2020年高考数学文科精优预测卷-新课标全国卷二

合集下载

2020年高考文科数学全国卷2-答案

2020年高考文科数学全国卷2-答案

2020年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学答案解析一、选择题1.【答案】D【解析】解绝对值不等式化简集合A B ,的表示,再根据集合交集的定义进行求解即可. 因为{}{}321012A x x x Z =<∈=--,,,,,,{}{}111B x x x Z x x x x Z =>∈=><-∈,或,, 所以{}22A B =-,.故选:D .【考点】绝对值不等式的解法,集合交集的定义2.【答案】A【解析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.()()()()2422221i [1i ]12i i 2i 4-=-=-+=-=- 故选:A .【考点】复数的乘方运算性质3.【答案】C【解析】根据原位大三和弦满足34k j j i -=-=,,原位小三和弦满足43k j j i -=-=,,从1i =开始,利用列举法即可解出.根据题意可知,原位大三和弦满足:34k j j i -=-=,.∴158i j k ===,,;269i j k ===,,;3710i j k ===,,;4811i j k ===,,;5912i j k ===,,.原位小三和弦满足:43k j j i -=-=,.∴148i j k ===,,;259i j k ===,,;3610i j k ===,,;4711i j k ===,,;5812i j k ===,,.故个数之和为10.故选:C .【考点】列举法的应用4.【答案】B【解析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为50016001200900+-=, 故需要志愿者9001850=名. 故选:B【考点】函数模型的简单应用5.【答案】D【解析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可. 由已知可得:11cos601122a b a b ︒==⨯⨯=. A :因为215(2)221022a b b a b b +=+=+⨯=≠,所以本选项不符合题意; B :因为21(2)221202a b b a b b +=+=⨯+=≠,所以本选项不符合题意; C :因213(2)221022a b b a b b -=-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -=-=⨯-=,所以本选项符合题意. 故选:D .【考点】平面向量数量积的定义和运算性质,两平面向量数量积为零则这两个平面向量互相垂直6.【答案】B【解析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可.设等比数列的公比为q ,由53641224a a a a -=-=,可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)12221112n nn n n n n a q a a q S q ----=====---,, 因此1121222n n n n n S a ---==-. 故选:B .【考点】等比数列的通项公式的基本量计算,等比数列前n 项和公式的应用7.【答案】C【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k 值.模拟程序的运行过程0,0k a ==第1次循环,2011011a k =⨯+==+=,,210>为否第2次循环,2113112a k =⨯+==+=,,310>为否第3次循环,2317213a k =⨯+==+=,,710>为否第4次循环,27115314a k =⨯+==+=,,1510>为是退出循环输出4k =.故选:C .【考点】求循环框图的输出值8.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为()0a a a >,,,可得圆的半径为a ,写出圆的标准方程,利用点()21,在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.由于圆上的点()21,在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为()a a ,,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()11,或()55,,圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=.故选:B .【考点】圆心到直线距离的计算9.【答案】B 【解析】因为2222:1(00)x y C a b a b-=>,>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE △的面积为8,可得ab 值,根据2c =结合均值不等式,即可求得答案.2222:1(00)x y C a b a b-=>,> ∴双曲线的渐近线方程是b y x a=± 直线x a =与双曲线()2222:100x y C a b a b-=>>,的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x a b y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故()D a b , 联立x a b y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故()E a b -,∴||2ED b =∴ODE △面积为:1282ODE S a b ab =⨯==△ 双曲线()2222:100x y C a b a b-=>>, ∴其焦距为28c ==当且仅当a b ==∴C 的焦距的最小值:8故选:B .【考点】求双曲线焦距的最值问题10.【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.因为函数()331f x x x=-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在()0+∞,上单调递增,在()0-∞,上单调递增, 而331y x x-==在()0+∞,上单调递减,在()0-∞,上单调递减, 所以函数()331f x x x =-在()0+∞,上单调递增,在()0-∞,上单调递增. 故选:A .【考点】利用函数的解析式研究函数的性质11.【答案】C【解析】根据球O 的表面积和ABC △的面积可求得球O 的半径R 和ABC △外接圆半径r ,由球的性质可知所求距离d =.设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △的等边三角形,212a ∴,解得:3a =,2233r ∴=∴球心O 到平面ABC 的距离1d ===.故选:C .【考点】球的相关问题的求解12.【答案】A【解析】将不等式变为2323x x y y ----<,根据()23t t f t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果.由2233x y x y ----<得:2323x x y y ----<,令()23t t f t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误; x y -与1的大小不确定,故CD 无法确定.故选:A .【考点】对数式的大小的判断问题二、填空题 13.【答案】19【解析】直接利用余弦的二倍角公式进行运算求解即可.22281cos212sin 12()1399x x =-=-⨯-=-=. 故答案为:19. 【考点】余弦的二倍角公式的应用14.【答案】25【解析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案.{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-=可得1152a d a d +++=即:()2252d d -++-+=整理可得:66d =解得:1d = 根据等差数列前n 项和公式:*1(1)2n n n S na d n N -=+∈, 可得:()1010(101)1022045252S ⨯-=-+=-+= ∴1025S =.故答案为:25.【考点】求等差数列的前n 项和15.【答案】8【解析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x =-,在平面区域内找到一点使得直线1122y x z =-+在纵轴上的截距最大,求出点的坐标代入目标函数中即可. 不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大, 此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩, 因此2z x y =+的最大值为:2238+⨯=.故答案为:8.【考点】线性规划的应用,数形结合思想16.【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【考点】空间中线面关系有关命题真假的判断三、解答题17.【答案】(1)3A π=(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【解析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出; 因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)根据余弦定理可得222b c a bc +-=,将b c -=代入可找到a b c ,,关系, 再根据勾股定理或正弦定理即可证出. 因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -②,将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC △是直角三角形.【考点】诱导公式和平方关系的应用18.【答案】(1)12000(2)0.94(3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【解析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可; 样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=;(2)利用公式20()()i i x x y y r --=∑ 样本()i i x y ,的相关系数为20()()0.943i i x x y y r --===≈∑ (3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样. 由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样 先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【考点】平均数的估计值、相关系数的计算,抽样方法的选取19.【答案】(1)12(2)1C :2211612x y +=,2C :28y x =.【解析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设A C ,在第一象限,运用代入法求出A B C D ,,,点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可; 解:(1)因为椭圆1C 的右焦点坐标为:()c 0F ,,所以抛物线2C 的方程为24y cx =,其中c = 不妨设A C ,在第一象限,因为椭圆1C 的方程为:22221x y a b+=, 所以当x c =时,有222221c y b y a b a +=⇒=±,因此A B ,的纵坐标分别为2b a ,2b a-; 又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⇒=±,所以C D ,的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =. 由4||||3CD AB =得2843b c a =,即2322c c a a ⎛⎫=- ⎪⎝⎭,解得2c a =-(舍去),12c a =.所以1C 的离心率为12. (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为ABC △,(20)c -,,(0),(0),,2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =. 【考点】椭圆的离心率,椭圆和抛物线的标准方程,椭圆的四个顶点的坐标,抛物线的准线方程 20.【答案】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)24【解析】(1)由M N ,分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1//MN AA ,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;M N ,分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC △中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M =,MN AM ⊂,平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F 平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -. 过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN平面11EB C F NP = //AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心. ∴1111sin606sin60333ON AC ==⨯⨯=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F 平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC △中EF AP BC AM = 即323AP BC EF AM ⨯=== 由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⨯=四边形 111113B EBC F EB C F V S h -∴=四边形,h 为M 到PN 的距离sin 603MH ==,∴1243243V =⨯⨯=.【考点】证明线线平行和面面垂直,求四棱锥的体积21.【答案】(1)1c -≥;(2)()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间 【解析】(1)不等式()2f x x c +≤转化为()20f x x c --≤,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;函数()f x 的定义域为:()0+∞,()()()2202ln 120f x x c f x x c x x c +⇒--⇒+--*≤≤≤,设()()2ln 120h x x x c x =+-->,则有()()2122x h x x x-'=-=, 当1x >时,()()0h x x h '<,单调递减,当01x <<时,()()0h x h x '>,单调递增, 所以当1x =时,函数()h x 有最大值,即()()max 12ln11211h c x h c ==+-⨯-=--,要想不等式()*在()0+∞,上恒成立, 只需()max 0101h x c c ⇒--⇒-≤≤≥;(2)对函数()g x 求导,把导函数()g x '分子构成一个新函数()m x ,再求导得到()m x ',根据()m x '的正负,判断()m x 的单调性,进而确定()g x '的正负性,最后求出函数()g x 的单调性.()()()()2ln 12ln 12ln ln 0x a x a g x x a x ax x a +---==≠-->且 因此()()()22ln ln x a x x x a g x a x x --+'=-,设()()2ln ln m x x a x x x a =--+,则有()()2ln ln m x a x '=-,当x a >时,ln ln x a >,所以()0m x '<,()m x 单调递减,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减;当0x a <<时,ln ln x a <,所以()0m x '>,()m x 单调递增,因此有()()0m x m a =<,即()0g x '<,所以()g x 单调递减,所以函数()g x 在区间()0a ,和()a +∞,上单调递减,没有递增区间. 【考点】利用导数研究不等式恒成立问题,利用导数判断含参函数的单调性22.【答案】(1)14C x y +=:;2224C x y -=:;(2)17cos 5ρθ=. 的【解析】(1)分别消去参数θ和t 即可得到所求普通方程;由22cos sin 1θθ+=得1C 的普通方程为:4x y +=; 由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=. (2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即5322P ⎛⎫ ⎪⎝⎭,; 设所求圆圆心的直角坐标为()0a ,,其中0a >, 则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =, ∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 【考点】极坐标与参数方程的综合应用问题23.【答案】(1)31122x x x ⎧⎫⎨⎬⎩⎭≤或≥ (2)(][),13,-∞-+∞【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为31122x x x ⎧⎫⎨⎬⎩⎭≤或≥. (2)利用绝对值三角不等式可得到()()21f x a -≥,由此构造不等式求得结果.()()()()22222121211f x x a x a x a x a a a a =-+-+---+=-+-=-≥(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a -≤或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【考点】绝对值不等式的求解,利用绝对值三角不等式求解最值的问题。

2020届湖北省高考全国统考预测密卷(2)数学(文)试卷(有答案)(已审阅)

2020届湖北省高考全国统考预测密卷(2)数学(文)试卷(有答案)(已审阅)

高考文数预测密卷二本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1. 已知集合{}2|230A x x x =--≥,4|5B y y ⎧⎫=≥-⎨⎬⎩⎭,则R A C B I =( ) A.{}|1x x ≤- B. {}|3x x ≥ C. 5|4x x ⎧⎫<-⎨⎬⎩⎭ D. 5|14x x ⎧⎫-≤<-⎨⎬⎩⎭2.若复数()12a iz a R i+=∈+为纯虚数,其中i 为虚数单位,则2017z =( ) A .i - B. i C.1 D.-1 3. 0000cos 45sin105sin135sin15-=( )A. 32-B. 32C. 12-D. 124. 3m =是直线(3)20m x my ++-=与直线650mx y -+=垂直的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5.已知正项数列{}n a 满足1*12()n n a a n N +=∈,则2017a =( ) A. 20152B. 20162C. 20172D. 201826.我们可以用随机模拟的方法估计的值,如图程序框图表示其基本步骤(函数是产生随机数的函数,它能随机产生内的任何一个实数).若得到的π的近似值为3.126,则输出的结果为( )A. 512B. 521C. 520D. 5237.已知实数x ,y 满足1,21,3,y y x x y ≥⎧⎪≥-⎨⎪+≤⎩则31z x y =++( )A. 有最大值20 B .有最小值20C . 有最大值8,最小值203D .有最大值8,最小值5 8.已知双曲线C :22221(0,0)x y a b a b -=>>的右焦点为F ,离心率为52, 若以OF 为直径的圆与双曲线C 的一条渐近线相交于点M ,且OMF ∆的面积为16,则双曲线方程为( )A. 22125664x y +=B. 2216416x y +=C. 221164x y +=D. 2214x y +=9.某几何体的三视图如图所示,则该几何体的侧面积与底面积之比为( )225217++74541++22521741+++24541++10.数列{}n a 满足111,(1)(1)n n a na n a n n +==+++,数列cos n n b a n π=,设n S 为数列{}n b的前n 项和,则27S =( )A. 351B. 406C. 378-D. 324-11.已知函数322,0()69,0x f x x x x a x <⎧=⎨-+-+≥⎩,若存在()f x 图象上的相异两点,A B ,使得,A B 关于原点的对称点仍然落在()f x 图象上,则实数a =( ) A. 2- B. 2 C. 1 D. 012.设点M 为圆C :222(5)(0)x y r r +-=>上一点,过点M 作圆C 的切线l 交抛物线214y x =于A ,B 两点,M 为线段AB 的中点,若这样的直线l 只有2条,则r 的取值范围是( ) A. (0,2] B. (2,4] C. [4,5) D. (0,2][4,5)U第Ⅱ卷(13-21为必做题,22-23为选做题)二、填空题(本大题共4个小题,每小题5分,共20分。

2020年高考数学(文科)全国2卷高考模拟试卷(8)

2020年高考数学(文科)全国2卷高考模拟试卷(8)

??2 ??2 = 1( b> 0)的左、右焦点分别为
F1,F 2,过点 F 1 与双
曲线的一条渐近线平行的直线与另一条渐近线交于点
P,若点 P 在以原点为圆心,双曲
线 M 的虚轴长为半径的圆内,则 b2 的取值范围是(

A .( 7+4 √3 , +∞)
B.( 7﹣ 4√3, +∞)
C.(7﹣ 4√3 , 7+4√3)
第 3页(共 17页)
( 2)已知点 M ( 0,﹣ 1),且∠ AMB 为锐角,求 l 的斜率的取值范围. 21.( 12 分)已知函数, f( x)= x2(x> 0), g(x)= alnx( a>0).
(Ⅰ)若 f(x)> g(x)恒成立,求实数 a 的取值范围;
(Ⅱ)当 a= 1 时,过 f( x)上一点( 1,1)作 g( x)的切线,判断:可以作出多少条切
了前人数学成果,既吸收了北方的天元术,又吸收了南方的正负开方术、各种日用算法
及通俗歌诀,在此基础上进行了创造性的研究,写成以总结和普及当时各种数学知识为
宗旨的 《算学启蒙》 ,其中有关于 “松竹并生” 的问题: 松长四尺, 竹长两尺, 松日自半,
竹日自倍,松竹何日而长等.如图,是源于其思想的一个程序框图.若输入的
第 4页(共 17页)
2020 年高考数学(文科)全国 2 卷高考模拟试卷( 8)
参考答案与试题解析
一.选择题(共 12 小题,满分 60 分,每小题 5 分)
1.( 5 分)若 ??=
?2?020 +3??,则 1+??
z 的虚部是(

A .i
B .2i
C.﹣ 1
【解答】

2020届(新课标ii卷)高三预测密卷:数学(文)试卷(有答案)(word版)(精品)

2020届(新课标ii卷)高三预测密卷:数学(文)试卷(有答案)(word版)(精品)

高考文数预测密卷新课标II 卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.已知复数z 满足(1)i z i =-,其中i 为虚数单位,则复数z 所对应的点在( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知集合A={1,2},B={x|ax ﹣1=0},若A B B =I ,则实数a 的取值个数为( ) A .0 B.1 C.2 D.33. 已知等差数列{}n a 满足2810a a +=, 且1a ,2a ,4a 成等比数列,则2016a =( )A.2014B.2015C.2016D.2017 4.下列命题中正确的是( )A.命题“x R ∃∈使得210x x ++<”的否定是“x R ∀∈均有210x x ++<”.B.若p 为真命题,q 为假命题,则(¬p)∨q 为真命题.C.为了了解高考前高三学生每天的学习时间,现要用系统抽样的方法从某班50个学生中抽取一个容量为10的样本,已知50个学生的编号为1,2,3…50,若8号被选出,则18号也会被选出.D.已知m 、n 是两条不同直线,α、β是两个不同平面,α∩β=m,则“n α⊂,n⊥m”是“α⊥β”的充分条件.5. 设P 是△ABC 所在平面内的一点,且4AB AC AP +=u u u r u u u r u u u r,则△PBC 与△ABC 的面积之比是( )A.13 B.12 C.23 D.346.一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的侧面积是( )A .434+ B.43 C .8 D .127. 已知不等式组表示的平面区域为D ,若直线2y x a =-+与区域D 有公共点,则a 的取值情况是( )A .有最大值2,无最小值B .有最小值2,无最大值C .有最小值,最大值2D .既无最小值,也无最大值8.已知2log (1),2()(1),2x x f x f x x +>⎧=⎨+≤⎩,执行如图所示的程序框图,若输入A的值为(1)f ,则输出的P 值为( ) A .2B .3C .4D .59. 已知函数()2sin cos()3f x x x ωωπ=+(0ω>)的图像的相邻两条对称轴之间的距离等于2π,要得到函数3cos(2)32y x π=+-的图象,只需将函数()y f x =的图象( ) A .向右平移2π个单位 B .向左平移2π个单位C .向右平移4π个单位 D .向左平移个单位10. 已知圆22:(3)(5)5C x y -+-=,过圆心C 的直线l 交圆C 于,A B 两点,交y 轴于点P . 若14PA AB =u u u r u u u r,则直线l 的方程为( )A. 270x y -+=B. 2130x y +-=或270x y -+= C .2130x y +-= D. 270x y ++=11.已知()f x 为偶函数,且满足()(2)f x f x =-+,方程()0f x =在[0,1]内有且只有一个根12016,则方程()0f x =在区间[-2016,2016]内的根的个数为( ) A .4032 B.4036 C .2016 D.201812.已知双曲线C :22221(0)1x y a a a-=>-的左右焦点分别为12,F F ,若存在k ,使直线(1)y k x =-与双曲线的右支交于P,Q 两点,且1PFQ ∆的周长为8,则双曲线的斜率为正的渐近线的倾斜角的取值范围是( ) A. (,)32ππB. (,)62ππC. (0,)6πD. (0,)3π第Ⅱ卷(13-21为必做题,22-24为选做题)二、填空题(本大题共4个小题,每小题5分,共20分。

2020年高考押题预测卷01(新课标Ⅱ卷)-文科数学(参考答案)

2020年高考押题预测卷01(新课标Ⅱ卷)-文科数学(参考答案)

0 0
2k1 4k12
1
.
(6 分)
联立
y k1 x2 y
2
(x
2), 4,

(k12
1)
x2
4k12
x
4(k12
1)
0
.
解得:
xE
2(k12 1) k12 1
, yE
4k1 k12 1
kEF
yE 0
xE
6 5
5k1 4k12 1
kBC kEF
2 5
,
kBC
2 5
kEF

(10 分)
2020 年高考押题预测卷 01【新课标Ⅱ卷】
文科数学·参考答案
1
2
3
4
5
6
7
8
9 10 11 12
B
A
A
D
C
B
A BDBBC
13. 2 10

14. 17
3 65 5
15. x 2 y 3 0
16. 32 3
17.(本小题满分 12 分)
【答案】(1) an
2n
1 ;(2) Tn
n 2n 1
(2)由(1)知当 a 0 时, f (x) 在 x ln a 时取得极小值,
f (x) 的极小值为 f ( ln a) 2 ln a .
(7 分)
设函数 g(x) 2 ln x (3 1) ln x 1 1
x
x
g(x)
x x2
1
(
x
0)
(9 分)
当 0 x 1的 g(x) 0 ; g(x) 单调递减;当 x 1 时 g(x) 0 ; g(x) 单调递增;

2020年高考文科数学预测卷及答案

2020年高考文科数学预测卷及答案

2020年普通高等学校招生全国统一考试文 科 数 学(二)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{log (1)0}A x x =-<,则R C A =( ) A.(,1]-∞B.[2,)+∞C.(,1)(2,)-∞+∞D.(,1][2,)-∞+∞2.若复数z 满足(23)13i z +=,则复平面内表示z 的点位于( ) A.第一象限 B.第二象限C.第三象限D.第四象限3.函数11()22x f x e x =--的图象大致为( ) A.B.C.D.4.在ABC ∆中,90B ∠=︒,(1,2)AB =,(3,)AC λ=,λ=( )A.1B.2C.3D.45.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,()()2a b c a c b ab +-++=,则角C 的正弦值为( ) A.12B.32C.22D.16.双曲线221mx ny -=(0mn >)的一条渐近线方程为12y x =,则它的离心率为( ) A.5B.52C.5或52 D.5或527.执行如图所示的程序框图,若输出的值为1-,则判断框中可以填入的条件是( )A.999n ≥B.999n ≤C.999n <D.999n >8.已知单位圆有一条直径AB ,动点P 在圆内,则使得2AP AB ⋅≤的概率为( ) A.12B.14C.24ππ- D.24ππ+ 9.长方体1111ABCD A B C D -,4AB =,2AD =,15AA =,则异面直线11A B 与1AC 所成角的余弦值为( ) A.25B.35C.45D.1210.将函数()sin 2cos 2f x x x =+图象上所有点向左平移38π个单位长度,得到函数()g x 的图象,则()g x 图象的一个对称中心是( ) A.(,0)3πB.(,0)4πC.(,0)6πD.(,0)2π11.已知()f x 是定义在R 上偶函数,对任意x R ∈都有(3)()f x f x +=且(1)4f -=,则(2020)f 的值为( ) A.2B.3C.4D.5此卷只装订不密封班级 姓名 准考证号 考场号 座位号12.过抛物线C:22x py=(0p>)的焦点F的直线交该抛物线于A、B两点,若4AF BF=,O为坐标原点,则AFOF=()A.54B.3C.4D.5第Ⅱ卷本卷包括必考题和选考题两部分。

【新课标II卷】2020年全国统一高考数学模拟试题(文)(含答案)

【新课标II卷】2020年全国统一高考数学模拟试题(文)(含答案)

绝密★启用前2020年普通高等学校招生全国统一模拟考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =I A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-L ,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=LA .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2020届全国新课标2高考数学(文科)预测卷 (二)

2020届全国新课标2高考数学(文科)预测卷 (二)

2020年新课标二高考数学(文科)预测卷 (二)注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、选择题1.已知集合{}2|20A x x x =-≥,{}|1B y y =>-,则A B ⋂=( )A.(]10-,B.(]1102⎡⎫-⋃+∞⎪⎢⎣⎭,, C.112⎛⎤- ⎥⎝⎦, D.1,2⎡⎫+∞⎪⎢⎣⎭2.设复数z 在复平面内对应的点的坐标为(1)2-,,则()12i z -+=( ) A.43i --B.43i -C.34i +D.33.若双曲线22221x y a b-=(0,0a b >>)的一条渐近线经过点()1,2-,则该双曲线的离心率为( )A. 3B.52C. 5D.24.已知12==,a b ,且()()52+⊥-a b a b ,则a 与b 的夹角为( ) A.30°B.60°C.120°D.150°5.已知(0,π)α∈,2sin2cos21αα=-,则cos α=( )A.55B.55-C.255D.255-6.如图,在等腰直角三角形ABC 中, AB BC =, 90ABC ∠=︒,以AC 为直径作半圆,再以AB 为直径作半圆,若向整个几何图形中随机投掷一点,那么该点落在阴影部分的概率为( )A.4π1+ B.2π1+ C.22π1+ D.1π1+7.平面α过正方体1111ABCD A B C D -的顶点A,//α平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( ) A.32B.22C.3 3D.138.函数3()cos ()exx x xf x +=的图象可能是( )A. B.C. D.9.函数()()(sin 00π)f x x ωωϕϕ=+><<,的部分图象如图所示,关于函数()f x 有下述四个结论: ①3π4ϕ=②2122f ⎛⎫⎪⎭=- ⎝;③当51,2x ⎡⎤∈⎢⎥⎣⎦时,)(f x 的最小值为1-;④()f x 在117,44⎡⎤--⎢⎥⎣⎦上单调递增.其中所有正确结论的序号是( )A.①②④B.②④C.①②D.①②③④10.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为( )323πB. 32πC. 36πD. 48π11.抛物线24x y =的焦点为F ,准线为l , ,A B 是抛物线上的两个动点,且满足AF BF ⊥,P 为线段AB 的中点,设P 在l 上的射影为Q ,则PQ AB的最大值是( )A.233 C.223 12.已知函数()21log 2,1()15,1a x x f x x a x ⎧+-≤⎪=⎨-+>⎪⎩,且(0a >,且1a ≠)在区间(),-∞+∞上为单调函数,若函数()2y f x x =--有两个不同的零点,则实数a 的取值范围是( ) A.13[,]55B.12[,]55C.1313[,]{}5520⋃ D.1213[,]{}5520⋃ 二、填空题13.命题“2210x x ax ∀∈-+>R ,”是假命题则实数a 的取值范围是 .14.已知直线:330l mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,若23AB =则CD =__________.15.已知实数,x y 满足约束条件1210320y x y x y c ≥⎧⎪-+≥⎨⎪+-≤⎩,若2z y z =-的最大值为11,则实数c 的值为________.16.在ABC △中,内角A B C ,,所对的边分别是a b c ,,,且 ()sin cos2cos sin 22A A C C =-,3cos ,45A a ==,则ABC △的面积为 .三、解答题17.已知n S 为数列{}n a 的前n 项和,满足()21n n n a S n +=+,且35a =. (1)求数列{}n a 的通项公式;(2)若()111322n a n n b a -=++⨯,求数列{}n b 的前n 项和n T . 18.如图,在直三棱柱111ABC A B C -中,3BC =,1AB =,12AA AC E ==,为1AA 的中点.(1)证明:平面EBC ⊥平面11EB C . (2)求三棱锥1C BC E -的体积.19.下面给出了根据我国2012年~2018年水果人均占有量y (单位:kg)和年份代码x 绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码x 分别为1~7).附:回归方程y a bx =+中斜率和截距的最小二乘估计公式分别为:121()()()niii nii x x yy b x x ==--=-∑∑,a y bx =-.(1)根据散点图分析y 与x 之间的相关关系;(2)根据散点图相应数据计算得77111074,4517ii i i i yx y ====∑∑,求y 关于x 的线性回归方程;(精确到0.01)(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.20.已知椭圆()2222:10y x C a b ab+=>>直线l 过焦点1(0)F ,并与椭圆C 交于M N ,两点,且当直线l 平行于x 轴时,MN =(1)求椭圆C 的标准方程.(2)若2MF FN =,求直线l 的方程.21.已知函数()22()ln xae f x x a x x=+-∈R .(1)若0a ≤,讨论()f x 的单调性.(2)若()f x 在区间(0)2,内有两个极值点,求实数a 的取值范围. 22.在极坐标系中,直线l 的极坐标方程为cos 4ρθ=,曲线C 的极坐标方程为2cos 2sin ρθθ=+,以极点为坐标原点O ,极轴为x 轴的正半轴建立直角坐标系,射线(:0)01l y kx x k '=≥<<,与曲线C 交于O M ,两点.(1)写出直线l 的直角坐标方程以及曲线C 的参数方程.(2)若射线l '与直线l 交于点N ,求OMON的取值范围. 23.设函数()223f x x x =-++. (1)解不等式()8f x ≥;(2)若函数()f x 图象的最低点的坐标为(),m n ,且正实数a b ,满足a b m n +=+,求2211a b b a +++的最小值.参考答案1.答案:B2.答案:C3.答案:C4.答案:C5.答案:B6.答案:B7.答案:A8.答案:A 10.答案:D 11.答案:C 12.答案:C13.答案:[)1(1-∞-⋃+∞,], 14.答案:4 15.答案:23 16.答案:617.答案:(1)由()21n n n a S n +=+,得()1n n na S n n =+-①,所以()()1111n n n a S n n +++=++②,由②-①,得()1112n n n n a na a n +++-=+,所以12n n a a +-=, 故数列{}n a 是公差为2的等差数列.因为35a =,所以112225a d a +=+⨯=,解得11a =, 所以()12121n a n n =+-=-.(2)由(1)得,134n n b n -=+⨯,所以()011123444n n T n -=++⋯++⨯+++()1143214n n n +-=+⨯-()1412n n n +=+-. 解析:18.答案:(1)易知1BB CB ⊥,3BC =1AB =,2AC =,222BC AB AC ∴+=,BC AB ∴⊥,又1BA BB B ⋂=,1BA BB ⊂,平面11ABB A , BC ∴⊥平面11ABB A ,1B E ⊂平面11ABB A ,1BC B E ∴⊥.E 为1AA 的中点,11AE A E ∴==,2212BE B E ∴==,22211BE B E B B ∴+=,1BE B E ∴⊥.又BE BC B ⋂=,BE BC ⊂,平面BCE ,1B E ∴⊥平面BCE , 又1B E ⊂平面11B C E ,∴平面EBC ⊥平面11EB C . (2)由(1)知BC AB ⊥,1AB BB ⊥,1B B BC B ⋂=,1B B BC ⊂,平面11B C CB ,AB ∴⊥平面11B C CB .又11//A A B B ,1B B ⊂平面11B C CB ,1A A ⊄平面11B C CB ,1//A A ∴平面11B C CB ,∴点E 到平面11B C CB 的距离为线段AB 的长.11C BC E E BC C V V --∴=113BC C S AB =⋅⋅△112132=⨯⨯.解析:19.答案:(1)根据散点图可知y 与x 正线性相关. (2)由所给数据计算得1(12...7)47x =+++=,721()28ii xx =-=∑,777111()()451741074221ii i i i i i i xx y y x y x y ===--=-=-⨯=∑∑∑,71421()()2217.8928()ii i ii xx y y b xx ==--==≈-∑∑, 10747.894121.877a y bx =-=-⨯≈, 所求线性回归方程为7.89121.87y x =+.(3)由题中的残差图知历年数据的残差均在-2到2之间,说明线性回归方程的拟合效果较好. 解析:20.答案:(1)当直线l 平行于x 轴时,直线:1l y =, 则MN =221112b a ⎛⎫ ⎪⎝=⎭-又1c =,222a b c =+,22a ∴=,21b =.∴椭圆C 的标准方程为2212y x +=.(2)当直线l 的斜率不存在时,直线l 的方程为0x =,此时不满足2MF FN =. 且由(1)知当0k =时也不满足.设直线l 的斜率为k ,则直线l 的方程为1(0)y kx k =+≠ 设11(,)M x y ,22(,)N x y . 联立得方程组22112y kx y x =++=⎧⎪⎨⎪⎩,消去y 并整理,得()222210k kx x ++-=.12222k x x k ∴+=-+,12212x x k =-+. 2MF FN =,122x x ∴=-,()2121212x x x x +∴=-,即()22422k k =+,解得k = ∴直线l的方程为1k =+. 解析:21.答案:(1)由题意可得()f x 的定义域为(0)+∞,,()()23212xae x f x x x x -'=--()()32xx ae x x--=, 当0a ≤时,易知0x x ae ->,所以,由()0f x '<得02x <<,由()0f x '>得2x >, 所以()f x 在(0)2,上单调递减,在()2+∞,上单调递增. (2)由(1)可得()()()32xx ae x f x x --'=,当02x <<时320x x -<, 记()xg x x ae =-,则()1xg x ae '=-, 因为()f x 在区间(0)2,内有两个极值点, 所以()g x 在区间(0)2,内有两个零点,所以0a >. 令()0g x '=,则ln x a =-,①当ln 0a -≤,即1a ≥时,在(0)2,上,0()g x '<,所以在(0)2,上,()g x 单调递减,()g x 的图象至多与x 轴有一个交点,不满足题意②当ln 2a -≥,即210a e <≤时,在(0)2,上,()0g x '>,所以在(0)2,上, ()g x 单调递增,()g x 的图象至多与x 轴有一个交点,不满足题意.③当0ln 2a <-<,即211a e <<时,()g x 在(0)ln a -,上单调递增,在(ln 2)a -,上单调递减, 由()00g a =-<知,要使()g x 在区间(0)2,内有两个零点, 必须满足()()2ln ln 10220g a a g ae -=-->⎧⎪⎨=-<⎪⎩,解得221a e e <<, 综上所述,实数a 的取值范围是221,e e ⎛⎫ ⎪⎝⎭. 解析:22.答案:(1)依题意,直线l 的直角坐标方程为4x =.曲线2:2cos 2sin C ρρθρθ=+,故22220x y x y +--=,故()()22112x y -+-=,故曲线C的参数方程为12cos 1x y ϕϕ=+⎧⎪⎨=⎪⎩,(φ为参数). (2)设1,()M ρα,2(,)N ρα,则12cos 2sin ραα=+,24cos ρα=. 所以()122cos 2sin cos 4OM ON αααρρ+==2sin cos cos 2ααα+=()11sin 2cos244αα=++π1244α⎛⎫=++ ⎪⎝⎭. 因为01k <<,故π04α<<,所以ππ3π2444α<+<πsin 214α⎛⎫<+≤ ⎪⎝⎭.所以1π12244α⎛⎫<++ ⎪⎝⎭OM ON 的取值范围是112,24+⎛⎤ ⎥⎝⎦.解析:23.答案:(1)()34,28,3234,3x x f x x x x x +≥⎧⎪=+-<<⎨⎪--≤-⎩,所以不等式()8f x ≥等价于2348x x ≥⎧⎨+≥⎩,或3288x x -<<⎧⎨+≥⎩,或3348x x ≤-⎧⎨--≥⎩, 解得2x ≥或02x ≤<或4x ≤-,所以不等式()8f x ≥的解集为,(),40-∞-⋃+∞][(2)由(1)可得函数()f x 图象的最低点的坐标为(35)-,, 则3,5m n =-=,所以2a b m n +=+=,2211a b b a +++()()22111411a b a b b a ⎛⎫=++++⎡⎤ ⎪⎣⎦++⎝⎭ ()()2222111411a a b b a b b a ⎡⎤++=+++⎢⎥++⎣⎦()22124ab a b ≥++()22114a b =+=,当且仅当1a b ==时取等号, 所以2211a b b a +++的最小值为1。

2020年全国统一高考数学模拟试卷(文科)(新课标Ⅱ)(解析版)【打印版】

2020年全国统一高考数学模拟试卷(文科)(新课标Ⅱ)(解析版)【打印版】
A. 5B. 8C. 10D. 15
【答案】C
【解析】
【分析】
根据原位大三和弦满足 ,原位小三和弦满足
从 开始,利用列举法即可解出.
【详解】根据题意可知,原位大三和弦满足: .
∴ ; ; ; ; .
原位小三和弦满足: .
∴ ; ; ; ; .
故个数之和为10.
故选:C.
【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.
12.若 ,则()
A. B. C. D.
【答案】A
【解析】
【分析】
将不等式变为 ,根据 的单调性知 ,以此去判断各个选项中真数与 的大小关系,进而得到结果.
【详解】由 得: ,
令 ,
为 上的增函数, 为 上的减函数, 为 上的增函数,

, , ,则A正确,B错误;
与 的大小不确定,故CD无法确定.
故选:A.
A.10名B.18名C.24名D.32名
【答案】B
【解析】
【分析】
算出第二天订单数,除以志愿者每天能完成的订单配货数即可.
【详解】由题意,第二天新增订单数为 ,
故需要志愿者 名.
故选:B
【点晴】本题主要考查函数模型的简单应用,属于基础题.
5.已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是()
则 垂直于平面 内所有直线,
直线 平面 , 直线 直线 ,
命题 为真命题.
综上可知, 为真命题, 为假命题,
为真命题, 为真命题.
故答案为:①③④.
【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个

2020年全国普通高等学校统一招生考试(新课标II卷)押题猜想卷 文科数学(解析版)

2020年全国普通高等学校统一招生考试(新课标II卷)押题猜想卷 文科数学(解析版)

2020年全国普通高等学校统一招生考试(新课标II 卷)押题猜想卷数 学(文)第I 卷 选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}16,M x x x N =<<∈,{}1,2,3N =-,那么M N =I ( )A .{}1,2,3,4B .{}1,2,3,4,5C .{}2,3D .{}2,3,4 【答案】C【解析】 {}{}16,2,3,4,5M x x x N =<<∈=Q ,因此,{}2,3M N =I ,故选:C.2. 复数i i 1z =-的虚部为( ) A .12 B .12- C .1i 2 D .1i 2- 【答案】B【解析】i i 1z =-(1)(1)(1)i i i i --=-+--111222i i -==-, 所以复数z 的虚部为12-. 故选:B3.函数()3cos x x f x x x -=+在-22ππ⎡⎤⎢⎥⎣⎦,的图像大致为( ) A . B .C .D .【答案】A【解析】因为()33()()()cos cos()x x x x f x f x x x x x ----==-=--+-+- 又定义域关于原点对称,故该函数为奇函数,排除B 和D. 又21124f ππ⎛⎫=-> ⎪⎝⎭,故排除C . 故选:A.4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现齐王与田忌各出上等马、中等马、下等马一匹,共进行三场比赛,规定:每一场双方均任意选一匹马参赛,且每匹马仅参赛一次,胜两场或两场以上者获胜.则田忌获胜的概率为( )A .13B .16C .19D .136【答案】B【解析】设齐王的上等马、中等马、下等马分别为A ,B ,C ,设田忌的上等马、中等马、下等马分别为a ,b ,c ,每一场双方均任意选一匹马参赛,且每匹马仅参赛一次,胜两场或两场以上者获胜.基本事件有:(Aa ,Bb ,)Cc ,(Aa ,Bc ,)Cb ,(Ab ,Bc ,)Ca ,(Ab ,Bc ,)Ca ,(Ac ,Bb ,)Ca ,(Ac ,Ba ,)Cb ,共6个,田忌获胜包含的基本事件有:(Ac ,Ba ,)Cb ,只有1个,∴田忌获胜的概率为16p =. 故选:B. 5.已知向量,a b v v 满足5,4,61a b b a ==-=v v v v ,则a v 与b v 的夹角θ=( )A .150°B .120°C .60°D .30°【答案】B【解析】由||b a -=r r ()2226126125254cos 1661b a a a b b θ-=⇒-⋅+=⇒-⨯⨯+=r r r r r r . 解得1cos 2θ=-.因为[]0,180θ∈︒,故θ=120°. 故选:B6.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为y =,则双曲线的离心率为( )A B .2 C D 【答案】D【解析】∵双曲线2222x y a b-=1(a >0,b >0)的一条渐近线为y =,∴b a=∴双曲线的离心率为e c a === 故选:D .7.已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,ABC ∆的外接圆的面积为3π,且222cos cos cos A B C -+1sin sin A C =+,则ABC ∆的最大边长为( )A .2B .3CD .【答案】B【解析】ABC ∆的外接圆的面积为23R R ππ=∴=222cos cos cos 1sin sin A B C A C -+=+则2221sin 1sin 1sin 1sin sin A B C A C --++-=+222sin sin sin sin sin 0A B C A C -++=,根据正弦定理:2220a c b ac +-+=根据余弦定理:22212cos cos 1202a c b ac B ac B B +-==-∴=-∴∠=︒故b 为最长边:2sin 3b R B ==故选B .8.一个算法的程序框图如图所示,若该程序输出的结果是34,则判断框中应填入的条件是( )A .i>5B .i<5C .i>4D .i<4【答案】D【解析】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:110112122S i =+==+=⨯,;第二次循环:1122132233S i =+==+=⨯,;第三次循环:2133143344S i =+==+=⨯,,此时退出循环,根据判断框内为跳出循环的语句,4i ∴<?,故选D .9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A .22 B 3C 5D .72【答案】C【解析】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =, 则55tan 22BE a EAB AB a ∠===.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.10.关于函数()sin cos f x x x =+有下述四个结论:①()f x 是周期函数;②()f x 的最小值为2-;③()f x 的图象关于y 轴对称;④()f x 在区间42ππ⎛⎫ ⎪⎝⎭,单调递增.其中所有正确结论的编号是( ) A .①②B .①③C .②③D .②④【答案】B【解析】①()()()2sin 2cos 2sin cos f x x x x x πππ+=+++=+ ()()2f x f x π∴+=,()f x ∴是周期为2π的周期函数,故①正确;②()f x Q 的周期是2π,所以分析[]0,2x π∈时函数的值域,当[)0,x Îp 时,()sin cos 24f x x x x π⎛⎫=+=+ ⎪⎝⎭ ,5,444x πππ⎡⎫+∈⎪⎢⎣⎭Q ,sin 42x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦, ()f x ∴的值域是(-,当[],2x ππ∈时,()sin cos 4f x x x x π⎛⎫=-+=+ ⎪⎝⎭,59,444x πππ⎡⎤+∈⎢⎥⎣⎦,cos 42x π⎡⎤⎛⎫∴+∈-⎢⎥ ⎪⎝⎭⎣⎦, ()f x ∴的值域是⎡-⎣,综上可知函数()f x 的值域是⎡-⎣,最小值是-1,故②不正确;③()()()()sin cos sin cos f x x x x x f x -=-+-=+=()f x ∴是偶函数,关于y 轴对称,故③正确;④由②知,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()4f x x π⎛⎫=+ ⎪⎝⎭ , 3,424x πππ⎡⎤+∈⎢⎥⎣⎦ ,而sin y x =在423,ππ⎡⎤⎢⎥⎣⎦上单调递减,故④不正确. 综上可知,正确编号是①③.故选:B11.已知1F ,2F 为椭圆E :()222210x y a b a b+=>>的左右焦点,在椭圆E 上存在点P ,满足212PF F F =且2F 到直线1PF 的距离等于b ,则椭圆E 的离心率为( )A .13B .12C .23D .34【答案】B【解析】 由已知得2122PF F F c ==,根据椭圆的定义可得121222PF PF a PF a c +=⇒=-,又2F 到直线1PF 的距离等于b ,即2F H b =,由等腰三角形三线合一的性质可得:21F H PF ⊥,可列方程:()()22222220a c b c a ac c -+=⇒--=()()120202a c a c a c e ⇒-+=⇒-=⇒=,故选:B. 12.已知是定义在R 上的奇函数,满足()()20f x f x -+=,且当[)0,1x ∈时,()1x f x x =-,则函数()()2sin g x f x x π=+在区间()3,5-上的所有零点之和为( )A .13B .18C .15D .17【答案】C【解析】由()()20f x f x -+=知()f x 关于()1,0成中心对称.又()f x Q 为奇函数,则()f x 周期为2.易知,()()()()10,350,10===-=f f f f作出函数()f x 在区间()3,5-图像如图所示.所以()2sin x x ϕπ=-在()3,5-间,所有零点之和为()()()8404210123415+++-+-+-+++++=.故选C第II 卷 非选择题(共90分)二、填空题:本大题共4小题,每题5分,共20分.13.曲线C :2()ln f x x x =+在点(1,(1))f 处的切线方程为__________.【答案】320x y --=【解析】 由题可得:1'()2f x x x =+(),1f =1,'(1)3,f ∴=∴切线方程为:y-1=3(x-1) 即320x y --=,故答案为:320x y --=14.已知实数,x y 满足1,20,1,x y x y y +≥⎧⎪--≤⎨⎪≤⎩则y x 的最小值为( ) A .3-B .3C .13-D .13【答案】C【解析】如图所示:画出可行域 00y y k x x -==-,看作点到原点的斜率 根据图像知,当31,22x y ==-时,有最小值为13-15.已知0,2πα⎛⎫∈ ⎪⎝⎭且4tan 23α=,则tan 4tan 4παπα⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭的值等于________. 【答案】9-【解析】由(0,)2πα∈,且4tan 23α=, 得22tan 413tan αα=-,解得tan 2α=-(舍),1tan 2α=. ∴22tan 11tan()1tan 11tan 42()()9tan 111tan tan()141tan 2απαααπαααα++++-==-=-=-----+. 故答案为:9-.16.已知长方体1111ABCD A B C D -中,11132AA AB AD ===,,,则直线1AA 与平面1A BD 所成的角为______.【答案】60o【解析】设A 到平面1A BD 的距离为h ,在长方体1111ABCD A B C D -中,11132AA AB AD ===,, 则()221113322A D ⎛⎫=+= ⎪⎝⎭,312BD =+=,115142AB =+= 在1A BD ∆中,由余弦定理15134cos 22BA D +-∠==,所以1sin BA D ∠=所以111sin 1222A BD S BA D =⋅∠= 因为11A ABD A A BD V V --=,即111133ABD A BD S AA S h ∆⋅⋅=⋅⋅,解得h = 设直线1AA 与平面1A BD 所成的角为θ,则1sin h AA θ== 所以60θ=o .故答案为:60o 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17—21题为必考题,每个考生都必须作答.22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知数列{}n a 是一个公差为()0d d ≠的等差数列,前n 项和为245,,,n S a a a 成等比数列,且515=-S . (1)求数列{}n a 的通项公式;(2)求数列{n S n}的前10项和. 【答案】(1)6n a n =-;(2)552-. 【解析】(1)由a 2、a 4、a 5成等比数列得:()()2111(3)4a d a d a d +=++,即5d 2=-a 1d , 又∵d ≠0,可得a 1=-5d ; 而51545152S a d ⨯=+=-,解得d =1,所以a n =a 1+(n -1)d =n -6, 即数列{a n }的通项公式为a n =n -6. (2)因为()2111122n n n n n S na d ⋅--=+=,所以112n S n n -=, 令n n S c n =,则112n n c c +-=为常数,∴{c n }是首项为-5,公差为12的等差数列,所以n S n⎧⎫⎨⎬⎩⎭的前10项和为109155510222⨯-⨯+⨯=-. 18.2019年9月24日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP 从679.1亿元跃升至90.03万亿元,实际增长174倍;人均CDP 从119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.特别是党的十八大以来,在以习近平同志为核心的党中央坚强领导下,党和国家事业取得历史性成就、发生历史性变革,中国特色社会主义进入新时代.如图是全国2012年至2018年GDP 总量y (万亿元)的折线图. 注:年份代码1~7分别对应年份2012~2018.(1)由折线图看出,可用线性回归模型拟合y 与年份代码t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年全国GDP 的总量. 附注:参考数据:71492.01i i y ==∑,70.29y =,712131.99i i i t y ==∑()()271172165.15iii i t t y y ==--≈∑∑.参考公式:相关系数()()()()12211niii nniii i t t y y r t t y y ===--=--∑∑∑回归方程y a bt =+$$$中斜率和截距的最小二乘估计公式分别为()()()121niii nii tty y b tt==--=-∑∑$,$ay bt =-$. 【答案】(1)详见解析(2)y 关于t 的回归方程为$46.85 5.86y t =+;预测2019年全国GDP 总量约为93.73万亿元【解析】(1)由折线图中的数据和附注中参考数据得4t =,()72128ii tt=-=∑,()()777111iii iii i i t t y y t y t y===--=-∑∑∑2131.994492.01163.95=-⨯=,所以163.950.99165.15r =≈,因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由70.29y =及(1)得()()()71721163.955.8628iii ii tty y btt===≈--=-∑∑$, $70.29 5.86446.85ay bt ≈-⨯==-$, 所以y 关于t 的回归方程为$46.85 5.86y t =+.将2019年对应的代码8t =代入回归方程得$46.85 5.86893.73y =+⨯=. 所以预测2019年全国GDP 总量约为93.73万亿元. 19. 如图,在四棱锥中,底面为梯形,,,,平面,分别是的中点. (Ⅰ)求证:平面;(Ⅱ)若与平面所成的角为,求线段的长.【答案】(Ⅰ)见解析; (Ⅱ).【解析】(Ⅰ)连接交与,连接.因为为的中点,,所以.又因为,所以四边形为平行四边形, 所以为的中点,因为为的中点, 所以. 又因为,,所以平面.(Ⅱ)由四边形为平行四边形,知,所以为等边三角形,所以, 所以,即,即.因为平面,所以. 又因为,所以平面,所以为与平面所成的角,即,所以.20.已知抛物线22(0)y px p =>,过点(2,0)C -的直线l 交抛物线于,A B 两点,坐标原点为O ,12OA OB ⋅=u u u r u u u r.(1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程. 【答案】(1)24y x =;(2)320x y ++=或320x += 【解析】(Ⅰ)设l :x =my -2,代入y 2=2px ,得y 2-2pmy +4p =0.(*)设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则221212244y y x x p==. 因为12OA OB ⋅=u u u r u u u r,所以x 1x 2+y 1y 2=12,即4+4p =12, 得p =2,抛物线的方程为y 2=4x . …5分 (Ⅱ)由(Ⅰ)(*)化为y 2-4my +8=0. y 1+y 2=4m ,y 1y 2=8. …6分设AB 的中点为M ,则|AB|=2x m =x 1+x 2=m(y 1+y 2)-4=4m 2-4, ① 又222121(1)(1632)AB m y m m =+-=+- ② 由①②得(1+m 2)(16m 2-32) =(4m 2-4)2,解得m 2=3,m =所以,直线l 的方程为20x ++=,或20x -+=. …12分21.已知函数3211()1(,)32f x x ax bx a b =+++∈R ,其导函数设为()g x . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个极值点1x ,2x ,试用,a b 表示()()12f x f x +;(Ⅲ)在(Ⅱ)的条件下,若()g x 的极值点恰为()f x 的零点,试求()f x ,()g x 这两个函数的所有极值之和的取值范围.【答案】(Ⅰ)见解析;(Ⅱ)()()31226a f x f x ab +=-+;(Ⅲ)(,0)-∞ . 【解析】(Ⅰ)()2g x x ax b =++,24a b ∆=-.若0∆≤,()0g x ≥,()f x 在(),-∞+∞上单调递增;若>0∆,方程()0g x =有两个不等实根12a x -=,22a x -=()f x 在()1,x -∞上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增 ;(Ⅱ)因()f x 有两个极值点1x ,2x ,由(Ⅰ)知240a b ∆=->,且12x x a +=-,222122x x a b +=-,()()120g x g x ==.于是,()()()()()()221212121212223363x x a b f x f x g x g x x x x x +=++++++ ()()322222636a b a a b a ab =-+-+=-+. (Ⅲ)由()22224a a g x x ax b x b ⎛⎫=++=++- ⎪⎝⎭,则()g x 的极值点为2a x =-.于是,02a f ⎛⎫-= ⎪⎝⎭,即33102482a a ab -+-+=.显然,0a ≠,则226a b a=+.由(Ⅱ)知,240a b ∆=->,24a b <,则22264a a a +<,解得0a <或a > 于是,()()321222066a a f x f x a a ⎛⎫+=-++= ⎪⎝⎭. 故()f x ,()g x 的所有极值之和为()22222246412a a a a b h a a a-=+-=-+=,因()226a h a a-'=-,若a >()0h a '<,()h a在)+∞上单调递减,故()0h a h<=.若0a <,知a >时有()0h a '<,则()h a在(,-∞上单调递增,在()上单调递减,故()(h a h ≤=. 因此,当0a <时,所求的取值范围为,2⎛-∞- ⎝⎦.当a >时,所求的取值范围为(),0-∞, 综上,()f x ,()g x 这两个函数的所有极值之和的取值范围是(),0-∞ .(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.在平面直角坐标系xOy 中,曲线C的参数方程为2sin x y αα⎧=⎪⎨=⎪⎩(α为参数),将直线621=0x y --上所有点的横坐标伸长到原来的2倍,纵坐标缩短到原来的13倍得到直线l '. (1)求直线l '的普通方程;(2)设P 为曲线C 上的动点,求点P 到直线l '的距离的最小值及此时点P 的坐标. 【答案】(1)直线l '的普通方程为7x y -=; (2)点P 到直线l '的距离的最小值为2,此时点P 的坐标为(3,1)-. 【解析】(1)设直线l '上的点为(,)x y '',由题可知212133x x x x y y y y =⎧⎧=⎪⎪⇒⎨''⎨='⎪=⎩'⎪⎩,又621=0x y --,所以33210x y ''--=,即70x y ''--=, 因此直线l '的普通方程为:70x y --=;(2)点,2sin )P αα到直线l '的距离d ==, 所以当2()6k k Z παπ=-+∈时,min 2d ==,此时(3,1)P -. 23.已知函数()|3|2f x x =+-. (1)解不等式|()|4f x <;(2)若x R ∀∈,2()|1|41f x x t t ≤--+-恒成立,求实数t 的取值范围. 【答案】(1)()9,3-;(2)[1,3] 【解析】(1)函数()|3|2f x x =+-,不等式||()4f x <即为()44f x -<< 即4324x -<+-<,即有2|3|6x -<+<.因为|3|0x +>恒成立 所以|3|6x +<,即636x +﹣<<,可得93x ﹣<< 则原不等式的解集为()9,3-.(2)若x R ∀∈,2()|1|41f x x t t ≤--+-恒成立,可得2|3||1|41x x t t +--≤-++恒成立 由|3||1||(3)(1)|4x x x x +--≤+--=,可得2414t t -++≥,即2430t t -+≤. 解得13t ≤≤.则实数t 的取值范围是[1,3].。

2020年全国统一高考押题预测卷02(新课标Ⅱ卷)-文科数学(参考答案)

2020年全国统一高考押题预测卷02(新课标Ⅱ卷)-文科数学(参考答案)

4
1 6
2 3
.当且仅当 n
1 时取得最大值
2 3
.
所以存在 k 1,使得对任意 n N , anbn akbk 恒成立.
文科数学 第 1 页(共 8 页)
若选择③,则由 bn bn1 2 ( n 2 )知数列bn 是公差为 2 的等差数列.
又 b1 1,所以 bn 2n 1.
设 cn
2
3 3.
(2)设直线 l
的极坐标方程
,
0
2
,
R

2
cos
,得 |
OA
|
2 cos


2
,得| OB | 2 3 cos
3 sin
故 OA OB 2cos+2
3
sin
4 sin
6
当 时, OA OB 取得最大值 3
此时直线的极坐标方程为: R ,
3
其直角坐标方程为: y 3x .
∴有 90%的把握认为该学科成绩优良与性别有关系.
20.(本小题满分 12 分)
【解析】(1)设椭圆
E
的方程为
x2 a2
y2 b2
(1 a b 0),
F1F2
2c .

BF1O
PF1F2

F1OB
F1PF2
2

∴ F1BO∽ F1F2P .

F1B F1F2
F1O F1P
,即 F1P F1B
2020 年高考押题预测卷 02【新课标Ⅱ卷】
文科数学·参考答案
1
2
3
4
5
6
7
8
9 10 11 12

2020年高考数学预测卷(卷Ⅱ)文科学生版

2020年高考数学预测卷(卷Ⅱ)文科学生版

文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡对应题目选项的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合B x x A =≤<-=11{},3,2,1,0{},则 B A =( )A .}0{ B .}1{ C .}1,0{ D .}2,1{ 2.已知=-+z 1i ,则⋅=-z z ( )A .4B .2C .2D .03.2020年为调查精准扶贫的落实情况,某县在辖区内随机抽取12个乡镇进行调查评估,评估成绩达到85分及其以上的乡镇被称为“优秀”,评估成绩超过60分(包括60分)但不超过85分的乡镇被称为“合格”,评估成绩低于60分的为“不合格”.评估成绩(百分制)以茎叶图的形式表示(如下图所示)根据该次评估成绩按照称号的不同进行分层抽样随机抽选6个乡镇派代表座谈,则“优秀”乡镇中应被抽取( )个乡镇.A .2B .4C .5D .64.已知等差数列a n }{中S n 是其前n 项和,a 6和a 9是方程x x =+-218110的两根,则S 14=( )A .77B .126C .154D .2525.已知α=2tan ,则2sin 2cos 1αα-=( )A. -31B .31C .-21D .21101教育2020年高考数学预测卷(卷Ⅱ)K 12教资料库6.函数=--≤≤x f x x x x )ππ()()cos (233且≠x (0)图像可能为( )A . B.C .D. 7.已知双曲线-=>a a x y 161(0)222的左、右焦点分别为F F ,21,抛物线=220x y 的焦点与F 2重合,则双曲线的离心率为( )A .3B .2C .53D .548.某程序框图如图所示,该程序运行后输出的s 值是 ()A .0 BCD .19.已知⎩⎪-+<⎨=⎪-≥⎧x x x f x x x 255,1()e 1,12的函数值不小于3,则x 的取值范围为( )A .-∞,(12]B .+∞(12),C . -∞+∞,(12),4[ln ]D .(12,ln )410.把曲线=+f x x 26()sin(2)π1向右平移ϕϕ>)0(个单位后,所得曲线的对称轴方程是=x 4,π则ϕ的最小值为( )A .3π2B .4πC .12πD .8π3K 1培资料库11.我国古代名著《增减算法统综》中有如下问题:“一颗球形夜明珠要存放在一个带盖的正三棱柱的珠宝盒子中,知球形夜明珠的体积为3(mm)π323,问该珠宝盒内部至少表面积应达到( )(mm)2才能刚好装下夜明珠.”A .723B .363C .1443D .7212.已知函数=-+->f x ax x x ()e e (0)2恰有两个零点,则实数a 的取值范围是( ) A .0,1()B .+∞(e ,)2C .+∞0,1e,()()D .+∞0,1e ,2()()二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档