五年级数学思维训练——逻辑推理
五年级思维训练逻辑推理题
逻辑推理(A)一、填空题1. 甲、乙、丙三人进行跑步比赛.A、B、C三人对比赛结果进行预测.A说:“甲肯定是第一名.”B 说:“甲不是最后一名.”C说:“甲肯定不是第一名.”其中只有一人对比赛结果的预测是对的.预测对的是 .2. A、B、C、D、E和F六人一圆桌坐下.B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正对面,还有F和E不相邻.那么,坐在A和B之间的是 .3. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.4. 曹、钱、刘、洪四个人出差,住在同一个招待所.一天下午,他们分别要找一个单位去办事.甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待.曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路.”钱:“今天我一定得去,要不明天人家就不接待了.”刘:“这星期的前几天和今天我去都能办事.”洪:“我今天和明天去,对方都接待.”那么,这一天是星期 ,刘要去单位,钱要去单位,曹要去单位,洪要去单位.5. 四位外国朋友住在十八层高的饭店里,他们分别来自埃及、法国、朝鲜和墨西哥.(1)A住的层数比C住的层数高,但比D住的层数低;(2)B住的层数比朝鲜人住的层数低;(3)D住的层数恰好是法国人住的层数的5倍;(4)如果埃及人住的层数增加2层,他与朝鲜人相隔的层数,恰好和他与墨西哥人相隔的层数一样;(5)埃及人住的层数是法国人和朝鲜人住的层数的和.根据上述情况,请你确定A是人,住在层;B是人,住在层;C是人,住在____层;D是人,住在层.6. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小张说:“它是84261.”小王说:“它是26048.”小李说:“它是49280.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们每人都猜对了位置不相邻的两个数字.”这个电话号码是 .7. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小王说:“它是93715.”小张说:“它是79538.”小李说:“它是15239.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们三人猜对的数字个数都一样,并且电话号码上的每一个数字都有人猜对.而每个人猜对的数字的数位都不相邻”.这个电话号码是 .的父母戴帽子的颜色是、、 .8. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.9. 六年级六个班组织乒乓球单打比赛,每班派甲、乙两人参赛,根据规则每两人之间至多赛一场,且同班的两人之间不进行比赛.比赛若干场后发现,除一班队员甲以外,其他每人已比赛过的场数各不相同,那么一班队员乙已赛过____场.10. 人的血型通常为A型,B型,O型,AB型.子女的血型与其父母血型间的关系如下表所示:父母的血型子女可能的血型O,O OO,A A,OO,B B,OO,AB A,BA,A A,OA,B A,B,AB,OA,AB A,B,ABB,B B,OB,AB A,B,ABAB,AB A,B,AB现有三个分别身穿红,黄,蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红,黄,蓝三种,依次表示所具有的血型为AB,A,O.那么穿红、黄、蓝上衣的孩子———————————————答案——————————————————————1. CA、C的预测截然相反,必一对一错.因为只有一人对,不论A、C谁对,B必错,所以甲是最后一名,C对.2. E如右图,E坐在A、B之间.3. 2,3.由题意可画出比赛图,已赛过的两人之间用线段引连(见右图).由图看出小明赛了2盘.因为一共赛了六盘,共得12分,所以小明得了12-(2+4+1+2)=3(分).4. 三,丙,丁,甲,乙.由刘的讲话,知这一天是星期三,刘要去丙单位.钱要去丁单位,曹去的是甲单位,洪去的是乙单位.5.埃及,8;法国,3;朝鲜,5;墨西哥,15.容易知道,墨西哥人住得最高,埃及人次之,朝鲜人又次之,法国人最低,各层次分别15,8,5和3.由(2)知B是法国人,由(3)和D是墨西哥人,由(1)知A是埃及人,而C是朝鲜人.6.86240. 因为每人猜对两个数字,三人共猜对张:842 12⨯3=6(个)数字,而电话号码只有5位, 王:26048所以必有一位数字被两人同对猜对.如右李:4980图所示,猜对的是左起第三位数字2.因为每人猜对的两个数字不相邻,所以张、李猜对的另一个数字分别在两端,推知王猜对的数字是6和4,进一步推知张猜对8,李猜对0.电话号码是86240.7. 19735.因为每个数字都有人猜对,所以每人至少猜对两个数字.下页右上图中,同一位数中只有方框中的两个数相同,如果每人猜对的数字多于两位,相同的数字至少有3⨯3-5=4(组),所以每人恰好猜对两个数字. 王: 9 3 7 1 5三人共猜对2⨯3=6(个)数字,因为电话号码只有张: 7 9 5 3 85位,所以相同的一组是正确的,即左起第四位是李: 1 5 2 3 93.因为每人猜对的数字不相邻,所以张、李猜对的另一个数字都在前两位,王猜对的两个数字是7和5,进而推知张猜对9,李猜对1.电话号码是19735.8. 51天.因为[8,6,4]=24,所以四人去图书馆的情况每24天循环一次(见下表):1 2 3 4 5 6 7 8D C A、B、D9 10 11 12 13 14 15 16C、D A、B、D17 18 19 20 21 22 23 24C D A、B、C、D甲乙丙丁小明每24天有4天只有1人去图书馆.3月1日至12月31日有306天,306÷24=12…18,所以所求天数为4⨯12+3=51(天).9. 5根据题意,有11名队员比赛场数各不相同,并且每人最多比赛10场,所以除甲外的11名队员比赛的场数分别为0~10.已赛10场的队员与除已赛0场外的所有队员都赛过,所以已赛10场的队员与已赛0场的队员同班;已赛9场的队员与除已赛0、1场外的所有队员都赛过,所以已赛9场的队员与已赛1场的队员同班;同理,已赛8、7、6场的队员分别与已赛2、3、4场的队员同班;所以甲与已赛5场的队员同班,即乙赛过5场.注本题可以求出甲也赛了5场,分别与已赛10、9、8、7、6场的队员各赛1场.10. 蓝、黄、红.解法一题中表明,每个孩子的父母是同血型的.具有B型血的孩子,其父母同血型时,由表中可见,只能是B 型或AB型,但题中没有同具B型血的父母,所以戴红帽子的父母的孩子穿蓝上衣.具有A型血的孩子的同血型的父母,只可能同为A型血或同为AB型血.今已知有一对父母为AB型血者,所以穿黄上衣的孩子的父母戴黄帽子.由表中可见,其孩子为O型血时,父母血型只能同为A型或B型或O 型.今已知不具有同为B型血的父母,而同为A型血的父母的孩子已知具有A型血.把代表孩子的点与他的可能双亲的代表点之间连一直线段,便可得下面的图;由于孩子与其父母之间是唯一搭配的,所以,保存下来的只有连着红、蓝;黄,黄及蓝,红的三条边.所以,穿红上衣(O型血)孩子的父母戴蓝帽子. 孩子衣服颜色父母帽子颜色(O型血)红红(AB型血)(A型血)黄黄(A型血)(B型血)蓝蓝(O型血)所以,穿红上衣的孩子的父母戴蓝帽子;穿黄上衣的孩子的父母戴黄帽子;穿蓝上衣的孩子的父母戴红帽子.。
小学奥数思维训练-逻辑推理问题(通用,含答案)
小学奥数思维训练-逻辑推理问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.填数使下列竖式成立:(1)(2)二、排序题2.200米赛跑,张强比李军快0.2秒,王明的成绩是39.4秒,赵刚的成绩比王明慢0.9秒,但比张强快0.1秒,林林比张强慢3秒,请你给这五人排出名次来。
三、解答题3.有三个和尚,一个讲真话,一个讲假话,另外一个有时讲真话,有时讲假话。
一天,一位智者遇到这三个和尚,他先问左边的那个和尚:“你旁边的是哪一位?”和尚回答说“讲真话的。
”他又问中间的和尚:“你是哪一位?”和尚答:“我是半真半假的。
”他最后问右边的和尚:“你旁边是哪一位?”答:“讲假话的。
”根据他们的回答,智者马上分清了他们,你能分清吗?4.一次全校数学竞赛,A、B、C、D、E五位同学取得了前五名,发奖后有人问他们的名次,回答是:A说:“B是第三名,C是第五名.”B说:“D是第二名,E是第四名.”C说:“A是第一名,E是第四名.”D说:“C是第一名,B是第二名.”E说:“D是第二名,A是第三名.”最后,他们都补充说:“我们的话半真半假.”请你判断一下他们每个人的名次.5.老师有一黑两白三顶帽子,给两个学生看后,让他们闭上眼睛,从中取出两顶给他们戴上,然后让他们睁开眼睛,互相看清对方戴的帽子,并立即说出自己头上戴的帽子是什么颜色,两位同学都不能立即说出,请问你知道这两位学生戴的各是什么颜色的帽子吗?6.曾实、张晓、毛梓青在一起,一位是工程师、一位是医师、一位是教师。
现在只知道:(1)毛梓青比教师年龄大;(2)曾实和医师不同岁;(3)医师比张晓年龄小。
你能确定谁是工程师?谁是医师?谁是教师吗?7.某公安人员需查清甲、乙、丙三人谁先进办公室,三人口供如下:甲:丙第二个进去,乙第三个进去。
乙:甲第三个进去,丙第一个进去。
丙:甲第一个进去,乙第三个进去。
五年级下册数学思维拓展训练较复杂的逻辑推理 全国通用
全部选手的总分应该是偶数
排除1979和1985
我们用图表来表示比赛场次和总分数
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
1 1+2= 3 1+2+3= 6 1+2+3+4 =10
1×2=2 3×2=6 6×2=12 10×2=20
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
例6:象棋比赛中,每位选手都与其他选手赛 一场,赢者得2分,负者得0分,平局两人各得1分。 现在有四位学生统计全部选手总分,分别为 1979,1980,1984,1985,但只有一个统计正确。问 共有多少位选手比赛?
不管比赛结果怎样,每场比赛选手的总分都是2分。
每人都与其他棋 手赛一场
例7:某工厂有六名棋手进行单循环比赛。比 赛分三场同时进行,共赛五天,每人每天赛一场。 已知在第一天C和E对弈,第二天B和D对弈,第三天 A和C对弈,第四天D和E对弈。试问:F在第五天与 谁对弈?
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
假设法:可以首先假设某种结果 正确,并以此为起点利用已知条件进 行推理论证。如果推理产生矛盾,说 明假设的结果是错误的,再重新提出 一个假设,直至得到符合要求的结论 为止。
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
答:A在化妆,B在看书,C在修指甲,D在做头发。
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
排除法: 就是根据已知条件, 不断排除不可能的情况。
五年级下册数学思维拓展训练较复杂 的逻辑 推理 全国通用
小学生数学思维逻辑推理
小学生数学思维逻辑推理数学思维逻辑推理是数学学习中重要的一部分,对小学生的发展至关重要。
通过培养小学生的数学思维逻辑能力,不仅可以帮助他们更好地理解和应用数学知识,还能够培养他们的分析问题、解决问题的能力,提高整体学习能力。
本文将从培养数学思维逻辑的重要性、培养数学思维逻辑的方法和小学生数学思维逻辑能力的发展等方面进行论述。
一、培养数学思维逻辑的重要性数学思维逻辑是数学学科中最基本的思维模式,它是数学思维的核心。
培养小学生的数学思维逻辑能力,对其德智体美全面发展具有重要意义。
首先,培养数学思维逻辑能力,有助于提高小学生的数学学习能力。
数学作为一门科学,强调逻辑推理和抽象思维能力,只有培养了这些能力,小学生才能更好地理解和运用数学知识。
其次,培养数学思维逻辑能力,也有助于小学生的认知发展。
数学思维逻辑能力的培养,需要小学生深入思考、分析和解决问题,这样可以提高他们的观察力、分析力和判断力,对他们的认知能力有着积极的影响。
最后,培养数学思维逻辑能力,还能够促进小学生的综合素质培养。
数学思维逻辑能力的培养需要运用各种思维方法和技巧,这些方法和技巧的学习过程中,也能够促进小学生的思维能力、创新能力等综合素质的培养。
二、培养数学思维逻辑的方法1. 提供适当的数学教材和学习资源。
为了培养小学生的数学思维逻辑能力,学校和家长要提供适当的数学教材和学习资源,让小学生有足够的材料进行思考和练习。
可以选择一些数学思维锻炼的题目,帮助小学生进行思维训练。
可以适时引导小学生使用互联网等现代技术,获取更多的数学学习资源。
2. 引导小学生进行探究学习。
在数学学习中,引导小学生进行探究学习是培养数学思维逻辑的有效方法之一。
通过提出问题、搜集信息、分析问题、解决问题等步骤,培养小学生的思维能力和逻辑推理能力。
可以通过小组合作、课堂讨论等方式,鼓励小学生独立思考和表达自己的观点。
3. 培养小学生解决问题的能力。
解决问题是培养小学生数学思维逻辑的核心目标之一。
数学思维训练方案帮助小学生提高数学成绩
数学思维训练方案帮助小学生提高数学成绩一、激发兴趣,奠定基础兴趣是最好的老师。
为了激发小学生对数学的兴趣,可以从日常生活入手,让他们发现数学无处不在。
比如,在购物时计算商品的价格和折扣,在游戏中运用数学知识进行得分计算,或者通过讲述有趣的数学故事和谜题,引发他们的好奇心。
同时,要注重基础知识的扎实掌握。
从数字的认识、简单的加减法到乘法口诀,每一个基础环节都要让学生理解透彻。
可以通过反复练习和多样化的教学方法,如使用实物教具、动画演示等,帮助学生建立清晰的数学概念。
二、逻辑推理训练逻辑推理是数学思维的核心之一。
可以通过一些简单的逻辑推理游戏和题目来锻炼小学生的思维能力。
例如,数独游戏就是一个很好的选择,它需要学生根据已知数字,通过推理和排除,填满整个九宫格。
还有一些推理谜题,比如“在一个班级里,小明比小红高,小红比小刚高,那么谁最高?”这类题目能够培养学生的顺序思维和比较能力。
在教学中,老师可以引导学生逐步分析问题,找出关键信息,培养他们有条理地思考问题的习惯。
三、空间想象训练空间想象能力对于学习几何知识非常重要。
可以让学生通过搭积木、折纸等活动,直观地感受空间形状和结构。
比如,让学生用积木搭建出不同的立体图形,然后描述它们的特征;或者通过折纸制作出各种几何形状,如正方体、长方体等,加深对空间概念的理解。
此外,还可以利用一些图形谜题,如拼图游戏、一笔画问题等,锻炼学生的空间感知和想象能力。
四、数学阅读与表达数学阅读能力的培养有助于学生理解数学问题和概念。
可以提供一些适合小学生的数学科普读物、数学故事书,让他们在阅读中提高对数学语言的理解和运用能力。
同时,鼓励学生用自己的语言表达数学思路和解题过程。
无论是课堂发言还是书面作业,都要求他们清晰地阐述自己的想法。
这不仅能够加深他们对知识的理解,还能锻炼他们的逻辑表达能力。
五、问题解决策略训练教给学生一些常见的问题解决策略,如画图法、列表法、假设法等。
当遇到复杂的数学问题时,引导他们选择合适的策略来解决。
五年级数学解题策略:代入法、图形法、逻辑推理与分解组合
五年级数学解题策略:代入法、图形法、逻辑推理与分解组合当然可以。
下面我会针对几个不同的解题方法举例说明,以及如何通过这些方法来提高五年级下册的数学能力。
1. 代入法例子:解方程 3x + 2 = 5解题步骤:1.移项,使等式一侧只剩x的项:3x = 5 - 22.简化等式:3x = 33.使用代入法解x的值:x = 3 ÷ 34.得到答案:x = 1如何应用:●代入法常用于解方程。
首先,将方程中的未知数单独放在一侧,然后将已知数代入到等式的另一侧。
●通过反复练习,学生将能够更快地识别何时使用代入法,并更熟练地解决方程问题。
2. 图形法例子:计算平行四边形的面积解题步骤:1.确定平行四边形的底和高。
2.使用公式:面积 = 底×高3.代入数值进行计算。
如何应用:●在处理与几何形状有关的题目时,使用图形法非常有帮助。
它可以帮助学生更好地理解和解决问题。
●通过绘制图形,学生可以更直观地看到问题的结构,并更容易找到解决问题的方法。
3. 逻辑推理例子:判断哪个数最大:3/4, 5/6, 7/8解题步骤:1.将所有分数转换为具有相同分母的分数。
2.比较分子的大小来确定哪个数最大。
如何应用:●逻辑推理在数学中非常常见,尤其是在处理比较和排序问题时。
●通过训练学生的逻辑思维能力,他们可以更好地理解和解决复杂的问题。
4. 分解与组合例子:计算 24 × 125解题步骤:1.将24分解为3 × 8。
2.使用乘法结合律:(3 × 8) × 125 = 3 × (8 × 125)。
3.计算8 × 125 = 1000。
4.最后计算3 × 1000 = 3000。
如何应用:●分解与组合是一种有效的策略,特别是在处理复杂计算时。
●通过将问题分解为更小的部分,学生可以更容易地找到解决方案,并提高他们的计算能力。
综上所述,通过不断练习和应用这些解题方法,五年级学生可以逐渐提高他们的数学能力,并更好地理解和解决各种问题。
小学五年级数学学习中的逻辑思维训练
小学五年级数学学习中的逻辑思维训练数学作为一门精确科学,逻辑思维在其中占据着重要的地位。
在小学五年级的数学学习中,逻辑思维的训练是非常关键的。
它不仅有助于培养学生的思维能力,还能提升他们的解决问题的能力。
本文将探讨小学五年级数学学习中逻辑思维训练的重要性及方法。
一、逻辑思维在数学学习中的作用逻辑思维是一种推理和判断的能力,它需要学生运用正确的思维规则来组织和处理信息。
在数学学习中,逻辑思维帮助学生理解和应用数学概念、方法和原理。
通过逻辑思维的训练,学生能够培养良好的数学思维方式,提高解题的准确性和效率。
逻辑思维对于学生在数学学习中的作用主要有以下几个方面:1. 推理能力:逻辑思维能够帮助学生进行准确的推理和演绎,从而推断出问题的答案。
学生能够分析问题的条件和要求,运用逻辑关系进行推理,找到正确的解题方法。
2. 问题解决能力:逻辑思维能够帮助学生分析和解决问题。
学生能够根据问题的特点和条件进行分类和归纳,找出问题的关键点,并运用逻辑思维解决问题。
3. 创新思维:逻辑思维能够激发学生的创造力和想象力。
通过运用逻辑规则和推理方法,学生能够寻找问题的新解决办法,培养创新思维的能力。
二、小学五年级数学学习中逻辑思维训练的方法1. 练习逻辑推理题:逻辑推理题是培养学生逻辑思维能力的重要手段。
通过解答逻辑推理题,学生能够强化逻辑推理的过程和方法,提高自己的逻辑思维能力。
2. 进行实际问题训练:将数学知识与实际问题相结合,培养学生分析和解决实际问题的能力。
通过让学生运用逻辑思维解决实际问题,可以加深他们对逻辑思维的理解和应用。
3. 提供思维导图工具:使用思维导图工具可以帮助学生整理和归纳数学知识,促进逻辑思维的发展。
学生可以将问题和解决方案以思维导图的形式呈现,加深对问题和解决方法的理解。
4. 进行团队合作学习:鼓励学生进行团队合作学习,通过合作解决问题,培养学生的逻辑思维能力。
学生可以在小组中共同思考、讨论和解决问题,相互交流和借鉴思维方式,提高逻辑思维的水平。
五年级数学几何逻辑思维能力题
五年级数学几何逻辑思维能力题在五年级学习数学的过程中,几何和逻辑思维能力是非常关键的内容。
这一阶段的数学教育不仅要求学生掌握基本的几何图形和运算符号,还需要培养他们的逻辑思维能力,帮助他们更好地理解和解决数学问题。
五年级的数学几何逻辑思维能力题是非常重要的一部分。
本文将对此进行全面评估,并撰写一篇有价值的文章。
我们来看一些常见的五年级数学几何逻辑思维能力题样例:1. 请画出一个直角三角形,并计算其两个锐角的度数。
2. 如果一个长方形的周长是24厘米,其中一条边长是4厘米,另一条边长是多少?3. 以下几个图形中,哪一个不是四边形?请用逻辑推理解决这个问题。
4. 在一个正方形田地的四个角上各有一只鸽子,它们之间的距离相等。
请计算正方形田地的边长。
以上是一些常见的五年级数学几何逻辑思维能力题样例,这些题目涉及了几何图形的认识和计算、周长和面积的计算、逻辑推理能力的培养等内容。
通过解决这些题目,学生不仅可以巩固所学的知识,还能培养自己的逻辑思维能力和解决问题的能力。
在解决这些题目的过程中,学生需要通过观察和分析,找出问题的关键点,并进行合理的推理和计算。
这些过程不仅有助于他们掌握数学知识,还能培养他们的思维能力和解决问题的能力。
五年级数学几何逻辑思维能力题对学生的数学素养和综合能力的提高起着非常重要的作用。
关于这个主题,我个人认为,五年级数学几何逻辑思维能力题既是对学生知识储备的考验,也是对他们综合能力的挑战。
在解决这些题目的过程中,学生需要不断地思考、推理和尝试,从而提高自己的数学能力和解决问题的能力。
教师在教学中可以适当增加一些这样类型的题目,帮助学生更好地提高他们的数学素养和综合能力。
五年级数学几何逻辑思维能力题是非常重要的一部分。
它不仅可以帮助学生巩固所学的知识,还可以培养他们的思维能力和解决问题的能力。
希望通过这篇文章的撰写,您能更全面、深刻和灵活地理解这个有价值的主题。
以上是本人根据您提供的主题所撰写的文章,希望能够对您有所帮助。
五年级数学思维《逻辑推理(2)》专题训练
五年级数学思维《逻辑推理(2)》专题训练一、填空题(每小题6分,共60分)1 Marry心目中的白马土子是高个子、黑皮肤、相貌英俊,在她认识的Mike、Bill、John、Jack四位男士中,只有一位男上符合她的全部条件.已知:①四位男式中,只有三人是高个子,只有两人是黑皮肤,只有一人相貌英俊.②每位男上都至少符合一个条件;③Mike和Bill肤色相同;④Bil1和John身高相同;⑤John和Mike不都是高个子.那么,Marry心目中的白马王子是.2 在电子表的时间显示中(电子表中“时”的显示为00,01,02,…, 23),连续二个相同数字或三个以上相同数字并列的时间(如00:00,00:05,03:33,11:12,20:00,22:22等),在一昼夜中共有分钟.3 小亮对小红说:“昨天我把50张草稿纸分给了班上的10名同学,我不是平均分的,而是根据每个同学的需要分的,因此,每个同学分到的草稿纸的张数都不相同.”小红听完后马上说:“你说的是假话,骗人!”小红说的正确吗? .4 已知两个数的和等于75,其中第一个数比第二个数大15,第二个数等于.5 有甲、乙、丙、丁四人同住在一座四层的楼房里,且分别住不同的楼层,他们之中有工程师、工人、教师和医生.如果已知:①甲比乙住的楼层高,比丙住的楼层低,丁住第四层;②医生住在教师的楼上,在工人的楼下,工程师住底层.则甲住,职业是;乙住,职业是;丙住,职业是;丁住,职业是.6 A、B、C、D、E五人参加乒乓球比赛,每两个人都要赛一盘,并且只赛一盘,规定胜者得2分,负者不得分,已知比赛结果如下:①A与E并列第一名;②B是第三名;③C和D并列第四名;则B得分.7 有3只袋子,有一只放着糖,另外两只都各放着一块石子,外面都贴着一张纸,分别写着:袋子A:“一块石子放在袋子B里.”袋子B:“一块石子放在这只袋子里.”袋子C:“一块石子放在袋子A里.”放糖的这只袋子纸上写的内容一定是对的,另外两只袋子纸上写的内容,至少有一个是错的.那么放着糖的袋子是.8 四张卡片上分别写着努、力、学、习四个字(一张写一个字),取出其中三张覆盖在桌面上,甲、乙、丙三人分别猜这三张卡片上是什么字,猜测情况如下表:结果每一张卡片上的字至少有一人猜中,所猜的三次中,有一人一次也没猜中,另外两人分别猜中了两次和三次.那么,第一张卡片上写的字是,第二张卡片上写的字是,第三张卡片上写的字是 .9 从1~10这十个整数中,选出A 、B 、C、D、E五个数满足下面6个条件:①D比6大;②D能被C整除;③A与D的和等于B;④A、C 、E三数之和等于D;⑤A与C的和比E小;⑥A与E的和比C与5的和小.则满足条件的解答为 .10 甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“笫一名是D,第五名是E.”乙:“第二名是A,第四名是C.”丙:“第三名是D,第四名是A.”丁:“第一名是C,第三名是B.”戊:“第二名是C,第四名是B.”若每个人都只猜对了一个人的名次,且每个名次只有一个人猜对,则笫一、二、三、四、五名分别是 .二、解答题(每小题20分,共60分)11 A先生夫妇邀请了三对夫妇来吃饭,分别是B夫妇、C夫妇和D夫妇,在圆形餐桌安排座位时,有一对夫妇是被隔开了.下面是一些提示,根据这些提示,你能知迫哪对大妇被隔开了吗?①A太太对面的人是坐在B先生左边的先生;②C太太左边的人是坐在D先生对面的一位女士;③D先生右边是位女士,她坐在A先生左边第二个位置上的女士的对面.12 张大妈问三位青年工人的年龄.小刘说:“我22岁,比小陈小两岁,比小李大1岁.”小陈说:“我不是年龄奻小的,小李和我竺3岁,小李是25 岁.”小李说:“我比小刘年龄小,小刘23岁,小陈比小刘大3岁.”这三位青年工人爱开玩笑,在他们每人说的三句话中,都有一句是错的,请你帮助张大妈分析出三人的年龄.13 一次足球比赛,有A、B、C、D四个队参加,每两队都要赛一场.按规则,胜一场得2分,平一场得1分,负一场得0分比赛结果,B队得5分,C队得3分,A队得1分.所有场次共进了9球,B队进球最多,共进了4个球,C队共失了3个球,D队一个球也没进.A队与C队的比分是2:3,问:A队与B队的比分是多少?。
五年级趣味数学思维训练题50道及答案
五年级趣味数学思维训练题50道及答案(1)【行程问题】猎狗前面26步远有一只野兔,猎狗追之.兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步(2)【统筹规划】如图,在街道上有A,B,C,D,E五栋居民楼,每栋楼里每天都有20个人要坐车,现在设立一个公交站,要想使居民到达车站的距离之和最短,应该设在何处.(3)【余数问题】小朋友们要做一次“动物保护”宣传活动,若1人拿3个动物小玩具,则最后余下2个动物小玩具;若1人拿4个动物小玩具,则最后余下3个动物小玩具;若1人拿5个动物小玩具,则最后余下4动物小玩具。
那么这次活动中小朋友至少拿了______个动物小玩具。
(4)【图形分割】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状,大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?(5)【游戏与策略】小牛对小猴说:“对一个自然数n进行系列变换:当n是奇数时,则加上2007;当n是偶数时,则除以2.现在对2004连续做这种变换,变换中终于出现了数2008.”小猴说:“你骗人!不可能出现2008.”请问:小牛和小猴谁说得对呢?为什么?(6)【行程问题】龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米.乌龟不停地跑;但兔子却边跑边玩,它先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟,…….那么先到达终点的比后到达终点的快多少分钟(7)【还原问题】在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除以2;如果输入的数是奇数,就把它加上3.同样的运算这样进行了3次,得出结果为27.原来输入的数可能是____________.(8)【图形面积】如图,房间里有一只老鼠,门外有一只小猫,如果每块正方形地砖的连长为50厘米,那么老鼠在地面上能避开小猫视线的活动范围为_________平方厘米.(将小猫和老鼠分别看作两个点,墙的厚度忽略不计)(9) 【行程问题】一只野兔逃出100步后猎狗才开始追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步,猎狗至少要跑步才能追上野兔。
五年级奥数思维训练题上
五年级奥数思维训练题上一、数字规律类。
1. 按规律填数:1,2,4,7,11,16,(),29。
- 解析:相邻两个数的差依次是1、2、3、4、5……,所以16与括号里的数的差应该是6,那么括号里的数是16 + 6=22。
2. 找规律:2,3,5,8,13,(),34。
- 解析:从第三项起,每一项都是前两项之和,5 = 2+3,8 = 3 + 5,13=5+8,所以括号里的数是8+13 = 21。
二、数的整除类。
3. 在1 - 100的自然数中,能被3整除或者能被5整除的数共有多少个?- 解析:能被3整除的数有100÷3 = 33(个)……1,即33个;能被5整除的数有100÷5=20个;能被3和5整除(即能被15整除)的数有100÷15 = 6(个)……10。
根据容斥原理,能被3整除或者能被5整除的数共有33+20 - 6 = 47个。
4. 一个三位数能被9整除,去掉它的末位数字后,所得的两位数是17的倍数。
这样的三位数中,最大是多少?- 解析:17的倍数的两位数有17、34、51、68、85。
因为这个三位数能被9整除,所以它的各个数位上的数字之和能被9整除。
当这个两位数是85时,设末位数字是x,8 + 5+x能被9整除,x = 5,这个三位数是855。
三、行程问题类。
5. 甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,两人在距离中点5千米处相遇。
A、B两地相距多少千米?- 解析:甲比乙速度快,在距离中点5千米处相遇,说明甲比乙多走了5×2 = 10千米。
甲每小时比乙多走15 - 10 = 5千米,那么相遇时间是10÷5 = 2小时。
A、B两地相距(15 + 10)×2 = 50千米。
6. 一艘轮船在静水中的速度是每小时20千米,它从甲港顺水航行到乙港用了8小时,已知水速是每小时4千米。
小学五年级的数学逻辑思维训练
小学五年级的数学逻辑思维训练数学是一门需要逻辑思维的学科,而对于小学五年级的孩子来说,培养他们的数学逻辑思维能力至关重要。
在数学的学习过程中,通过逻辑思维的训练,可以帮助孩子提高问题解决能力、思维灵活性以及分析和推理的能力。
本文将介绍一些可以帮助小学五年级孩子进行数学逻辑思维训练的方法和技巧。
一、推理思维的训练逻辑推理是数学思维的核心能力之一。
在小学五年级的数学学习中,可以通过一些相关的练习来培养孩子的推理思维。
比如通过填空题、选择题等方式,让孩子根据已知条件,进行逻辑推理,找到正确答案。
此外,还可以通过一些智力游戏和谜题来培养孩子的推理能力,如数独、数学迷宫等。
二、问题解决能力的培养数学问题解决是数学学习的核心内容。
培养孩子解决问题的能力,可以通过让他们参与到一些实际问题的解决过程中。
比如让孩子在日常生活中运用数学知识解决问题,如购物计算、时间计算等。
此外,还可以通过一些数学游戏和竞赛来培养孩子的问题解决能力,在游戏中激发他们的求胜欲望和解决问题的动力。
三、图形与空间思维的培养在小学五年级的数学学习中,图形与空间思维也是重要的内容之一。
培养孩子的图形与空间思维能力,可以通过一些几何题目和图形拼插游戏等方式进行。
比如让孩子观察和分析一些几何图形的特征,让他们能够想象和构建图形,培养他们的空间想象力和图形思维能力。
四、逻辑推理游戏的应用逻辑推理游戏是培养小学五年级孩子数学逻辑思维的有效方式之一。
有许多逻辑推理的游戏可以让孩子进行参与,如数学推理题、数字游戏等。
这些游戏既可以让孩子在游戏中学习和思考,又能激发他们的学习兴趣,培养他们的逻辑思维能力。
五、思维导图的应用思维导图是一种可以帮助孩子整理和表达思维的工具。
在小学五年级的数学学习中,可以通过使用思维导图,让孩子将所学知识进行分类和整理,梳理思路,提高思维的逻辑性。
同时,思维导图也可以帮助孩子进行思维的扩展和联想,培养他们的创新思维能力。
六、适量游戏与竞赛的参与适当参与数学游戏和竞赛可以激发孩子的学习兴趣,培养他们的数学逻辑思维能力。
逻辑推理(五年级)
逻辑推理一、教学目标1.掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2.培养学生的逻辑推理能力,掌握解不同题型的突破口3.能够利用所学的数论等知识解复杂的逻辑推理题二、考点、热点回顾逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
一、列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.三、典型例题一、列表推理法例1、刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?变式训练1、王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?例2、张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?变式训练1、甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.二、假设推理例3、甲、乙、丙三人,一个总说谎,一个从不说谎,一个有时说谎.有一次谈到他们的职业.甲说:“我是油漆匠,乙是钢琴师,丙是建筑师.”乙说:“我是医生,丙是警察,你如果问甲,甲会说他是油漆匠.”丙说:“乙是钢琴师,甲是建筑师,我是警察.”你知道谁总说谎吗?变式训练1、在神话王国内,居民不是骑士就是骗子,骑士不说谎,骗子永远说谎,有一天国王遇到该国的居民小白、小黑、小蓝,小白说:“小蓝是骑士,小黑是骗子.”,小蓝说:“小白和我不同,一个是骑士,一个是骗子.”国王很快判断出谁是骑士,谁是骗子.你能判断出吗?例4、某地质学院的学生对一种矿石进行观察和鉴别。
五年级下册数学课件思维拓展训练: 较复杂的逻辑推理 全国通用 18页
1984÷2=992(场) 找不到这样的n,使1+2+3+…+(n-1)=992
答:共有45位选手例7:某工厂有六名棋手进行单循环比赛。比 赛分三场同时进行,共赛五天,每人每天赛一场。 已知在第一天C和E对弈,第二天B和D对弈,第三天 A和C对弈,第四天D和E对弈。试问:F在第五天与 谁对弈?
例2:甲、乙、丙、丁四人在争论今天是星期几。 甲说:明天是星期五;今天是星期四 乙说:昨天是星期四;今天是星期五 丙说:你俩说的都不对;
丁说:今天不是星期六。×
实际上这四个人只有一人说对了,那么请问今天 是星期几?
假设甲对,今天是星期四,则丁也说对了,与题目只有 一人说对矛盾;
假设乙对,今天是星期五,则丁也说对了,与题目只有 一人说对矛盾;
答:甲戴黄帽子,穿红衣服; 乙戴蓝帽子,穿蓝衣服; 丙戴红帽子,穿黄衣服。
例6:象棋比赛中,每位选手都与其他选手赛 一场,赢者得2分,负者得0分,平局两人各得1分。 现在有四位学生统计全部选手总分,分别为 1979,1980,1984,1985,但只有一个统计正确。问 共有多少位选手比赛?
不管比赛结果怎样,每场比赛选手的总分都是2分。
1.花 朝 , 是 成 都花 会开幕 的日子 地点在 南门外 十二桥 边的青 羊宫花 会期有 一个月 这是一 个成都 青年男 女解放 的时期 花会与 上海的 浴佛节 有点相 像,不 过成都 的是以 卖花为 主,再 辅助着 各种游 艺与各 地的出 产。
2这篇文章用河神见海神的寓言故事说 明哲理 ,通篇 都是设 喻而这 些比喻 又是通 过奔放 新奇的 想象和 浓厚的 浪漫主 义情调 抒写出 来的。 庄子把 一切自 然事物 、神话 传说都 具体化 、人格 化。
所以甲乙都不对,那么丙说对了,则丁也不对。
小学生数学思维练习题推荐
小学生数学思维练习题推荐数学思维是小学生认识世界、解决问题的重要一环,通过思考和解决数学问题,可以提高小学生的逻辑思维、分析能力和创造力。
为了帮助家长和老师为小学生提供更多的数学思维训练,本文将推荐几个适合小学生的数学思维练习题。
1. 图形逻辑推理题图形逻辑推理题是培养小学生空间想象力和推理能力的很好的练习。
下面是一个例子:以图形中的例子为基础,推理并选择出正确的答案。
(图形举例)解析:这个题目考察的是小学生的直观推理能力。
答案为B,因为每一行图案都在第一行的基础上进行了累加和移动。
这种类型的题目能够培养小学生的逻辑和推理能力,同时提高他们的观察和分析能力。
2. 数形结合题数形结合题是将数学概念和几何图形相结合的练习,能够帮助小学生更好地理解数学概念。
下面是一个例子:在平面直角坐标系中,如果点A(3, 2)和点B(7, 9)是一个正方形的对角线的顶点,那么这个正方形的面积是多少?解析:通过计算两点之间的距离,可以确定这个正方形的边长,从而计算出面积。
AB的距离为√[(7-3)²+(9-2)²]=√(4²+7²)=√65,所以正方形的边长为√65。
正方形的面积为(√65)²=65。
数形结合题能够增强小学生对抽象数学概念的理解,培养他们的几何直观和计算能力。
3. 问题解决题问题解决题是通过解决实际问题来培养小学生的数学思维能力。
下面是一个例子:小明和小华两人的年龄之和是30岁,小明比小华大6岁。
请问他们分别多少岁?解析:设小华的年龄为x岁,根据题意可得小明的年龄为x+6岁。
根据题目我们可以得到以下等式:x + (x+6) = 30。
解方程得出x=12,所以小华的年龄为12岁,小明的年龄为18岁。
问题解决题可以培养小学生的问题分析和解决能力,同时提高他们的逻辑思维和计算技巧。
总结:以上是三个适合小学生的数学思维练习题的推荐。
通过这些题目的练习,可以帮助小学生培养逻辑思维、推理能力和问题解决能力。
5年级奥数思维训练100题
5年级奥数思维训练100题一、数字规律类。
1. 按规律填数:1,2,5,10,17,(),37。
- 解析:相邻两个数的差依次是1、3、5、7、9、11。
17 + 9 = 26,所以括号里应填26。
2. 数列1,1,2,3,5,8,13,(),34,55。
- 解析:从第三项起,每一项都是前两项之和。
8+13 = 21,所以括号里应填21。
二、数的整除类。
3. 在257后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,这个六位数最小是多少?- 解析:能被4、5整除,这个数的末位一定是0。
能被4整除的数,十位和个位所组成的两位数一定能被4整除,所以十位上是偶数。
能被3整除的数,各位数字之和能被3整除。
2+5 + 7=14,要使这个数最小且能被3整除,百位上最小就是0,此时各位数字之和为14+0+0 = 14,那么十位上最小就是1,这个数就是257010。
4. 一个数除以3余2,除以5余3,除以7余2,这个数最小是多少?- 解析:我们先找出满足除以3余2且除以7余2的数,即3和7的最小公倍数加2。
3和7的最小公倍数是21,21+2 = 23,23除以5余3,所以这个数最小是23。
三、图形计算类。
5. 一个平行四边形的底是12厘米,高是8厘米,如果底增加4厘米,高不变,那么面积增加多少平方厘米?- 解析:原平行四边形面积=底×高 = 12×8 = 96平方厘米。
底增加4厘米后,新底为12 + 4 = 16厘米,新面积=16×8 = 128平方厘米。
面积增加了128 - 96 = 32平方厘米。
6. 一个三角形的底是10分米,高是8分米,如果底和高都减少2分米,三角形的面积减少多少平方分米?- 解析:原三角形面积=(1)/(2)×底×高=(1)/(2)×10×8 = 40平方分米。
底和高都减少2分米后,新底为10 - 2 = 8分米,新高为8 - 2 = 6分米,新面积=(1)/(2)×8×6 = 24平方分米。
五年级数学思维《逻辑推理(1)》专题训练
五年级数学思维《逻辑推理(1)》专题训练一、填空题(每小题6分,共60分)1 我有一匹马,你能猜测它是黑色、褐色、灰色中的哪—种颜色吗?A说:“我想它不是黑色.”B说:“它不是褐色就是灰色. ”C说:“我知迫它是褐色.”我说:“你们的猜测中至少有一个是对的,有一个是错的.”我的马颜色是色的.2 如图所示,三个正方休的六面,按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,则涂黄色的对面是,涂白色的对面是,涂红色的对面是.3 A、B、C、D、E五位同学一起比赛象棋,每两人都要比赛一盘,到现在为止,A已经赛4盘,B赛了3盘,C赛了2盘,D赛了1盘,此时E同学赛了盘.4 A、B、C、D匹名同学猪测自己的数学成绩.A说:“如果我得优,B也得优.”B说:“如果我得优,C也得优.”C说:“如果我得优,D也得优.”结果,三人都没有说错,但是只有两人得优,那么是得优.5 铅笔0.5元一支,练习本0.4元一本,小明买笔和练习本共用了2.2元,那么他买了支铅笔,本练习本.6 甲、乙、丙三个人对某一种矿石进行分析,甲判断:不是铁,也不是铜,乙判断:不是铁,而是锡,丙判断:不是锡而是铁,经检测证明三人中的老工人判断全对,实习生全错,普通队员一对一错那么矿石是,是老工人,是实习生,是普通队员.7 小明、小强、小兵三个人进行赛跑,跑完后,有人间他们比赛的结果.小明说:“我是第一”,小强说:“我是第二”,小兵说:“我不是第一”.他们中有一人说了假话,那么是第一,是第二,是第三.8 A、B、C、D、E五人参加一次满分为10分的考试.A说:“我得了4 分.”B说:“5人中我得分最高.”C 说:“我的得分是A与D 的平均分.”D 说:“我的得分是5 个人的平均分.”E 说:“我的得分比C 多2 分,是第二名.”则B得了分.9 小明家的电话号码是6个数字组成的,这6个数字互不相同,从左到右恰好是由大到小的顺序排列的,但任意两个相邻的数字所组成的两位数都能被3整除,则小明家电话号码是.10 如图摆放的三枚骰子,只能看到七个面的点数,每枚正方休骰子相对面的点数和都是7,那么从图中看不出的所有面的点数和是.二、解答题(每小题20 分,共60 分)11 一位医务人员说:“我们医院的医务人员,包括我在内,医生和护士总共有16名,下面讲的情况,无论是否将我计算在内,都是正确的:①护士多于医生;②男医生多于男护士;③男护士多于女护士;④至少有一位女医生.”请问:这位说话的人是什么性别和职务?12 有赵钱、孙、李、周五人围着一张圆桌吃饭,饭后周回忆说:“吃饭时,赵坐在钱的旁边,钱的左边或是孙,或是李.”李回忆说:“钱坐在孙左边,我挨若孙坐.”结果他们一句也没说对.问:他们是怎么坐的?13 有3个书包,一个装着2个红球,一个装着2个白球,还有一个装着1个红球和1个白球.将写有红红、白白、红白字样的标签分别贴在书包上,但是都贴错了,你能只从一个贴有标签的书包里取出一个球就能分辨出3个书包里各装的是什么颜色的球吗?。
五年级上册思维
五年级上册思维思维是人类思考和推理的重要能力,也是我们学习和解决问题的基础。
在五年级上册的学习中,培养学生的思维能力是非常重要的。
本文将从几个方面,对五年级上册的思维进行探讨和分析。
首先,培养学生的逻辑思维能力。
逻辑思维是指通过分析和判断,按照一定的规律和顺序进行思考。
在五年级上册的数学课程中,学生将接触到一些基本的逻辑推理。
比如,在数学计算过程中,学生需要按照一定的顺序进行操作,从简单到复杂,层层递进。
这样的训练有助于培养学生的逻辑思维能力,让他们在解决问题时能够合理地组织思路和推理过程。
其次,培养学生的创造性思维能力。
创造性思维是指能够独立思考和提出新观点、新想法的能力。
在五年级上册的语文课程中,学生将接触到一些寓言故事和课外阅读材料,这些内容旨在激发学生的想象力和创造力。
同时,在其他科目中,教师也可以通过一些启发性的问题和讨论,引导学生思考和表达自己的观点。
这样的训练将有助于培养学生的创造性思维能力,使他们在解决问题时能够独立思考、灵活运用知识。
再次,培养学生的批判性思维能力。
批判性思维是指具备批判性思考和判断的能力。
在五年级上册的社会和科学课程中,学生将接触到一些内容和问题,需要他们运用所学的知识进行分析和判断。
教师可以引导学生思考课堂教材中的一些争议性问题,鼓励他们提出自己的观点和理由,并理解他人观点的合理性。
这样的训练将有助于培养学生的批判性思维能力,使他们在面对复杂问题时能够客观分析和判断。
最后,培养学生的合作性思维能力。
合作性思维是指在集体活动中能够与他人有效沟通、协作合作的能力。
在五年级上册的各个科目中,学生将有机会进行小组讨论、团队合作等活动。
通过这样的集体活动,学生不仅可以与他人交流和分享自己的想法,更重要的是培养他们的团队合作和解决问题的能力。
教师可以设计一些合作性活动,让学生在团队中需要互相依赖、协作解决问题,从而培养学生的合作性思维能力。
总之,在五年级上册的学习中,培养学生的思维能力是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识导航1.在近年来的许多竞赛试题中,常常会见到这样的一类题目,没有或很少给出什么数量关系;他们的解决方法主要不是依靠数学概念、法则、公式进行运算,较少用到专门的数学知识,而是根据条件和结论之间的逻辑关系,进行合理的推理,做出正确的判断,最终找到问题的答案,这就是逻辑推理问题。
2.逻辑推理问题的条件一般说来都具有一定的隐蔽性和迷惑性命且没有一定的解题模式。
因此,要正确解决这类问题,不仅需要始终抱地灵活的头脑,更需要遵循逻辑思维的基本规律------同一律、矛盾律和排中律。
(1)“矛盾律”指的是在逻辑推理过程中,对同一结论的推理不能自相矛盾。
(2)“排中律”值的是在逻辑推理过程中,一个思想或为真或为假,不能既不真或为假,不能既不真也不假。
(3)“同一律”指的是在逻辑推理过程中,同一对象的内涵必须是确定的,在进行判断和推理的过程中,每一概念都必须在同一意义下使用,不许偷换。
3.逻辑推理问题解题的方法一般有:《(1)列表画图法(2)假设推理法(3)枚举筛选法精典例题例1:一次网球邀请赛,来自湖北,广西,江苏,北京,上海的五名运动员相遇在一起,据了解:(1)王平仅与另外两名运动员比赛过;(2)上海运动员和另外三名运动员比赛过;(3)李兵没有和广西运动员比赛过;(4)江苏运动员和凌华比赛过;(5)广西,江苏,北京的三名运动员相互之间都比赛过;$(6)赵林仅与一名运动员比赛过。
问:张俊是哪个省市的运动员|思路点拨此题可用列表画图法来解答。
“赵林仅与一名运动员比赛过”,说明赵林只比赛过1场,由(2)、(5)可得知上海、广西、江苏、北京运动员至少都比赛过2场或以上,赵林只能是湖北运动员;由(3)、(5)知李兵不是广西运动员,也不是江苏、北京运动员,李兵只能是上海运动员;又由(2)、(3)、(6)知,赵林(湖北)与李兵(上海)比赛过,李兵(上海)与赵林(湖北)、江苏、北京运动员比赛过,可以知道王平肯定是广西运动员;由(4)知凌华不是江苏运动员,只能是北京运动员(如下表);据此采用列表法如下(用“×”表示否定,用“√”表示肯定)。
;模仿练习红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。
A猜:第二包是紫的,第三包是黄的;B猜:第二包是蓝的,第四包是红的;C猜:第一包是红的,第五包是白的;D猜:第三包是蓝的,第四包是白的;E猜:第二包是黄的,第五包是紫的。
、猜完后,打开各纸包一看发现每人都只猜对了一包,并且每包只有一人猜对。
请你判断他们各猜对了哪一包`例2:有四人打桥牌(牌中不含大、小王牌,每人共13张牌),已知某一人手中的牌如下:①红桃、黑桃、方块、梅花四种花色的牌都有;②各种花色的牌,张数不同;③红桃和黑桃合起来共6张;④红桃和方块和起来有5张;⑤有两张主牌。
]试问这手牌以什么花色为主牌)思路点拨由于主牌不外乎四种花色之一,因此可以采用假设推理法。
第一步:设红桃为主牌。
依题意,红桃为两张,则黑桃为4张,方块为3张。
一共有13张牌,梅花只能为44张,与黑桃张数相同,矛盾。
第二步:设方块为主牌。
依题意,方块为两张,则红桃为3张,黑桃也为3张,矛盾。
第三步:设梅花为主牌。
因为主牌为两张,所以黑桃、红桃,方块应总共为11张,但根据条件③、④知,这三种花色的总和应少于11张,又出现矛盾。
得出:只能是黑桃为主牌,此时红桃4张,方块1张,梅花6张。
总结:推理的方法很多,如果题目中所涉及的情况只有有限种,我们可以先假设一个前提正确,以此为起点,如果推理导致矛盾,说明假设的前提不正确,再重新提出一个假设,直至得到符合要求的结论为此。
这种方法叫做“假设推理法”。
~模仿练习从前有三个和尚,一个讲真话,一个讲假话,另一个有时讲真话,有时讲假话。
一天,一位智者遇到这三个和尚,他问第一位和尚:“你后面是哪位和尚”和尚回答:“讲真话的。
”他又问第二位和尚:“你是哪一位”得到的回答是:“有时讲真话,有时讲假话。
”他问第三位和尚:“你前面的是哪位和尚”第三位和尚回答说:“讲假话的。
”根据他们的回答,智者马上分清了他们各是哪一位和尚。
请你说出智者的答案。
例3:房间里有12个人,其中有些人总说假话,其余的人说真话。
其中一个人说:“这里没有一个老实人。
”第二个人说:“这里至多有一个老实人。
”第三个人说:“这里至多有两个老实人。
”如此往下,至第十二个人说:“这里至多有11个老实人。
”问房间里有多少个老实人%思路点拨此题的情况比较多,而且各种情况有一定的规律。
可用枚举筛选法:根通常直接采用假设推理,逐一分析,枚举所有可能出现的情况,利用矛盾律舍弃不合理的情况,筛选出最后的答案。
假设这房间里没有老实人,那么第1个人的话正确,说正确话的人应该是老实人,矛盾;¥假设这房间里只有1个老实人,那么第2~12个人的话都正确,那么应该有11个老实人,矛盾;假设这房间里只有2个老实人,那么第3~12个人的话都正确,那么应该有lO个老实人,矛盾;假设这房间里只有3个老实人,那么第4~12个人的话都正确,那么应该有9个老实人,矛盾;假设这房间里只有4个老实人,那么第5~12个人的话都正确,那么应该有8个老实人,矛盾;假设这房间里只有5个老实人,那么第6~12个人的话都正确,那么应该有7个老实人,矛盾;假设这房间里只有6个老实人,那么第7~12个人的话都正确,那么应该有6个老实人,满足;…………以下假设有7~12个老实人,均矛盾,所以这个房间里只有6个老实人。
、模仿练习有5个人各说了一句话:第1个人说:我们中间每一个人都说谎话;第2个人说:我们中间只有一个人说谎话;第3个人说:我们中间有两个人说谎话;第4个人说:我们中间有三个人说谎话;第5个人说:我们中间有四个人说谎话;请问:五个人中,谁说谎话,谁说真话)例4:小赵、小钱、小孙、小李四人中有两人在双休日为社区做好事,社区主任把这四人找来了解情况,四人分别回答如下:小赵:“小孙、小李中有人做了好事。
”}小钱:“小孙做了好事,我没有。
”小孙:“小赵、小李中只有1人做了好事。
”小李:“小钱说的是实话。
”最后通过仔细分析调查,发现四人中有两人说的是事实,另两人说的与事实有出入,到底是谁做了好事《思路点拨此题运用一般的假设推理法,关键是如何去假设。
仔细分析得出小钱与小李要不同真、要不同假,是我们解题的突破口。
题目说四人中两人说的是事实,另两人说的与事实有出入,注意,此处的“与事实有出入”表示不完全与事实相符,比如,当小钱、小孙都做了好事,或小钱、小孙都没有做好事,或小钱做了好事而小孙没做好事时,小钱说的话与事实有出入。
因为小钱与小李说的是一样的,所以只有两种可能:要么小钱与小李正确,另两人错;要么小钱、小李错,另两人正确。
(1)假设小钱、小李说的正确,这时小孙做了好事,小赵说小孙、小李中有人做了好事,小赵说的话也正确,这与只有两人说的是事实矛盾,所以假设不对。
(2)假设小赵与小孙说的话是正确的,那么做好事的是小赵和小孙,或小钱与小李,或小孙与小李。
若做好事的是小赵和小孙,或小孙和小李,则小钱的话也是正确的,与题意不符;若做好事的是小钱与小李,则小钱说的话与事实不符,符合提议,综上所述做好事的是小钱和小李。
(总结:运用假设推理法,如果假设的不好,可能会给推理带来麻烦,陷入僵局。
因此选择哪一个条件进行假设有一定的技巧,平时解题的时候应事先做分析,找出关键的突破口再做假设。
模仿练习有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码。
每只盒子外面所贴的标明砝码重量的标签都是错的。
聪明的小明只从一只盒子里取出一个砝码,放到天平上称了一下,就把所有标签都改正过来了。
你知道这是为什么吗!巩固练习1.在一个年级里,甲、乙、丙三位老师分别讲授数学、物理、化学、生物、语文、历史,每位老师教两门课.现知道:(1)化学老师和数学老师住在一起;(2)甲老师是三位老师中最年轻的;。
(3)数学老师和丙老师是一对优秀的国际象棋手;(4)物理老师比生物老师年长,比乙老师又年轻;(5)三人中最年长的老师住家比其他二位老师远.问甲、乙、丙三位老师分别教哪两门课。
2.李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定.兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
{、3.某校数学竞赛,A、B、C、D、E、F、G、H八位同学获前八名,老师让他们猜一下谁是第一名A:“或者F是第一名,或者H是第一名。
”B:“我是第一名。
”C:“G是第一名。
”D:“B不是第一名。
”E:“A说的不对。
”F:“我不是第一名,H也不是第一名。
”G:“C不是第一名。
”^H:“我同意A的意见。
”老师指出,八人中有三人猜对了,那么谁是第一名4. 在每星期的七天中,甲在星期一、二、三讲假话,其余四天都讲真话:乙在星期四、五讲假话,其余各天都讲真话。
今天甲:“昨天是我说谎的日子。
”乙说:“昨天也是我说谎的日子。
”今天是星期几。
5.公路上按一路纵队排列着五辆大客车。
每辆车的后面都贴上了该车的目的地的标志。
每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志。
调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断。
他先让第三个司机猜猜自己的车是开往哪里的。
这个司机看看前两辆车的标志,想了想说“不知道”。
第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道。
第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。