浙教版七年级下第一章 平行线练习(基础)

合集下载

第一章平行线单元练习+2023—2024学年浙教版数学七年级下册

第一章平行线单元练习+2023—2024学年浙教版数学七年级下册

浙教版七年级下学期第一章平行线单元练习一、选择题1.下列各组图形中,左边的图形平移后可以得到右边图形的是 ( )A B C D2.如图,直线 a , b 被直线 c 所截, ∠1 与∠2 是()A.同位角B.内错角C.同旁内角D.对顶角(第2题图)(第3题图)(第4题图)3.如图是木匠师傅利用直尺和三角尺过已知直线l外一点P作直线l的平行线的方法,其直接理由是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平面内垂直于同一条直线的两条直线互相平行4.如图,下列两个角属于内错角的是()A.∠1 与∠2B.∠1 与∠3C.∠1 与∠4D.∠2 与∠45.如图,已知 AB ∥ CD , ∠ A =53°, ∠ E =19 ,则∠ C 的度数为()A.34°B.33°C.72°D.73°(第5题图)(第6题图)(第7题图)6.如图, ∠1=∠ A , ∠2=∠ D .有下列结论:① AD ∥ EF ; ② AD ∥ BC ; ③EF ∥ BC ; ④ AB ∥ DC .其中正确的有A.1个B.2个C.3个D.4个7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知 AB∥CD,∠BAE=91°,∠DCE=124°,则∠AEC的度数为()A.29°B.30°C.31°D.33°8. 如图,人民公园内一块长方形草地上原有一条 1m 宽的笔直小路,现要将这条小路改造成弯曲小路,小路的上边线向下平移 1m 就是它的下边线,则改造后小路的面积 ( )A.变大了B.变小了C.没变D.无法确定(第8题图)(第9题图)9. 如图, AB ∥ CD ,点 P 在 AB , CD 之间,∠ ACP =2∠ PCD =40° ,连结 AP . 若∠ BAP = α , ∠ CAP = α + β ,则下列说法中,正确的是()A.当∠ P =60°时,α =30°B.当∠ P =60°时,β =40°C.当β =20°时, ∠ P =90°D.当β =0°时,∠ P =90°10.如图1,当光线从空气斜入射到某种透明的液体时发生了折射,满足入射角∠1与折射角∠2的度数比为3∶2.如图2,在同一平面上,两条光线同时从空气斜射入这种液体中,两条入射光线与水平液面夹角分别为α,β,在液体中两条折射光线的夹角为γ,则α,β,γ三者之间的数量关系为()A.23(α+β)=γB.23(α+β)=120°-γC.α+β=γD.α+β+γ=180°二、填空题11. 如图,请写出能判定 CE ∥ AB 的一个条件:________.(第11题图)(第12题图)(第13题图)12. 如图,直线 a , b 分别被直线 c , d 所截,如果∠1=∠2 ,那么∠3+∠4= ________.13.一个三角板(含30°、60°角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且CD=CE,点F在直尺的另一边上,那么∠BAF的大小为°.14.如图,把一张长方形纸片沿着直线 GF 折叠, ∠ CGF= 30° ,则∠1 的度数是__________.15. 夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥 . 若荷塘的周长为 300m ,且桥宽不计,则小桥的总长为________ m.(第14题图)(第15题图)16.如图1是一盏可调节台灯,图2,图3为示意图.固定底座AO⊥OE于点O,BA与CB是分别可绕点A和B旋转的调节杆.在调节过程中,灯体CD始终保持平行于OE,台灯最外侧光线DM,DN组成的∠MDN始终保持不变.如图2,调节台灯使光线DN∥BA,此时∠BAO=130°,且CD的延长线恰好是∠MDN的角平分线,则∠MDN=_____.如图3,调节台灯使光线MD垂直AB于点B,此时∠BAO=120°,则∠PDN=________.三、解答题17.如图,在方格纸中,有两条线段 AB,BC.利用方格纸完成以下操作:(1)过点 A 作BC的平行线AE.(2)过点 C作AB 的平行线,与(1)中的平行线相交于点 D.(3)用符号表示出图中的一组平行线.18.如图, ∠1=∠ B ,∠ CEB =∠ CFB ,试说明 AB ∥ CD 的理由 .19. 如图,已知∠1=∠2=∠ A .(1 )试说明∠1=∠3 的理由 .(2 )当∠ ADG =80°时,求∠2 的度数 .20.如图, ∠1+∠2=180°, ∠ B=∠3.(1 )判断 DE 与 BC 的位置关系,并说明理由 .(2 )若∠ C =63° ,求∠ DEC 的度数 .21.(1 )如图① ,已知∠ ABC +∠ ECB =180° ,∠ P =∠ Q ,试说明∠1=∠2 的理由 .(2 )如图② , AB ∥ CD , ∠1=∠2 ,试说明∠ F =∠ M 的理由22如图,一副三角板,其中∠EDF=∠ACB=90°,∠E=45°,∠A=30°.(1)若这副三角板如图摆放,EF∥CD,求∠ABF的度数.(2)将一副三角板如图1所示摆放,直线GH∥MN,保持三角板ABC不动,现将三角板DEF绕点D以每秒2°的速度顺时针旋转,如图2,设旋转时间为t秒,且0≤t≤180,若边BC与三角板的一条直角边(边DE,DF)平行时,求所有满足条件的t的值.(3)将一副三角板如图3所示摆放,直线GH∥MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D以每秒2°的速度顺时针旋转.设旋转时何为t秒,如图4,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,请直接写出满足条件的t的值.参考答案1-5 CAAAA6-10 BDCBB11.略12.180°13.15°14.60°15.15016.80°,20°17.略18.略19.(1)略(2)50°20.(1)DE∥BC,;理由略(2)117°21.略22.(1)75°(2)15或60或105或150(3)30或120。

浙教版七年级下册数学第一章 平行线含答案(必刷题)

浙教版七年级下册数学第一章 平行线含答案(必刷题)

浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°2、如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28°B.38°C.48°D.88°3、下列说法中正确的是()A.两条相交的直线叫做平行线B.在直线外一点,只能画出一条直线与已知直线平行C.如果a∥b,b∥c,则a不与b平行D.两条不平行的射线,在同一平面内一定相交4、如图,已知BE∥AC,图中和∠C相等的角是()A.∠ABEB.∠AC.∠ABCD.∠DBE5、含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°6、若把函数y=2x-3图象向上平移3个单位长度,得到图象对应的函数解析式为( )A.y=2xB.y=2x-6C.y=4x-3D.y=-x-37、将两张长方形纸片按如图所示方式摆放,使其中一张长方形纸片的两个顶点恰好落在另一张长方形纸片的两条边上,则∠1+∠2的度数为()A.120°B.110°C.100°D.90°8、如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°9、将直线y=x-2向上平移3个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小10、如图,CD∥AB,点F在AB上,EF⊥GF,F为垂足,若∠1=48°,则∠2的度数为()A.42°B.45°C.48°D.50°11、如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A. B. C. D.12、如果∠A和∠B是两平行直线中的同旁内角,且∠A比∠B的2倍少30º,则∠B的度数是()A.30ºB.70ºC.110ºD.30º或70º13、如图,直线AB∥CD,EF⊥CE,垂足为E,EF交CD于点F,∠1=48°,则∠2的度数是()A.42°B.48°C.52°D.58°14、在以下现象中,属于平移的是()①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A.①②B.②④C.②③D.③④15、如图,已知直线,,且,则等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y= x上一点,则点B与其对应点B′间的距离为________.17、如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=________°.18、如图,在中,,,BD平分,CD平分,,且EF过点D,则的周长是________.19、如图AB∥CD.直线MN交AB,CD于点M和N,MH平分∠AMN,NH⊥MH于点H,若∠MND=64°,则∠CNH=________.20、如图,直线,等边的顶点B在直线m上,边与直线m所夹锐角为,则的度数为________.21、如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据________22、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.23、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.24、如图,将沿方向平移得到,如果,, ,那么图中阴影部分的面积为________25、如图(1)是长方形纸带,,将纸带沿折叠图(2)形状,则等于________度.三、解答题(共5题,共计25分)26、已知:如图,,求证:.27、如图,BD是∠ABC的平分线,DE∥CB,交AB于点E,∠A=45°,∠BDC=60°.求△BDE各内角的度数.28、如图,已知∠ABC=∠ADC,BF,DE是∠ABC,∠ADC的角平分线,∠1=∠2,试说明:DC∥AB.29、光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图,水面与水杯下沿平行,光线从水中射向空气时发生折射,光线变成,点G在射线上,已知,求的度数.30、如图,∠B=∠C,AB∥EF,求证:∠BGF=∠C.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、D5、B7、D8、B9、C10、A11、B12、B13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

(完整word)浙教版七年级下册数学第一章平行线练习题

(完整word)浙教版七年级下册数学第一章平行线练习题

5D 1C B A FE G H432初一数学平行线-1测试题一、选择题1.在同一平面内,两条直线可能的位置关系是 ( )(A) 平行. (B) 相交. (C) 相交或平行. (D) 垂直.2.判定两角相等,不正确的是 ( )(A ) 对顶角相等.(B ) 两直线平行,同位角相等.(C ) ∵∠1=∠2,∠2=∠3,∴∠1=∠3.(D ) 两条直线被第三条直线所截,内错角相等.3.两个角的两边分别平行,其中一个角是60°,则另一个角是 ( )(A )60°. (B )120°.(C ) 60°或120°. (D ) 无法确定.4.下列语句中正确的是( )(A )不相交的两条直线叫做平行线.(B )过一点有且只有一条直线与已知直线平行.(C )两直线平行,同旁内角相等.(D5. 如图,与∠1 是同位角的是A .2∠B .3∠C .4∠D .5∠6.如图1所示,∠1的邻补角是( ) A.∠BOC B.∠BOE 和∠AOF C.∠AOF D.∠BOC 和∠AOF 54321图77.观察图7中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1•和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.8.填注理由:如图,已知:直线AB ,CD 被直线EF ,GH 所截,且∠1=∠2,试说明:∠3+∠4=180°.解:∵∠1=∠2 ( ) 又∵∠2=∠5 ( ) ∴∠1=∠5 ( ) ∴AB ∥CD ( )∴∠3+∠4=180° ( )图1 F E O 1CB AD。

1.1 平行线 浙教版数学七年级下册基础知识讲与练(含答案)

1.1 平行线 浙教版数学七年级下册基础知识讲与练(含答案)

专题1.2 平行线(专项练习)一、单选题1.若直线a,b,c,d有下列关系,则推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c2.若直线a∥b,b∥c,则a∥c的依据是().A.平行的性质B.等量代换C.平行于同一直线的两条直线平行.D.以上都不对3.如图,在平面内经过一点作已知直线的平行线,可作平行线的条数有()A.0条B.1条C.0条或1条D.无数条4.在同一平面内,a、b、c是直线,下列说法正确的是( )A.若a∥b,b∥c 则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c5.在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为( )A.1cm B.3cm C.5cm或3cm D.1cm或3cm6.下列说法正确的有()①绝对值等于本身的数是正数.②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离.④若AC=BC,则点C就是线段AB的中点.⑤不相交的两条直线是平行线A.1个B.2个C.3个D.4个7.如果同一平面内有三条直线,那么它们交点个数是()个.A.3个B.1或3个C.1或2或3个D.0或1或2或3个8.在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行9.已知直线a,b,c是同一平面内的三条不同直线,下面四个结论:①若则;②若则;③若则;④若且与相交,则与相交,其中,结论正确的是( )A.①②B.③④C.①②③D.②③④10.给出下列说法:(1)过平面内一点有且只有一条直线与已知直线平行;(2)相等的两个角是对顶角;(3)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;(4)不相交的两条直线叫做平行线;(5)垂直于同一条直线的两条直线平行.其中正确的有()A.0个B.1个C.2个D.3个二、填空题11.若直线a//直线b,直线b//直线c,则直线a 和直线c 的位置关系是_____.12.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是_____.13.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是_____.14.空间两直线的位置关系有___________________________.15.如图,在正方体ABCD﹣A′B′C′D′中,与棱AD平行的棱有_____条.16.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______ 17.如图,利用三角尺和直尺可以准确的画出直线AB∥CD,下面是某位同学弄乱了顺序的操作步骤:①沿三角尺的边作出直线CD;②用直尺紧靠三角尺的另一条边;③作直线AB,并用三角尺的一条边贴住直线AB;④沿直尺下移三角尺;正确的操作顺序应是:_____.18.完成下列推理,并在括号内注明理由.(1)如图1所示,因为(已知).所以三点__________;( )(2)如图2所示,因为(已知),所以________∥_____________.( )三、解答题19.如图,直线DE、FM,分别交的两边于N、G,P、Q,若吗?如果平行请说明理由.20.读下列语句,并画出图形:(1)点是直线外一点,直线经过点,且与直线平行;(2)直线,是相交直线,点是直线,外的一点,直线经过点且与直线平行,与直线相交于点.21.已知:∠AOB及∠AOB内部一点P.(1)过点P画直线PC∥OA交OB于点C;(2)过点P画垂线PD⊥OB于点D;(3)测量∠AOB与∠CPD的度数,并猜想∠AOB与∠CPD的数量关系是 .22.如图,∠AOB内有一点P.根据下列语句画图:(1)过点P作OB的垂线段,垂足为Q ;(2)过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D ;(3)如果∠O = 40°,那么∠DPQ =°;(4)比较PQ和PD的大小:PQ PD,依据是.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=115°,∠ACF=25°,求∠FEC的度数.24.将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?参考答案1.C【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行”进行分析,得出正确答案.【详解】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、c、d与不同的直线平行,无法推出两者也平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行,故错误.故选:C.【点拨】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.2.C【分析】根据平行公理的推论进行判断即可.【详解】解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,故选:C.【点拨】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.3.C【分析】根据平行公理的定义:过直线外一点,有且只有一条直线与已知直线平行,可直接得结论.【详解】解:在同一平面内,当这个点在直线上时,此时可作0条与已知直线平行的线,,当这个点在直线外时,可以作一条直线于已知直线m的平行.故选C.【点拨】本题考查了平行线的定义.掌握平行线的定义是解决本题的关键.4.A【分析】根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除法求解.【详解】解:A.在同一平面内,若a∥b,b∥c,则a∥c正确,故本选项正确;B.在同一平面内,若a⊥b,b⊥c,则a∥c,故本选项错误;C.在同一平面内,若a∥b,b⊥c,则a⊥c,故本选项错误;D.在同一平面内,若a∥b,b∥c,则a∥c,故本选项错误.故选:A.5.C【详解】分析:分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.详解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4-1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或5cm.故选C.点拨:本题考查了平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.平行线间的距离处处相等.注意分类讨论.6.B【分析】根据绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义对各小题分析判断即可得解.【详解】解:①绝对值等于本身的数是非负数,故①错误;②将数60340精确到千位是6.0×104,故②正确;③连接两点的线段的长度就是两点间的距离,故③正确;④当点A、B、C不共线时,AC=BC,则点C也不是线段AB的中点,故④错误;⑤不相交的两条直线如果不在同一平面,它们不是平行线,故⑤错误;故选:B.【点拨】本题考查绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.7.D【分析】根据三条直线是否有平行线分类讨论即可.【详解】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,且交点不重合时,交点个数为3;所以,它们的交点个数有4种情形.故选:D.【点拨】本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.8.C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点拨】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.9.A【分析】根据平行公理及其推论:在同一平面内,垂直于同一条直线的两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可求解.【详解】①根据“同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行”判定:若则;故说法正确;②若则,故说法正确;③根据“在同一平面内,垂直于同一条直线的两直线平行”判定:若则;说法错误;④若且与相交,则与不一定相交,故说法错误故正确的有:①②故选:A【点拨】本题主要考查平行公理及其推论,解题的关键是熟练掌握同一平面内两直线的位置关系.10.A【分析】根据平行线的定义、平行公理、对顶角的概念以及点到直线的距离的概念进行判断即可.【详解】解:(1)过已知直线外一点有且只有一条直线与已知直线平行,说法(1)错误;(2)相等的两个角不一定是对顶角,对顶角是在两直线相交的前提条件下形成的,故说法(2)错误;(3)直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,点到直线的距离是一个长度,而不是一个图形,故说法(3)错误;(4)同一平面内,不相交的两条直线叫做平行线,故说法(4)错误;(5)同一平面内,垂直于同一条直线的两条直线平行,故说法(5)错误.故说法正确的有0个.故选:A.【点拨】本题主要考查了相交线与平行线的一些基本概念,解题时注意:对顶角是相对于两个角而言,是指两个角的一种位置关系;点到直线的距离只能量出或求出,而不能说画出;平行公理中要准确理解“有且只有”的含义.【分析】根据平行公理的推论直接判断直线a与直线c的位置关系即可.【详解】∵直线a∥直线b,直线b∥直线c,∴直线a与直线c的位置关系是:a∥c.故答案为:a∥c.【点拨】本题主要考查了平行公理的推论,熟记“如果两条直线平行于第三条直线,那么这两条直线也平行”是解题关键.12.经过直线外一点,有且只有一条直线与这条直线平行【详解】解:如图,∵MC∥AB,NC∥AB,∴直线MC与NC互相重合(经过直线外一点,有且只有一条直线与这条直线平行).故答案为:经过直线外一点,有且只有一条直线与这条直线平行.13.3【分析】根据平行线间的距离与点到直线的距离即可求出.【详解】解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为3.【点拨】此题主要考查平行线之间的距离,解题的关键是正确理解点到直线的距离. 14.平行、相交、异面【分析】当两条直线在同一平面内和不在同一平面内进行分析即可.【详解】当两条直线在同一平面内时,位置关系有平行、相交;当两条直线不在同一平面内时,位置关系有异面;故答案为:平行、相交、异面.【点拨】考查了两条直线的位置关系,解题关键是分当两条直线在同一平面内和不在同一平面内进行分析,注意不要漏掉不在同一平面内的情况.15.三条【分析】根据正方体的特征及平行线的定义进行解答.【详解】解:与棱AD平行的棱有:BC,B′C′,A′D′,共有三条.故答案为三条.【点拨】本题主要考查对正方体的认识,空间中的平行关系的判定,熟练掌握相关的知识是解题的关键.16.平行【分析】根据同一平面内,一条直线与两条直线垂直,那么这两条直线平行判断即可.【详解】本题考查了平行线和相交线,同一平面内,一条直线与两条直线垂直,那么这两条因为a⊥b,a⊥c,所以b∥c.【点拨】本题是对相交线,平行线知识的考查,熟练掌握一条直线与两条直线垂直,那么这两条直线平行是解决本题的关键.17.③②④①【分析】根据同位角相等两直线平行判断即可.【详解】解:根据同位角相等两直线平行则正确的操作步骤是③②④①,故答案我③②④①.【点拨】此题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.18.共线平行公理AB EF平行公理的推论【分析】(1)根据平行公理:过已知直线外一点,有且只有一条直线与已知直线平行进行求解即可;(2)根据平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也平行.【详解】解:(1)∵,,∴A、B、C三点共线(平行公理);(2)∵,,∴AB∥EF(平行公理的推论).故答案为:(1)共线;平行公理;(2)AB;EF;平行公理的推论.【点拨】本题主要考查了平行公理和平行公理的推论,解题的关键在于能够熟练掌握相关知识进行求解.19.平行【分析】由邻补角关系得出∠BPQ=115°,得出∠BPQ=∠BNG,由同位角相等即可得出结论.【详解】平行,因为,所以,所以根据“同位角相等,两直线平行”可得.【点拨】本题考查了平行线的判定方法、邻补角关系;熟记同位角相等,两直线平行,证出∠BPQ=∠BNG是解决问题的关键.20.(1)见解析;(2)见解析.【分析】(1)过直线AB外的点P作即可;(2)先画两条相交直线AB、CD,在直线AB、CD外取一点P,过点P作,交CD 于E即可.【详解】解:(1)如图所示:(2)如图所示:【点拨】本题考查了作图,相交线与平行线,主要考查学生的理解能力和动手操作能力,用了数形结合思想.21.(1)见解析;(2)见解析;(3)∠AOB=44°,∠CPD=46°.∠AOB+∠CPD=90°【分析】(1)根据平行线的定义画出图形即可.(2)根据垂线的定义画出图形即可.(3)利用量角器测量角的大小即可.【详解】解:(1)如图,直线PC即为所求.(2)如图,直线PD即为所求.(3)测量可得:∠AOB=44°,∠CPD=46°.猜想:∠AOB+∠CPD=90°.理由如下:故答案为:∠AOB+∠CPD=90°.【点拨】本题考查作图-复杂作图,平行线的定义,垂线的定义等知识,解题的关键是熟练掌握平行线的定义,垂线的定义,属于中考常考题型.22.(1)见解析;(2)见解析;(3);(4);垂线段最短【分析】(1)利用三角板的直角,过点P作OA⊥PQ即可;(2)过点P画线段PC∥OB交OA于点C,画线段PD∥OA交OB于点D即可;(3)利用平行线的性质和三角形内角和定理即可求解.(4)根据直线外一点与直线上所有点的连线中垂线段距离最短即可求解.【详解】如图:(2)如图:(3)∵AO∥PD,∴∠O=∠ODP=40°,∵PQ⊥BO,∴∠PQD=90°,∴∠DPQ=50°,故答案为:50°.(4)因为PQ⊥BO,所以;点到直线上所有连线中,垂线段距离最短.故答案为:垂线段最短.【点拨】本题主要考查了基本作图的中的垂线和平行线的作法以及作一个角等于已知角,要求能够熟练地运用尺规作图,并保留作图痕迹.23.∠FEC=20°.【详解】分析:由EF与AD平行,AD与BC平行,利用平行于同一条直线的两直线平行得到EF与BC平行,利用两直线平行同旁内角互补求出∠ACB度数,进而求出∠FCB度数,根据CE为角平分线求出∠BCE度数,再利用两直线平行内错角相等即可求出所求角度数.本题解析:∵AD∥BC,∴∠ACB=180°﹣∠DAC=180°﹣115°=65°,∵∠ACF=25°,∴∠BCF=∠ACB﹣∠ACF=65°﹣25°=40°,∵CE平分∠BCF,∴∠BCE=∠BCF=×40°=20°,∵EF∥AD,AD∥BC,∴EF∥BC,∴∠FEC=∠BCE=20°.24.CD∥AB,理由见解析.【分析】首先证明CD∥EF,进而证明AB∥EF,即可解决问题.【详解】CD∥AB.理由如下:由题意易知CD∥EF,EF∥AB,∴CD∥AB.【点拨】本题主要考查了平行线的判定问题;灵活运用判定定理是解题的关键.。

浙教版七年级(下)数学第1章平行线章节练习

浙教版七年级(下)数学第1章平行线章节练习

第1章章节练习[范围:1.1~1.4]一、选择题(每小题4分,共32分)1.如图G-1-1,∠1的同位角是()A.∠2B.∠3C.∠4D.∠5图G-1-12.如图G-1-2所示,已知∠1=∠2,则由∠1=∠2能得出a∥b的依据是()图G-1-2A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行3.如图G-1-3,有下列条件:①∠D+∠BCD=180°;②∠1=∠5;③∠1=∠3;④∠2=∠4;⑤∠DAB=∠5.其中能判定AD∥BC的有()图G-1-3A.1个B.2个C.3个D.4个4.如图G-1-4,已知∠1=72°,∠2=108°,∠3=82°,则∠4的度数是()图G-1-4A.72°B.82°C.98°D.108°5.如图G-1-5,AD∥BC,AC平分∠BAD.若∠B=40°,则∠C的度数是()图G-1-5A.40°B.65°C.70°D.80°6.一个人从点A出发沿北偏东50°方向走到点B,再从点B出发沿南偏西35°方向走到点C,那么∠ABC 的度数为()A.5°B.15°C.75°D.85°7.如图G-1-6所示,已知直线BF,CD相交于点O,∠D=60°,下面判定两条直线平行的方法正确的是()A.当∠C=60°时,AB∥CDB.当∠A=60°时,AC∥DEC.当∠E=140°时,CD∥EFD.当∠BOC=120°时,BF∥DE图G-1-68.如图G-1-7,将长方形纸条ABCD沿EF折叠后,点C,D分别落在点C',D'处,ED'与BF交于点G.若∠EFC'=130°,则∠AED'的度数为()图G-1-7A.55°B.70°C.75°D.80°二、填空题(每小题4分,共20分)9.如图G-1-8,若∠1=∠2,则∥,依据是.图G-1-810.如图G-1-9,AB∥CD,BA⊥AE于点A,∠CAE=35°,则∠ACD的度数为.图G-1-911.如图G-1-10,BE,CE分别平分∠ABC和∠BCD.若∠E=90°,则AB与CD的位置关系为.图G-1-1012.将一副三角尺ABC,DEF按图G-1-11所示的方式摆放,使两个直角顶点重合且BC∥AE,此时点C恰好落在DE上,则∠BAE=°.图G-1-1113.如图G-1-12所示,已知AB∥DE,∠ABC=75°,∠CDE=125°,则∠BCD的度数为.图G-1-12三、解答题(共48分)14.(10分)如图G-1-13,AD⊥BC于点D,EG⊥BC于点G,交BA的延长线于点E,∠E=∠1,可得(1)AD∥EG;(2)AD平分∠BAC.完成下面的说理过程.图G-1-13解:(1)已知AD⊥BC于点D,EG⊥BC于点G,根据,得∠ADC=∠EGC=90°.再根据,得AD∥EG.(2)由(1)得AD∥EG,根据,得∠1=∠2.根据,得=∠3.又∵∠E=∠1(已知),∴∠2=∠3,再根据,得AD平分∠BAC.15.(10分)如图G-1-14,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE的延长线交CD于点F.(1)试说明:∠1+∠2=90°;(2)如果∠EDF=30°,那么∠BFC的度数为多少?图G-1-1416.(14分)如图G-1-15,直线AD与AB,CD分别相交于点A,D,直线EC与AB,CD分别相交于点E,C,直线BF与AB,CD分别相交于点B,F.如果∠1=∠2,∠B=∠C,小明发现CE∥BF.同桌小慧说:“不光有这个发现,我还能得到∠A=∠D呢!”小明深入思考后,很快也明白了小慧是怎样得到∠A=∠D的.请你写出他们得到CE∥BF,∠A=∠D的过程.图G-1-1517.(14分)如图G-1-16,BE,DE交于点E,∠1=105°,∠2=140°,∠3=65°,判断AB和CD的位置关系,并说明理由.图G-1-16详解详析1.B[解析] 由题图可得,∠1与∠3都在被截两直线的同侧,并且在第三条直线(截线)的同旁,故∠1与∠3是同位角.故选B.2.D3.C4.B5.C[解析] ∵AD∥BC,∴∠B+∠BAD=180°,∠C=∠DAC.∵∠B=40°,∴∠BAD=180°-40°=140°.∵AC平分∠BAD,∴∠DAC=∠BAD=×140°=70°,∴∠C=70°.6.B7.D[解析] 由∠BOC=120°可知∠DOF=120°,所以∠DOF+∠D=180°.根据同旁内角互补,两直线平行可得BF∥DE.8.D[解析] ∵D'E∥C'F,∴∠EFC'+∠D'EF=180°.∵∠EFC'=130°,∴∠D'EF=50°.由折叠的性质,得∠DEF=∠D'EF=50°,∴∠AED'=180°-2×50°=80°.故选D.9.AD BC内错角相等,两直线平行10.125°11.平行12.150[解析] ∵BC∥AE,∠B=30°,∴∠BAE=180°-∠B=180°-30°=150°.故答案是150.13.20°[解析] 过点C在点C的右侧作CF∥DE,则∠DCF=55°.∵AB∥DE,CF∥DE,∴AB∥CF,∴∠BCF=∠ABC=75°,∴∠BCD=∠BCF-∠DCF=20°.14.(1)垂直的定义同位角相等,两直线平行(2)两直线平行,内错角相等两直线平行,同位角相等∠E角平分线的定义15.解:(1)∵AB∥CD,∴∠ABD+∠BDC=180°.∵BE,DE分别平分∠ABD,∠BDC,∴∠1=∠ABD,∠2=∠BDC,∴∠1+∠2=(∠ABD+∠BDC)=90°.(2)∵DE平分∠BDC,∴∠2=∠EDF=30°.又∵∠1+∠2=90°,∴∠1=60°.∵BE平分∠ABD,∴∠ABF=∠1=60°.∵AB∥CD,∴∠ABF+∠BFC=180°,∴∠BFC=120°.16.解:如图,设AD交EC于点H.∵∠1=∠CHD,且∠1=∠2,∴∠2=∠CHD,∴CE∥BF,∴∠C=∠BFD.又∵∠C=∠B,∴∠B=∠BFD,∴AB∥CD,∴∠A=∠D.17.解:AB∥CD.理由:如图,延长CD交射线BE于点F.∵∠2=140°,∴∠5=40°.∵∠3=65°,∴∠4=180°-40°-65°=75°.又∵∠1=105°,∴∠1+∠4=180°,∴AB∥CD(同旁内角互补,两直线平行).。

浙教版七年级数学下册第1章平行线同步练习题(Word版含答案)

浙教版七年级数学下册第1章平行线同步练习题(Word版含答案)

浙教版七年级数学下册《第1章平行线》同步练习题(附答案)一.选择题1.下列图形中,∠1和∠2不是同位角的是()A.B.C.D.2.如图,①∠1=∠3,②∠2=∠3,③∠1=∠4,④∠2+∠5=180°可以判定b∥c的条件有()A.①②④B.①②③C.②③④D.①②③④3.如图,在四边形BECF中,直线AD分别与边BE,CF的延长线交于A,D,与边CE,BF交于G,H.若CE∥BF,则下列结论中不一定成立的是()A.∠1=∠3B.∠2=∠3C.∠A=∠D D.∠2=∠44.有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是()A.1B.2C.3D.45.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=46°,那么∠2的度数是()A.46°B.76°C.94°D.104°6.直线l1、l2、l3的位置关系如图,下列说法错误的是()A.∠2与∠1互为邻补角,若∠1=111°54',则∠2=68.1°B.∠1与∠3互为对顶角,若∠1=111.9°,则∠3=111.9°C.若l2⊥l3,则∠1=∠2=90°;若∠1=90°,则l2⊥l3D.若∠3+∠4=180°或∠4+∠6=180°,则l1∥l2.7.如图,将△ABC沿BC方向平移1个单位得到△DEF,如果四边形ABFD的周长为12,则△ABC的周长为()A.8B.10C.12D.148.如图,平面内,已知AB∥DE,∠ABC=130°,∠CDE=110°,则∠BCD的度数为()A.50°B.60C.70°D.80°二.填空题9.如图,已知AE∥BC,∠BAC=105°,∠DAE=48°,则∠C=.10.如图,在长为9m,宽为7m的矩形场地上修建两条宽度都为1m且互相垂直的道路,剩余部分进行绿化,则绿化面积共有m2.11.如图,ABCD为一长条形纸带,AD∥CB,将ABCD沿EF折叠,C、D两点分别与C′、D'对应,若∠1=2∠2,则∠AEF的度数为.12.太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点O照射到抛物线上的光线OB,OC等反射以后沿着与POQ平行的方向射出.图中如果∠BOP =45°,∠QOC=68°,则∠ABO=,∠DCO=.13.如图,直线AB,CD被直线EF所截,AB∥CD,且DG⊥BF于点G,若∠2=40°,则∠1=.14.如图,AB∥CD∥EF,BE平分∠ABD,DF⊥EF,若∠1=67°,∠2=25°,则∠BDC的度数是.15.如图,AD∥BC,CE平分∠BCD,∠DAC=3∠BCD,∠ACD=20°,当AB与AC互相垂直时,∠B的度数为.16.如图,已知AB∥CD∥EF,FC平分∠AFE,∠A=70°,则∠C的度数为°.三.解答题17.如图,直线EF分别与直线AB,CD相交于点A,C,AD平分∠BAC,交CD于点D,若∠1=∠2,且∠ADC=54°.(1)直线AB、CD平行吗?为什么?(2)求∠1的度数.18.已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.19.△ABC中,BD⊥AC于点D,点G是边AB上一点,且∠AGD=∠ABC,点E是直线BC上一点,过点E作EF⊥AC交直线AC于点F.(1)如图,若点E是边BC延长线上一点,①当∠DBC=36°时,求∠BEF的度数;②判断∠BDG与∠BEF的关系,并说明理由;(2)若点E是射线CB上一点,请直接写出∠BDG与∠BEF的关系.20.已知:AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.证EM∥FN;(2)如图(2),EG平分∠MEF,EH平分∠AEM,直接写出∠GEH与∠EFD的数量关系.21.如图,直线HD∥GE,点A在直线HD上,点C在直线GE上,点B在直线DH、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由.参考答案一.选择题1.解:A、∠1和∠2是同位角,故此选项不符合题意;B、∠1和∠2不是同位角,故此选项符合题意;C、∠1和∠2是同位角,故此选项不符合题意;D、∠1和∠2是同位角,故此选项不符合题意;故选:B.2.解:①∵∠1=∠3,∴b∥c(同位角相等,两直线平行);②∵∠2=∠3,∴b∥c(内错角相等,两直线平行);③∠1=∠4无法判断两直线平行;④∵∠2+∠5=180°,∴b∥c(同旁内角互补,两直线平行).故选:A.3.解:∵CE∥BF,∴∠1=∠3,∠2=∠3,∠2=∠4,故选项A,B,D正确,但∠A与∠D不一定相等,故选:C.4.解:①同一平面内,两条不相交的直线叫平行线;故不符合题意;②同一平面内,过一点有且只有一条直线与已知直线垂直;故符合题意;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线不一定互相垂直;故不符合题意;④有公共顶点,两边互为反向延长线的两个角是对顶角;故不符合题意;故其中说法正确的个数是1,故选:A.5.解:如图,∵∠1=46°,∠CAD=30°,∴∠BAD=∠1+∠CAD=76°,∵CD∥AB,∴∠CDE=∠BAD=76°,∴∠2=180°﹣∠CDE=104°.故选:D.6.解:A.由图得,∠2与∠1互为邻补角,则∠2+∠1=180°.由∠1=111°54',得∠2=68°6′=68.1°,那么A正确,故A不符合题意.B.根据对顶角的定义,∠1与∠3互为对顶角,则∠1=∠3.由∠1=111.9°,得∠3=111.9°,那么B正确,故B不符合题意.C.根据垂直的定义,由若l2⊥l3,则∠1=∠2=90°;若∠1=90°,则l2⊥l3,那么C正确,故C不符合题意.D.由题得,∠1与∠3是对顶角,那么∠1=∠3.由∠3+∠4=180°,得∠1+∠4=180°,那么l1∥l2.根据同旁内角互补两直线平行,由∠4+∠6=180°,那么l3∥l2,得D错误,故D符合题意.故选:D.7.解:根据题意,将△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12,∴AB+BC+AC=10,故选:B.8.解:如图,延长ED至N,并交BC于点M.∵AB∥DE,∴∠ABC=∠NMC=130°.∴∠CMD=180°﹣∠NMC=180°﹣130°=50°.又∵∠CDE=∠C+∠CMD,∴∠C=∠CDE﹣∠CMD=110°﹣50°=60°.故选:B.二.填空题9.解:∵∠DAE=48°,∴∠BAE=180°﹣∠DAE=132°,∵∠BAC=105°,∴∠CAE=∠BAE﹣∠BAC=27°,∵AE∥BC,∴∠C=∠CAE=27°.故答案为:27°.10.解:由题意得:(9﹣1)×(7﹣1)=8×6=48(m2),∴绿化面积共有48m2,故答案为:48.11.解:由翻折的性质可知:∠DEF=∠FED′,∵AD∥BC,∴∠DEF=∠1,∵∠1=2∠2,∴设∠2=x,则∠DEF=∠1=∠FED′=2x,∵∠2+∠DEF+∠D'EF=180°,∴5x=180°,∴x=36°,∴∠AEF=∠2+∠D'EF=x+2x=3x=108°,故答案为:108°.12.解:∵AB∥PQ,∴∠ABO=∠BOP=45°,∵CD∥PQ,∴∠DCO+∠QOC=180°,即∠DCO+68°=180°,解得∠DCO=112°.故答案为:45°;112°.13.解:∵DG⊥BF,∴∠FGD=90°.∴∠CFG=∠FGD+∠2=90°+40°=130°.∵AB∥CD,∴∠1=∠CFG=130°.故答案为:130°.14.解:如图,DC交BE于点M,∵DF⊥EF,∴∠F=90°,∴∠1+∠DEF=90°,∵∠1=67°,∴∠DEF=23°,∵CD∥EF,∴∠CDE=∠DEF=23°,∵∠2=25°,∴∠BEF=∠2+∠DEF=48°,∵AB∥CD∥EF,∴∠ABE=∠BMD=∠BEF=48°,∵BE平分∠ABD,∴∠ABD=2∠ABE=96°,∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠BDC=84°,故答案为:84°.15.解:设∠BCD=x,如图所示:∵∠DAC=3∠BCD,∴∠DAC=3x,又∵AD∥BC,∴∠DAC+∠BCA=180°,又∵∠BCA=∠BCD+∠ACD,∠ACD=20°,∴x+3x+20°=180°,解得:x=40°,∴∠BCA=60°,又∵AB⊥AC,∴∠BAC=90°,又∵∠B+∠BAC=90°,∴∠B=30°,故答案为30°.16.解:∵AB∥EF,∴∠A=∠AFE=70°,∵FC平分∠AFE,∴∠CFE=∠AFE=35°,∵CD∥EF,∴∠C=∠CFE=35°,故答案为:35°.三.解答题17.解:(1)直线AB、CD平行,理由如下:如图:∵∠2=∠3(对顶角相等),∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥CD(同位角相等,两直线平行);(2)∵AB∥CD,∴∠DAB=∠ADC=54°,又∵AD平分∠BAC,∴∠2=180°﹣∠BAC=72°,∴∠1=∠2=72°.18.解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.19.解:(1)①∵BD⊥AC,EF⊥AC,点E是直线BC上一点,点F在直线AC上,∴∠BDC=∠CFE=90°∴BD∥EF,∴∠BEF=∠DBC,∵∠DBC=36°,∴∠BEF=∠DBC=36°;②∠BDG=∠BEF,理由:∵∠AGD=∠ABC,∴DG∥BC,∴∠BDG=∠DBC,∵BD∥EF,∴∠BDG=∠BEF;(2)∠BDG=∠BEF,理由:如图所示:∵BD⊥AC,EF⊥AC,点E是射线CB上一点,点F在直线AC上,∴BD∥EF,∴∠BEF=∠DBC,∵∠AGD=∠ABC,∴DG∥BC,∴∠BDG=∠DBC,∴∠BDG=∠BEF.20.证明:(1)∵AB∥CD,∴∠1=∠3,∵∠1=∠2,∠3=∠4,∴∠MEF=180°﹣∠1﹣∠2,∠EFN=180°﹣∠3﹣∠4,∴∠MEF=∠EFN,∴EM∥FN.(2)∠EFD=2∠HEG,理由如下:∵EH平分∠AEM,EG平分∠MEF,∴∠AEH=HEM.∠FEG=∠MEG,∵AB∥CD,∴∠EFD=∠AEF,∵∠AEH=∠HEM,∴∠AEF+∠FEH=∠HEG+∠MEG,∴∠AEF=∠HEG+∠FEG﹣∠FEH=∠HEG+∠HEG=2∠HEG,∴∠EFD=2∠HEG.21.解:(1)过点B作BM∥HD,则HD∥GE∥BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP∥HD∥GE,过F作FQ∥HD∥GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣120°=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK∥HD∥GE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN==90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即,∠N=90°﹣∠HAP.。

浙教版2022年七年级数学下册第1章平行线平行线练习(含答案)

浙教版2022年七年级数学下册第1章平行线平行线练习(含答案)

浙教版2022年七年级数学下册第1章平行线平行线练习(含答案)第1章平行线1.1平行线知识点1平行线的概念在同一个平面内,不相交的两条直线叫做平行线.“平行”用符号“∥”表示,直线a和b是平行线,记做a∥b,读做“a平行b”.平行线的定义包含三层意思:(1)“在同一平面内”是前提条件;(2)“不相交”就是说两条直线没有交点;(3)平行线指的是“两条直线”,而不是“两条射线”或“两条线段”.1.下列说法正确的是()A.在同一平面内,不相交的两条线段是平行线段B.不相交的两条直线是平行线C.在同一平面内,不重合的两条直线的位置关系只有相交和平行两种D.在同一平面内,不相交的两条射线是平行线知识点2平行线的画法用三角尺和直尺画平行线.如图1-1-1所示,把三角尺的一边紧靠直线CD,用直尺紧靠三角板尺的另一边,沿直尺推动三角尺,然后过三角尺的一边画直线AB,这时就可画出CD的平行线AB.图1-1-12.如图1-1-2所示,过三角形ABC的三个顶点分别作它对边的平行线,标出交点,并将平行线用“∥”符号表示出来.图1-1-2知识点3平行线的性质过直线外一点只能画一条已知直线的平行线,过直线上一点不能画已知直线的平行线.3.先在纸上画三角形ABC,再任取一点P,过点P画一条直线与BC 平行,则这样的直线()A.有且只有一条B.有两条C.不存在D.有一条或不存在一利用平行线的性质进行简单的推理教材例题变式题在同一平面内,已知直线AB∥EF,直线CD与AB相交于点P,试问直线CD与EF相交吗?为什么?[归纳总结]由本题可以得出一个常用的结论:在同一平面内,如果一条直线与一组平行线中的一条相交,那么它必定与其余的直线都相交.二平面内直线交点个数的探究教材补充题已知平面内有三条互不重合的直线,请画图探究它们的位置关系并说出它们的交点个数.[反思]判断下列说法是否正确,并说明理由.(1)不相交的两条直线叫做平行线;(2)过一点有且只有一条直线与已知直线平行.一、选择题1.在同一平面内两条不重合直线的位置关系有()A.两种:平行或相交23B.两种:平行或垂直C.三种:平行、垂直或相交D.两种:垂直或相交2.如图1-1-3,在同一平面内,过点C作线段AB的平行线,下列说法正确的是()图1-1-3A.不能作B.只能作一条C.能作两条D.能作无数条3.下列关于平行的表示方法正确的是()A.a∥AB.AB∥cdC.A∥BD.a∥b4.下列四边形中,AB与CD不平行的是()图1-1-5.在同一平面内,有三条互不重合的直线,其中只有两条是平行的,那么交点有()A.0个B.1个C.2个D.3个6.下列结论正确的是()A.不相交的直线互相平行B.不相交的线段互相平行C.不相交的射线互相平行D.有公共点的直线一定不平行7.已知直线a,b在同一平面内且不相交,直线c也在这一平面内,且c与a相交,则()A.b与c相交B.b与c平行C.b与c平行或相交D.b与c的位置关系不确定二、填空题8.如图1-1-5所示,AE∥BC,AF∥BC,则A,E,F三点________,理由是____________________.图1-1-59.把图1-1-6中互相平行的线段一一写出来:______________________________________.4图1-1-610.列举现实生活中体现平行的一个例子:________.11.在同一平面内,有两条直线l1与l2.(1)若l1与l2没有公共点,则l1与l2________;(2)若l1与l2有且只有一个公共点,则l1与l2________;(3)若l1与l2有两个公共点,则l1与l2________.三、解答题12.如图1-1-7,在长方体中,A1B1∥AB,AD∥BC,你能找出图中的平行线吗?图1-1-713.如图1-1-8所示,点P在∠AOB的一边OA上,点Q在∠AOB的另一边OB上,按下列要求画图:(1)过点P,Q的直线;(2)过点P画平行于OB的直线;(3)过点Q画平行于OA的直线.图1-1-814.如图1-1-9,点P是∠ABC内一点.(1)过点P画一条直线平行于直线AB,且与BC交于点D;(2)过点P画一条直线垂直于直线BC,垂足为E;(3)过点P作直线AB的垂线段PF.图1-1-91.[实践操作题]如图1-1-10所示,D,E是线段AC的三等分点.(1)过点D作DF∥BC交AB于点F,过点E作EG∥BC交AB于点G;(2)量出AF,FG,GB的长度(精确到0.1cm),你有什么发现?(3)量出FD,GE,BC的长度(精确到0.1cm),你有什么发现?(4)根据(3)中发现的规律,若FD=1.5cm,则EG=________cm,BC=________cm.图1-1-102.[操作探究]我们知道在同一平面内,两条平行直线的交点有0个,两条相交直线的交点有1个,平面内三条平行直线的交点有0个,经过同一点的三条直线的交点有1个……(1)平面上有三条互不重合的直线,请画图探究它们的交点个数;(2)若平面内的五条直线恰有4个交点,请画出符合条件的所有图形;(3)在平面内画出10条直线,使它们的交点个数恰好是32.详解详析5【预习效果检测】1.[解析]C根据平行线的概念“在同一平面内,不相交的两条直线叫做平行线”即可得出答案.[点评]正确理解平行线的概念是解决本题的关键.学习此概念时,我们要特别注意“在同一平面内”“不相交”“直线”等关键词.2.解:如图所示.过点A作BC边的平行线,过点B作AC边的平行线,过点C作AB边的平行线,两两相交于点D,E,F,所以DE∥BC,EF∥AC,DF∥AB.3.[解析]D当点P在直线BC外时,根据“经过直线外一点,有且只有一条直线与这条直线平行”这个基本事实,可知有且仅有一条;但当点P在直线BC上时,就不存在这样的直线,故本题应选择D.【重难互动探究】例1[解析]由于直线AB,EF的位置关系已确定,AB与CD的位置关系也确定了,根据平行线的性质即可确定CD与EF的位置关系.解:直线CD与EF相交.因为AB∥EF,CD与AB相交于点P,而过点P只能作一条直线AB与EF平行,所以直线CD与EF相交.例2[解析]在同一平面内,两条不重合直线的位置关系只有两种:相交和平行.若在同一平面内有三条或三条以上直线,其位置关系就变得比较复杂,交点个数也不确定,因此需分类讨论进行探究.解:①如图①,三条直线互相平行,此时交点个数为0;②如图②,三条直线相交于一点,此时交点个数为1;③如图③,三条直线两两相交且不交于同一点,此时交点个数为3;④如图④,其中两条直线互相平行且都与第三条直线相交,此时交点个数为2.【课堂总结反思】[反思](1)不正确,理由:在同一平面内,不相交的两条直线叫做平行线.(2)不正确,理由:过直线外一点,有且只有一条直线与这条直线平行;过直线上一点,不能画已知直线的平行线.【作业高效训练】[课堂达标]1.A2.B3.D4.D5.C6.D7.A68.[答案]共线经过直线外一点,有且只有一条直线与这条直线平行9.[答案]GH∥MN,EF∥AB,CD∥PQ10.[答案]如双杠.两条笔直的铁轨等(答案不唯一,写出一个即可) 11.[答案](1)平行(2)相交(3)重合12.解:图中的平行线有AB∥DC∥D1C1∥A1B1,AD∥BC∥B1C1∥A1D1,AA1∥BB1∥CC1∥D D1.13.[解析]借助三角尺和直尺画平行线.用三角尺和直尺画图,其基本步骤如下:一落:三角尺的一边落在已知直线上;二靠:紧靠三角尺其余两边中的任意一边放上直尺;三移:三角尺沿直尺移动,使三角板尺的边经过已知点;四画:沿三角尺过已知点的一边画直线.解:如图所示.14.解:如图所示.[数学活动]1.解:(1)如图所示.(2)测量略,AF=FG=GB.(3)测量略,FD∶GE∶BC=1∶2∶3或FD+BC=2GE.(4)34.52.解:(1)如图所示.(2)如图所示.(3)如图所示.78。

七年级数学下册《平行线》练习题及答案(浙教版)

七年级数学下册《平行线》练习题及答案(浙教版)

七年级数学下册《平行线》练习题及答案(浙教版)一、选择题1.如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是( )2.如图,下列各组角中,互为对顶角的是( )A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠53.如图,已知AB⊥BD,BC⊥CD,AD=a,CD=b,则BD的长的取值范围为()A.大于bB.小于aC.大于b且小于aD.无法确定4.如图,下列说法正确的是( )A.∠1和∠B是同旁内角B.∠1和∠C是内错角C.∠2和∠B是同位角D.∠3和∠C同旁内角5.如图,在下列条件中,能判断AD∥BC的是( )A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为( )A.互相垂直B.互相平行C.相交D.没有确定关系7.长方体的每一对棱相互平行,那么这样的平行棱共有( )A.9对B.16对C.18对D.以上答案都不对8.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )A.20° B.30° C.40° D.50°9.如图,如果AB∥CD,CD∥EF,那么∠BCE等于( )A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠210.如图,OA⊥OC,OB⊥OD,4位同学观察图形后分别说了自己的观点:甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个;其中正确的结论是( )A.1个B.2个C.3个D.4个11.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C.其中正确的有()A.①②③B.①②④C.①③④D.①②③④12.学习了平行线后,小明想出了过已知直线外一点画这条直线的平行线的新方法,他是通过折一张半透明的纸得到的(如图①~④):从图中可知,小明画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④二、填空题13.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC ′=.14.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD= .15.如图所示,内错角共有____对.16.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是.17.将如图1的长方形ABCD纸片沿EF折叠得到图2,折叠后DE与BF相交于点P.如果∠EPF=70°,则∠PEF的度数为_________ .18.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=_________.三、解答题19.如图,在Rt△ABC中,∠C=90°,AC=4cm ,BC=3cm ,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.(1)求△ABC向右平移的距离AD的长.(2)求四边形AEFC的周长.20.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF;若∠AOE=40°,求∠BOD的度数.21.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?22.如图,△ABC中,∠ACB=90°,CD⊥AB,点D为垂足,点E,F分别在AC.AB边上且∠AEF=∠B.求证:EF∥CD.23.如图,BE平分∠ABD,DE平分∠BDC,DG平分∠CDF,且∠1+∠2=90°,试说明BE∥DG.24.如图1,已知△ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A 、∠B 、∠C 作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法. 证法1:如图1,延长BC 到D ,过C 画CE ∥BA .∵BA ∥CE (作图2所知)∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)∴∠A+∠B+∠ACB=180°(等量代换).如图3,过BC 上任一点F ,画FH ∥AC ,FG ∥AB ,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.25.已知AB ∥CD,∠ABE 与∠CDE 两个角的角平分线相交于点F.(1)如图1,若∠E =80°,求∠BFD 的度数.(2)如图2,若∠ABM =13∠ABF,∠CDM =13∠CDF,试写出∠M 与∠E 之间的数量关系并证明你的结论. (3)若∠ABM =1n ∠ABF,∠CDM =1n∠CDF,∠E =m °,请直接用含有n,m °的代数式表示出∠M.参考答案1.B2.A.3.C4.D5.A6.B7.C8.C9.C.10.C.11.D12.C13.答案为:5.14.答案为:垂直;90°.15.答案为:8.16.答案为:同位角相等,两直线平行.17.答案为:55°18.答案为:140°19.解:(1)3; (2)8+3+4+3=18.20.解:∵OA⊥OB(已知)∴∠AOB=90°(垂直的定义)∵∠AOE=40°(已知)∴∠BOE=∠AOB-∠AOE=90°-40°=50°∵OC平分∠AOF(已知)∴∠BOD=20°21.答案为:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.22.证明:∵∠ACB=90°∴∠B+∠A=90°∵CD⊥AB∴∠ADC=90°∴∠A+∠ACD=90°∴∠B=∠ACD∵∠AEF=∠B∴∠AEF=∠ACD∴EF∥CD.23.证明:∵∠1+∠2=90°(已知)∴△BDE中,∠E=180°-(∠1+∠2)=90°∵ DE平分∠BDC,DG平分∠CDF(已知)∴∠EDG=∠EDC+∠CDG=∴∠E=∠EDG(等量代换)∴ BE∥DG (内错角相等,两直线平行)24.证明:如图3∵HF∥AC∴∠1=∠C∵GF∥AB∴∠B=∠3∵HF∥AC∴∠2+∠AGF=180°∵GF∥AH∴∠A+∠AGF=180°∴∠2=∠A∴∠A+∠B+∠C=∠1+∠2+∠3=180°(等量代换).25.解:(1)如图,作EG∥AB,FH∥AB∵AB∥CD∴EG∥AB∥FH∥CD∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED+∠CDE=180°∴∠ABE+∠BEG+∠GED+∠CDE=360°∵∠BED=∠BEG+∠DEG=70°∴∠ABE+∠CDE=290°∵∠ABF和∠CDF的角平分线相交于E∴∠ABF +∠CDF =145°∴∠BFD =∠BFH +∠DFH =145°;(2)∵∠ABM =13∠ABF ,∠CDM =13∠CDF ∴∠ABF =3∠ABM ,∠CDF =3∠CDM∵∠ABE 与∠CDE 两个角的角平分线相交于点F ∴∠ABE =6∠ABM ,∠CDE =6∠CDM∴6∠ABM +6∠CDM +∠E =360°∵∠M =∠ABM +∠CDM∴6∠M +∠E =360°.(3)由(2)结论可得2n ∠ABN +2n ∠CDM +∠E =360°,∠M =∠ABM +∠CDM 解得:∠M =n2m 360︒-︒. 故答案为:∠M =n 2m 360︒-︒.。

浙教版七年级下册数学第一章 平行线含答案【参考答案】

浙教版七年级下册数学第一章 平行线含答案【参考答案】

浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,两个形状、大小完全相同的三角形ABC和三角形DEF重叠在一起,固定三角形ABC不动,将三角形DEF向右平移,当点E和点C重合时,停止平移. 连结AE,DC,在整个过程中,图中阴影部分面积和的变化情况是()A.一直增大B.一直减少C.先减少后增大D.一直不变2、如图,已知AB∥CD,∠C=35°,BC平分∠ABE,则∠ABE的度数是( )A.17.5°B.35°C.70°D.105°3、如图,将含30°角的直角三角板ABC放在平行线α和b上,∠C=90°,∠A=30°,若∠1=20°,则∠2的度数等于()A.60°B.50°C.40°D.30°4、如图所示的四个图形中,∠1和∠2一定相等的是()A. B. C. D.5、下列选项中∠1与∠2不是同位角的是()A. B. C.D.6、观察图,在下列四种图形变换中,该图案不包含的变换是()A.旋转B.轴对称C.位似D.平移7、在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直8、小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n 上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°9、已知:如图,点D是射线AB上一动点,连接CD,过点D作DE∥BC交直线AC于点E,若∠ABC=84°,∠CDE=20°,则∠ADC的度数为( )A.104°B.76°C.104°或64°D.104°或76°10、下列说法错误的是()A.两直线平行,内错角相等B.两直线平行,同旁内角相等C.对顶角相等D.平行于同一条直线的两直线平行11、如图.已知直线a,b被直线c所截,且a∥b,∠1=48°,那么∠2的度数为()A.42°B.48°C.52°D.132°12、如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()A.50°B.40°C.30°D.100°13、如图,己知l∥AB,AC为角平分线,下列说法错误的是()1A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠314、如图,两个全等的直角三角形重叠在一起,将其中沿着点B到C的方向平移到的位置,,平移距离为,则的面积为()A.6B.12C.18D.2415、如图,能判定EB∥AC的条件是()A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE二、填空题(共10题,共计30分)16、如图,AB∥CD,∠1=64°,FG平分∠EFC,则∠EGF=________.17、两个角的两边分别平行,其中一个角是30°,则另一个角是________.18、如图,在中,,,点是的中点,连接,将沿射线方向平移,在此过程中,的边与的边、分别交于点、,当的面积是面积的时,则△BCD 平移的距离是________.19、将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=25°,则∠2的度数为________.20、一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当∠CAE=15°时,BC∥DE.则∠CAE(0°<∠CAE<180°)其它所有可能符合条件的度数为________.21、将一矩形纸条,按如图所示折叠,则∠1=________度.22、完成下面的证明.已知:如图,BC∥DE,BE、DF分别是∠ABC、∠ADE的平分线.求证:∠1=∠2.证明:∵BC∥DE,∴∠ABC=∠ADE(________).∵BE、DF分别是∠ABC、∠ADE的平分线.∴∠3=∠ABC,∠4=∠ADE.∴∠3=∠4.∴________∥________(________).∴∠1=∠2(________).23、如图:已知,AB∥CD,∠1=50°,那么∠2=________°,∠3=________°24、将一副三角板如图放置.若AE∥BC,则∠AFD=________.25、在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图所示,AB∥CD∥EF,∠ABC=55°,∠CEF=150°,求∠BCE的度数.28、如图,矩形ABCD中,点E是CD延长线上一点,且,求证:.29、MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.30、如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.(1)请利用平移的知识求出种花草的面积.(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、B5、C6、D7、C8、D9、C10、B11、B12、C13、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

浙教版七年级下册数学《1.1平行线》练习含答案

浙教版七年级下册数学《1.1平行线》练习含答案

平行线班级:___________姓名:___________得分:__________一.选择题(每小题5分,共35分)1.若a⊥b,c⊥d,则a与c的关系是()A.平行 B.垂直 C.相交 D.以上都不对2.下列叙述中,正确的是()A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B.不相交的两条直线叫平行线C.两条直线的铁轨是平行的D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角3.若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定能与直线AB相交D.过点Q只能画出一条直线与直线AB平行4.下列说法中正确的个数()①不相交的两条直线是平行线;②过一点有且只有一条直线与已知直线平行;③平行于同一直线的两直线平行;④同旁内角相等,两直线平行.A.1 B.2 C.3 D.45.在同一个平面内,直线a、b相交于点P,a∥c,b与c的位置关系是()A.平行 B.相交 C.重合 D.平行或相交6.如图,在立方体中和AB平行的棱有()A.1条B.2条C.3条D.4条7.同一平面内,直线l与两条平行线a,b的位置关系是()A.l与a,b平行或相交B.l可能与a平行,与b相交C.l与a,b一定都相交D.同旁内角互补,则两直线平行二.填空题(每小题5分,共20分)1.平行用符号表示,直线AB与CD平行,可以记作为.2.如图,在正方体中,与线段AB平行的线段有.3.右图的网格纸中,AB∥,AB⊥.4.给下面的图形归类.两条直线相交的有,两条直线互相平行的有.三.解答题(每小题15分,共45分)1.读下列语句,并画出图形.点P是直线AB外一点,直线CD经过点P,且与直线AB平行,直线EF也经过点P且与直线AB垂直.2.如图所示,马路上的斑马线,运动场上的双杠这些都给我们平行线的形象.请分别在图中标出字母;(1)并用不同字母表示各组平行线;(2)在双杠中哪些线是互相垂直关系?3.已知方格纸上点O和线段AB,根据下列要求画图:(1)画直线OA;(2)过B点画直线O A的垂线,垂足为D;(3)取线段AB的中点E,过点E画BD的平行线,交AO于点F.参考答案一.选择题(每小题5分,共35分)1.D【解析】当b∥d时a∥c;当b和d相交但不垂直时,a与c相交;当b和d垂直时,a与c垂直;a和c可能平行,也可能相交,还可能垂直,故选D.2.C【解析】A、在同一平面内,两条直线的位置关系有两种,分别是相交、平行,故A错误;B、在同一个平面内,不相交的两条直线叫平行线,故B错误;C、两条直线的铁轨是平行的,故C正确;D、我们知道,对顶角是相等的,那么反过来,相等的角不一定是对顶角,故D错误;故选:C.3.C【解析】PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选C.4.A【解析】①在同一平面内,不相交的两条直线叫做平行线,故原命题错误;②应为过直线外一点可以而且只可以画一条直线与已知直线平行,故命题错误;③平行于同一直线的两直线平行;命题正确;④应同旁内角互补,两直线平行,故原命题错误.所以正确的有一个.故选A.5.B【解答】∵在同一个平面内,直线a、b相交于点P,a∥c,∴b与c的位置关系是相交,故选B.6.C【解析】由图可知,和棱AB平行的棱有A1B1、C1D1、CD,共3条.故选C.7.A【解析】A、由于同一平面内两直线的位置关系只有两种:平行和相交,当l与a平行,根据平行公理的推论可知l也与b平行;当l与a相交,则必然与b相交,此选项正确;B、根据A的分析可知l不可能与a平行,而与b相交,此选项错误;C、根据A的分析,l也可能与a、b都平行,此选项错误;D、若三条直线都平行,也就不存在同旁内角了,此选项错误.故选A.二.填空题(每小题5分,共20分)1.∥,AB∥CD.【解析】平行用符号∥表示,如果直线AB与CD平行,可以记作为:AB∥CD.故答案为:∥,AB∥CD.2.EF、HG、DC.【解析】与AB平行的线段是:DC、EF;与CD平行的线段是:HG,所以与AB线段平行的线段有:EF、HG、DC.故答案是:EF、HG、DC.3.CD,AE【解析】由图可得A B∥CD,而CD⊥AE,∴可得AB⊥AE.4.①③⑤;②④.【解析】两条直线相交的有:①③⑤;两条直线互相平行的有;②④.故答案为:①③⑤;②④.三.解答题(每小题15分,共45分)1.如图所示:.【解析】举反例时,画出两个互补且不是同旁内角的角反例:如图,∠1与∠2是邻补角,∠1与∠2互补,但是它们不是同旁内角.2.答案见解析.【解析】(1)如图,a∥b∥c∥d,e∥f,g∥h∥m∥n;(2)e⊥m,e⊥n,f⊥g,f⊥h.3.答案见解析.【解析】(1)作法:①连接OA,②作直线AO;(2)作法:连接正方形AHGB的对角线BH交AG于点D;(3)作法:①取线段AD的中点F,连接EF.。

浙教版初中数学七年级下《第一章平行线1-2同位角、内错角、同旁内角》基础检测试题(含答案解析)

浙教版初中数学七年级下《第一章平行线1-2同位角、内错角、同旁内角》基础检测试题(含答案解析)

浙教版初中数学七年级下《第一章平行线1-2同位角、内错角、同旁内角》基础检测试题(含答案解析)第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.如图,直线被所截,下列说法,正确的有()①1∠与2∠是同旁内角;∠是内错角;②1∠与ACE③B与4∠是同位角;∠是内错角.④1∠与3A.①③④B.③④C.①②④D.①②③④【答案】D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①1∠与2∠是同旁内角,说法正确;∠是内错角,说法正确;②1∠与ACE③B与4∠是同位角,说法正确;∠是内错角,说法正确,④1∠与3故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两试卷第1页,共67页边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.2.如图,直线b、c被直线a所截,则1∠与2∠是()A.对顶角B.同位角C.内错角D.同旁内角【答案】B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.∠构成同位角的有()3.如图,能与αA.4个B.3个C.2个D.1个【答案】B【分析】根据同位角的定义判断即可;【详解】∠能构成同位角的有:∠1,∠2,∠3.如图,与α试卷第3页,共67页故选B .【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.4.如图,∠1与∠2是同位角的是( )① ① ① ①A .①B .②C .③D .④【答案】B【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.【详解】根据同位角的定义可知②中的∠1与∠2是同位角;故选B .【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.5.下列说法:①和为180°且有一条公共边的两个角是邻补角;②过一点有且只有一条直线与已知直线垂直;③同位角相等;④经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有( )A.0个B.1个C.2个D.3个【答案】B【分析】根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.【详解】解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;其中正确的有④一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.6.如图所示,下列说法错误的是()试卷第5页,共67页A .∠1和∠3是同位角B .∠1和∠5是同位角C .∠1和∠2是同旁内角D .∠5和∠6是内错角【答案】B【分析】 根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.【详解】解:A 、∠1和∠3是同位角,故此选项不符合题意;B 、∠1和∠5不存在直接联系,故此选项符合题意;C 、∠1和∠2是同旁内角,故此选项不符合题意;D 、∠1和∠6是内错角,故此选项不符合题意;故选B .【点睛】本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.7.如图,在所标识的角中,下列说法不正确的是( )A .1∠和2∠互为补角B .1∠和4∠是同位角C .2∠和4∠是内错角D .2∠和3∠是对顶角【答案】C【分析】根据同位角、内错角、邻补角、对顶角的定义求解判断即可.【详解】解:A 、1∠和2∠是邻补角,故此选项不符合题意;B、1∠是同位角,故此选项不符合题意;∠和4C、2∠不是内错角,故此选项符合题意;∠和4∠是对顶角,故此选项不符合题意.D、2∠和3故选:C.【点睛】此题考查了同位角、内错角、对顶角以及邻补角的定义,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.8.下列四个图形中,1∠和2∠是内错角的是()A.B.C.D.【答案】C【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.【详解】解:A、∠1与∠2不是内错角,选项错误,不符合题意;B、∠1与∠2不是内错角,选项错误,不符合题意;C、∠1与∠2是内错角,选项正确,符合题意;D、∠1和∠2不是内错角,选项错误,不符合题意;故选:C.【点睛】本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.9.如图,直线a,b被直线c所截,∠1的同旁内角是()试卷第7页,共67页A .∠2B .∠3C .∠4D .∠5【答案】A【分析】 根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解: 直线a ,b 被直线c 所截,∠1的同旁内角是∠2,故选:A .【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.10.如图,A ∠与1∠是( )A .同位角B .内错角C .同旁内角D .对顶角【答案】A【分析】 先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可.【详解】解:根据图象,∠A 与∠1是两直线被第三条直线所截得到的两角,因而∠A 与∠1是同位角,故选:A .【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单.11.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠2 和∠4B .∠6和∠4C .∠2 和∠6D .∠6和∠3【答案】A【分析】 同位角:两条直线a ∠b 被第三条直线c 所截(或说a ∠b 相交c ),在截线c 的同旁,被截两直线a ∠b 的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案.【详解】解:∵直线AD ∠BE 被直线BF 和AC 所截,∴∠1与∠2是同位角,∠5与∠4是内错角,故选A .【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.12.如图,直线a ,b 被直线c 所截,则下列符合题意的结论是( )A .13∠=∠B .14∠=∠C .24∠∠=D .34180∠+∠=︒【答案】A【分析】利用对顶角、同位角、同旁内角定义解答即可.【详解】解:A 、∠1与∠3是对顶角,故原题说法正确,符合题意;试卷第9页,共67页B 、由条件不能得出∠1=∠4,故原题说法错误,不符合题意;C 、∠2与∠4是同位角,只有a //b 时,∠2=∠4,故原题说法错误,不符合题意;D 、∠3与∠4是同旁内角,只有a //b 时,∠3+∠4=180°故原题说法错误,不符合题意;故选:A .【点睛】此题主要考查了对顶角、同位角、同旁内角,关键是掌握各种角的定义.13.下列四幅图中,1∠和2∠是同位角的是( )A .(1)(2)B .(3)(4)C .(1)(2)(3)D .(1)(3)(4)【答案】A【分析】 互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【详解】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A .【点睛】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.14.如图,CDB ∠与DBE ∠是同旁内角,它们是由( )A .直线CD ,AB 被直线BD 所截形成的B .直线AD ,BC 被直线AE 所截形成的C .直线DC ,AB 被直线AD 所截形成的D .直线DC ,AB 被直线BC 所截形成的【答案】A【分析】根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角.【详解】解:CDB ∠与DBE ∠是同旁内角,它们是由直线CD ,AB 被直线BD 所截形成的故选A .【点睛】本题考查了同旁内角的含义,熟练掌握含义是解题的关键.15.如图所示,下列四个选项中不正确...的是( )A .1∠与2∠是同旁内角B .1∠与4∠是内错角C .3∠与5∠是对顶角D .2∠与3∠是邻补角【答案】B【分析】 根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.【详解】A. 1∠与2∠是同旁内角,故该选项正确,不符合题意;B. 1∠与4∠不是内错角,故该选项不正确,符合题意;C. 3∠与5∠是对顶角,故该选项正确,不符合题意;D. 2∠与3∠是邻补角,故该选项正确,不符合题意;故选B .【点睛】 本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.16.如图,下列各组角中是同位角的是()A.∠1和∠2B.∠3和∠4C.∠2和∠4D.∠1和∠4【答案】D【分析】根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.【详解】A. ∠1和∠2是邻补角,不符合题意;B. ∠3和∠4是同旁内角,不符合题意;C. ∠2和∠4没有关系,不符合题意;D. ∠1和∠4是同位角,符合题意;故选D.【点睛】本题考查了同位角的定义,理解同位角的定义是解题的关键.17.下列图形中,有关角的说法正确的是()A.∠1与∠2是同位角B.∠3与∠4是内错角试卷第11页,共67页C.∠3与∠5是对顶角D.∠4与∠5相等【答案】C【分析】根据同位角、内错角、对顶角的定义判断即可求解.【详解】A、∠1与∠2不是同位角,原说法错误,故此选项不符合题意;B、∠1与∠4不是内错角,原说法错误,故此选项不符合题意;C、∠3与∠5是对顶角,原说法正确,故此选项符合题意;D、∠4与∠5不相等,原说法错误,故此选项不符合题意;故选:C.【点睛】本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分.18.如图,直线a、b 被直线c 所截,下列说法不正确的是()A.①1 和①4 是内错角B.①2 和①3 是同旁内角C.①1 和①3 是同位角D.①3 和①4 互为邻补角【答案】A【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】解:A、1∠不是内错角,此选项符合题意;∠和4∠是同旁内角,此选项不符合题意;B、2∠和3∠是同位角,此选项不符合题意;C、1∠和3试卷第13页,共67页D 、3∠和4∠是邻补角,此选项不符合题意;故选A .【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键.19.如图,下列说法错误的是( ).A .1∠与2∠是内错角B .1∠与4∠是同位角C .2∠与4∠是内错角D .2∠与3∠是同旁内角【答案】B【分析】 根据同位角、内错角及同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形即可得出答案.【详解】解:由图形可得:∠1与∠2是内错角,故A 选项正确;∠1与∠4既不是同位角,也不是内错角,也不是同旁内角,故B 选项错误;∠2与∠4是内错角,故C 选项正确;∠2与∠3是同旁内角,故D 选项正确,故选:B .【点睛】此题考查了同位角、内错角及同旁内角的知识,属于基础题,掌握定义是关键.20.已知图(1)~(4),在上述四个图中,1∠与2∠是同位角的有().A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(1)【答案】C【分析】根据同位角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角,结合图形即可得出答案.【详解】解:由图形可得,∠1与∠2是同位角有(1)(3).故选:C.【点睛】此题考查了同位角的知识,属于基础题,掌握定义是关键.21.在下图中,1∠和2∠是同位角的是()A.(1)、(2)B.(1)、(3)C.(2)、(3)D.(2)、(4)【答案】B【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:①∠1和∠2是同位角;试卷第15页,共67页②∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;③∠1和∠2是同位角;④∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角.故选:B .【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F “形.22.如图,与3∠是同旁内角的是( )A .1∠B .2∠C .4∠D .5∠【答案】C【分析】 根据同旁内角的概念:两条直线被第三条直线所截,若两个角都在两直线之间,并且在第三条直线的同旁,据此可排除选项.【详解】解:与3∠是同旁内角的是4∠;故选C .【点睛】本题主要考查同旁内角的概念,熟练掌握同旁内角的概念是解题的关键.23.如图,直线l 1截l 2、l 3分别交于A 、B 两点,则∠1的同位角是( )A .∠2B .∠3C .∠4D .∠5【答案】B【分析】根据同位角的定义判断即可.【详解】解:∵∠1和∠3分别在l 2、l 3的下方,在直线l 1截的同侧,∴∠1和∠3是同位角.故选:B .【点睛】本题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线. 24.如图,下列说法错误的是( )A .5∠和3∠是同位角B .1∠和4∠是同位角C .1∠和2∠是同旁内角D .5∠和6∠是内错角【答案】B【分析】根据同位角、内错角、同旁内角的定义逐个判断即可.【详解】解:A 、5∠和3∠是同位角,故本选项不符合题意;B 、∠1和∠4不是同位角,故本选项符合题意;C 、∠1和∠2是同旁内角,故本选项不符合题意;D 、∠5和∠6是内错角,故本选项不符合题意;故选:B .【点睛】试卷第17页,共67页本题考查了同位角、内错角、同旁内角的定义等知识点,能理解同位角、内错角、同旁内角的定义的内容是解此题的关键.25.初中第二学期的学习生活已经结束,在你们成长的花季里,一定有很多收获.很高兴和你们合作完成这道考试题.现在我作一个100°的角,你作一个80°的角,下面结论正确的是( )A .这两个角是邻补角B .这两个角是同位角C .这两个角互为补角D .这两个角是同旁内角【答案】C【分析】根据互为补角的定义、邻补角的定义、同位角的定义、同旁内角的定义进行判断.【详解】解:一个是100︒的角,另一个是80︒的角,这两个角和等于180︒,这两个角互为补角,这两个角若具备特殊的位置,也可能是邻补角,或同位角,或同旁内角.所以选项A 、B 、D 不一定正确,只有选项C 是正确的.故选:C .【点睛】本题考查互为补角、邻补角、同位角、同旁内角.解题的关键是灵活掌握补角的定义、邻补角的定义、同位角的定义、同旁内角的定义.26.如图,直线1l 截2l 、3l 分别交于A 、B 两点,则1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠【答案】B【分析】 根据同位角的定义:两条直线a ,b 被第三条直线c 所截(或说a ,b 相交c ),在截线c 的同旁,被截两直线a ,b 的同一侧的角,我们把这样的两个角称为同位角,进行判断即可.【详解】解:如图所示,∠1的同位角为∠3,故选B.【点睛】本题主要考查了同位角的定义,解题的关键在于能够熟练掌握同位角的定义.27.下列四幅图中,1∠和2∠是同位角的是()A.①②B.③④C.①②④D.②③④【答案】C【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可.【详解】解:根据同位角的定义可知:图①②④中,∠1和∠2是同位角;图③中,∠1和∠2不是同位角;故选C.【点睛】本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键.28.如图,按各组角的位置判断错误的是()A.①1与①A是同旁内角B.①3与①4是内错角C.①5与①6是同旁内角D.①2与①5是同位角【答案】C【分析】根据同位角、内错角、同旁内角的定义进行解答即可.试卷第19页,共67页【详解】解:A 、∠1和∠A 是同旁内角,说法正确;B 、∠3和∠4是内错角,说法正确;C 、∠5和∠6是同旁内角,说法错误;D 、∠5和∠2是同位角,说法正确.故选:C .【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F ”形,内错角的边构成“Z ”形,同旁内角的边构成 “U ”形.29.如图,直线a ,b 被直线c 所截,则∠4的内错角是( )A .∠1B .∠2C .∠3D .∠5【答案】B【分析】 根据内错角定义判断即可.【详解】解:∠4的内错角是∠2,故选:B .【点睛】此题主要考查了内错角,关键是掌握内错角的边构成“Z “形.30.如下图,在“A ”字型图中,AB 、AC 被DE 所截,则A ∠与4∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】A【分析】 根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“A ”字型图中,两条直线AB 、AC 被DE 所截形成的角中,∠A 与∠4都在直线AB 、DE 的同侧,并且在第三条直线(截线)AC 的同旁,则∠A 与∠4是同位角.故选:A .【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.31.下列判断错误的是( )A .2∠与4∠是同旁内角B .3∠与4∠是内错角C .5∠与6∠是同旁内角D .1∠与5∠是同位角【答案】C【分析】 根据同位角、内错角、同旁内角的定义进行解答即可.【详解】解:A 、∠2和∠4是同旁内角,说法正确,不符合题意;B 、∠3和∠4是内错角,说法正确,不符合题意;C 、∠5和∠6不是同旁内角,说法错误,符合题意;D 、∠1和∠5是同位角,说法正确,不符合题意.故选:C .【点睛】此题主要考查了同位角、内错角、同旁内角,以及三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F ”形,内错角的边构成“Z ”形,同旁内角的边构成“U ”试卷第21页,共67页形.32.如图,与α∠构成同旁内角的角有几个?( )A .4个B .5个C .6个D .7个【答案】B【分析】 根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案.【详解】解:如图:α∠构成同旁内角的角有1∠,2∠,3∠,4∠,5∠,故选:B .【点睛】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U ”形.33.如图,下列结论中错误的是( )A .1∠与3∠是同位角B .2∠与5∠是内错角C .4∠与5∠是同旁内角D .3∠与6∠是对顶角【答案】B【分析】根据各类角的定义和意义,即(①同位角:在截线同侧,在两条被截线同一方.②内错角:在截线两侧,③在两条被截线之间.同旁内角:在截线同侧,在两条被截线之间.④对顶角:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角)可判断各个角之间的关系.【详解】A 、同位角:在截线同侧,在两条被截线同一方,可得1∠与3∠是同位角,故A 正确,不符合题意;B 、内错角:在截线两侧,在两条被截线之间,2∠与5∠两角不在被截线之间,故B 错误,符合题意;C 、同旁内角:在截线同侧,在两条被截线之间,可得4∠与5∠是同旁内角,故C 正确,不符合题意;D 、对顶角:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,可得3∠与6∠是对顶角,故D 正确,不符合题意.故选:B .【点睛】此题主要考查学生对各类角的定义以及特点的掌握程度,掌握各类角的概念意义是解题的关键. 34.图中,1∠和2∠是同位角的个数是( )A .1个B .2个C .3个D .4个【答案】A【分析】 同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【详解】解:根据同位角的意义,可知第4个图形中的∠1和∠2是同位角,其余都不是,故选:A .【点睛】本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.35.如图,给出下列说法:①B 和3∠是同位角;②1∠和3∠是对顶角;③2∠和4∠是内错角;④B 与BCF ∠是同旁内角.其中说法正确的有( )个.试卷第23页,共67页A .0B .1C .2D .3【答案】C【分析】 根据对顶角,内错角以及同旁内角的定义作答.【详解】①B 和3∠不是同位角,故说法错误;②1∠和3∠不是对顶角,故说法错误;③2∠和4∠是内错角,故说法正确;④B 与BCF ∠是同旁内角,故说法正确;故选:C .【点睛】考查了同位角、内错角、同旁内角以及对顶角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.36.如图,下列两角之间关系为同位角的是( )A .∠1与∠2B .∠1与∠4C .∠2与∠4D .∠3与∠4【答案】B【分析】 直接利用同为角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【详解】解:如图所示:A、∠1与∠2邻补角,故此选项错误,不符合题意;B、∠1与∠4是同位角,故此选项正确,符合题意;C、∠2与∠4是同旁内角,故此选项错误,不符合题意;D、∠3与∠4是内错角,故此选项错误,不符合题意.故选:B.【点睛】本题主要考查邻补角、同位角、内错角、同旁内角的定义,熟知定义是解题的关键.37.如图,直线a,b被直线c所截,∠α同位角是()A.∠1B.∠2C.∠3D.∠4【答案】B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.据此解答即可.【详解】解:直线a,b被直线c所截成的角中,∠2与∠α在两直线的同侧,并且在截线的同旁,所以∠α的同位角是∠2.故选:B.【点睛】本题主要考查了同位角的识别,解题时注意:同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.38.如图,∠B的同旁内角有()试卷第25页,共67页A .2个B .3个C .4个D .5个【答案】D【分析】 根据同旁内角的定义(两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角叫做同旁内角)即可得.【详解】解:B 的同旁内角有,,,,BEC A BCE ACB BCD ∠∠∠∠∠,共5个,故选:D .【点睛】本题考查了同旁内角,熟记定义是解题关键.39.如图,直线a ,b 分别与c 相交,在标出的角∠2,∠3,∠4,∠5中,与∠1是内错角的是( )A .∠2B .∠3C .∠4D .∠5【答案】B【分析】 根据内错角的定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,进行判断即可得到答案.【详解】解:根据内错角的定义可知,∠1的内错角是∠3故选B.【点睛】本题主要考查了内错角的定义,解题的关键在于能够熟练掌握内错角的定义.40.如图,与4∠是同位角的是( )。

2023年浙教版数学七年级下册全方位训练卷第一章平行线(基础版)(教师版)

2023年浙教版数学七年级下册全方位训练卷第一章平行线(基础版)(教师版)

2023年浙教版数学七年级下册全方位训练卷第一章平行线(基础版)一、单选题(每题3分,共30分)1.(2022七下·广陵期末)北京2022年冬奥会会徽如图(一)是以汉字“冬”为灵感来源设计的.在下面的四个图中,能由图(二)经过平移得到的是()A.B.C.D.【答案】B【知识点】平移的性质【解析】【解答】解:根据平移的性质可得:能由图(二)经过平移得到的是B.故答案为:B.【分析】平移只改变图形的位置,不改变图形的大小、形状与方向,据此判断.2.(2021七下·永年期末)在同一平面内,经过直线外一点,有且只有一条直线与已知直线()A.垂直B.相交C.平行D.垂直或平行【答案】D【知识点】平面中直线位置关系【解析】【解答】解:在同一平面内,经过直线外一点,有且只有一条直线与已知直线垂直或平行;故答案为:D.【分析】根据平面内直线的位置关系求解即可。

3.(2021七下·唐山期末)如图,在平面内经过一点作已知直线m的平行线,可作平行线的条数有()A.0条B.1条C.0条或1条D.无数条【答案】C【知识点】平面中直线位置关系【解析】【解答】解:在同一平面内,当这个点在直线上时,此时可作0条与已知直线平行的线,当这个点在直线外时,可以作一条直线于已知直线m的平行.故答案为:C.【分析】分两种情况,再根据平面内两直线的位置关系求解即可。

4.(2022七下·淮北期末)若∠1与∠2是同旁内角,则()A.∠1与∠2不可能相等B.∠1与∠2一定互补C.∠1与∠2可能互余D.∠1与∠2一定相等【答案】C【知识点】同旁内角【解析】【解答】A.如图,∠1=∠2,,不符合题意;B.如图,∠1与∠2不一定互补,,不符合题意;C.如图,∠1与∠2可能互余,,符合题意;D.如图,∠1与∠2不一定相等,,不符合题意;故答案为:C.【分析】A.同旁内角是直角时相等;B.两直线不平行,同旁内角不互补;C.可能互余;D.不一定相等.5.(2022七下·拱墅期末)如图,说法正确的是()A.∠1和∠2是内错角B.∠1和∠3是内错角C.∠1和∠3是同位角D.∠2和∠3是同旁内角【答案】B【知识点】同位角;内错角;同旁内角【解析】【解答】解:A、∠1和∠2是同位角,错误;B、∠1和∠3是内错角,正确;C、∠1和∠3不是同位角,错误;D、∠2和∠3不是同旁内角,错误.故答案为:B.【分析】两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角;两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角;根据定义分别判断即可. 6.(2022七下·东阳月考)如图,下列说法错误的是()A.∠1与∠2是对顶角B.∠1与∠3是同位角C.∠1与∠4是内错角D.∠B与∠D是同旁内角【答案】C【知识点】对顶角及其性质;同位角;内错角;同旁内角【解析】【解答】解:A、∠1与∠2是对顶角,正确;B、∠1与∠3是同位角,正确;C、∠1与∠4不是内错角,错误;D、∠B与∠D是同旁内角,正确.故答案为:C.【分析】根据对顶角的定义,可对A作出判断;利用两条直线被第三条直线所截时,都在两条直线的同一方向,且在截线的同侧的两个角互为同位角,根据图形可对B作出判断;然后根据两条直线被第三条直线所截时,夹在两条直线的内部,且在截线两侧的两个角互为内错角,可对C作出判断;根据两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角,对D作出判断. 7.(2022七下·平谷期末)如图,下列条件中,能判断直线AB∥CD的是()A.∠2=∠3B.∠1=∠4C.∠BAD=∠BCD D.∠1+∠2=180°【答案】B【知识点】平行线的判定【解析】【解答】解:∵∠2=∠3,∴AD∥BC,故A选项不符合题意;∵∠1=∠4,∴AB∥CD,故B选项符合题意;由∠BAD=∠BCD,不能证明哪两条直线平行,故C选项不符合题意;由∠1+∠2=180°不能证明哪两条直线平行,故D选项不符合题意;故答案为:B.【分析】根据平行线的判定定理逐项分析判断即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 平行线复习1.(平行线的定义)在__________,不_____的两条直线互相平行.同一平面内的两条直线的位置关系只有________与_________两种.(平行公理)经过直线外一点, 一条直线与这条直线平行。

(平行线的传递性)平行于同一直线的两条直线 。

2.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.3.平行线的判定: 平行线的性质:⑴______________________________. ⑴______________________________. ⑵______________________________. ⑵______________________________. ⑶______________________________. ⑶______________________________. 4.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .5.平移的特征:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小 ;(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是 ;(3)连接各组对应的线段 。

即,在平面内,将一个图形沿 移动一定的 ,图形的这种移动,叫做平移变换,简称 。

图形平移的方向,不一定是水平的。

图形经过平移后,_______图形的位置,________图形的形状,________图形的大小。

(填“改变”或“不改变”) 巩固练习: 1.如图1,直线AB 、CD 被直线EF 所截,则∠EMB 的同位角是 ( )A. ∠AMFB. ∠BMFC. ∠ENCD. ∠END 2.如图2,直线c 截两平行直线a 、b ,则下列式子中一定成立的是 ( )A .∠1=∠5B . ∠1=∠4C . ∠1=∠3D . ∠1=∠2 3.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是( )A 、同位角 B 、内错角 C 、对顶角 D 、同旁内角 4.下列所示的四个图形中,∠1和∠2是同位角的是( )A. ②③B. ①②③C. ①②④D.①④ 5.下列说法错误的是 ( )A.在同一平面内,不平行的两条线段延长后必然相交B.在同一平面内,不相交的两条直线必然平行C.在同一平面内,不相交的两条线段必然平行D.在同一平面内,两条直线没有公共点,那么两条直线平行 6.如图所示,下列说法中正确的是( )A. 图中没有同位角、内错角、同旁内角B. 图中没有同位角和内错角,但有一对同旁内角C. 图中没有内错角和同旁内角,但有三对同位角D. 图中没有同位角和内错角,但有三对同旁内角 7.一条直线与另两条平行线的关系是()A.一定与两条平行线平行B.可能与两条平行线中的一条平行、一条相交C.一定与两条平行线相交D.与两条平行线都平行或都相交。

8.如图,同位角有_____对,内错角有_____对,同旁内角有_____对.(图1) N MFED C B A c1ba 23 4 5 (图2)①2121②12③12④A BC9.看图填空:(1)若ED ,BF 被AB 所截,则∠ 1与 是同位角; (2)若ED ,BC 被AF 所截,则∠3与 是内错角;(3)∠1与∠3是AB 和AF 被 所截构成的 角; (4)∠2 与∠4是 和 被BC 所截构成的 角. 10.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD ( )A. ∠3=∠4B. ∠1=∠4C. ∠D=∠DCED. ∠D+∠ABD=180° 11.已知∠1和∠2是同旁内角,∠1=40°,∠2等于( ) A 、160° B 、140° C 、40° D 、无法确定 12.如图,直线a 、b 被直线c 所截,现给出下列四个条件:(1)∠1=∠5; (2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a ∥b 的条件 的序号是( )A .(1)、(2) B .(1)、(3) C .(1)、(4) D .(3)、(4) 13.如图:(1)∵∠A= (已知),∴AC ∥ED( ) (2)∵∠2=_____(已知),∴A C ∥ED( ) (3)∵∠A+_____=180°(已知),∴A B ∥FD( ) (4)∵AB ∥_____(已知),∴∠2+∠A ED=180°( ) (5)∵AC ∥_____(已知),∴∠C=∠1( ) 14.在同一平面内,若,a b a c ⊥⊥,则b 与c 的位置关系是.15.如图,直线a//b ,∠1=40°,∠2的度数为()A 140°B 50°C 40°D 100° 16.如图,∠1=60°,∠2=60°,∠3=65°。

则∠4的度数为( ) A 60 ° B 65 ° C 120 ° D 115° 17.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A. 第一次向左拐30°,第二次向右拐30° B.第一次向右拐50°,第二次向左拐130° C. 第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130° 18.如图,已知a∥b,∠1=70°,∠2=40°,则∠3=_____. 19.如图,AB∥CD,直线PQ 分别交AB ,CD 于点E ,F ,FG•是∠EFD 的平分线,交AB 于点G ,若∠FEG =40°,那么∠FGB 等于( ) A .80° B.100° C.110° D.120°20.如图3所示 (1)若EF∥AC,则∠A +∠ = 180°, ∠F + ∠ = 180°( ).(2)若∠2 =∠ ,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF. 21.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( ) A 50° B 60° C 75° D 85° 22.如图,a//b ,∠1=(3x+20)°,∠2=(2x+10)°,那么∠3= °(第15题图)(第16题图) 1 2 3 45AB C D FE 图321 a b323.如图,∠1=100°,∠2=100°,∠3=120°,求∠4的度数.解:∵ ∠1=∠2=100°(已知)∴ m ∥n ( ) ∴ ∠ =∠ ( )又∵ ∠3=120°(已知) ∴ ∠4=120°24.已知,如图13-2,∠1=∠2,CF ⊥AB ,DE ⊥AB ,说明:FG ∥BC。

解:∵CF ⊥AB ,DE ⊥AB (已知)∴∠BED =90°,∠BFC =90°( )∴∠BED =∠BFC∴ED ∥FC ( )∴∠1=∠______( ) 又∵∠1=∠2(已知) ∴∠2=∠BCF ∴FG ∥BC ( )25.E 点为DF 上的点,B 点为AC 上的点,21∠=∠,D C ∠=∠,试说明:DF AC //.解:21∠=∠ ,(已知) 31∠=∠,( )32∠=∠∴,(等量代换)∴ // ,( ) ABD C ∠=∠∴,( ) 又D C ∠=∠ ,(已知)ABD D ∠=∠∴,( )DF AC //∴.( ) 26.如图,已知∠1=∠2 , ∠3 =65°,求∠4的度数。

27.如图,∠D =∠A,∠B =∠FCB,求证:ED∥CF.28.如图,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥C D ,MP∥NQ.2 1 a b m n4 3图13-221GF E D C B A (第25题图)E B AF D CF2A B CDQE 1 PMN29.如图,AB ∥CD ,EF 分别交AB ,CD 于点E ,F ,FG 平分∠EFC ,交AB 于点G ,若∠1=80° 求:∠FGE 的度数.30.如图所示,AB ∥CD ,EF 分别交AB 、CD 于G 、H ,GM 、HN 分别平分∠BGF 、∠EHC. 说明GM ∥HN .ABCDG HMN EF1231.如图,CD ∥AB ,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF 与AB 有怎样的位置关系,为什么?32.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.A B CD2 1 B C E D。

相关文档
最新文档