件,使△ABC9AAED,你添加的条件是16-如图,Z1=Z2,要使△ABD9AACD,需添加的一个条件是(只添一个条件即可).17•如图,在△ABC中,AB=AC,AD丄BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.18•如图,△ABD9ABAC,若AD=BC,则ZBAD的对应角是.19-如图,已知AB丄BD,垂足为B,ED丄BD,垂足为D,AB=CD,BC=DE,则ZACE=_度.2°・如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.三、解答题:21•如图,ZDCE=90°,CD=CE,AD丄AC,BE丄AC,垂足分别为A.B.试说明AD+AB=BE.22.如图,E、A.C三点共线,AB〃CD,ZB=ZE,,AC=CD。

2024年中考数学复习(全国版)第四讲 全等、相似三角形(原卷版)

2024年中考数学复习(全国版)第四讲 全等、相似三角形(原卷版)

→➌题型突破←→➍专题训练←题型一全等三角形1.如图,等腰△ABC 中,点D,E 分别在腰AB,AC 上,添加下列条件,不能判定△ABE≌△ACD 的是()A.AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC2.如图,在△AOB 和△COD 中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD 交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM 平分∠AOD,④MO 平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.13.如图所示,,ABC ECD 均为等边三角形,边长分别为5cm,3cm ,B、C、D 三点在同一条直线上,则下列结论正确的________________.(填序号)①AD BE ②7cm BE ③CFG △为等边三角形④13cm 7CM ⑤CM 平分BMD4.如图,在矩形ABCD 中,AD=4,将∠A 向内翻析,点A 落在BC 上,记为A 1,折痕为DE.若将∠B 沿EA 1向内翻折,点B 恰好落在DE 上,记为B 1,则AB=_____.5.如图,在平面直角坐标系中,点C 的坐标为 1,0 ,点A 的坐标为 3,3 ,将点A 绕点C 顺时针旋转90 得到点B ,则点B 的坐标为_____________.6.已知,如图1,若AD 是ABC 中BAC 的内角平分线,通过证明可得=AB BD AC CD,同理,若AE 是ABC 中BAC 的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在ABC 中,2,3,BD CD AD 是ABC 的内角平分线,则ABC 的BC边上的中线长l 的取值范围是________7.如图,在Rt△ABC 中,∠ACB=90°,且AC=AD.(1)作∠BAC 的平分线,交BC 于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,证明AB DE .8.如图,ABC 中,AB AC ,点,D E 在边BC 上,BD CE .求证ADE AED .9.如图,点D、E 分别是AB、AC 的中点,BE、CD 相交于点O,∠B=∠C,BD=CE.求证:(1)OD=OE;(2)△ABE≌△ACD.10.如图,点E、F 在线段BC 上,//AB CD ,A D ,BE CF ,证明:AE DF .11.如图,矩形ABCD 中为边BC 上一点,将ABE △沿AE 翻折后,点B 恰好落在对角线AC 的中点F 上.(1)证明:AEF CEF ≌;(2)若3AB AE 的长度12.如图,点A,D,B,E 在一条直线上AD BE ,AC DF ,//AC DF .求证:BC EF .13.如图,在矩形ABCD 中,点M 在DC 上,AM AB ,且BN AM ,垂足为N .(1)求证:ABN MAD ≌;(2)若2,4AD AN ,求四边形BCMN 的面积.14.如图,在ABC 中,点D 在AB 边上,CB CD ,将边CA 绕点C 旋转到CE 的位置,使得ECA DCB ,连接DE 与AC 交于点F ,且70B ,10A .(1)求证:AB ED ;(2)求AFE的度数.15.在四边形ABCD中,对角线AC平分∠BAD.(探究发现)(1)如图①,若∠BAD=120 ,∠ABC=∠ADC=90 .求证:AD+AB=AC;(拓展迁移)(2)如图②,若∠BAD=120 ,∠ABC+∠ADC=180 .①猜想AB、AD、AC三条线段的数量关系,并说明理由;②若AC=10,求四边形ABCD的面积.16.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60 得到CQ,连QB.(1)如图1,直接写出线段AP 与BQ 的数量关系;(2)如图2,当点P、B 在AC 同侧且AP AC 时,求证:直线PB 垂直平分线段CQ ;(3)如图3,若等边三角形ABC 的边长为4,点P、B 分别位于直线AC 异侧,且APQ 的34AP 的长度.17.如图①,E F 、是等腰Rt ABC 的斜边BC 上的两动点,45,EAF CD BC 且CD BE .(1)求证:ABE ACD △≌△;(2)求证:222EF BE CF ;(3)如图②,作AH BC ,垂足为H,设,EAH FAH ,不妨设2AB 利用(2)的结论证明:当45 时,tan tan tan()1tan tan成立.题型二相似三角形18.如图,ABC 与111A B C △位似,位似中心是点O,若1:1:2OA OA ,则ABC 与111A B C △的周长比是()A.1:2B.1:3C.1:4D.219.如图, ABC 中,点D、E 分别在AB、AC 上,且12AD AE DB EC ==,下列结论正确的是()A.DE:BC=1:2B. ADE 与 ABC 的面积比为1:3C. ADE 与 ABC 的周长比为1:2D.DE //BC20.如图,在ACD △中,6AD ,5BC , 2AC AB AB BC ,且DAB DCA ,若3AD AP ,点Q 是线段AB 上的动点,则PQ 的最小值是()A.72B.6252D.8521.如图,△ABC 中,AB=AC,∠B=72°,∠ACB 的平分线CD 交AB 于点D,则点D 是线段AB 的黄金分割点.若AC=2,则BD=______.22.如图,矩形ABCD 中,6AB ,8BC ,对角线BD 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则线段EF 的长为__.23.如图,在菱形ABCD 中,点M,N 分别是边BC ,DC 上的点,34BM BC ,34DN DC .连接AM ,AN ,延长AN 交线段BC 延长线于点E.(1)求证:ABM AND △≌△;(2)若4 AD ,则ME 的长是__________.24.已知AB BD ,AE EF , ABD AEF .(1)找出与DBF 相等的角并证明;(2)求证:BFD AFB ;(3)AF kDF ,180EDF MDF ,求AE MF .25.已知在 ABC 中,O 为BC 边的中点,连接AO,将 AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到 EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC 时,则AE 与CF 满足的数量关系是;(2)如图2,当∠BAC=90°且AB≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE 的长.26.在△ABC 中,AC=AB,∠BAC= ,D 为线段AB 上的动点,连接DC,将DC 绕点D 顺时针旋转 得到DE,连接CE,BE.(1)如图1,当 =60°时,求证:△CAD≌△CBE;(2)如图2,当tanα=34时,①探究AD和BE之间的数量关系,并说明理由;②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.。

初中数学中考复习:30全等三角形(含答案)

初中数学中考复习:30全等三角形(含答案)

中考总复习:全等三角形—巩固练习【巩固练习】一、选择题1.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与△ABC全等,这样的三角形最多可画出( ) .A.2个B.4个C.6个D.8个2.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为AC的中点,AE⊥BD交BC于E,若∠BDE=,∠ADB的大小是().A. B. C. D.3.如图,△ABC中,∠C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则∠ACF的大小是().A.45° B.60° C.30° D.不确定4.如图,△ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( ) . A. 45°B. 20°C. 30°D. 15°5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是().  A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等 C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则(). A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC;二、填空题7.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的。

若∠1:∠2:∠3=28:5:3,则的度数为______.8.如图,把△ABC绕C点顺时针旋转35°,得到,交于点,若,则∠A=______.9.如图,已知的周长是20,分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3, △ABC的面积是___________..如图,直线AE∥BD,点则……峰1峰2已知:如图,过△ABC的边BC的中点求证:14.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.15.如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?16. 如图,在中,,,,. (1)求证:,. (2)如图,若是的中点.求证:. (3)如图,若于点,延长交于点.求证:.【答案与解析】一、选择题1.【答案】B.2.【答案】C.【解析】作关于BC的对称图形,作的中点,连接,则容易证明,说明和AE在同一条直线上的线段,根据对称性交于E点,所以与DE在同一条直线上,容易证明.所以.所以.3.【答案】C.【解析】延长CF到D,使CD=2CF,容易证明 △AFC≌△,所以∠D=∠FCA,所以AC∥BD,因为 CF=BE,所以CD=2BE,即AC与BD之间的距离等于CD的一半, 所以∠D=30°.所以内错角∠ACF=30°.4.【答案】D.5.【答案】C.【解析】提示:∵△ABD≌△CDB, ∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD, ∴△ABD和△CDB的周长和面积都分别相等. ∵∠ADB=∠CBD, ∴AD∥BC.6.【答案】D.二、填空题7.【答案】80°.【解析】由三角形内角和是180°知∠1=140°,∠2=25°,∠3=15°, 由翻折知:∠ABE=∠2,∠ACD=∠3,∴.8.【答案】55°.【解析】由旋转知:,, ∵,∴55, ∴55°.9.【答案】30 .【解析】提示:面积法.10.【答案】8.11.【答案】相等或互补.12.【答案】-29 , B .三、解答题13.【答案与解析】证明:延长FM到G,使,连接 ∵M为BC的中点, ∴△BMG≌△CMF ∴∠G=∠2,CF=BG, 又∵平分,ME∥AD, ∴∠3=∠4,∠3=∠E,∠1=∠4, ∴∠1=∠E,即AE=AF, ∵∠1=∠2,∠G=∠2,∠1=∠E, ∴∠G=∠E,即BE=BG=CF, ∴AB+AC=AB+AF+CF=AB+AE+CF=BE+CF=2CF,即14.【答案与解析】猜测AE=BD,AE⊥BD. 证明如下: ∵∠ACD=∠BCE=90°, ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ∵△ACD和△BCE都是等腰直角三角形, ∴AC=CD,CE=CB. ∴△ACE≌△DCB(SAS) ∴AE=BD,∠CAE=∠CDB. ∵∠AFC=∠DFH, ∴∠DHF=∠ACD=90°, ∴AE⊥BD.15.【答案与解析】(1)①∵秒, ∴, ∵,点为的中点, ∴. 又∵, ∴, ∴. 又∵, ∴, ∴. ②∵,∴, 又∵,,则, ∴点,点运动的时间秒, ∴. (2)设经过秒后点与点第一次相遇, 由题意,得, 解得. ∴点共运动了. ∵, ∴点、点在边上相遇, ∴经过秒点与点第一次在边上相遇.16.【答案与解析】(1)提示:证明≌(SAS).(2)提示:延长至,使得,连结,先证≌(SAS), 再证≌(SAS).(3)提示:作于,的延长线于,先证≌(AAS), 同理证明≌,再证≌(AAS).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习说明:全等三角形作为中考试题中必考内容之一,考查的方向非常明确,尤其是近三年来,在解答题中,分值从6分变为7分,考查方式都是通过三角形全等来证明线段相等。

从陕西省中考试卷赋分的变化可以看出,命题组是偏向于基础较差的学生来命题,对于简单问题的考查分数比例在逐渐上升趋势,而偏难题的分数分布及赋分比例在逐渐弱化。

这部分属于偏低难度的试题,中等以上的学生都可以完成。

在复习中面向全体学生,争取让每一位学生都可以可以找出三角形全等的条件,做对三角形全等试题。

全等三角形专题复习1.(2015·贵州六盘水,第9题3分)如图4,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DCC.∠ACB=∠DBC D.AC=BD考点:全等三角形的判定..分析:本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.解答:解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2015•江苏泰州,第6题3分)如图,△中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是A.1对B.2对C.3对D.4对【答案】D.【解析】试题分析:根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.试题解析:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;3. (2015•四川省宜宾市,第18题,6分)如图,AC=DC,BC=EC,∠ACD = ∠BCE求证:∠A=∠DADEBC4、(2015•福建泉州第20题9分)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BO D.求证:AO=O B.解:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵∠AOC=∠BOD,∴∠AOC﹣∠DOC=∠BOD﹣∠DOC,∴∠AOD=∠BOC,在△AOD和△BOC中,,∴△AOD ≌△BOC , ∴AO =O B .考点:全等三角形的判定与性质;作图—复杂作图..5、. (2015•四川泸州,第18题6分)如图,AC =AE ,∠1=∠2,AB =AD . 求证:BC =DE .考点:全等三角形的判定与性质.. 专题:证明题.分析:先证出∠CAB =∠DAE ,再由SAS 证明△BAC ≌△DAE ,得出对应边相等即可. 解答:证明:∵∠1=∠2, ∴∠CAB =∠DAE , 在△BAC 和△DAE 中,,∴△BAC ≌△DAE (SAS ), ∴BC =DE .点评:本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.6. (2015•四川凉山州,第21题8分)如图,在正方形ABCD 中,G 是BC 上任意一点,连接AG ,DE ⊥AG 于E ,BF ∥DE 交AG 于F ,探究线段AF 、BF 、EF 三者之间的数量关系,并说明理由.21DEC AB【答案】AF=BF+EF,理由见试题解析.考点:1.全等三角形的判定与性质;2.正方形的性质.7. (2015•四川乐山,第20题10分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.考点:1.翻折变换(折叠问题);2.全等三角形的判定与性质.8. (2015•四川南充,第19题8分)(8分)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2C D.【答案】略.【解析】试题分析:根据AD⊥BC,CE⊥AB,得出∠AEF=∠CEB=90°,即∠AFE+∠EAF=∠CFD+∠ECB=90°,结合∠AEF=∠CFD得出∠EAF=∠ECB,从而得到△AEF≌△CEB;根据全等得到AF=BC,根据△ABC为等腰三角形则可得BC=2CD,从而得出AF=2CD.试题解析:(1)、∵AD⊥BC,CE⊥AB∴∠AEF=∠CEB=90°即∠AFE+∠EAF=∠CFD+∠ECB=90°又∵∠AEF=∠CFD∴∠EAF=∠ECB在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB∴△AEF≌△CEB (2)、由△AEF≌△CEB得:AF=BC在△ABC中,AB=AC,AD⊥BC∴CD=BD,BC=2CD∴AF=2CD.考点:三角形全等、等腰三角形的性质.19. (2015•浙江滨州,第23题10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形.其中线段BD交AC于点G,线段AE交CD于点F.求证:(1)△ACE≌△BCD;(2).【答案】[考点:三角形全等,三角形相似的判定与性质9.(2015•浙江杭州,第18题8分)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M、N分别在AB、AC边上,AM=2MB,AN=2NC,求证:DM=DNCDBN M A【答案】证明:∵AM =2MB ,AN =2NC ,∴2233AM AB AN AC ==,. 又∵AB =AC ,∴AM AN =.∵AD 平分∠BAC ,∴MAD NAD ∠=∠. 又∵AD =AD ,∴()AMD AND SAS ∆∆≌. ∴DM =DN .【考点】全等三角形的判定和性质.【分析】要证DM =DN 只要AMD AND ∆∆≌即可,两三角形已有一条公共边,由AD 平分∠BAC ,可得MAD NAD ∠=∠,只要再有一角对应相等或AM AN =即可,而AM AN =易由AB =AC ,AM =2MB ,AN =2NC 证得.10.(2015•广东梅州,第21题9分)如图,已知△ABC ,按如下步骤作图: ①以A 为圆心,AB 长为半径画弧;②以C 为圆心,CB 长为半径画弧,两弧相交于点D ; ③连接BD ,与AC 交于点E ,连接AD ,C D . (1)求证:△ABC ≌△ADC ;(2)若∠BAC =30°,∠BCA =45°,AC =4,求BE 的长.考点:全等三角形的判定与性质;作图—复杂作图.分析: (1)利用SSS 定理证得结论;(2)设BE =x ,利用特殊角的三角函数易得AE 的长,由∠BCA =45°易得CE =BE =x ,解得x,得CE的长.解答:(1)证明:在△ABC与△ADC中,,∴△ABC≌△ADC(SSS);(2)解:设BE=x,∵∠BAC=30°,∴∠ABE=60°,∴AE=tan60°•x=x,∵△ABC≌△ADC,∴CB=CD,∠BCA=∠DCA,∵∠BCA=45°,∴∠BCA=∠DCA=90°,∴∠CBD=∠CDB=45°,∴CE=BE=x,∴x+x=4,∴x=2﹣2,∴BE=2﹣2.点评:本题主要考查了全等三角形的判定及性质,特殊角的三角函数,利用方程思想,综合运用全等三角形的性质和判定定理是解答此题的关键.11.(2015•广东广州,第18题9分)如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等证明即可.解答:证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=AF.点评:本题考查了正方形的性质,全等三角形的判定与性质,以及垂直的定义,求出两三角形全等,从而得到BE=AF是解题的关键.12.(2015•江苏无锡,第21题8分)已知:如图,AB∥CD,E是AB的点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=B D.考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据CE=DE得∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.解答:证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的点,∴AE=BE,在△AEC和△BED,,∴△AEC≌△BED(SAS),∴AC=B D.点评:本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.13、(2015山东青岛,第21题,8分)已知:如图,△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE;垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【答案】略;AB∥DE且AB=DE.【解析】试题分析:根据AB=AC得出∠B=∠ACB,根据AD为中线得出AD⊥BC,根据AE∥BC得出∠EAC=∠ACB,则∠B=∠EAC,根据CE⊥AE得出∠CEA=∠ADB=90°,结合AB=AC得出三角形全等;根据全等得出AE=BD,然后根据AE∥BD得出四边形ABDE是平行四边形,然后根据平行四边形的性质得出答案.试题解析:(1)证明:∵AB=AC∴∠B=∠ACB又∵AD是BC边上的中线∴AD⊥BC,即∠ADB=90°∵AE∥BC∴∠EAC=∠ACB∴∠B=∠EAC∵CE⊥AE∴∠CEA=90°∴∠CEA=∠ADB又AB=AC∴△ABD≌△CAE(AAS)(2)AB∥DE且AB=DE。

相关文档
最新文档