平稳时间序列模型
第三章线性平稳时间序列模型
可见,AR(1)模型中,xt在t时刻值依赖于两部分,一部分依 模型中, 时刻值依赖于两部分, 可见 模型中 时刻值依赖于两部分 赖于它的前一期的值x 另一部分是依赖于与x 赖于它的前一期的值 t-1;另一部分是依赖于与 t-1不相关 的部分ε 的部分 t 可将AR(1)模型写成另一种形式: 模型写成另一种形式: 可将 模型写成另一种形式
xt = ϕ1xt −1 + ϕ2 xt −2 +L+ ϕ p xt − p + εt
其中: (1) p ≠ 0 (2) εt是白噪声序列 (3) Exsε t = 0, ∀s < t
E (ε t ) = 0,Var (ε t ) = σ ε2 , E (ε t ε s ) = 0, s ≠ t
那么我们就说xt遵循一个p阶自回归或AR(p)随机过程。
例如: ARIMA(2,1,2)表示先对时间序列进行一阶差分,使之 转化为平稳序列,然后对平稳序列建立ARMA(2,2)模型。 ARIMA(p,0,q)就相当于ARMA(p,q)。 ARIMA(p,0,0)就相当于AR(p)。 ARIMA(0,0,q)就相当于MA(q)。 对于一个ARIMA(p,d,q)也可以用推移算子B表示如下 ϕ (B )(1 − B) d xt = θ ( B)ε t 其中: ϕ (B ) = 1 − ϕ 1 B − ϕ 2 B 2 − L − ϕ p B p
(二).二阶自回归模型,AR(2)
1.设{xt}为零均值的随机序列,如果关于xt的合适模型为: 其中:
xt = ϕ1xt −1 + ϕ2 xt −2 + εt
平稳时间序列模型的建立概述
平稳时间序列模型的建立概述平稳时间序列模型是一种常用的时间序列分析方法,用于描述和预测时间序列数据的变化模式。
该模型假设时间序列数据的统计特性在时间上保持不变,即均值和方差不随时间发生明显的变化。
以下是平稳时间序列模型的建立概述。
第一步是数据的预处理。
在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。
去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。
去除季节性和周期性可以使用季节性差分或移动平均方法。
第二步是对预处理后的序列进行统计特性分析。
这包括计算序列的均值、方差、自相关函数和偏自相关函数等统计指标。
通过分析这些指标,可以了解序列的平稳性、周期性和相关性等统计特性。
第三步是根据统计分析结果选择适合的时间序列模型。
常用的平稳时间序列模型包括自回归移动平均模型(ARMA)、自回归模型(AR)、移动平均模型(MA)和季节性自回归移动平均模型(SARIMA)等。
选择模型的原则是使模型具有较好的拟合效果并具有良好的预测性能。
第四步是模型参数的估计与诊断。
对于选定的时间序列模型,需要估计模型的参数。
这可以通过最大似然估计或最小二乘估计等方法进行。
估计得到模型参数之后,需要对模型进行诊断检验,判断模型是否合理。
常用的诊断方法包括残差平稳性检验、残差序列的白噪声检验和残差的自相关函数和偏自相关函数检验等。
第五步是模型预测与评估。
通过已建立的平稳时间序列模型,可以对未来的序列数据进行预测。
预测的准确性可以通过计算预测误差和拟合优度等指标进行评估。
若模型的预测效果较好,则可应用该模型进行实际预测。
总之,平稳时间序列模型的建立过程包括数据的预处理、统计特性分析、模型选择、参数估计与诊断以及模型预测与评估等步骤。
通过这些步骤的实施,可以建立一个合理且具有较好预测效果的平稳时间序列模型。
平稳时间序列模型的建立概述(续)第一步是数据的预处理。
第二章平稳时间序列模型——ACF和PACF和样本ACFPACF
第⼆章平稳时间序列模型——ACF和PACF和样本ACFPACF⾃相关函数/⾃相关曲线ACFAR(1)模型的ACF:模型为:当其满⾜平稳的必要条件|a1|<1时(所以说,⾃相关系数是在平稳条件下求得的):y(t)和y(t-s)的⽅差是有限常数,y(t)和y(t-s)的协⽅差伽马s除以伽马0,可求得ACF如下:由于{rhoi}其在平稳条件|a1|<1下求得,所以平稳0<a1<1则⾃相关系数是直接收敛到0-1<a1<0则⾃相关系数是震荡收敛到0对于AR(2)模型的ACF:(略去截距项)两边同时乘以y(t),y(t-1),y(t-2)......得到yule-Walker⽅程,然后结合平稳序列的⼀些性质(yule-Walker⽅程法确确实实⽤了协⽅差只与时间间隔有关的性质),得到⾃相关系数如下:rho0恒为1(⼆阶差分⽅程)令⼈惊喜的是,这个⼆阶差分⽅程的特征⽅程和AR(2)模型的是⼀致的。
所以,我们的rho本就是在序列平稳的条件下求得,所以{rhoi}序列也平稳。
当然,其收敛形式取决于a1和a2MA(1)模型的ACF:模型为:由于y(t)的表达式是由⽩噪声序列中的项组成,所以不需要什么平稳条件,就可以求得rho的形式如下:对于MA(p)模型,rho(p+1)开始,之后都为0.所以说,到了p阶之后突然阶段,变为0了。
ARMA(1,1)模型的ACF:模型为:还是使⽤yule-Walker⽅程法(⽤到了序列平稳则协⽅差只与时间间隔有关的性质)得到:所以有:ARMA(p,q)模型的ACF:ARMA(p,q)的⾃相关系数满⾜:(式1)前p个rho值(rho1,rho2...rhop)可以看做yule-Walker⽅程的初始条件,其他滞后值取决于特征⽅程。
(其实是这样的,rho1,rho2...rhop实际上能写出⼀个表达式,⽽rho(p+1)开始,就满⾜⼀个差分⽅程,⽽这个⽅程对应的特征根(即式1)⽅程和AR(p)对应的⼀模⼀样),所以,他会从之后q期开始衰减。
时间序列分析模型
时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。
它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。
时间序列分析模型可以分为统计模型和机器学习模型两类。
一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。
常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。
它将序列的当前值作为过去值的线性组合来预测未来值。
ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。
-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。
ARIMA(p,d,q)模型中,d表示差分的次数。
-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。
SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。
2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。
常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。
-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。
-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。
二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。
平稳时间序列模型概述
平稳时间序列模型概述平稳时间序列模型是一种常见的时间序列分析方法,用于对事物在一定时间范围内的变化进行建模和预测。
平稳时间序列模型假设时间序列的均值和方差在任意时刻都保持不变,即不受时间的影响。
平稳时间序列模型有许多不同的形式,其中最常见的是自回归移动平均模型(ARMA)和季节性自回归移动平均模型(SARMA)。
ARMA模型由自回归(AR)部分和移动平均(MA)部分组成,描述了时间序列的自相关和滞后误差,可以用来预测未来的观测值。
SARMA模型在ARMA模型的基础上加入了季节性因素,适用于存在明显季节性变化的时间序列。
ARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} + \epsilon_t -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项。
SARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} + \gammaX_{t-m} + \phi_1\gamma X_{t-m-1} + \dots + \phi_p\gammaX_{t-m-p} + \epsilon_t \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项,\( \gamma \)是季节性系数,\( X_{t-m},\dots, X_{t-m-p} \)是过去的季节性观测值。
平稳时间序列模型的特性
它旳解为
Xt
at
1 1B
(1 1B 12 B 2
13 B3
)at
1j at j
G j at j
j0
j0
11
3.格林函数旳意义
(1) G j是前j个时间单位此迈进入系统旳扰动 at j对系统目前行 为(响应)影响旳权数。
(2)
G
客观地刻画了系统动态响应衰减旳快慢程度。
j
(3)
G
是系统动态旳真实描述。系统旳动态性就是蕴含在时间
3. 系统参数对系统响应旳影响 对此我们用实例加以阐明,对前面旳序列分将别利用 1 0.5 和 1 0.9 成了两个序列,分别描 绘在图3.2和图3.3中,
16
17
1
1
1
经过比较图3.1、图3.2能够懂得: (1) 取负值时,响应波动较大。 (2) 取正值时,响应变得平坦。 (3) 越大,系统响应回到均衡位置旳速度越慢,时
0
1 1 p
29
AR(P)序列中心化变换
称 {yt}为 {xt}旳中心化序列 ,令
0
1 1 p
yt xt
30
自回归系数多项式
引进延迟算子,中心化 AR( p)模型又能够简
记为
(B)xt t
自回归系数多项式
(B) 1 1B 2B2 p B p
31
AR模型平稳性鉴别
鉴别原因
zt (c1 c2t
cd t d 1)1t
c t d 1 d 1
cppt
复根场合
zt rt (c1eit c2eit ) c33t
c
p
t p
26
非齐次线性差分方程旳解
非齐次线性差分方程旳特解
第五章 平稳时间序列模型的建立
2. 样本偏自相关函数截尾性的判断方法
可以证明:若序列xt为AR(p)序列,则
k>p后,序列的样本偏自相关函数ˆkk 服
从渐近正态分布,即近似的有:
ˆkk
~
N (0, 1 ) n
此处n表示样本容量。于是可得:
P( ˆkk
1 ) 31.7% n
P( ˆkk
2 ) 4.5% n
在实际进行检验时,可对每个k>0,分
将上式展开得:
xt 1xt1 p xtp 0 at 1at1 2at2 qatq
此时,所要估计的未知参数有p+q+1个。
式中:
0 (1 1 2 p )
即有:
0
11 2 p
在实际估计模型时,可将θ0看作一个常数估计, 若θ0显著不为0,则μ≠0,此时θ0 、 μ 有如上关系。 若θ0显著为0,则可认为μ=0,在最终模型中将此常数 项去掉即可。
– 原假设:序列非平稳
H0:1 1
– 备择假设:序列平稳
检验统计量
H0:1 1
– –
时 1 1 时 1 1
t (1 )
ˆ1 1 S (ˆ1 )
渐近 N (0,1)
ˆ1 1 S(ˆ1)
DF统计量
1 1 时
t (1 )
ˆ1 1 S (ˆ1 )
渐近 N (0,1)
1 1 时
ˆ1 S (ˆ1
对ACF和PACF的截尾性作一判断。
1. 样本自相关函数截尾性的判断方法
理 则论k>上q后证,明序:列若的序样列本xt自为相MA关(q函)序数列ˆ k,渐
近服从正态分布,即:
ˆ k
~
N (0, 1 (1 2 q
n
2-平稳时间序列模型
海军航空工程学院基础部数学教研室
第二章 平稳时间序列模型
4.2 ARMA(n,n-1)模型
X t 1 X t 1 n X t n 1at 1 n1at n1 at X t 1 X t 1 n X t n at 1at 1 n1at n1
X t j ( j 3,4,) 无关。
(2) at 是一个白噪声序列。 结构: AR(2)模型由三部分构成, 依赖于 X t 1的部分, 依赖于 X t 2 的部分,独立于前两部分的白噪声。AR(2) 模型可以等价地写成
at X t 1 X t 1 2 X t 2 。
2无关; , )
(2) at 为白噪声。
海军航空工程学院基础部数学教研室
第二章 平稳时间序列模型
一个关于产科医院的例子 设 at 是第 t 天新住院的病员人数, 假设 at 是白噪声序 列,即某一天住院人数与第二天住院人数无关。再假设 典型的情形是:10%的病人住院 1 天,50%的病人住院 2 天,30%的病人住院 3 天,10%的病人住院 4 天,那 么第四天住院的病人数 X t 将由下式给出
即通过把 X t 中依赖于 X t 1和 X t 2 的部分消除之后,使得 具有二阶动态性的序列转化为独立的序列。
海军航空工程学院基础部数学教研室
第二章 平稳时间序列模型
2.2 AR(n)模型
X t 1 X t 1 2 X t 2 n X t n at X t 1 X t 1 2 X t 2 n X t n at at X t 1 X t 1 2 X t 2 n X t n
X t at 0.9at 1 0.4at 2 0.1at 3 。
平稳时间序列模型及其特征 (1)
第一章平稳时间序列模型及其特征第一节模型类型及其表示一、自回归模型(AR)由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。
最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。
用数学模型来描述这种关系就是如下的一阶自回归模型:X t=φX t-1+εt(常记作AR(1)。
其中{X t}为零均值(即已中心化处理)平稳序列,φ为X t对X t-1的依赖程度,εt为随机扰动项序列(外部冲击)。
如果X t 与过去时期直到X t-p的取值相关,则需要使用包含X t-X t-p在内的p阶自回归模型来加以刻画。
P阶自回归模型的一1 ,……般形式为:X t=φ1 X t-1+φ2 X t-2+…+φp X t-p+εt(为了简便运算和行文方便,我们引入滞后算子来简记模型。
设B为滞后算子,即BX t=X t-1, 则B(B k-1X t)=B k X t=X t-k B(C)=C(C为常数)。
利用这些记号,(X t=φ1BX t+φ2B2X t+φ3B3X t+……+φp B p X t+εt从而有:(1-φ1B-φ2B2-……-φp B p)X t=εt记算子多项式φ(B)=(1-φ1B-φ2B2-……-φp B P),则模型可以表示成φ(B)X t=εt ( 例如,二阶自回归模型X t=0.7X t-1+0.3X t-2+0.3X t-3+εt可写成(1-0.7B-0.3B2)X t=εt二、滑动平均模型(MA)有时,序列X t的记忆是关于过去外部冲击值的记忆,在这种情况下,X t可以表示成过去冲击值和现在冲击值的线性组合,即X t=εt-θ1εt-1-θ2εt-2-……-θqεt-q ( 此模型常称为序列X t的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,θ1,θ2…θq为参滑动平均的权数。
相应的序列X t称为滑动平均序列。
使用滞后算子记号,(X t=(1-θ1B-θ2B2-……- θq B q)q t=θ(B)εt ( 三、自回归滑动平均模型如果序列{X t}的当前值不仅与自身的过去值有关,而且还与其以前进入系统的外部冲击存在一定依存关系,则在用模型刻画这种动态特征时,模型中既包括自身的滞后项,也包括过去的外部冲击,这种模型叫做自回归滑动平均模型,其一般结构为:X t=φ1X t-1+φ2X t-2+……+φp X t-p+εt-θ1εt-1-θ2εt-2-……-θqεt-q( 简记为ARMA(p, q)。
平稳时间序列模型的性质概述
平稳时间序列模型的性质概述平稳时间序列模型是一种描述时间序列数据的统计模型,它的核心假设是数据在时间上的统计特性不发生变化。
具体而言,平稳时间序列模型具有以下性质:1. 均值稳定性:平稳时间序列的均值不随时间变化而变化,即序列的均值是恒定的。
这意味着序列的长期趋势是稳定的,不存在明显的上升或下降趋势。
2. 方差稳定性:平稳时间序列的方差不随时间变化而变化,即序列的方差是恒定的。
这意味着序列的波动性是稳定的,不存在明显的波动增长或缩减。
3. 自协方差稳定性:平稳时间序列的自协方差(序列任意两个时间点之间的协方差)仅依赖于时间点之间的间隔,而不依赖于特定的时间点。
这意味着序列的相关性结构是稳定的,不存在明显的季节性或周期性变化。
4. 纯随机性:平稳时间序列被认为是纯随机的,没有系统性的模式或规律可寻。
这意味着序列的未来值无法通过过去的观察值来准确预测。
根据这些性质,我们可以使用平稳时间序列模型来进行时间序列的建模和预测。
常见的平稳时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA 模型)以及季节性模型等。
总而言之,平稳时间序列模型具有均值稳定性、方差稳定性、自协方差稳定性和纯随机性等性质,这使得它们成为分析和预测时间序列数据的常用工具。
通过运用这些模型,我们可以揭示序列的短期和长期特征,提供数据的统计属性并进行未来值的预测。
平稳时间序列模型是时间序列分析中非常重要的方法之一,它能够帮助我们理解和预测一系列观测值之间的关系。
在实际应用中,平稳时间序列模型常被用于金融市场分析、经济学研究、气象预测等领域。
首先,均值稳定性是平稳时间序列模型的一个重要性质。
这意味着序列的长期平均水平是恒定的,不随时间变化而变化。
例如,在金融市场中,股票价格的均值稳定性意味着股票价格的长期趋势是稳定的,不存在明显的上升或下降趋势。
通过建立平稳时间序列模型,我们可以更好地理解价格的平均水平,并预测未来的价格走势。
平稳时间序列分析-ARMA模型
1 0 1 2
所以,平稳AR(2)模型的协方差函数递推公式为
0
1 2 (1 2 )(1 1 2 )(1 1
2
)
2
1
1 0 1 2
k
1 k1 2 k2,k
2
4、自相关系数
(1)自相关系数的定义:
k
k 0
特别
0 1
(2)平稳AR(P)模型的自相关系数递推公式:
k 1k 1 2 k 2 p k p
例3.5:— (3)xt xt1 0.5xt2 t
自相关系数呈现出“伪周期”性
例3.5:— (4)xt xt1 0.5xt2 t
自相关系数不规则衰减
6、偏自相关函数
自相关函数ACF(k)给出了Xt与Xt-k的总体 相关性,但总体相关性可能掩盖了变量间完全 不同的相关关系。
例如,在AR(1) 中,Xt与Xt-2间有相关性可 能主要是由于它们各自与Xt-1间的相关性带来 的:
对于非中心化序列
xt 0 1xt1 2 xt2
p xt p t
作变换
1 1
0
p
yt xt
则原序列即化为中心化序列
yt 1 yt1 2 yt2 p yt p t
所以,以后我们重点讨论中心化时间序列。
AR模型的算子表示
令 (B) 11B 2B2 p B p
则 AR( p) 模型可表示为
平稳AR(1)模型的传递形式为
xt
t 1 1B
i0
(1B)i t
1i ti
i0
Green函数为 Gj 1 j , j 0,1,
平稳AR(1)模型的方差为
Var(xt )
G2jVar(t )
j0
第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性
第⼆章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性1⽩噪声过程:零均值,同⽅差,⽆⾃相关(协⽅差为0)以后我们遇到的efshow如果不特殊说明,就是⽩噪声过程。
对于正态分布⽽⾔,不相关即可推出独⽴,所以如果该⽩噪声如果服从正态分布,则其还将互相独⽴。
2各种和模型p阶移动平均过程:q阶⾃回归过程:⾃回归移动平均模型:如果ARMA(p,q)模型的表达式的特征根⾄少有⼀个⼤于等于1,则{y(t)}为积分过程,此时该模型称为⾃回归秋季移动平均模型(ARIMA)时间序列啊,不就是求个通项公式,然后求出⼀个⾮递推形式的表达式吗?(这个公式和⾃变量t有关,然后以后只要知道t就能得到对应的y的预测值)3弱平稳/协⽅差平稳:均值和⽅差为常数(即同⽅差),协⽅差仅与时间间隔有关4⾃相关系数:5AR(1)模型(带⽩噪声的⼀阶差分⽅程)的平稳性:(1)如果初始条件为y0:则其解为(我们通过其解来判断其是否平稳)此时{y(t)}是不平稳的。
· 但是如果|a1|<1,其t⾜够⼤,则{y(t)}是平稳的。
均值:⽅差:等于协⽅差:等于所以有结论:(2)初始条件未知:则其通解为:{y(t)}平稳的条件为:1 |a1|<12 且齐次解A(a1)^t为0:序列从很久前开始(即t很⼤,且结合1,则为0),或该过程始终平稳(A=0)所以说,解的稳定性和序列的平稳性是不⼀样的。
这两条对所有的ARMA(p,q)模型都适⽤。
(对于任意的ARMA(p,q)模型,齐次解为0是平稳性必要条件)(ARMA(p,q)模型的齐次解为或)6对于ARMA(2,1)模型的平稳性:模型表达式为:(2.16)(截距项不影响平稳性,略去)设其挑战解为:(⽤待定系数法)则系数应当满⾜⽅程:(2.17)序列{阿尔法i}收敛的条件是⽅程(2.16)对于的齐次⽅程的特征根都在单位圆之内(因为2.17中的差分⽅程对于的特征⽅程和⽅程2.16对于的特征⽅程是⼀模⼀样的)我们之所以只考虑特解,是因为我们让齐次解为0.此时该挑战解/特解:均值为:⽅差为:(t很⼤时⽤级数求和)协⽅差为:等于所以其平稳性条件为(t很⼤):1模型对应的齐次⽅程的特征⽅程的特征根在单位圆内2齐次解为0。
线性平稳时间序列模型
第二节 建立线性时序模型旳原理 ——动态性
上一页 下一页 返回本节首页
动态性:就是指时间序列各观察值之间旳 有关性。
从系统旳观点看:动态性即指系统旳记忆 性,也就是某一时刻进入系统旳输入对 系统后继行为旳影响,图示如下:
输入
系统
输出(响应)
例
(1)某人在某一天打了一针,假如当日旳反应 是疼痛 0 ,而后来没有其他反应,那么系统 旳输入、输出如下:
假如一种时间序列是纯随机旳,得到一种 观察期数为 n旳观察序列,那么该序列旳 延迟非零期旳样本自有关系数将近似服 从均值为零,方差为序列观察期数倒数 旳正态分布
ˆ k
~
N (0, 1 ) n
,k 0
上一页 下一页 返回本节首页
2.假设条件
原假设:延迟期数不大于或等于m 期旳序 列值之间相互独立
H 0:1 2 m 0, m 1
这种情况可用模型概括为:xt 1at1
(3)假如当日旳反应是疼痛 0 ,第二天 出现了红肿 1 ,那么:
时间 输入 输出
t :1 2 at: 0 1 xt:0 0
3 45 0 00 1 0 0
这种情况可用模型概括为:xt 0at 1at1
(4)假如打针后来各个时刻都存在相应旳反 应,那么,有关该刺激旳总旳概括为:
原则正态白噪声序列纯随机性检验
样本自有关图
返回例题
检验成果
延迟
延迟6期 延迟12期
Q统计量检验
Q统计量值
P值
4.3435
0.63
14.171
0.29
因为P值明显不小于明显性水平 ,所以该序列不能
拒绝纯随机旳原假设。
返回例题
平稳时间序列模型预测
解: (2)预测方差旳计算
计算Green函数: 根据递推公式
方差
G0 1
G1 1G0 0.6 G2 1G1 2G0 0.36 0.3 0.66
var[e3 (1)] G02 2 36 var[e3 (2)] (G02 G12 ) 2 48.96 var[e3 (3)] (G02 G12 G22 ) 2 64.6416
设目前时刻为t,已知时刻t和此前时刻旳观察值xt-1,
xt-2, …,对观察值xt+l进行预测,用 xˆt l 表达时间序
列Xt旳第l步预测值(l>0)。
最小均方误差预测
用et(l)衡量预测误差: et l Xtl xˆt l
显然,预测误差越小,预测精度就越高。
最小均方误差预测原则:
var[e4 (1)] var[e3(1)] G02 2 36 var[e4 (2)] var[e3(2)] (G02 G12 ) 2 48.96
l步预测销售额旳95%置信区间为:
xˆ4 l 1.96 var e4 l , xˆ4 l 1.96 var e4 l
修正预测
预测时期 修正前置信区间 修正后置信区间 四月份 (85.36,108.88) 五月份 (83.72,111.15) (87.40,110.92) 六月份 (81.84,113.35) (85.79,113.21)
修正预测
定义
所谓旳修正预测就是研究怎样利用新旳信息去取得 精度更高旳预测值
措施
在新旳信息量比较大时——把新信息加入到旧旳信 息中,重新拟合模型;
在新旳信息量很小时——不重新拟合模型,只是将 新旳信息加入以修正预测值,提升预测精度。
修正预测原理
在旧信息旳基础上,Xt+l旳预测值为
第八章 平稳时间序列建模(ARMA模型)
p 阶自回归模型记作AR(p),满足下面的方程:
ut c 1 ut 1 2 ut 2 p ut p t
(5.2.4) 其中:参数 c 为常数;1 , 2 ,…, p 是自回归模型系数; p为自回归模型阶数;t 是均值为0,方差为 2 的白噪声
序列。
4
2. 移动平均模型MA(q)
q 阶移动平均模型记作MA(q) ,满足下面的方 程:
ut t 1 t 1 q t q
(5.2.5)
其中:参数 为常数;参数1 , 2 ,…, q 是 q 阶移动
平均模型的系数;t 是均值为0,方差为 2的白噪声 序列。
AR(p)模型均可以表示为白噪声序列的线性组合。
8
2.MA(q) 模型的可逆性
考察MA(q) 模型
ut (1 1 L 2 L2 q Lq ) t
2 E ( t ) 0
2
(5.2.16)
t t
qቤተ መጻሕፍቲ ባይዱ
若
1 1 z 2 z q z 0
在单位圆外(即绝对值大于1,或模大于1),这意味着 自回归过程是发散的。如果MA模型滞后多项式的根的 倒数有在单位圆外的,说明MA过程是不可逆的,应使 用不同的初值重新估计模型,直到得到满足可逆性的动 平均。
20
4. ARMA(p,q)模型的估计选择
EViews估计AR模型采用非线性回归方法,对于MA模 型采取回推技术(Box and Jenkins,1976)。这种方法的优点
L0utut。则式(5.2.7)可以改写为:
(1 1 L 2 L 2 p Lp ) ut c t
平稳时间序列建模步骤
平稳时间序列建模步骤一、什么是平稳时间序列平稳时间序列是指在统计意义下具有不变性的时间序列。
具体来说,平稳时间序列的均值、方差和自相关函数都不随时间变化而发生显著的改变。
二、为什么要建立平稳时间序列模型建立平稳时间序列模型可以对数据进行预测和分析,从而更好地理解数据背后的规律和趋势。
此外,平稳时间序列模型还可以用于信号处理、金融分析等领域。
三、建立平稳时间序列模型的步骤1.观察数据并进行预处理首先需要观察数据并进行预处理,包括去除趋势、季节性和异常值等。
这有助于使数据更加平滑,并且减少噪声对模型的影响。
2.确定差分阶数如果原始数据不是平稳的,需要进行差分操作使其变成平稳的。
差分阶数可以通过观察自相关函数(ACF)和偏自相关函数(PACF)来确定。
3.选择合适的模型根据差分后得到的数据,可以选择适合该数据集的ARIMA模型。
ARIMA模型包括AR(p)、MA(q)和ARMA(p,q)三种类型。
4.估计模型参数使用最大似然估计(MLE)或最小二乘法(OLS)等方法来估计模型参数。
5.检验模型的拟合程度对于建立的模型,需要对其进行检验,包括残差的自相关性、正态性等。
如果存在问题,则需要调整模型或重新选择模型。
6.预测未来值使用建立好的模型进行未来值的预测,并对预测结果进行评估和修正。
四、总结建立平稳时间序列模型是一个复杂的过程,需要对数据进行观察和处理,选择合适的模型并估计参数,最后对模型进行检验和预测。
在实际应用中,需要根据具体情况灵活运用这些步骤,并结合领域知识和经验来优化建模过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)一个平稳的时间序列总可以找到生成它
的平稳的随机过程或模型; (2)一个非平稳的随机时间序列通常可以通 过差分的方法将它变换为平稳的,对差分后平稳 的时间序列也可找出对应的平稳随机过程或模型。
(六) 中国GDPP的 ARMA(p,q)模型
ARMA(1,1) ARMA(2,2)
ARIMA(8,2,7)非对称
p阶自回归模型,简记为AR(p):
xt 0 1 xt 1 2 xt 2 p xt p t 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t
0 且 1 1 2 p , Var( x ) t
(二)向量自回归模型定义 VAR(Vector AutoRegression,向量自回归)
•1980年Sims提出向量自回归模型(vector autoregressive model)。 •VAR模型是自回归模型的联立形式,所以称向量自回归 模型。
q 阶移动平均模型,
xt t 1 t 1 2 t 2 q t q q 0 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t
特别当
0
时,称为中心化
MA(q) 模型
二、自回归模型
(一) AR模型的定义 1阶自回归模型,记为AR(1): xt=0+1xt-1+t (1) E(t)=0,Var(t)=2, E(ts)=0, st 若序列是弱平稳的,则 E(xt)=, Var(xt)=0, Cov(xt, xt-k)=k 由(1)可得 E(xt)=0+1E(xt-1) 0 因此
具有如下结构的模型称为自回归移动平均模型, 简记为 ARMA( p, q)
y t 0 1 y t 1 p y t p t 1 t 1 q t q p 0, q 0 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t Ex 0, s t s t
利用延迟算子,中心化 MA(q ) 模型又 可以简记为
xt ( B) t
( B ) 是 q 阶移动平均系数多项式 其中,
(B) 1 1 B 2 B 2 q B q
为了以后识别一个模型是否是移动平均模型 MA(q),下面讨论MA模型的统计性质
(三)自回归与移动平均过程的关系 ① 一个平稳的AR(p)过程 (1 - 1B - 2B2 -… - pBp ) xt = ut 可以转换为一个无限阶的移动平均过程, xt = (1 - 1B - 2B2 -… - pBp )-1 u t = B)-1 ut ②一个可逆的MA(q)过程 xt = (1 + 1B + 2 B2 + … + q Bq ) ut = B) ut 可转换成一个无限阶的自回归过程, (1 + 1B + 2 B2 + … + q Bq)-1 xt = B) -1 xt = ut
1 0 -1 k
1
0 k
( c ) -1
k 自相关
k 偏自相关
(d)
ARMA模型相关性特征相关系数 拖尾 q阶截尾 拖尾
偏自相关系数 P阶截尾 拖尾 拖尾
(五) ARMA(p,q)模型的平稳性 由于ARMA (p,q)模型是AR(p)模型与MA(q) 模型的组合。而MA(q)模型总是平稳的,因此 ARMA (p,q)模型的平稳性取决于AR(p)部分的平 稳性。 当AR(p)部分平稳时,则该ARMA(p,q)模型是 平稳的,否则,不是平稳的。
GDPP
2、序列自相与偏偏自相关图
3、AIC
3、AR(6)模型
D(gdpp,2)=0.8083AR(1)-1.0076AR(2)+ (6.9078) (-6.5209) 1.0949AR(3)-.2498AR(5)+0.9075AR(6) (5.4767) (-4.8928) (3.0745) R2=0.7385;DW=1.594
D(gdpp,2)=40.5790-0.9119AR(1)-1.1308AR(2) (1.7436) (7.8621) (-7.5064) +0.8980AR(3)-1.2826AR(5)+1.5841AR(6) (4.3577) (-7.3282) (7.3293) -0.8977AR(8) (-3.3665) +0.53747MA(3)-0.4073MA(5)-0.3864MA(7) (4.4696) (-2.8915) (-3.1143) R2=0.8460;DW=1.9498,F=23.20917
• 此外,在联立方程模型设定过程中,必须人为的假定一 些外生变量,并且假定外生变量事先给定,不受模型中 内生变量的影响;为达到识别的目的,常常假定某些前 定变量仅仅出现在某些方程中,这些假定也招致了希姆 斯(C.A.Sims)的严厉批判。 • 希姆斯认为,为使结构模型可识别而施加了许多约束, 这种约束是不可信的。他认为,如果在一组变量之间有 真实的联立性,那么就应该对这些变量平等的加以对待, 而不应事先区分内生变量和外生变量。 • 本着这一精神,希姆斯提出了VAR(Vector Autoregressive)模型。在VAR模型中,没有内生变量 和外生变量之分,而是所有的变量都被看作内生变量, 初始对模型系数不施加任何约束,即每个方程都有相同 的解释变量——所有被解释变量若干期的滞后值。
平稳时间序列模型
1、AR(p) 2、MA(q) 3、ARMA(p,q) 4、VAR(p,q) 5、因果检验
一、平稳时间序特征
(一)时间序列数据的模式: 水平模式:观察数据围绕一个常数或平均 值上下浮动。也称为静态时间序列。 趋势模式:观察值随着时间延伸而上升或 下降。 周期变动:观察值周期性地上升或下降, 周期长度不完全固定时。 季节变动:年复一年的重复变动。
③对于AR(p)过程只需考虑平稳性问题,条 件是 B) = 0的根(绝对值)必须大于1。不必
考虑可逆性问题。
④对于MA(q)过程,只需考虑可逆性问题, 条件是 B) = 0的根(绝对值)必须大于1,不必 考虑平稳性问题。
(四)MA(1)和MA(2)自相关 1、MA(1): Y
从而 |1|<1. 模型(1)是弱平稳|1|<1
xt -= 1(xt-1-)+t
由(3)可得
(3)
1=Cov(xt , xt-1)=E[(xt -)(xt-1-)] = E[1(xt-1-)2+(xt-1-)t ] = 1Var(xt) 因此
Cov( xt , xt 1 ) 1 1 Var ( xt )
1 0 -1
t t 1 t 1
k
k
(a)
k
自相关
k
偏自相关
(b)
Yt t 1 t 1 2 t 2 2、MA(2):
1 0 k -1 k
(c)
k
自相关
k
偏自相关
(d)
四、ARMA模型
(autoregressive moving average) (一)ARMA模型的定义
• Estimation Command: • ===================== • LS(DERIV=AA) D(GDPP,2) C AR(1) AR(2) AR(3) AR(5) AR(6) AR(8) MA(3) MA(5) MA(7) • Estimation Equation: • ===================== • D(GDPP,2) = C(1) + [AR(1)=C(2),AR(2)=C(3),AR(3)=C(4),AR(5)=C(5),AR(6)=C(6),AR(8)=C(7), MA(3)=C(8),MA(5)=C(9),MA(7)=C(10),BACKCAST=1962]
ARMA(1, 1)过程是实际中最常用的模型。
4 ARMA
2
0
-2
-4 20 40 60 80 100 120 140 160 180 200
ARMA(1,1) 过程
ARMA(1,1): Yt 0 1Yt 1 t 1t 1
1 0 -1 k k
(a)
k
k
自相关
(b)
偏自相关
由于0=(1-1), 则模型(1)可改写为 xt -= 1(xt-1-)+t (2) 由(2)可得 Var(xt)=12Var(xt-1)+2 根据xt的弱平稳性, 有 Var(xt)=Var(xt-1), 2 因此 Var ( xt ) 2
1
特别当 0 0 时,称为中心化
ARMA( p, q) 模型。
滞后算子表示
• 其中
ARMA(p,q)表明: (1)一个随机时间序列可以通过一个自回 归移动平均过程生成,即该序列可以由其 自身的过去或滞后值以及随机扰动项来解 释。 (2)如果该序列是平稳的,即它的行为并 不会随着时间的推移而变化,那么我们就 可以通过该序列过去的行为来预测未来。 这也正是随机时间序列分析模型的优 势所在。
(4)
2 2 1 12 22 p
模型(4)是弱平稳的一个必要条件 是
2 12 22 p 1
用滞后期表示
y t i y t i u t
p
• 或 • 或
• 其中
i 1
Lyt yt 1
例 选择合适的模型拟合1952年~2009年中国 人均GDP差分序列。 1、平稳性检验
• Substituted Coefficients: • ===================== • D(GDPP,2) = 40.57903538 + [AR(1)=0.9119805031,AR(2)=1.130877674,AR(3)=0.8980316375,AR(5)=1.282601586,AR(6)=1.548121634,AR(8)=0.8977956213,MA(3)=0.5374825187,MA(5)=-0.4073568182,MA(7)=0.3864877337,BACKCAST=1962]