七年级下册数学竞赛试题及答案.docx
【数学】新人教版七年级下册数学竞赛试卷及答案
【关键字】数学七年级下册数学竞赛题一、选择题(共10小题,每小题3分,共30分)1、如右图,下列不能判定∥的条件是( ).A、B、;C、;D、.2、在直角坐标系中,点P(6-2x,x -5)在第二象限,•则x的取值范围是()。
A、3< x <5B、x > 、x <3 D、-3< x <53、点A(3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A、(1,-8)B、(1, -2)C、(-7,-1)D、( 0,-1)4、在下列各数:3.1415926、、0.2、、、、、中,无理数的个数( )A、2B、、4 D、55、下列说法中正确的是()A. 实数是负数B.C. 一定是正数D.实数的绝对值是6、若a>b,则下列不等式变形错误的是A.a+1 > b+1B. >C. 3a-4 > 3b-4D.4-3a > 4-3bA、<-1B、<、>-1 D、>19、如图,宽为的长方形图案由10个全等的小长方形拼成,其小长方形的面积()A.2 B.C.2 D.210. 若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣362、填空题(本大题共9小题, 每题3分, 共27分)11、的平方根是_______________12、规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.13、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是________.14、阅读下列语句:①对顶角相等;②同位角相等;③画∠AOB的平分线OC;④这个角等于30°吗?在这些语句中,属于真命题的是_____ _____(填写序号)15 、某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了题.16、如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度。
初一下数学竞赛试题及答案
初一下数学竞赛试题及答案【试题一】题目:一个数的平方根是另一个数的立方根,求这个数。
【答案】设这个数为 \( x \),则根据题意,我们有 \( \sqrt{x} =\sqrt[3]{y} \),其中 \( y \) 是另一个数。
将等式两边立方,得到\( x = y^{1/3} \)。
由于 \( y \) 可以是任意数,\( x \) 也可以是任意数的立方。
例如,如果 \( y = 8 \),则 \( x = 2 \)。
【试题二】题目:一个直角三角形的两条直角边分别为 \( 3 \) 厘米和 \( 4 \) 厘米,求斜边的长度。
【答案】根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过公式 \( c = \sqrt{a^2 + b^2} \) 计算,其中 \( a \) 和 \( b \) 是直角边的长度。
将 \( a = 3 \) 和 \( b = 4 \) 代入公式,得到 \( c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
【试题三】题目:如果一个数的 5 倍加上 12 等于这个数的 3 倍减去 8,求这个数。
【答案】设这个数为 \( x \),根据题意,我们有 \( 5x + 12 = 3x - 8 \)。
将等式两边的 \( x \) 项移项,得到 \( 2x = -20 \)。
解得 \( x = -10 \)。
【试题四】题目:一个圆的半径是 7 厘米,求这个圆的面积。
【答案】圆的面积 \( A \) 可以通过公式 \( A = \pi r^2 \) 计算,其中\( r \) 是圆的半径。
将 \( r = 7 \) 代入公式,得到 \( A = \pi \times 7^2 = 49\pi \) 平方厘米。
【试题五】题目:一个分数的分子和分母的和是 21,且这个分数等于\( \frac{3}{4} \),求这个分数。
七年级数学竞赛试题(含答案)
七年级数学竞赛试题(含答案)一、耐心填一填(每题5分,共50分)1、某天,5名同学去打羽毛球,从上午8:45一直到上午11:05,若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为________分2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=___________度3、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。
4、定义a*b=ab+a+b,若3*x=27,则x的值是________。
5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。
问:F的对面是_______。
FA DBCAED C6 A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是________。
7、正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为________。
8、小李同学参加了学校组织的名为“互帮互助向未来”活动,为此小李自己在家制作了四份小礼物,准备送给他的新同学,四份小礼物分别装在形状完全一样的小长方体的盒子里,每个小长方体的长、宽、高分别是3、1、1,然后把这四个小长方体盒子用漂亮的丝带捆绑成一个大长方体,那么这个大长方体的表面积可能有________ 中不同的值,其中最小值为________。
9、当a ______时,方程组223196922x y a ax y a a⎧+=+-⎪⎨-=-+⎪⎩的解是正数。
10、如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是________平方厘米。
二、细心选一选(每题5分,共30分)1、如果有2015名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2015名学生所报的数是()A、1B、2C、3D、42、俗话说“商场如战场”,“买的永远没有卖的精”。
人教版初一下数学竞赛试题及答案
人教版初一下数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果a和b是两个连续的整数,且a > b,那么a-b的值是:A. 1B. 0C. -1D. 23. 一个数的平方根是它本身,这个数可以是:A. 1B. -1C. 0D. 44. 一个数的立方等于它本身,这个数有:A. 1个B. 2个C. 3个D. 4个5. 一个圆的半径是r,它的面积是:A. πr²B. 2πrC. πrD. r²6. 一个长方体的长、宽、高分别是a、b、c,它的体积是:A. abcB. 2abcC. a+b+cD. a²b²c²7. 一个等差数列的首项是a,公差是d,第n项是:A. a+(n-1)dB. a+ndC. a-dD. a-d(n-1)8. 如果一个三角形的三边长分别为a、b、c,且a² + b² = c²,那么这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 不规则三角形9. 一个分数的分子和分母同时扩大相同的倍数,其值:A. 增大B. 减小C. 不变D. 无法确定10. 一个数的绝对值是它本身,这个数:A. 必须为正数B. 必须为负数C. 可以是正数或零D. 可以是负数或零二、填空题(每题4分,共20分)11. 一个数的平方等于16,这个数是________。
12. 如果一个数的相反数是-5,那么这个数是________。
13. 一个数的绝对值等于5,这个数可以是________。
14. 一个数的立方根是2,那么这个数是________。
15. 一个数的倒数是1/4,这个数是________。
三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3+5)² - 2×(4-1)。
17. 一个长方体的长是10厘米,宽是8厘米,高是6厘米,求它的表面积和体积。
人教版七年级数学下册竞赛试卷(含解析)
人教版七年级数学下册竞赛试卷一、选择题1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.20176.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.二.填空题7.关于x的不等式组恰好只有三个整数解,则a的取值范围是8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=.10.使代数式的值为整数的全体自然数x的和是.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=;x n+x n+1=.12.已知S=,则S的整数部分是.三.解答题13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是.(参考公式:S n=1+2+3+…+n=)17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是.参考答案与试题解析一、选择题(每题5分,共30分)1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b【分析】利用平方法把三个数值平方后再比较大小即可.【解答】解:∵a2=2000+2,b2=2000+2,c2=4000=2000+2×1000,1003×997=1 000 000﹣9=999 991,1001×999=1 000 000﹣1=999 999,10002=1 000 000.∴c>b>a.故选:A.2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定【分析】由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,然后代入化简即可得出答案.【解答】解:由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,代入,=++,=,=0.故选:C.3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式【分析】根据x、p的取值范围,根据所给代数式,简化原式,再把x的最大值15代入计算即可.【解答】解:∵p≤x≤15,∴x﹣p≥0,x﹣15≤0,x﹣p﹣15≤0,∴|x﹣p|+|x﹣15|+|x﹣p﹣15|=x﹣p+(15﹣x)+(﹣x+p+15)=x﹣p+15﹣x﹣x+p+15=﹣x+30,又∵p≤x≤15,∴x最大可取15,即x=15,∴﹣x+30=﹣15+30=15.故选:C.4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个【分析】由题意可知这样的四位数可分别从使用的不同数字的个数分类考虑:(1)只用1个数字,(2)使用2个不同的数字,(3)使用3个不同的数字,(4)使用4个不同的数字,然后分别分析求解即可求得答案.【解答】解:根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.故选:C.5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.2017【分析】根据平方差公式将各数变形后判断即可.【解答】解:如果一个数可以表示成两个正整数的平方差,记为x=a2﹣b2=(a+b)(a ﹣b),则x可以分解为a+b,a﹣b的积,且注意到这两个因子差2b,即同奇同偶,所以大于1的奇数可以分解为两个奇数之积(1和他自身),必可以写成两数平方之差(可以反求出来);而一个偶数必须要写成两个偶数之积,则必能被4整除才行,所以四个数中,只有2014不能写成两整数之平方差,故选:A.6.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.【分析】首先设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解方程即可求得QY的长,即可解决问题.【解答】解:设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解得x=,∴XQ=1﹣=,∴==,故选:B.二.填空题(每题5分,共计30分)7.关于x的不等式组恰好只有三个整数解,则a的取值范围是【分析】首先确定不等式组的解集,根据整数解的个数确定有哪些整数解,根据解的情况得到关于a的不等式组,从而求出a的范围.【解答】解:解不等式组得,,∴不等式组的解集是﹣a<x≤a,∵关于x的不等式组恰好只有三个整数解,∴必定有整数解0,∵|﹣a|>|a|,∴三个整数解不可能是0,1,2.若三个整数解为﹣1,0,1,则,解得≤a≤;若三个整数解为﹣2,﹣1,0,则,此不等式组无解,所以a的取值范围是≤a≤.故答案为≤a≤.8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为3.【分析】把已知的式子化成[(a﹣b)2+(a﹣c)2+(b﹣c)2]的形式,然后代入求解.【解答】解:∵,,,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:3.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=2.【分析】根据完全平方公式和非负性解答即可.【解答】解:由题意得:(2x2﹣1)(y2﹣1)+2y2(x2﹣1)=0,因为x≥1,y≥1,所以y2﹣1=0,x2﹣1=0,∴y=1,x=1,∴x2+y2=2,故答案为:2.10.使代数式的值为整数的全体自然数x的和是22.【分析】将原式分解为x﹣1+,得到使得原式的值为整数的自然数分别为0、1、2、3、5、11,求的其和即可.【解答】解:∵原式==x﹣1+,∴使得代数式的值为整数的全体自然数x分别为0、1、2、3、5、11,∴全体自然数x的和是0+1+2+3+5+11=22.故答案为22.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=55;x n+x n+1=(n+1)2.【分析】根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,据此求解可得.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x10=1+2+3+4+5+6+7+8+9+10=55,x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:55、(n+1)2.12.已知S=,则S的整数部分是60.【分析】由已知可得,<S<,则可确定60<S<60,即可求解.【解答】解:S=>=60,S=<=60,∴60<S<60,∴S的整数部分是60,故答案为:60.三.解答题(第13题20分,其余每题14分,共计90分)13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).【分析】(1)设a=2002,将原式转化为[a(a﹣7)]2的形式,此题得证;(2)先将原式分解成[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),在判断出(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,即可得出结论.【解答】(1)证明:设a=2002,原式=(a﹣3)(a﹣2)(a﹣1)(a+1)(a+2)(a+3)+36=(a2﹣1)(a2﹣4)(a2﹣9)+36=a6﹣(1+4+9)a4+(4+9+36)a2﹣36+36=a6﹣14a4+49a2=a2(a4﹣14a2+49)=a2•(a﹣7)2=[a(a﹣7)]2.故1999×2000×2001×2003×2004×2005+36=[2002(2002﹣7)]2=(2002×1995)2,即1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4=(92n+1)4﹣(72n+1)4=[(92n+1)2+(72n+1)2][(92n+1)2﹣(72n+1)2]=[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),∵n为正整数,∴(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,∴[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1)能被8整除,即98n+4﹣78n+4能被8整除.14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.【分析】先将(a﹣c)2﹣4(b﹣c)(a﹣b)=0,按照完全平方公式和多项式乘法的运算法则展开化简,再利用三项的完全平方公式变形,从而利用偶次方的非负性得出a+c 与b的数量关系,则的值可得.【解答】解:∵(a﹣c)2﹣4(b﹣c)(a﹣b)=0,∴a2﹣2ac+c2﹣4ab+4b2+4ac﹣4bc=0,∴a2+c2+4b2+2ac﹣4ab﹣4bc=0,∴(a+c﹣2b)2=0,∴a+c=2b,∵abc≠0,∴=2.∴的值为2.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.【分析】设,用m的代数式表示x,再根据“若,则[x]=n“,可以列出关于m的不等式,求出m的范围,再代回求出x.【解答】解:设是非负整数,,∴,∴,解得,4<m⩽8,∵m是非负整数,∴m=5,6,7,8,当m=5 时,得,当m=6 时,得x=6,当m=7 时,得,当m=8 时,得,即满足的所有实数x的值是,.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是n=30,x=1;n=31,x=16;n=32,x =32.(参考公式:S n=1+2+3+…+n=)【分析】根据已知得n个连续的自然数的和为.再根据两种特殊情况,即x=n;x=1;求得剩下的数的平均数的公式,从而得出1<x<n时,剩下的数的平均数的范围,则n有3种情况,分别计算即可.【解答】解:由已知,n个连续的自然数的和为.若x=n,剩下的数的平均数是;若x=1,剩下的数的平均数是,故,解得30≤n≤32当n=30时,29×16=﹣x,解得x=1;当n=31时,30×16=﹣x,解得x=16;当n=32时,31×16=﹣x,解得x=32.故答案为:n=30,x=1;n=31,x=16;n=32,x=32.17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.【分析】(1)由已知得出(a+b+c)2=36,再由(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc,将已知条件代入即可解出abc=6;(2)由(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2),将已知条件及(1)中推得的式子代入,即可求出a2b2+b2c2+a2c2的值,由(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2),即可解出答案.【解答】解:(1)∵a+b+c=6∴(a+b+c)2=36∴a2+b2+c2+2(ab+bc+ac)=36∵a2+b2+c2=14∴ab+bc+ac=11∵a3+b3+c3=36∴(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc=6×(14﹣11)=18∴36﹣3abc=18∴abc=6.(2)∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2)∴121=a2b2+b2c2+a2c2+12(a+b+c)∴a2b2+b2c2+a2c2=121﹣12×6=49∴(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴a4+b4+c4=142﹣2×49=98∴a4+b4+c4的值为98.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是3∠CNP =∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【分析】(1)如图1中,过E作EF∥a.利用平行线的性质即可解决问题.(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°﹣(2y+x),∠CGD=180°﹣(2x+y),推出∠AFB+∠CGD=360°﹣(3x+3y)即可解决问题.(3)分两种情形分别画出图形求解即可.【解答】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°﹣(2y+x),同理:∠CGD=180°﹣(2x+y),∴∠AFB+∠CGD=360°﹣(3x+3y),=360°﹣3×45°=225°.(3)如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI,∵AB∥CD,∴∠NPE=∠CEN,∠ABC=∠BCE,∵∠NCE=∠BCN,∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.当点N′在直线CD的下方时,同法可知:∠CIP+∠CNP=3∠IPN,综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.故答案为:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.。
(word完整版)初中七年级数学竞赛试题及答案,文档.docx
2019 年初中七年级数学竞赛试题及答案一、选择题 ( 每小题 6 分,共 48 分;以下每题的4 个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内. )1 .如果 a 是有理数,代数式2a 1 1 的最小值是 --------------------------()(A) 1 (B) 2 (C) 3 (D) 42 .正五边形的对称轴有--------------------------------------------------( )( A ) 10 条( B )5 条( C ) 1 条( D ) 0 条3.已知等腰三角形的两边长分别为是3 和 6,,则这个三角形的周长是 --------( )( A ) 9( B ) 12( C ) 15( D ) 12 或 154.从一幅扑克牌中抽出5 张红桃, 4 张梅花, 3 张黑桃放在一起洗匀后,从中一次随机抽出 10张,恰好红桃、梅花、黑桃 3 种牌都抽到,这件事情 --------------- ( )( A )可能发生 ( B )不可能发生 ( C )很有可能发生( D )必然发生5 . 如 果( A )a b c abc 的 值 为 - - - - - - - - - - - - - - - - - - - - - - - - - - - ()ab1 , 则abcc1( B ) 1 ( C )1( D )不确定6.棱长是 1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是()( A ) 36cm 2( B ) 33cm 2( C ) 30cm 2 ( D ) 27cm 2(第 6 题图)(第 7 题图)7.如图是一块矩形 ABCD 的场地,长 AB=102m ,宽 AD=51m ,从 A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为 2m ,其余部分种植草坪,则草坪面积为 ----------- ( ) 22 2 (D) 2( A ) 2018m ( B ) 2018m (C) 2018m 2018m 8.如果一个方程有一个解是整数,我们称这个方程有整数解 . 请你观察下面的四个方程:( 1) 6x 4 y13 ( 2) 3x7 y 10 (3) ( x3)( y 2) 4( 4)1 11xy 2005其中有整数解的方程的个数是 ------------------------------------- ( )(A) 1(B) 2(C) 3 (D) 4二、填空题 ( 每小题 6 分,共 42 分 )9.观察下列算式:4 × 1 × 2+1=3 24 × 2 × 3+l=54 × 3 × 4+l=7 4 × 4 × 5+1=9222用代数式表示上述的律是.10.七 0 一班班主任一起共 48人到公园去划船 .每只小船坐 3 人,租金20 元,每只大船坐 5 人,租金 30元 . 他租船要付的最少租金是元 .11. 2018 减去它的1,再减去剩余数的1,再减去剩余数的1,⋯,依此推,一直234到减去剩余数的1,那么最后剩余的数是.200512.一个正 n 形恰好有 n 条角,那么个正n 形的一个内角是度.13.如, DE是△ ABC的 AB 的垂直平分,分交AB、 BC于 D、 E, AE 平分∠ BAC,若∠ B=30°,∠ C=度.14.ABC的三分a, b,c,其中a, b 足a b4(a b2)20 ,第三的 c 的取范是.15.根据下列 5 个形及相点的个数的化律,在第100 个形中有个点 .三、解答 ( 共 60 分 )16.( 15 分)如,ABC中, AB=6,BD=3, AD BC于 D,B=2 C,求 CD的 .AB CD17.( 15 分)两个代表从甲地乘往乙地,每可乘 35 人。
初中数学竞赛试题及答案doc
初中数学竞赛试题及答案doc一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4 或 -4D. 2答案:C3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数的立方等于-27,这个数是多少?A. -3B. 3C. -27D. 27答案:A5. 一个数的倒数等于它自身,这个数是?A. 1B. -1C. 0D. 都不是答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是_________。
答案:±57. 如果一个数的平方根是2,那么这个数是_________。
答案:48. 一个数的立方根是3,那么这个数是_________。
答案:279. 一个分数的分子是7,分母是14,化简后是_________。
答案:1/210. 一个数的相反数是-5,那么这个数是_________。
答案:5三、解答题(每题5分,共20分)11. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
证明:根据三角形不等式定理,对于任意三角形ABC,有AB + BC > AC,AC + BC > AB,AB + AC > BC。
如果已知AB + BC > AC,则满足三角形的构造条件,因此这样的三角形是存在的。
12. 计算:(2x - 3)(x + 4)。
解:根据多项式乘法法则,我们有(2x - 3)(x + 4) = 2x^2 + 8x - 3x - 12 = 2x^2 + 5x - 12。
13. 解方程:2x + 5 = 11。
解:首先将5移到等式右边,得到2x = 11 - 5,即2x = 6。
然后将2除到等式右边,得到x = 6 / 2,即x = 3。
14. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加了15平方米,求原长方形的长和宽。
七年级下册数学竞赛题和经典题含解答共20题
七年级下册数学竞赛题和经典题含解答共10题1. 题目:甲、乙两个正整数的和是300,差是120,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 300 (方程1)x - y = 120 (方程2)解方程组得到甲的数x = 210,乙的数y = 90。
2. 题目:某数的4倍减去该数的2倍等于30,求这个数。
解答:设这个数为x。
根据题意,我们可以得到以下方程:4x - 2x = 30化简得到2x = 30解方程得到x = 153. 题目:一个正整数加上自身的平方等于140,求这个正整数。
解答:设这个正整数为x。
根据题意,我们可以得到以下方程:x + x²= 140化简得到x²+ x - 140 = 0解方程得到x = 10 或x = -14,由题目要求为正整数,所以x = 10。
4. 题目:一个三位数加上它的逆序数等于1333,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:100x + 10y + z + 100z + 10y + x = 1333化简得到101x + 20y + 101z = 1333由于101为质数,所以x和z只能为1,y只能为6。
解方程得到x = 1,y = 6,z = 1,所以这个三位数为161。
5. 题目:甲、乙两个数的和是90,差是20,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 90 (方程1)x - y = 20 (方程2)解方程组得到甲的数x = 55,乙的数y = 35。
6. 题目:某个三位数的百位数是7,个位数是2,且各位上的数字之和是13,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:x = 7 (百位数是7)z = 2 (个位数是2)x + y + z = 13 (各位上的数字之和是13)代入得到7 + y + 2 = 13解方程得到y = 4所以这个三位数为742。
下学期七年级数学竞赛试题及答案.doc
2016年下七年级数学竞赛试题时量:120分钟满分:120分一.选择题(共10小题,每小题3分,满分30分)1.已知a,b,c为有理数,且a+b+c=0,a≥﹣b>|c|,则a,b,c三个数的符号是()A.a>0,b<0,c<0 B.a>0,b<0,c>0C.a<0,b>0,c≥0 D.a>0,b<0,c≤02.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n的值是()A.48 B.56 C.63 D.743.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣34.一个两位数,两个数位上的数字之和是7,若这个两位数加上9得到的两位数的数字的顺序和原来的两位数的数字的顺序恰好相反,那么原来的两位数为()A.25 B.52 C.34 D.435.国务院总理李克强在第十二届全国人大第四次政府工作报告中指出,2015年我国国内生产总值达到了67.7万亿元,67.7万亿元用科学记数法表示为()A.67.7×1012B.6.77×1013C.0.677×1014D.6.77×10146.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少7.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短8.下列说法中正确的有()①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AB=BC,则点B是AC的中点;⑤把一个角分成两个角的射线叫角的平分线;⑥直线l经过点A,那么点A在直线l上.A.2个B.3个C.4个D.5个9.在解方程13132xxx????时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)10.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()。
七年级下数学竞赛考试(含答案)
七年级下数学竞赛考试(含答案)————————————————————————————————作者:————————————————————————————————日期:姓名___________ 考号___________ 班别___________ 校名_____________………………………… 密 ………… 封 ………… 线 ………… 内 ………第二学期校际联考七年级数学试卷题次 一 二 16 17 18 19 20 21 22 23 24 25 总分 得分说明:本卷共8页,25题,总分120分,考试时间共120分钟。
温馨提示:亲爱的同学们,请相信自己,仔细审题,沉着作答,就一定能考出好成绩,祝你成功!一、精心选一选:(每小题给出四个供选答案,其中只有一个是正确的,把正确的答案代号填放下表相应题号下的空格内。
每小题3分,共30分。
) 题号 1 2 3 4 5 6 7 8 9 10 答案1.下列计算正确的是( )A .4416x x x •=B .235()x x x -•-=C .2222a a a •=D .235a a a +=2.已知∠A+∠B=1800,∠A 与∠C 互补,则∠B 与∠C 的关系是( ) A .相等 B .互补 C .互余 D .不能确定 3.用科学计数法表示近似数0.0515的正确的是( )A .15.1510-⨯B . 25.1510-⨯C .10.51510-⨯D . -25.210⨯ 4.下列说法正确的是( )A .0不是单项式B .ba是单项式 C .11x-多项式 D .单项式32x y π-的次数是3,系数是3π-5.如下图所示,已知AB ∥CD ∥EF ,且CG ∥AF ,则图中与∠BAF 相等的角的个数是( )A .7个B .3个C .4个D .9个6.用长分别为10cm ,30cm ,40cm ,50cm 的四段线段,任取其中三段线段可以构成不同的三角形有( )个A B C D E G FA .0B .1C .2D .37.已知等腰三角形的一个外角为1100,则它的一个底角等于( )A .550B .700C .550 或700D .不能确定 8.已知下列条件,不能唯一画出一个三角形的是( )A .AB=5cm ,∠A=700,∠B=500B .AB=5cm ,∠A=700,∠C=500C .AB=5cm ,AC=4 cm ,∠C=500D .AB=5cm ,AC=4 cm ,∠A=500 9.已知554433222,3,5,6a b c d ====,那么,,,a b c d 从小到大的顺序是( ) A .a <b <c <d B .a <b <d <c C .b <a <c <d D .a <d <b <c 10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)……(232+1)+1结果的个位数是( ) A .2 B .4 C .6 D .7 二、耐心填一填:(把答案填放下表相应的空格里。
2024年江苏省江阴市第九届优利信杯七年级下学期3月竞赛数学试题
第九届初中数学学科“优利信杯”俱乐部竞赛七年级试卷(本试卷满分150分,考试时间为150分钟) (2024.3.25)一、选择题(本大题共8小题,每小题4分,共32分.以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的括号内)1.下面的说法:①过一点有且只有一条直线与这条直线平行;②两条相交直线组成的四个角中,若有一个直角,则四角都相等;③方程ax =a 的解是x =1;④垂直于同一条直线的两条直线互相平行.其中正确的个数有 ( ) A .1个 B .2个 C .3个 D .4个 2.a ,b ,c ,d 都是正数,且a 2=2,b 3=3,c 4=4,d 5=5,则a ,b ,c ,d 中,最大的一个是 ( ) A .aB .bC .cD .d3.在100到200的自然数中不是5的倍数也不是6的倍数的个数有 ( ) A .64B .65C .66D .674.下面四种正多边形平面镶嵌,每个顶点处正多边形不完全相同的是 ( )A .B .C .D .5.现有长为60cm 的铁丝,要截成n (n >2)小段,每小段的长为不小于1cm 的整数,如果其中任意3小段都不能拼成三角形,当n 取最大值时,有 种方法将该铁丝截成满足条件的n 段. ( ) A .3B .4C .5D .66.如图,直线AB ∥CD ,点E 在直线AB 上,点F 在直线CD 上,N 为AB 、CD 之间一点,连接NE 并延长交∠DFN 的角平分线于点G ,且EG 平分∠MEB ,当2∠M +∠N =105°时,则∠AEN 的度数为 ( ) A .15° B .21°C .24°D .25°7.已知关于x 的方程5ax +3bx −9x −3a +4b +17=0有无穷多解,则a +b 的值为 ( )A .−1B .0C .1D .5 8.如图,将正奇数按上表排成5列,根据上面规律,2019应在( )A .第126行,第3列B .第126行,第2列C .第253行,第2列D .第253行,第3列(第6题图)(第8题图)二、填空题(本大题共8小题,每小题5分,共40分)9.已知32n -9n -1=72,则n = .10.如图,平行直线AB ,CD 与相交直线EF ,GH 相交,图中的同旁内角共有 对. 11.(x +1)5=ax 5+bx 4+cx 3+dx 2+f ,则b +d 的值为 .12.如图,长方形ABCD 中,若图中阴影部分的面积分别为S 1=6,S 2=3,S 4=2,则S 3= . 13.在我国传统文化中,“喜寿”、“米寿”、“白寿”分别是77岁、88岁、99岁的雅称,小花在年龄是她妈妈年龄的13时曾为奶奶贺喜寿,在年龄是她妈妈年龄的12时又为奶奶贺米寿,则小花岁时将为奶奶贺白寿.14.如图,AB ∥CD ,则∠1、∠2、∠3、∠4、∠5满足的数量关系是 .15.小澄下午6点多外出时,看手表上两指针的夹角为110︒,下午7点前回家时发现两指针的夹角仍为110︒,那么小澄外出的时间总计有 分钟.16.设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现有A 、C 、E 、G 四盏灯开着,其余三盏灯是关的,小明从灯A 开始,顺次拉动开关,即从A 到G ,再从A 开始顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关,最后记号为 的灯是开的. (请将开着的灯的记号全部填写在横线上)三、解答题(本大题共有8小题,共78分.解答时应写出文字说明,推理过程或演算步骤)17.(本题满分10分)解方程:(1)x -82023+x -92024+x -102025+x -112026+4=0;(2)|5-3x |=x -3.18.(本题满分9分)已知数轴上3的对应点是A ,一个动点从原点出发在数轴上移动,每秒移动一个单位.如果第t (0<t <7)秒末正好位于点A ,那么 (1)t 可取的值是 ;(2)满足上述结果的不同运动路线共有几种?请用你喜欢的方式表示出来.(第10题图)(第12题图)(第14题图)19.(本题满分12分)(1)平面上有3条直线,画出它们可能的位置关系,并在旁边写上交点的个数;(2)平面上有4条直线,它们的交点个数可能为;(3)平面上有6条直线,共有12个不同的交点,画出它们所有可能的位置关系.20.(本题满分8分)一艘船在河中逆流而上,路过桥A时船上的救生圈被水冲走,继续向前行驶了20min 发现救生圈遗失,立即返回,在距桥2km的地方追到了救生圈.求水流速度.21.(本题满分8分)【阅读】1×2=13(1×2×3-0×1×2);2×3=13(2×3×4-1×2×3);3×4=13(3×4×5-2×3×4);将这三个等式的两边相加,则得到1×2+2×3+3×4=13×3×4×5=20.【归纳】(1)根据上述规律,猜想下列等式的结果:1×2+2×3+…+n(n+1)=;【应用】(2)利用(1)中得到的结论计算:2×4+4×6+…+100×102;【迁移】(3)请你类比材料中的方法计算:1×2×3+2×3×4+…+n(n+1)(n+2).22.(本题满分11分)如图,将一副三角板按如图①所示放置在直线MN上,∠ABC=∠ECD=90°,∠A=60°,∠E=45°,若三角板ABC固定不动,三角板DCE绕点C以每秒3°顺时针旋转一周,旋转时间为t秒.(1)当△ACE面积最大时,求此时t的值;(2)如图②,AF是△ABC的角平分线,当t=时,DE∥AF;(3)若在三角板DCE旋转的同时三角板ABC也绕点C以每秒1°顺时针旋转(0≤t≤60),CP平分∠BCD,CQ平分∠ACE,在旋转的过程中,∠PCQ的度数是否为定值,若是,求出这个值;若不是,说明理由.23.(本题满分10分)设四位数abcd满足a3+b3+c3+d3+1=10c+d,求出满足条件的所有的四位数.24.(本题满分10分)小江编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘以2或乘以3.例如,10可以这样得到:1+3=4,4×2=8,8+2=10.(1)写出最终结果为136的过程;(2)证明可以得到2100+297−2.。
七年级第二学期数学竞赛试题及参考答案
七年级数学竞赛试题时间120分钟 总分150分1、平面直角坐标系内,点A (n ,n -1)一定不在 象限。
2、设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■这三种物体按质量从大到小....的顺序排列为 。
3、.线段CD 是由线段AB 平移得到的。
点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为 。
4.、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于1 0,则a 的值是 。
5、正方形中的四个数之间都有相同的规律,根据此规律,m 的值是_____ 。
6、定义a*b=ab+a+b,若3*x=27,则x 的值是_____。
7、如图,已知AE ∥DF,则∠A+∠B+∠C+∠D=_________。
8、如图,小亮从A 点出发,沿直线前进10米后向左转30︒,再沿直线前进10米,又向左转30︒,……,照这样走下去,他第一次回到出发地A 点时,一共走了 米。
0 2 8 4 2 4 6 2 4 6 8 44 A30︒30︒30︒第8题第2题FEDCBA 第7题ABCDEFG9、方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解是________________ 。
10、如上图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G = _____________度。
二、选择题((共8小题,每小题5分,共40分):11、若点A(m,n)在第二象限,那么点B(-m,│n│)在( ) A 、 第一象限 B 、第二象限 C 、第三象限 D 、第四象限 12、已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数13、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、1714、设△ABC 的三边长分别为a ,b ,c , 其中a ,b 满足0)4(|6|2=+-+-+b a b a , 则第三边c 的长度取值范围是( )A 、3<c<5B 、2<c<4C 、4<c<6D 、5<c<615、 某种商品若按标价的八折出售,可获利20%,若按原价出售,可获利( ) A 、25% B 、40% C 、50% D 、66.7%16、如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B ,C ,若∠A =40°,则∠ABX +∠ACX =( ) A 、25° B 、30° C 、45° D 、50°第16题17、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则第17题S 阴影的值为:A 、2Mcm 61B 、2Mcm 51C 、2Mcm 41D 、2Mcm 3118、方程198919901989...433221=⨯++⨯+⨯+⨯x x x x 的解是( )A 、1989B 、1990C 、1991D 、1992三、解答题:(共5小题,共60分):19、(10分)已知方程组⎩⎨⎧=+=+4232y ax y x 的解,x 与y 之和为1,求a 的值20、(15分)如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. 求21∠∠与的度数21、(15分)如图所示,在△ABC 中,∠B=∠C ,∠A DE =∠AED ,︒=∠60BAD ,第23题F求∠EDC的度数;22.(20分)某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格为每顶160元,可供10人居住的大帐篷,价格为每顶400元,学校共花去捐款96000元,正好可供2300人临时居住。
七年级数学竞赛测试卷(含答案)
七年数学竞赛测试卷一、填空题:1、若实数a 、b 、c 满足abc= -2,a+b+c >0,则a 、b 、c 中有_______个负数.2、设a △b=a 2-2b ,则(-2)△(3△4)的值为_______________.3、若关于x 的方程x-2(x- a 3 )=43 x 与3x+a 12 -1-5x8 = 1的解相同,则x=_______.4、已知x 、y 是实数,且满足⎩⎨⎧=+=+21192291183352y x y x ,则x +y =__________.5、已知13x x-=,那么多项式3275x x x --+的值是 ; 6、在一次打靶射击中,某个运动员打出的环数只有8、9、10三种。
在作了多于11次的射击后,所得总环数为100。
则该运动员射击的次数为 ,环数为8、9、10的次数分别为 .7、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于 ; 8、已知1111110 0 ()()()a b c a b c a b c b c c a a b⨯⨯≠++=+++++,并且,则的值为 ;9、规定符号“⊕”为选择两数中较大者,规定符号“⊙”为选择两数中较小者,例如:3⊕5=5,3⊙5=3,则10、若-2a m-1b m+ n 与5.6a n – 2m b 3m+ n – 4是同类项,则方程组⎩⎨⎧2mx+ny=460mx+(n-2)y=240的解为 .11、十个人围成一圈,每个人心里都想好一个数,并把自己想的数如实告诉他两旁的人,每个人都将他两旁的人告诉他的数的平均数报出来,报出的数分别为1,2,3,4,5,6,7,8,9,10.问报3的人心里想的数是 ; 12、若关于x 、y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组111222534534a x b y c a x b y c +=⎧⎨+=⎩的解为____________.13、若10=++y x x ,12=-+y y x ,则y x +的值是 。
初一数学下竞赛试题及答案
初一数学下竞赛试题及答案一、选择题(每题3分,共30分)1. 若a和b互为相反数,且a+b=0,那么a的值是多少?A. 0B. 1C. -1D. 无法确定2. 下列哪个数是质数?A. 8B. 9C. 10D. 113. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 24. 一个长方体的长、宽、高分别是a、b、c,它的体积是多少?A. abcB. a + b + cC. a - b - cD. a/b + c5. 一个圆的半径是5,它的周长是多少?A. 10πC. 25πD. 30π6. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 都不是7. 如果x=2y,那么2x=?A. 2yB. 3yC. 4yD. 5y8. 一个直角三角形的两条直角边分别是3和4,斜边是多少?A. 5B. 6C. 7D. 89. 一个数的立方是-27,这个数是多少?A. 3B. -3C. 9D. -910. 一个数的倒数是1/4,这个数是多少?A. 4B. 1/4D. 1二、填空题(每题2分,共20分)11. 一个数的平方是25,这个数是________。
12. 一个数的立方是64,这个数是________。
13. 一个数的绝对值是10,这个数是________。
14. 如果一个数的相反数是-7,那么这个数是________。
15. 一个数的平方根是2或-2,这个数是________。
16. 一个数的倒数是3,这个数是________。
17. 如果x=3y,那么3x=________。
18. 一个直角三角形的两条直角边分别是5和12,斜边是________。
19. 一个圆的半径是10,它的周长是________。
20. 一个数的立方根是2,这个数是________。
三、解答题(每题10分,共50分)21. 证明勾股定理。
22. 解方程:x + 2 = 5。
23. 计算一个长方体的表面积,如果长方体的长、宽、高分别是2m、3m、4m。
2023年七年级下册数学竞赛试题及答案
2023~2023年七年级下学期数学竞赛试题一.选择题(每小题5分,共30分)1.若a<0 , ab<0 , 那么51---+-baab等于( )A . 4B .-4C . -2a+2b+6 D. 19962.数轴上坐标是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2023厘米的线段AB,则线段AB盖住的整点的个数是( )A.2023 或2023 B . 2023或2023 C . 2023 或2023 D . 2023 或20233.已知{a x b y==是方程组{5272=+=+y x y x的解, 则a-b的值为( )A . 2B . 1 C. 0 D. -14.若a<3 , 则不等式(a-3)x<a-3的解集是( )A. x>1 B .x<1 C . x>-1 D . x<-15.方程2x+y=7的正整数解有( )A.一组 B .二组 C .三组 D . 四组6.不等式组{5335+<-<xxax的解集为x<4, 则a满足的条件是( )A. a<4 B .a=4 C .a≤4 D .a≥4二.填空题(每小题4分,共24分)1.不等式组{4252>+<-axbx的解集是0<x<2, 则a+b的值等于_______2.已知543zyx ==, 且10254=+-z y x ,则z y x +-52的值等于________3.计算200920081431321211⨯+⋅⋅⋅+⨯+⨯+⨯ = _________4.一个角的补角的31等于它的余角, 则这个角等于_____度.5.计算(1+715131++)×-91715131⎪⎪⎭⎫ ⎝⎛+++(1+91715131+++)×(715131++)=.6。
b b a -=+22若,______622=+-+b a b a 则三. 解答题:(,共46分). 1(本题6分)解方程组 345238x y x y -=⎧⎨+=-⎩,.2.(本题10分)已知: 0634=--z y x ,072=-+z y x ()0≠xyz , 求代数式222222103225z y x z y x ---+的值3(本题10分).如图,已知CD ⊥AB ,DE ∥BC,∠1=∠2求证:FG ⊥AB21G F E D CB A4.(本题10分)在平面直角坐标系中,已知三点()()()b c C b B a A ,,0,,,0,其中c b a ,,满足关系式()a b c b a -==-+-2,0322;(1)求c b a ,,的值,(2)请你将三点()()()b c C b B a A ,,0,,,0在平面直角坐标系中描出来,并计算出ABC ∆的面积。
七下数学竞赛试题及答案
七下数学竞赛试题及答案一、选择题(每题4分,共20分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 已知一个直角三角形的两个直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -84. 如果一个多项式f(x) = ax^2 + bx + c,其中a ≠ 0,那么f(x)的图像是一个:A. 直线B. 抛物线C. 双曲线D. 圆5. 一个圆的半径是5,求这个圆的面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题3分,共15分)6. 一个数的立方根是2,这个数是________。
7. 两个连续整数的和是21,这两个整数分别是________和________。
8. 如果一个数的绝对值是5,那么这个数可以是________或________。
9. 一个数的倒数是1/4,这个数是________。
10. 一个长方体的长、宽、高分别是2、3、4,这个长方体的体积是________。
三、解答题(每题5分,共65分)11. 证明:对于任意实数x,(x + 1)^2 ≥ 2x。
12. 一个长方体的长、宽、高分别是a、b、c,求证:这个长方体的对角线长度是√(a^2 + b^2 + c^2)。
13. 已知一个二次方程ax^2 + bx + c = 0(a ≠ 0),求证:如果b^2 - 4ac > 0,那么这个方程有两个不相等的实数根。
14. 一个圆的半径是r,求证:这个圆的周长是2πr。
15. 已知一个等腰三角形的两个腰长是a,底边长是b,求证:这个等腰三角形的面积是(1/2)ab。
16. 一个数列的前n项和为S_n,如果S_n = n^2,求证:这个数列是等差数列。
17. 已知一个函数f(x) = kx + b(k ≠ 0),求证:这个函数的图像是一条直线。
七年级下数学竞赛试题及答案
七年级下数学竞赛试题及答案一、选择题:(每小题5分,共40分)1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为:A 、14辆B 、12辆C 、16辆D 、10辆2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:A 、赚了5元B 、亏了25元C 、赚了25元D 、亏了5元3.如果关于x 的不等式 (a+1) x>a+1的解集为x<1,那么a 的取值范围是:A 、a>0B 、a<0C 、a>-1D 、a<-14已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数 5、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为:A 、2Mcm 61B 、2Mcm 51 C 、2Mcm 41 D 、2Mcm 31 6、x 是任意有理数,则2|x |+x 的值:A 、大于零B 、不大于零C 、小于零D 、不小于零7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■” 的个数为:A 、5B 、4C 、3D 、2●● ▲■ ●■ ▲ ●▲ ? (1) (2)(3)8、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是:A 、70≤x ≤87.5B 、x ≤70或x ≥87.5C 、x ≤70D 、x ≥87.5二、填空题(每小题6分,共60分)9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 年汇星学校七年级下学期数学竞赛试题
班级:姓名:分数:
一 . 选择题 ( 每小题 5 分 , 共 30 分)
1. 若 a<0 , ab<0 ,那么b a 1 a b 5 等于 ( )
A . 4
B .-4
C . -2a+2b+6 D. 1996
2.数轴上坐标是整数的点称为整点 , 某数轴的单位长度是 1 厘米 , 若在这个数轴上随意画出一条长为 2009 厘米的线段 AB,则线段 AB盖住的整点的个数是 ( )
或 2009 B . 2008或2010 C . 2009或2010 D . 2010或2011
x a x 2 y 5
3. 已知y b是方程组2x y 7
的解 ,则 a-b 的值为 ( )
A . 2
B . 1 C. 0 D. -1
4. 若 a<3 ,则不等式(a-3)x<a-3的解集是( )
A. x>1 B .x<1 C . x>-1 D . x<-1
5.方程 2x+y=7 的正整数解有 ( )
A. 一组 B .二组 C .三组 D .四组
5 x 3 3 x5
6. 不等式组x a的解集为x<4,则a满足的条件是( )
A. a<4 B .a=4 C .a≤4 D .a≥4
二 . 填空题 ( 每小题 4 分, 共 24 分 )
x 2 a 4
1. 不等式组 2 x b 5 的解集是0<x<2,则a+b的值等于_______
2. 已知x y z
,且 4 x 5y 2z 10, 3 4 5
则2x 5 y z 的值等于________
3. 计算
1
221
3
11= _________
134********
4.一个角的补角的1
等于它的余角 , 则这个角等于 _____度. 3
5. 计算( 1+ 1
1 1 )×1111- ( 1+
1
111)×35735793579
(1
11)= 357
.
6。
若2a b 2 b ,则2a
2b 6______
a b
三. 解答题 : (, 共 46 分 )
. 1 (本题 6 分)解方程组3x 4 y5,2x 3y8.
2. (本题 10 分)已知 :4x 3y 6 z 0 , x 2 y 7z0 xyz 0 ,
求代数式 5x22y2z2的值
2x23y210z2
3(本题 10 分) . 如图 , 已知 CD⊥AB, DE∥BC,∠1=∠2
求证 :FG⊥AB
4.(本题 10 分)在平面直角坐标系中,已知三点 A 0, a , B b,0 ,C c,b ,其中 a,b, c 满足关系式 a 2 b 3 20,c 2b a ;(1)求的值,(2)请你将三点 A 0, a , B b,0 ,C c,b 在平面直角坐标系中描出来,并计算出的面积。
5.某学校准备组织290 名学生进行野外考察活动, 行李共有100件, 学校计划租用甲乙两种型号的汽车共 8 辆, 经了解 , 甲种汽车每辆最多能载 40 人和 10 件行李 ,
乙种汽车每辆最多能载30 人和 20 件行李 ,
⑴设租用甲种汽车x 辆, 请你帮助学校设计所有可能的租车方案;
⑵如果甲乙两种汽车每辆的租车费用分别为2000 元、1800 元, 请你选择最省钱的一种租车方案
参考答案 :
一
1B 2C 3A 4A 5C 6D
四 .. 填空
1 ; -45
; 2008
45
; 1
,-4
2009
9
三 . 解答
1、 解:由①× 2- ②× 3 得: y=-2 ⋯⋯③ ⋯⋯ 3 分 把③代入①得: x=-1
⋯⋯ 5 分
x ,
∴原方程 的解
1
⋯⋯ 6 分
y
.
2
4 x 3 y 6 z
x 3z
代入原式得 , 原式 = -13
2.
解
x 2 y 7 z
得 y
2z
3. ∵ DE ∥BC , ∴ ∠1=∠BCD , 又∠ 1=∠ 2 ∴ ∠2=∠BCD ∴ FG ∥CD 又 CD ⊥AB ∴ FG ⊥AB
4. (本 10 分)( 1) a=2,b=3,c=4(2)作 (略);的面 =
{40X+30(8-X)≥290
5. 解⑴ : 由题意得
解得 : 5≤ x≤ 6即共有两种租车方案:第一种是租用甲种汽车 5 辆 ,乙种汽车3辆第二种是租用甲种汽车 6 辆 ,乙种汽车2辆
⑵第一种租车方案的费用为 :5 ×2000+3×1800=15400第二种租车方案的费用
为:6 ×2000+2×1800=15600 所以第一种租车方案更省钱。