经典的卡尔曼滤波算法

合集下载

gamp卡尔曼滤波

gamp卡尔曼滤波

gamp卡尔曼滤波GAMP(Generalized Approximate Message Passing)卡尔曼滤波是一种用于估计线性系统状态的滤波算法。

它结合了GAMP算法和卡尔曼滤波的优点,能够在高维度、大规模问题中高效地进行状态估计。

卡尔曼滤波是一种经典的状态估计算法,广泛应用于信号处理、控制系统和机器学习等领域。

它通过观测数据和系统模型来估计系统的状态,具有高效、准确的特点。

然而,传统的卡尔曼滤波算法在处理高维度、大规模问题时会面临计算复杂度高的问题。

GAMP算法是一种近似推断算法,能够高效地处理高维度、大规模问题。

它通过迭代更新估计值和方差来逼近真实的后验概率分布。

然而,GAMP算法在处理非线性系统时存在一定的局限性。

GAMP卡尔曼滤波算法将GAMP算法和卡尔曼滤波算法相结合,充分发挥两者的优点。

它通过迭代更新估计值和方差,并利用卡尔曼滤波的观测模型来更新状态估计。

这种算法能够在高维度、大规模问题中高效地进行状态估计,并且具有较高的准确性。

GAMP卡尔曼滤波算法的核心思想是将状态估计问题转化为一个线性系统的估计问题。

首先,通过卡尔曼滤波的观测模型,将状态估计问题转化为一个线性系统的观测问题。

然后,利用GAMP算法对线性系统的观测问题进行估计。

最后,通过迭代更新估计值和方差,得到系统的状态估计。

GAMP卡尔曼滤波算法的优点在于能够高效地处理高维度、大规模问题。

它通过迭代更新估计值和方差,能够逼近真实的后验概率分布。

同时,利用卡尔曼滤波的观测模型,能够提高状态估计的准确性。

然而,GAMP卡尔曼滤波算法也存在一些局限性。

首先,它对系统模型的要求较高,需要满足线性和高斯分布的假设。

其次,算法的收敛性和稳定性也需要进一步研究和改进。

总之,GAMP卡尔曼滤波是一种用于估计线性系统状态的滤波算法。

它结合了GAMP算法和卡尔曼滤波的优点,能够在高维度、大规模问题中高效地进行状态估计。

虽然算法还存在一些局限性,但它在实际应用中具有广泛的应用前景。

卡尔曼滤波_卡尔曼算法

卡尔曼滤波_卡尔曼算法

卡尔曼滤波_卡尔曼算法1.引言1.1 概述卡尔曼滤波是一种用于估计系统状态的技术,通过融合传感器测量值和系统模型的预测值,提供对系统状态的最优估计。

它的应用十分广泛,特别在导航、图像处理、机器人技术等领域中发挥着重要作用。

在现实世界中,我们往往面临着各种噪声和不确定性,这些因素会影响我们对系统状态的准确估计。

卡尔曼滤波通过动态调整系统状态的估计值,可以有效地抑制这些干扰,提供更加精确的系统状态估计。

卡尔曼滤波的核心思想是利用系统模型的预测和传感器测量值之间的线性组合,来计算系统状态的最优估计。

通过动态地更新状态估计值,卡尔曼滤波可以在对系统状态的准确估计和对传感器测量值的实时响应之间进行平衡。

卡尔曼滤波算法包括两个主要步骤:预测和更新。

在预测步骤中,通过系统模型和上一时刻的状态估计值,预测当前时刻的系统状态。

在更新步骤中,将传感器测量值与预测值进行比较,然后根据测量误差和系统不确定性的权重,计算系统状态的最优估计。

卡尔曼滤波具有很多优点,例如它对传感器噪声和系统模型误差具有鲁棒性,可以提供较为稳定的估计结果。

此外,卡尔曼滤波还可以有效地处理缺失数据和不完全的测量信息,具有较高的自适应性和实时性。

尽管卡尔曼滤波在理论上具有较好的性能,但实际应用中还需考虑诸如系统模型的准确性、测量噪声的特性等因素。

因此,在具体应用中需要根据实际情况进行算法参数的调整和优化,以提高估计的准确性和可靠性。

通过深入理解卡尔曼滤波的原理和应用,我们可以更好地应对复杂环境下的估计问题,从而在实际工程中取得更好的效果。

本文将介绍卡尔曼滤波的基本原理和算法步骤,以及其在不同领域的应用案例。

希望通过本文的阅读,读者们可以对卡尔曼滤波有一个全面的了解,并能够在实际工程中灵活运用。

1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将围绕卡尔曼滤波和卡尔曼算法展开论述。

首先,我们会在引言部分对卡尔曼滤波和卡尔曼算法进行简要概述,介绍其基本原理和应用领域。

kalman滤波和数字低通滤波

kalman滤波和数字低通滤波

Kalman滤波和数字滤波一、kalman滤波卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。

它适合于实时处理和计算机运算。

其他的就不介绍了。

公式简介卡尔曼滤波主要是由5个经典公式组成:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的协方差还没更新。

我们用P表示协方差:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的协方差,P(k-1|k-1)是X(k-1|k-1)对应的协方差,A’表示A的转置矩阵,Q是系统过程的协方差。

式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。

结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。

但是为了要令卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的协方差:P(k|k)=(I-Kg(k) H)P(k|k-1) (5)其中I 为1的矩阵,对于单模型单测量,I=1。

当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。

卡尔曼滤波 协方差矩阵计算方式

卡尔曼滤波 协方差矩阵计算方式

一、概述卡尔曼滤波是一种用于估计系统状态的递归滤波算法,由哈罗德·卡尔曼在1960年提出。

卡尔曼滤波广泛应用于控制系统、导航系统、信号处理等领域。

协方差矩阵是卡尔曼滤波中的关键概念,它用于描述系统状态变量之间的相关程度。

本文将主要讨论卡尔曼滤波中的协方差矩阵的计算方式。

二、卡尔曼滤波概述卡尔曼滤波是一种通过融合系统动态模型和实际测量值来估计系统状态的算法。

它通过不断地更新状态的估计值,并且考虑测量噪声,能够有效地提高状态估计的准确性。

卡尔曼滤波基本思想可以用以下步骤来概括:1. 预测:根据系统的动态模型,预测下一个时刻的状态值和协方差矩阵。

2. 更新:根据实际的测量值,使用贝叶斯定理,将预测值和测量值进行融合,得到最优的状态估计值和协方差矩阵。

三、协方差矩阵协方差矩阵是描述多维随机变量之间相关关系的矩阵。

在卡尔曼滤波中,协方差矩阵描述了系统状态变量之间的相关程度,它是卡尔曼滤波的核心概念之一。

协方差矩阵的计算方式主要包括以下几种:1. 离散时间卡尔曼滤波中的协方差矩阵计算方式2. 连续时间卡尔曼滤波中的协方差矩阵计算方式3. 非线性卡尔曼滤波中的协方差矩阵计算方式下面将对以上几种计算方式进行详细介绍。

四、离散时间卡尔曼滤波中的协方差矩阵计算方式离散时间卡尔曼滤波是一种适用于离散时间系统的卡尔曼滤波算法,在实际应用中常常用于传感器数据处理、控制系统等。

在离散时间卡尔曼滤波中,协方差矩阵的计算方式可以通过以下步骤来实现:1. 预测协方差矩阵:根据系统的动态模型和上一时刻的协方差矩阵,通过卡尔曼滤波的预测步骤可以得到下一个时刻的预测协方差矩阵。

2. 更新协方差矩阵:根据实际的测量值和预测的状态估计值,利用卡尔曼滤波的更新步骤,可以得到更新后的协方差矩阵。

离散时间卡尔曼滤波中的协方差矩阵计算方式主要依赖于系统的状态转移矩阵和测量矩阵,通过不断的状态预测和状态更新,可以逐步更新协方差矩阵,从而得到最优的状态估计结果。

卡尔曼(kalman)滤波算法特点及其应用

卡尔曼(kalman)滤波算法特点及其应用

Kalman滤波算法的特点:(1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。

(2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。

系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。

(3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。

(4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。

在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。

另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。

Kalman滤波的应用领域一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。

Kalman滤波主要应用领域有以下几个方面。

(1)导航制导、目标定位和跟踪领域。

(2)通信与信号处理、数字图像处理、语音信号处理。

(3)天气预报、地震预报。

(4)地质勘探、矿物开采。

(5)故障诊断、检测。

(6)证券股票市场预测。

具体事例:(1)Kalman滤波在温度测量中的应用;(2)Kalman滤波在自由落体运动目标跟踪中的应用;(3)Kalman滤波在船舶GPS导航定位系统中的应用;(4)Kalman滤波在石油地震勘探中的应用;(5)Kalman滤波在视频图像目标跟踪中的应用;。

卡尔曼滤波算法范文

卡尔曼滤波算法范文

卡尔曼滤波算法范文1.预测步骤:在预测步骤中,基于系统的线性模型和上一时刻的状态估计,预测系统的当前状态。

首先,通过线性系统模型预测系统状态的下一时刻值。

这里的线性系统模型由状态转移矩阵和控制输入矩阵组成。

状态转移矩阵描述了系统状态如何从上一时刻的状态演变到当前时刻的状态,而控制输入矩阵描述了外部输入对状态的影响。

然后,利用协方差矩阵预测状态估计的不确定性。

协方差矩阵描述了状态估计的不确定性,是状态估计误差的度量。

2.更新步骤:在更新步骤中,基于传感器测量数据和预测步骤中得到的状态预测,更新系统的状态估计。

首先,计算观测模型的测量矩阵和噪声协方差矩阵。

观测模型描述了状态和观测之间的关系,测量矩阵将系统状态映射为观测值,噪声协方差矩阵描述测量噪声的特性。

然后,计算卡尔曼增益,用于权衡预测步骤中的状态预测和传感器测量数据。

最后,利用卡尔曼增益将预测步骤中得到的状态预测和传感器测量数据进行融合,得到对系统当前状态的最优估计。

同时,通过卡尔曼增益的影响,更新状态估计的不确定性。

1.递归性:卡尔曼滤波算法通过递归迭代的方式,即使用上一时刻的状态估计作为当前时刻状态估计的输入,从而不断更新状态估计。

2.最优性:卡尔曼滤波算法通过融合系统模型和传感器测量数据,提供对系统状态的最优估计。

最优估计是指在给定误差协方差限制下,估计误差最小。

3.估计不确定性:卡尔曼滤波算法通过协方差矩阵描述状态估计的不确定性。

协方差矩阵可以用于估计误差的置信区间和状态预测的可靠性。

4.适用性:卡尔曼滤波算法适用于线性系统模型和高斯噪声的情况。

虽然实际应用中有许多非线性系统和非高斯噪声的情况,但通过线性化和近似方法,可以将非线性问题转化为线性问题来使用卡尔曼滤波算法。

总结起来,卡尔曼滤波算法是一种递归滤波算法,通过融合系统模型和传感器测量数据,提供对系统状态的最优估计。

它在航空航天、导航、机器人、控制系统等应用中得到广泛应用,并且具有递归性、最优性、估计不确定性和适用性等重要特点。

经典卡尔曼滤波算法公式

经典卡尔曼滤波算法公式

经典卡尔曼滤波算法公式
卡尔曼滤波算法是一种基于状态估计的控制算法,经常应用于机器人控制、航空导航、车辆导航等领域。

下面是经典的卡尔曼滤波算法公式:
1. 状态预测方程:
x(k|k-1) = Fx(k-1|k-1) + Bu(k)
其中,x(k|k-1)表示第k步的状态预测值,F表示状态转移矩阵,B表示输入矩阵,u(k)表示第k步的控制输入。

2. 误差预测方程:
P(k|k-1) = FP(k-1|k-1)F' + Q
其中,P(k|k-1)表示第k步的估计误差,Q表示系统噪声协方差矩阵。

3. 状态更新方程:
K(k) = P(k|k-1)H'/(HP(k|k-1)H' + R)
x(k|k) = x(k|k-1) + K(k)(z(k) - Hx(k|k-1))
P(k|k) = (I - K(k)H)P(k|k-1)
其中,K(k)表示卡尔曼增益,z(k)表示测量值,H表示测量矩阵,R表示测量噪声协方差矩阵。

以上就是经典的卡尔曼滤波算法公式,可以在实际应用中根据具体情况进行调整和优化。

- 1 -。

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码卡尔曼滤波算法实现代码(C,C++分别实现)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。

所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。

现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。

因为这里不能写复杂的数学公式,所以也只能形象的描述。

希望如果哪位是这方面的专家,欢迎讨论更正。

卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。

跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。

1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。

1957年于哥伦比亚大学获得博士学位。

我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。

他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。

《卡尔曼滤波》课件

《卡尔曼滤波》课件

3
无迹卡尔曼滤波线性系统的 估计。
卡尔曼滤波的应用案例
飞行器姿态估计
卡尔曼滤波在航空领域中被广泛应用于飞行器姿态估计,用于提高飞行器的稳定性和导航准 确性。
目标跟踪
卡尔曼滤波可用于跟踪移动目标的位置和速度,常见于机器人导航和视频监控等领域。
3 卡尔曼滤波的应用领

卡尔曼滤波被广泛应用于 航空航天、机器人、金融 等领域,用于提高系统的 状态估计精度。
卡尔曼滤波的数学模型
状态空间模型
卡尔曼滤波使用状态 空间模型表示系统的 状态和观测值之间的 关系,包括状态方程 和测量方程。
测量方程
测量方程描述观测值 与系统状态之间的关 系,用于将观测值纳 入到状态估计中。
了解更多关于卡尔曼滤波的内容和应用,推荐文献、学术论文和在线课程等资源。
《卡尔曼滤波》PPT课件
卡尔曼滤波是一种优秀的状态估计方法,被广泛用于目标跟踪、姿态估计和 股票预测等领域。
介绍卡尔曼滤波
1 什么是卡尔曼滤波?
卡尔曼滤波是一种递归状 态估计算法,用于通过系 统模型和测量信息估计系 统状态。
2 卡尔曼滤波的基本原

卡尔曼滤波基于贝叶斯估 计理论,通过最小化估计 误差的均方差来优化状态 估计。
股票预测
卡尔曼滤波可以应用于股票市场,通过对历史数据进行分析和预测,提供股票价格的预测和 趋势分析。
卡尔曼滤波的优化算法
粒子滤波
粒子滤波是一种基于蒙特卡洛 方法的状态估计算法,适用于 非线性和非高斯系统,提供更 广泛的估计能力。
自适应滤波
自适应滤波是一种根据系统的 特点自动调整滤波参数的方法, 提供更好的适应性和鲁棒性。
非线性滤波
非线性滤波是对卡尔曼滤波算 法的改进,用于处理非线性系 统和测量模型,提供更准确的 状态估计。

卡尔曼滤波详解

卡尔曼滤波详解

卡尔曼滤波详解卡尔曼滤波是一种常用的状态估计方法,它可以根据系统的动态模型和观测数据,对系统的状态进行估计。

卡尔曼滤波广泛应用于机器人导航、飞行控制、信号处理等领域。

本文将详细介绍卡尔曼滤波的原理、算法及应用。

一、卡尔曼滤波原理卡尔曼滤波的基本思想是利用系统的动态模型和观测数据,对系统的状态进行估计。

在卡尔曼滤波中,系统的状态被表示为一个向量,每个元素表示系统的某个特定状态量。

例如,一个机器人的状态向量可能包括机器人的位置、速度、方向等信息。

卡尔曼滤波的基本假设是系统的动态模型和观测数据都是线性的,而且存在噪声。

系统的动态模型可以表示为:x(t+1) = Ax(t) + Bu(t) + w(t)其中,x(t)表示系统在时刻t的状态向量,A是状态转移矩阵,B是控制矩阵,u(t)表示外部控制输入,w(t)表示系统的过程噪声。

观测数据可以表示为:z(t) = Hx(t) + v(t)其中,z(t)表示系统在时刻t的观测向量,H是观测矩阵,v(t)表示观测噪声。

卡尔曼滤波的目标是根据系统的动态模型和观测数据,估计系统的状态向量x(t)。

为了达到这个目标,卡尔曼滤波将状态估计分为两个阶段:预测和更新。

预测阶段:根据系统的动态模型,预测系统在下一个时刻的状态向量x(t+1)。

预测的过程可以表示为:x^(t+1|t) = Ax^(t|t) + Bu(t)其中,x^(t|t)表示在时刻t的状态向量的估计值,x^(t+1|t)表示在时刻t+1的状态向量的预测值。

卡尔曼滤波还需要对状态的不确定性进行估计,这个不确定性通常用协方差矩阵P(t)表示。

协方差矩阵P(t)表示状态向量估计值和真实值之间的差异程度。

预测阶段中,协方差矩阵也需要进行更新,更新的过程可以表示为:P(t+1|t) = AP(t|t)A' + Q其中,Q表示过程噪声的协方差矩阵。

更新阶段:根据观测数据,更新状态向量的估计值和协方差矩阵。

更新的过程可以表示为:K(t+1) = P(t+1|t)H'(HP(t+1|t)H' + R)^-1x^(t+1|t+1) = x^(t+1|t) + K(t+1)[z(t+1) - Hx^(t+1|t)]P(t+1|t+1) = (I - K(t+1)H)P(t+1|t)其中,K(t+1)表示卡尔曼增益,R表示观测噪声的协方差矩阵,I是单位矩阵。

卡尔曼滤波的计算步骤

卡尔曼滤波的计算步骤
卡尔曼滤波算法涉及到状态模型、观测模型、过程噪声和观测噪声的建模,根据具体应用场景和问题,需要定义相应的模型参数。实际使用时,可以通过编程语言(如Python、Matlab等)来实现卡尔曼滤波算法,并根据具体问题进行参数调整和结果分析。
卡尔曼滤波
卡尔曼滤波(Kalman Filter)是一种用于估计状态变量的递归算法,它基于观测数据和系统模型来进行预测和更新。以下是卡尔曼滤波的计算步骤:
1.初始化:定义系统的状态变量(例如位置、速度等)和观测数据的初始值。设定初始估计值和协方差矩阵。
2.预测(预测步骤):
使用系统的动力学模型(包括状态转移矩阵和过程噪声协方差矩阵)预测下一个时刻的状态。
更新估计的协方差矩阵,加入获取实际的观测值。
利用观测模型(包括观测矩阵和观测噪声协方差矩阵)将预测的状态与观测数据进行比较,计算观测残差。
利用计算得到的残差和估计的协方差矩阵,更新状态估计值和协方差矩阵。这里使用卡尔曼增益来平衡预测和观测之间的权重。
4.重复预测和更新步骤:重复进行预测和更新步骤,以递归方式估计下一个时刻的状态。

卡尔曼滤波soc估算模型

卡尔曼滤波soc估算模型

卡尔曼滤波soc估算模型
一、简介
卡尔曼滤波(Kalman Filter)是一种用于状态估计和参数估计的经典算法。

它可以将模型和观测量结合起来,从而产生一个更精确的估计结果。

卡尔曼滤波的目标是在一系列模型参数的不断变化中估算系统参数,并连续地更新这些参数。

二、soc估算模型
1、soc估算模型的基本原理
Soc估算模型是卡尔曼滤波的一种变体,它可以有效地解决模型参数的不确定性问题。

soc估算模型利用状态估计和卡尔曼滤波的优势,将不确定参数融入其中,以获得更准确的估计结果。

soc估算模型的基本原理是:将系统状态估计作为输入,利用soc 估算方程,依据动态系统的特定参数和观测量,迭代更新状态估计,最后得到系统状态的尽可能准确的估计,即为soc估算模型的核心。

2、soc估算模型的应用范围
soc估算模型可以用于不确定参数的系统状态估计,其应用范围包括室内室外室温度控制,机器人控制,传感器数据处理,飞行器控制等。

soc估算模型可以有效提高系统状态估计的精度,同时也可以降低模型不确定性所带来的影响。

- 1 -。

卡尔曼滤波算法平滑轨迹

卡尔曼滤波算法平滑轨迹

卡尔曼滤波算法平滑轨迹1. 引言卡尔曼滤波算法是一种常用的状态估计方法,广泛应用于信号处理、控制系统和机器人导航等领域。

本文将介绍卡尔曼滤波算法在平滑轨迹问题上的应用。

2. 问题描述在实际应用中,我们常常面临轨迹数据不完整、包含噪声的情况。

我们希望通过卡尔曼滤波算法对观测数据进行处理,从而得到平滑的轨迹。

具体来说,我们假设有一个目标物体在二维空间中运动,并通过传感器获取到其位置观测值。

由于传感器精度和环境干扰等原因,观测值会存在误差和噪声。

我们的目标是根据这些观测值,估计出目标物体真实的轨迹。

3. 卡尔曼滤波算法原理卡尔曼滤波算法是一种递归的贝叶斯估计方法,基于状态空间模型进行状态估计。

它可以有效地处理线性系统,并对非线性系统提供近似解。

3.1 状态空间模型在卡尔曼滤波算法中,我们将系统的状态表示为一个向量,记作x。

假设系统的状态满足线性动态方程:x[k] = A * x[k-1] + w[k-1]其中,x[k]表示系统在时刻k的状态,A是状态转移矩阵,w[k-1]是过程噪声。

过程噪声通常假设为高斯分布。

观测值表示为一个向量,记作y。

假设观测值与系统状态之间满足线性关系:y[k] = H * x[k] + v[k]其中,H是观测矩阵,v[k]是观测噪声。

观测噪声也通常假设为高斯分布。

3.2 卡尔曼滤波算法步骤卡尔曼滤波算法可以分为两个步骤:预测和更新。

3.2.1 预测步骤预测步骤用于根据上一时刻的状态估计和模型预测当前时刻的状态。

首先,我们根据上一时刻的状态估计和转移矩阵A计算出当前时刻的先验估计:x_hat_priori = A * x_hat_posteriori其中,x_hat_priori表示当前时刻的先验估计。

然后,我们根据过程噪声的协方差矩阵Q和转移矩阵A计算出当前时刻的先验估计误差协方差矩阵P_priori:P_priori = A * P_posteriori * A^T + Q其中,P_priori表示当前时刻的先验估计误差协方差矩阵。

卡尔曼滤波算法及其代码

卡尔曼滤波算法及其代码

卡尔曼滤波算法及其代码下⾯整篇⽂章都是转载的。

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等⼈的研究⼯作,后⼈统称为维纳滤波理论。

从理论上说,维纳滤波的最⼤缺点是必须⽤到⽆限过去的数据,不适⽤于实时处理。

为了克服这⼀缺点,60年代Kalman把状态空间模型引⼊滤波理论,并导出了⼀套递推估计算法,后⼈称之为卡尔曼滤波理论。

卡尔曼滤波是以最⼩均⽅误差为估计的最佳准则,来寻求⼀套递推估计的算法,其基本思想是:采⽤信号与噪声的状态空间模型,利⽤前⼀时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。

它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测⽅程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k时刻的状态⽮量和观测⽮量F(k,k-1)为状态转移矩阵U(k)为k时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k时刻观测矩阵N(k)为k时刻观测噪声则卡尔曼滤波的算法流程为:1. 预估计X(k)^= F(k,k-1)·X(k-1)2. 计算预估计协⽅差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'Q(k) = U(k)×U(k)'3. 计算卡尔曼增益矩阵K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)R(k) = N(k)×N(k)'4. 更新估计X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]5. 计算更新后估计协防差矩阵C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'6. X(k+1) = X(k)~C(k+1) = C(k)~重复以上步骤其c语⾔实现代码如下:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];}}free(e); free(a); free(b);return(js);}C++实现代码如下:============================kalman.h================================// kalman.h: interface for the kalman class.////////////////////////////////////////////////////////////////////////#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_#if _MSC_VER > 1000#pragma once#endif // _MSC_VER > 1000#include <math.h>#include "cv.h"class kalman{public:void init_kalman(int x,int xv,int y,int yv);CvKalman* cvkalman;CvMat* state;CvMat* process_noise;CvMat* measurement;const CvMat* prediction;CvPoint2D32f get_predict(float x, float y);kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();};#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_) ============================kalman.cpp================================#include "kalman.h"#include <stdio.h>/* tester de printer toutes les valeurs des vecteurs*//* tester de changer les matrices du noises *//* replace state by cvkalman->state_post */CvRandState rng;const double T = 0.1;kalman::kalman(int x,int xv,int y,int yv){cvkalman = cvCreateKalman( 4, 4, 0 );state = cvCreateMat( 4, 1, CV_32FC1 );process_noise = cvCreateMat( 4, 1, CV_32FC1 );measurement = cvCreateMat( 4, 1, CV_32FC1 );int code = -1;/* create matrix data */const float A[] = {1, T, 0, 0,0, 1, 0, 0,0, 0, 1, T,0, 0, 0, 1};const float H[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};const float P[] = {pow(320,2), pow(320,2)/T, 0, 0,pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,0, 0, pow(240,2), pow(240,2)/T,0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)const float Q[] = {pow(T,3)/3, pow(T,2)/2, 0, 0,pow(T,2)/2, T, 0, 0,0, 0, pow(T,3)/3, pow(T,2)/2,0, 0, pow(T,2)/2, T};const float R[] = {1, 0, 0, 0,0, 0, 0, 0,0, 0, 1, 0,0, 0, 0, 0};cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );cvZero( measurement );cvRandSetRange( &rng, 0, 0.1, 0 );rng.disttype = CV_RAND_NORMAL;cvRand( &rng, state );memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));//cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );/* choose initial state */state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x;cvkalman->state_post->data.fl[1]=xv;cvkalman->state_post->data.fl[2]=y;cvkalman->state_post->data.fl[3]=yv;cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );cvRand( &rng, process_noise );}CvPoint2D32f kalman::get_predict(float x, float y){/* update state with current position */state->data.fl[0]=x;state->data.fl[2]=y;/* predict point position *//* x'k=A鈥 k+B鈥 kP'k=A鈥 k-1*AT + Q */cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );cvRand( &rng, measurement );/* xk=A?xk-1+B?uk+wk */cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );/* zk=H?xk+vk */cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, measurement ); /* adjust Kalman filter state *//* Kk=P'k鈥 T鈥?H鈥 'k鈥 T+R)-1xk=x'k+Kk鈥?zk-H鈥 'k)Pk=(I-Kk鈥 )鈥 'k */cvKalmanCorrect( cvkalman, measurement );float measured_value_x = measurement->data.fl[0];float measured_value_y = measurement->data.fl[2];const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );float predict_value_x = prediction->data.fl[0];float predict_value_y = prediction->data.fl[2];return(cvPoint2D32f(predict_value_x,predict_value_y));}void kalman::init_kalman(int x,int xv,int y,int yv){state->data.fl[0]=x;state->data.fl[1]=xv;state->data.fl[2]=y;state->data.fl[3]=yv;cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv; }。

卡尔曼滤波入门、简介及其算法MATLAB实现代码

卡尔曼滤波入门、简介及其算法MATLAB实现代码

卡尔曼滤波入门:卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。

卡尔曼滤波也可进行系统辨识。

卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。

用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。

信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。

这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。

维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。

(1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波;(2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插;因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。

这里所谓“最佳”与“最优”是以最小均方误差为准则的。

维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。

因此在平稳条件下,它们所得到的稳态结果是一致的。

然而,它们解决的方法有很大区别。

维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。

而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。

卡尔曼滤波算法(含详细推导)PPT

卡尔曼滤波算法(含详细推导)PPT
v1(n)G (n)v2(n)..........3 ...).0 ..19..(
3、kalman滤波算法
求式(3)所示状态向量的一步预测误差向量的相关矩阵,容易证明:
K(n1,n)E{e(n1,n)e]H(n1,n)} [F(n1,n)G (n)C (n)K ](n,n1)F [(n1,n) G (n)C (n)H ]Q 1(n)G (n)Q 2(n)G H(n)........3 ...).1 .(.
n
(n )(n 1y(1 ),y .(n .). ),
1
W 1 (k)(k)
式中W1(k)表示与一步预测项对应的权矩k 阵 1 ,且k为离散时间。
现在的问题是如何确定这个权矩阵?
(1)、状态向量的一布预测
根据正交性原理,最优预测的估计误差
e(1 nn, )x(n1)x1(n1)
12
3、kalman滤波算法
C (n )K (n ,n 1 )C H (n ) Q 2(n ).................1.).(6..
式中Q2(n)是观测噪声v2(n)的相关矩阵,而
K (n ,n 1 ) E { e (n ,n 1 )e H (n ,n 1 )}................1 ..) ....( 7 ..
这里使用了状态向量与观测噪声不相关的事实。 进一步地,由正交原理引
理知,在最小均方误差准则下求得的一步预测估 x 1 ( n )与预测误差e(n,n-1)彼
此正交,即
E{x1(n)eH(N,N1)}0
17
3、kalman滤波算法
因此,由式(26)及式(27)易得:
E {x(n1)H(n)} F(n1,n)E {x[(n)e(n,n1)e]H(n,n1)C }H(n)

第五讲:卡尔曼滤波

第五讲:卡尔曼滤波

第五讲:卡尔曼滤波
11
二、Kalman滤波
20.01.2021
第五讲:卡尔曼滤波
12
2.1 卡尔曼滤波方程
目 录 1. 离散系统的数学描述
设离散化后的系统状态方程和量测方程分别为:
概述 标准 KF 扩展 KF
Xk
X k,k 1 k 1
k 1Wk 1
Zk Hk Xk Vk
Schmidt KF
自适应 KF 平滑算法
标准卡尔曼滤波的线性假设在标准的卡尔曼滤波中观测模型假设为线性z是x的线性函数但实际情况往往并非如此如gnss导航滤波器中观测模型是强非线性的在标准卡尔曼滤波中系统模型也被假设为线性的x的时间导数是x的线性函数问题
卡尔曼滤波算法及应用
第五讲:卡尔曼滤波
目录
一. 概述
二. 标准卡尔曼滤波
卡尔曼滤波方程
滤波器估值的
以模某型种一导般航系都是线主导性要航的部参分数即误是差
统输出导航参
的估值
数的误差为主
要状态
24
目 录 2. 开环卡尔曼滤波
概述 标准 KF
用导航参数误差的估值 Xˆ去校正系统输出的导航参数,得到综 合导航系统的导航参数估值 Xˆ
扩展 KF Schmidt KF 自适应 KF 平滑算法
惯性系统 其他导航系统
描述了观测向量与状态向量间的函数关系。
第五讲:卡尔曼滤波
9
目录 概述
标准 KF 扩展 KF Schmidt KF 自适应 KF
1组观测向量
是一组针对同一时刻的系统特性的测量值,例如观测量可以包括GNSS系 统的位置测量值,或者INS与GNSS位置结果的差值。
1个算法:
卡尔曼滤波算法 使用观测向量、观测模型和系统模型来获得状态向量的最优估计,分为系

含过程噪声和测量噪声的卡尔曼算法

含过程噪声和测量噪声的卡尔曼算法

含过程噪声和测量噪声的卡尔曼算法《含过程噪声和测量噪声的卡尔曼算法》一、引言卡尔曼滤波是一种经典的数据处理技术,它能够在噪声的干扰下准确的估计系统的当前状态。

在数据处理的过程中,卡尔曼滤波提供了一种非常有用的方法,用以消除信号源和接收器之间的异常信号抖动以及不确定性,因此在许多的工业和军事应用中,卡尔曼滤波都非常重要。

本文将研究一种含有过程噪声和测量噪声的卡尔曼滤波算法。

它能够改善系统的估计性能,并能够减少在滤波算法中可能产生的噪声放大。

二、基本原理卡尔曼滤波算法是一种利用系统动态模型和测量观测值来估计当前状态的技术。

卡尔曼滤波算法的基本原理是:按照状态动态模型,预测被观测系统的状态;再根据观测值更新该预测,直到该系统的所有参数都被估计出来,从而获得系统状态的准确估计值。

含有过程噪声和测量噪声的卡尔曼滤波,是在传统的卡尔曼滤波基础上增加了过程噪声和测量噪声的概念,从而改进了滤波算法的性能。

过程噪声是指系统未经测量或者不可测量的噪声,它会随着时间的推移而变化,在任何时刻它都可能对系统状态产生影响。

测量噪声是指系统性的测量不确定性,它可能是来自系统模型和传感器的意外噪声,也可能是测量过程中自身的误差。

三、具体算法含有过程噪声和测量噪声的卡尔曼滤波算法,建立在传统的卡尔曼滤波算法的基础上,增加了过程噪声和测量噪声的概念,从而改进了传统滤波算法。

算法的具体步骤如下:(1)状态空间模型含有过程噪声的状态空间模型可以用下式表示:Xk+1=FkXk+Gkqk其中,Xk+1是状态的预测值,Xk是状态的估计值,Fk是系统动态矩阵,Gk是过程噪声,qk为不同时刻的过程噪声项。

(2)测量模型含有测量噪声的测量模型可以用下式表示:Zk=HkXk+Vk其中,Zk为测量值,Hk是测量矩阵,Vk为随机测量噪声项。

(3)当前状态估计在给定测量值的情况下,可以根据状态空间模型和测量模型来求解系统的当前状态估计值,即:Xk=Xk1+Kk(ZkHkXk1)其中,Kk是卡尔曼增益,Zk是测量值,Hk是测量矩阵,Xk1是状态的预测值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自适应卡尔曼滤波卡尔曼滤波发散的原因如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。

但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。

引起滤波器发散的主要原因有两点:(1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。

这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。

(2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。

如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。

这种由于计算舍入误差所引起的发散称为计算发散。

针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。

这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。

自适应滤波在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。

如果所建立的模型与实际模型不符可能回引起滤波发散。

自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。

在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。

自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

在这里只讨论系统模型参数已知,而噪声统计参数Q 和R 未知情况下的自适应滤波。

由于Q 和R 等参数最终是通过增益矩阵K 影响滤波值的,因此进行自适应滤波时,也可以不去估计Q 和R 等参数而直接根据量测数据调整K 就可以了。

输出相关法自适应滤波的基本途径就是根据量测数据估计出输出函数序列}{C k ,再由}{C k 推算出最佳增益矩阵K ,使得增益矩阵K 不断地与实际量测数据}{C k 相适应。

.Sage-Husa 自适应卡尔曼滤波是在利用量测数据进行递推滤波时,通过时变噪声估计估值器,实时估计和修正系统噪声和量测噪声的统计特性,从而达到降低系统模型误差、抑制滤波发散提高哦滤波精度的目的。

k k k k k w x x +Φ=--11,k k k k v x H z +=⎪⎪⎩⎪⎪⎨⎧=====0)()(,)()(,)(Tj k kjk Tk k k k kj k Tk k k k v w E R v v E r v E Q w w E q w E δδ Sage-Husa 自适应卡尔曼滤波算法可描述为k k k k k z K x x ~ˆˆ1,+=- 111,1,ˆˆˆ----+Φ=k k k k k k q x xk k k k k k r xH z z ˆˆ~1,--=- 11,1,]ˆ[---+=kT k k k k T k k k k R H P H H P K 11,11,1,ˆ-----+ΦΦ=k T k k k k k k k Q P P1,)(--=k k k k k P H K I P.其中,k r ˆ、KR ˆ、k q ˆ和k Q ˆ由以下时变噪声统计估值器获得: )ˆ(ˆ)1(ˆ,1111k k k k k k k k x H z d r d r++++-+-= )~~(ˆ)1(ˆ1,11111T k k k k T k k k k k k H P H z z d R d R ++++++-+-=)ˆ(ˆ)1(ˆ,111k k k k k k k k x x d q d q+++Φ-+-= .)~~(ˆ)1(ˆ,1,1111111T k k k k k k T k T k k k k k k k P P K z z K d Q d Q ++++++++ΦΦ-++-=式中:111+--=k k bbd ,10<<b 为遗忘因子。

如果系统状态变量的维数比较高,而Sage-Husa 自适应滤波算法中又增加了对系统噪声统计特性的计算,计算量将大大增加,实时性也将难以得到保证。

除此之外,对于阶次较高的系统,Sage-Husa 自适应滤波算法中k R 和k Q 的在线估计有时会由于计算发散失去半正定性和正定性而出现滤波发散现象,此时Sage-Husa 自适应滤波算法的稳定性和收敛性不能完全保证。

基于极大似然准则的自适应卡尔曼滤波,通过系统状态方差阵和量测噪声方差阵实时估计系统噪声统计特性的变化,以保证滤波器更好地适应这种变化。

极大似然估计从系统量测量出现概率最大的角度估计,其特点是不仅考虑新息的变化,而且考虑新息协方差矩阵vk C 的变化。

它的量测噪声协方差矩阵Rˆ和系统噪声协方差矩阵Qˆ为: T kk k k vk k H P H C R 1,ˆˆ--= 1,11,11ˆ---+-=ΦΦ-+∆∆=∑k k k T k k k T i kN k i ikP P xx NQk k k k k k v K x xx =-=∆-1,ˆˆ ∑+-==kN k i T ii vk vv NC 11式中:1,ˆ--=k k k k zz v ,N 为平滑窗口的宽度。

扩展卡尔曼滤波最初提出的卡尔曼滤波基本理论只适用于状态方程和量测方程均为线性的随机线性高斯系统。

但是大部分系统是非线性的,其中还有许多事强非线性的。

非线性估计的核心就在于近似,给出非线性估计方法的不同就在于其近似处理的思想和实现手段不同。

近似的本质就是对难以计算的非线性模型施加某种数学变换,变换成线性模型,然后用Bayes 估计原理进行估计。

进一步说,非线性变换到线性变换主要有两种实现手段,一种是Taylor 多项式展开,一种是插值多项式展开。

Bucy 和Y.Sunahara 等人致力于研究将经典卡尔曼滤波理论扩展到非线性随机系统滤波估计中,提出了离散非线性随机系统扩展卡尔曼滤波(Extended kalman filter,以下简称EKF)。

EKF 是传统非线性估计中的代表,其基本思想是将非线性状态函数和量测函数进行局部线性化,即进行一阶Taylor 多项式展开,然后应用线性系统Kalman 滤波公式。

非线性离散系统状态方程和观测方程的一般形式如下所示kk k k k k k k k v u x g z w u x f x +=Γ+=+),(),(1 1-1式中:r k R u ∈为输入向量;p k R w ∈和q k R v ∈均为高斯白噪声,且互不相关,其统计特性为:其中,⎪⎩⎪⎨⎧=====0),(),(,0)(),(,0)(j k kj k j k k kjk j k k v w Cov R v v Cov v E Q w w Cov w E δδ式中,k Q 为过程激励噪声协方差矩阵,k R 为观测噪声协方差矩阵。

),(11--k k u x f 是一个非线性状态转换函数,),(11--k k u x g 是一个非线性量测函数。

每一个时刻点,根据一阶泰勒展开将),(11--k k u x f ,),(11--k k u x g 线性化,即将非线性状态函数)··(,f 和非线性量测函数)··(,g 围绕滤波值展开泰勒级数,并略去二阶以上项,得到)ˆ(),(),ˆ(),(ˆk k xx k k k k k k k xx x u x f u xf u x f k k -∂∂+≈= 1-2 )ˆ(),(),ˆ(),(ˆk k xx kk k k k k k xx x u x g u x g u x g k k -∂∂+≈- 1-3 定义k k xx kk k k x u x f ˆ),(ˆ=∂∂=Φ,k k xx kk k kx u x g H ˆ),(ˆ=∂∂=,根据式(1-1)、式(1-2)和式(1-3)可以得到非线性系统线性化后只与状态变量有关的表达式,如下⎪⎩⎪⎨⎧+-+≈Γ+Φ-+Φ≈+k k k k k k k k k k k k k k k k k v x H u xg x H z w x u x f x x ]ˆ),ˆ([ˆ]ˆ),ˆ([ˆ1 1-4式1-4中,注意到k k k k x u x f Φ-ˆ),ˆ(并非k x 的函数,kk k k x H u x g ˆ),ˆ(-并非k x 的函数,根据1-4近似结果,应用上节的Kalman 滤波器计算可以得到EKF 迭代算法:定义k k x x kk k k x u x f ˆ),(ˆ=∂∂=Φ,k k xx kk k kx u x g H ˆ),(ˆ=∂∂=,可得滤波方程初始条件 )var(),(ˆ0000x P x E x== 状态先验估计值 ),ˆ(ˆ111,---=k k k k u x f x误差协方差先验估计值 Tk k k k k T k k k k k k k Q P P 1,11,1,11,1,-------ΓΓ+ΦΦ= 增益矩阵 11,1,][---+=k T k k k k T k k k k R H P H H P K状态后验估计值)],ˆ([ˆˆ11,k k k k k k k u x g z K x x---+= 误差协方差后验估计值 1,)(--=k k k k k P H K I P无迹卡尔曼滤波(UKF )EKF 是一种次优非线性高斯滤波器,它采用对非线性函数进行线性化近似的方法,来计算状态分布经非线性函数传递之后的特性。

尽管EKF 得到了广泛的应用,但它依然存在自身无法克服的理论局限性:①要求非线性系统状态函数和量测函数必须是连续可微的,这限制了EKF 的应用围;②对非线性函数的一阶线性化近似精度偏低,特别地,当系统具有强非线性时,EKF 估计精度严重下降,甚至发散;③需要计算非线性函数的雅克比矩阵,容易造成EKF 数值稳定性差和出现计算发散。

为了克服上述EKF 的缺陷,能够以较高的精度和较快的计算速度处理非线性高斯系统的滤波问题,Julier 等人根据确定性采样的基本思路,基于Unscented 变换(UT )提出了Unscented 卡尔曼滤波(UKF )。

与EKF 类似,UKF 仍继承了卡尔曼滤波器的基本结构,不同之处在于UKF 用Unscented 变换取代了EKF 中的局部线性化。

UKF 仍假设随机系统的状态必须服从高斯分布,但取消了对系统模型的限制条件,也就是说,不要求系统是近似线性的,同时,UKF 不需要计算雅克比矩阵,因此不要求状态函数和量测函数必须是连续可微的,它甚至可以应用于不连续系统。

相关文档
最新文档