第五章电化学(1)
第五章 电化学步骤的动力学
5.1 改变电极电势对电化学步骤活化能的影响 电极电势改变了后阳极 反应和阴极反应的活化能 分别变成:
W W1 F
' 1
'
(5.1a)
W2 W2 F
(5.1b)
和 分别表示改变电极电势对阴极和阳极
k e
阳极过程和阴极过程的电流密度 阳极:
nF 0 ia nFKcR exp 平 RT
=
nF i exp a RT
0
阴极:
nF 0 ic nFKcO exp 平 RT
0 * a R
nF 0 * 1 ik nFKk cO exp RT
z R F 1 c c R exp RT zO F 1 * 0 cO cO exp RT
* R 0
1
z R zO n,
0 i
0
根据能斯特方程式,电极的平衡电极电位 e 可写成下列通式,即:
RT a氧化态 RT aO 0 e ln e ln nF a还原态 nF a R
0 e
5.4
电极电势的“电化学极化”
定义:若体系处于平衡电势下,则 ia ik ,因 而电极上不会发生净电极反应。当电极上 有净电流通过时,由于 ia ik ,故电极上的 平衡状态受到了破坏,电极电势或多或少 会偏离平衡电势,我们称这种现象为电极 电势发生了“电化学极化”。 这时流过电极表面的净电流密度等于:
a
0
I i0
第五章电化学基础
原电池是将化学能转化为电能的装置
第五章电化学基础
盐桥的作用: 沟通二溶液中的电第五章荷电化学基保础 证反应继续进行
形成原电池的条件
1.一个能够正向自发的氧化还原反应 。 2.氧化反应与还原反应分别在两极进行。 3.必须有盐桥(或多孔陶瓷、离子交换膜)
等连通装置。
第五章电化学基础
2. 电极反应和电池反应 由电流方向知两极反应: e-
金属置于其盐溶液时: M-ne-→Mn+
同时: Mn++ne-→M 当溶解和沉积二过程平
衡时,金属带电荷,
溶液带相反电荷。两种电
荷集中在固-液界面第五章附电化学基近础 。形成了双电层。
• 电极电势的产生
金
金
溶液
属
属
溶液
M
Mn+(aq) + 2e
双电层的电势差即该电极的平衡电势,
称为电极电势,表示为:
第五章电化学基础
5.2.2 电极电势的确定
1. 标准氢电极:
c(H+) =1 mol·dm-3 p(H2) = 105 Pa
H /H2
0.0000v
第五章电化学基础
2. 标准电极电势的测定:
第五章电化学基础
参比电极
装置图
第五章电化学基础
甘汞电极P表 , tH示 (gl)H 方 2C g2法 (lsC ): (lc) 电极:反 H应 2C g2(ls)2e⇌ 2Hg(2lC)l(aq )
任一自发的氧化还原反应都可以组成一个 原电池。如:
Cu+ FeCl3 CuCl+ FeCl2 (-)Cu∣CuCl(S)∣C第l五-章电化学‖基础 Fe3+,Fe2+∣Pt(+)
第五章 氧化还原与电化学
电子做有规则的定向流动
2. 原电池的组成:
(1)半电池和电极
锌半电池:锌片,锌盐-负极
铜半电池:铜片,铜盐-正极
正、负极也可以是惰性电极, 如:Pt、石墨等,只起导电作用。
(2)外电路 用金属导线把一个灵敏电流计 与两个半电池中的电极串连起来。 电子由锌 → 铜,电流由铜 → 锌。 (3)盐桥(是一种电解质溶液: 饱和KCl和琼胶) 加入盐桥,才能使电流完整,产生电流。 作用:沟通电路,使溶液中体系保持中性,使电极反 应得以继续进行。
液写离子; 4) 不同相用竖线“∣”隔开,同相用“,”
隔开,两个半电池用双竖线“‖”隔开 .
写出下列电池反应所对应的电池符号: Cu2+ + Zn ←→ Cu + Zn2+
( - ) Zn | Zn2+ (c1) || Cu2+(c2) | Cu ( + )
Cl2+2Fe2+ ←→ 2Fe3+ +2Cl( - )C | Fe2+(c1),Fe3+ (c2)||Cl-(c3)|Cl2(p)|C ( + )
2MnO4- +16H++ 10e 5SO32- + 5H2O
2MnO4- + 5SO32- + 6H+
2Mn2++8H2O 5SO42- +10H++10e +)
2Mn2+ + 5SO42- +3H2O
5)检查原子个数、电荷数,使之相等并还原 为分子反应式 。
2KMnO4 + 5K2SO3+ 3H2SO4 2MnSO4+ 6K2SO4 +3H2O
电化学-第五章电荷转移步骤动力学与电化学极化(极力推荐)
W1 W2’-W1’ W2-W1
nF W
2
W2’
还原态
氧化态
nF
nF
nF
x
改变电极电位对电极反应活化能的影响的示意图
W2’ – W1’ = W2- W1 + nF
这样, W2’ – W2 = W1’- W1 + nF
阴极反应活化 能增值
阳极反应活化 能增值
再变化为:(W2’ – W2)- (W1’- W1)= nF
当电极反应处于标准平衡状态时,即 = 平
ia nFk c exp(
0 a R 0 c o
nF
RT RT
0 平 ) nFK a cR
ic nFk c exp(
nF
0 平 ) nFK c co
上两式中:
K a k exp(
0 a
nF
RT
0 平 ) 0 平 )
K c kc0 exp(
a b lg I
从上式可以看出,不仅与电流密度I有关,还 与a、b有关。而a、b则与电极材料性质、表面结 构、电极的真实表面积、溶液的组成及温度有关。
5.1.2 影响电化学极化的主要因素
(1)电流密度。
(2)电极材料,不同的电极材料a值不同,反应能力完全 不同。需要寻找具有高催化活性的材料。 (3)电极的真实表面积,表面积越大电极的反应能力越大, 可减小电极的极化。如采用多孔电极。
若改写成指数形式,则有:
阳极反应
ia i exp(
0
nF
RT
a )
阴极反应
ic i exp(
0
nF
RT
c )
知道了、和i0,根据上面的电化学步骤的基本动 力学方程,就可以计算任一电位下的绝对电流密 度 ia 、 ic 。
第五章 电化学步骤动力学
它只在一定的电 流范围内适用
a blgi
a,b的物理意义不明确,不 能说明电位的变化是怎样影 响电极反应速度的。
❖ 即电极电位直接影响到电子在两相间的传递,直接与电化学步骤的 快慢有关。
❖ 为了从理论上证明这个公式的合理性,必须从理论上来进行推导和 说明,因此必须建立起描叙电化学步骤动力学状态的方程。
❖ 此时,电化学步骤动力学方程不能进行简化,必须用整个公式来描叙, 即:
ik
i阴
i阳
i0
[exp(
nF
RT
)
exp(
nF
RT
)]
iA
i阴
i阳
i0[exp(
nF
RT
)
exp( nF
RT
)]
5.4、电化学的基本动力学参数
1.传递系数:--α、β ❖描述电极电位对活化能影响程度的动力学参数,叫对称系数,或传递系数。
❖ 用电流密度来表示反应速度,即:
i阴
V阴 s
nF
nFZ阴Co'
exp( W阴 RT
)
i阳
nF
V阳 s
nFZ阳CR'
exp( W阳 ) RT
❖ 因扩散步骤很快,则
Co' Co
CR' CR
i阴
nFZ阴Co
exp(
W阴 RT
)
nFK阴Co
i阳
nFZ阳CR
exp(
W阳 RT
)
nFK阳CR
5.1巴特勒-伏尔摩方程
a
2.303RT
nF
lg i0
2.303RT
nF
lg
ia
(5-10)
《无机化学》第五章 氧化还原反应和电化学基础
二、氧化还原反应方程式的配平
1. 氧化值法
配平原则:氧化剂中元素氧化值降低的总数等 于还原剂中元素氧化值升高的总数。
配平步骤: (1)写出反应方程式,标出氧化值有变化 的元素,求元素氧化值的变化值。
(2)根据元素氧化值升高总数和降低总数相等 的原则,调整系数,使氧化值变化数相等。
(3)用观察法使方程式两边的各种原子总数相 等。
酸表。
(4)E是电极处于平衡状态时表现出来的特
征,与反应速率无关。
(5)E仅适用于水溶液。
5.饱和甘汞电极:
Hg | Hg2Cl2(s) |KCl (饱和)
Hg2Cl2 (s) + 2e
2Hg(l) +2Cl-
E (Hg2Cl2/Hg)=0.245V
三、 影响电极电势的因素
1.影响 因素
(1)电极的本性:即电对中氧化型或还 原型物质的本性。
还原型:在电极反应中同一元素低氧化值的物质。)
电对:氧化型/还原型
例:MnO2 +4H+ + 2e
Mn2+ +2H2O
电对:MnO2 / Mn2+
(2)E与电极反应中的化学计量系数无关。
例:Cl2 + 2e 1/2Cl2 + e
2Cl- E(Cl2/Cl-)=1.358V Cl-
(3)电极反应中有OH- 时查碱表,其余状况查
(3)分别配平两个半反应,使等号两边的原子 数和电荷数相等。
(4)根据得失电子数相等的原则,给两个半 反应乘以相应的系数,然后合并成配平的离子 方程式。
(5)将离子方程式写成分子方程式。
离子电子法配平时涉及氧原子数的增加和减 少的法则:
第五章 电化学基础
0.05917 lg 0.10 0.05917 lg 0.010
0.10 E 0.05917 lg 0.05917 (V) 0.010
二. 比较氧化剂和还原剂的相对强弱
越大 电极的 氧化型物质氧化能力↑
共轭还原型物质还原能力↓
还原型物质还原能力↑ 共轭氧化型物质氧化能力↓
(1)Mn2+ + 2e
2
Mn
2
(Mn / Mn) (Mn
0.05917 / Mn) lg c(Mn 2 ) 2
(2)2H2O + 2e
H2 + 2OH0.05917 1 (H 2O / H 2 ) (H 2O / H 2 ) lg 2 p(H 2 ) {c(OH )}2 Ag + Br-
∵ ∴
(H / H 2 ) 0.00 V
E 待测
例如:测定Zn2+/Zn电极的标准电极电势
将Zn2+/Zn与SHE组成电池
(-)Pt,H2(100kPa)|H+(1mol· -1)||Zn2+(1mol· -1)|Zn(+) L L
298.15K时, E =-0.763V,
电池反应:
二、原电池符号
(-)Zn | Zn2+(c1) || Cu2+(c2) | Cu(+) 相界面 盐桥
电极导体
溶液
同相不同物种用“,”分开,
负极“ - ”在左边,正极“ + ”在右边; 溶液、气体要注明cB,pB ,固体浓度忽略
纯液体、固体和气体写在惰性电极(Pt)一边用“ , ”分开。
例1:将下列反应设计成原电池并以原电池符号表示。 2Fe2 1.0mol L1 Cl2 100kPa
电化学原理第五章
当电极上有电流通过时,三种传质方式可能同时存在, 但在一定区域,一定条件下,只有一至二种传质方式起主要 作用。 电极反应消耗大量粒子,要靠传质过程补充,若电解液 含较多电解质,则可忽略电迁移传质作用,向电极表面传输 反应粒子主要由扩散和对流串联而成。通常对流传质的速度 原大于扩散传质的速度,故液相传质过程速度主要由扩散传 质过程控制,它可代表整个液相传质过程动力学的特征,本 章讨论扩散传质动散。 反应初期,反应粒子浓度变化不太大,浓度梯度较小,扩散较 慢,扩散发生范围主要在离电极较近区域,随反应进行,扩 散过来的反应粒子的数量远小于电极反应的消耗量,梯度较 大,扩散范围也增大,反应粒子的浓度随时间和电极表面距 离变化而不断变化。
17:59:38
扩散层中各点的反应粒子浓度是时间和距离的函数,即 Ci=f(x,t) 反应浓度随x和t不断变化的扩散过程,是一种不稳定的扩散 传质过程。这个阶段内的扩散称非稳态扩散或暂态扩散,反 应粒子是x与t的函数。
17:59:38
二、液相传质三种方式的相对比较 (1)传质推动力不同 电迁移:电场力,存在电位梯度 对流传质: 自然对流:或温度差存在,实质是不同部分溶液存在重 力差。 强制对流:是搅拌外力,机械、空气搅拌等。 扩散传质: 推动力是存在浓度差。 (2)从传输的物质粒子的情况看 电迁移只能传输带电粒子,扩散和对流既可传输离子,也可传输 分子,甚至粒子。 电迁移和扩散过程粒子间溶质与溶剂存在相对运动,对流传质过 程中,溶液一部分相对于另一部分作相对运动,在运动的溶液内 部,溶质与溶剂分子一起运动,二者间无明显相对运动。 (3)从传质作用区域考虑 把电极表面和附近的液层大划分为双电层区,扩散层区和对流区 。
J Ag DAg dCAg dx DAg
【电化学】第五章 电化学能量转换和储存
2Na+5S=Na2S5
(初期)
2Na+4Na2S5=5Na2S4 (中、后期)
2Na+Na2S4=2Na2S2 (后期,Na2S5耗尽后)
二、固体电解质电池
与溶液型电解质电池相比,其特点是贮存寿命长,使用 温度范围广,耐振动及冲击,没有泄漏电解液或产生气体 等问题,能制成薄膜,做成各种形状和微型化。但是固体 电解质的电导率低于液态电解质溶液,常温时电他的比功 率和比能量较低,容易出现极化,不易适应工作时体积变 化
第三节 蓄 电 池
一、铅酸蓄电池
1、 铅酸蓄电池分类、结构和工作原理
铅酸蓄电池分类
启动用蓄电池
固定型蓄电池
牵引用蓄电池
摩托车用蓄电池
按用途分
船舶用蓄电池
航空用蓄电池
坦克用蓄电池
铁路客车用蓄电池
航标用蓄电他
矿灯用蓄电池等
三.锌汞电池和锌银电池
1.锌汞电池
Zn(含少量Hg)|30-40%KOH(ZnO饱和)|HgO,Hg 负极反应 Zn+4OH- = Zn(OH)42-+ 2e
(6)自放电
第三节 蓄 电 池
3、密封式铅酸电池 使电池达到气密有三个途径:
(1)气相催化法 (2)辅助电极式 (3)阴极吸收式
二、镉镍蓄电池 碱性蓄电池是使用KOH或NaOH电解液的二次电池的
总称。包括镉镍、镉银、锌银、锌镍、氢镍等蓄电池 镉镍电池的优点:①对进行高率放电;②低温特性好;
③循环寿命长;④即使完全放电,性能也不怎么下降; ⑤易于维护;⑥易于密闭化。缺点主要是电压较低
三、电池的命名和型号 自学!!
第二节 用锌作负极的电池
一、锌锰干电池 锌-二氧化锰电池常称锌锰十电池,正极为二氧
生物 第五章 氧化还原和电化学
E0 = 0(+) – 0 (-)
如测定半电池: Cu2+(1mol.L-)/Cu(298K)与标准氢电极相 连时为正极,并得 E0=0.34 V. 则 E0 = 0(+) –
0 (-)
0.34= 0 (Cu2+/Cu)- 0(H+/H2)
0.34= 0 (Cu2+/Cu)- 0.0000 0 (Cu2+/Cu)=+0.34 (V)
= 0 + 0.0592 ———— ———lg [氧化型] n [还原型]
式中:(1) n—电极反应中的电子转移数
(2) [氧化型] 中括号里表示的是半反应式中的
[还原型]
各物质浓度次方的乘积
(3) . 纯液体,纯固体的浓度为常数,作1处理, 气体用分压表示.具体写法举例:
(1) Fe 3+ + e-
化合价升高物质称还原剂(Fe)
还原性
5-2
如:
氧化还原半反应式
Cu2+ + Fe = Cu + Fe2 + (还原反应) (氧化反应)
任何氧化还原反应方程式都可以分解成两个半反应式,
Cu2+ + 2e = Cu Fe - 2e = Fe2 +
1. 半反应式由同一元素的两种不同氧化数物种组成。 2. 表示:氧化型 / 还原型 == 电对 3. 标准电极电势表中就是按半反应式 的格式列表的.
标准电极电势是重要的化学参数.有多种理论价 值和实用价值,如:
(1)判断氧化剂和还原剂的强弱 电极电势负值越小,还原型物质的还原性越强; 电极电势正值越大,氧化型物质的氧化性越强。 Zn2+ +2eZn 0 =-0.76 V Cl2 +2e2Cl0 =1.3883 V
大学电化学第五章-1
若近似认为DO=DO* ,则有
c总 常数 x
表面层中发生的反应只是O与O*之间的转化过程,若将二者 当作一体来考虑,则浓度场的形式与是否存在转化反应无关。
15
C总在扩散层中的变化情况是一 根直线。一般情况下CO0>>CO*0,因 此可以认为
c总 cO
一般反应区的厚度 K
因此,只要电极表面上O尚未 达到完全浓度极化,可以近似认为 在扩散层伸出的整个反应区内CO具 有恒定值
0 0 cO* (, t ) cO K c * 平 O
cO* (0, t ) 0
10
可解得表面层中的稳态浓度分布公式为
cO* kb 1/ 2 c 1 exp[( ) x] DO*
0 O*
微分并取 x = 0 处的值,得到 电极表面上O*的浓度梯度为
cO* kb 1 / 2 0 ( ) x 0 cO* ( ) x DO*
cO* cO
kf kb
K
——转化反应的平衡常数。
6
三种控制类型
设K<1,O为反应粒子主要存在形式
电极电位为 时只有O*能在电极上 还原并达到完全浓度极化
*
根据转化反应进行速度与O和O* 扩散传质速度的相对大小,在电极上 可以出现三种不同的极限电流
1)若表面层中前置均相转化速度很慢,i转<<Id,O* , 则转化反应的影响可以忽略,有极限电流Id(I)= Id O*
0 cR k f cR K 0 cR* kb cR*
R
若反应已经达到稳态,则:
2 cR DR ( 2 ) k f cR* kb cR 0 x 2 c R* DR* ( 2 ) kb cR k f cR* 0 x
第五章_材料电化学解读
参比电极及其标准氢电极的基准电位见表3-2。如果把饱合甘汞电极 (SCE)作为参比电极使用时,它的测量值不经任何换算便可记为VVSSCE, 如果换算成标准氢电极电位,要在测量值的基础上再加上SCE的电位部分 (0.241 VVSSHE),其关系为
VVSSHE← VVSSCE+0.241
表3-2 标准电极电位
特别当pH=0,pH2=105 Pa时的氢电极称为标准氢电极
(SHE),并把与之对应的ΔфH记为ΔфSHE。标准氢电极不仅 在于有较大的实用性,而且当和其他半电池组合构成电池时, 电池的电动势是个重要参数。当标准氢电池SHE和其他半电 池组合,例如和Cu2+|Cu Pt︱H2(g) ︱H+(aq) ‖Cu2+︱Cu pH2=105 pH=0 aCu=1 当假定液相间的电动势为零时,这种电池的电动势E可 表示为 E°=ΔфoCu-ΔфSHE (5-13)
如果在电位测定端使用同一种金属,那么式(5.8)中的μmete 项互相抵消,在式中不再出现。Δф1,2 称为液相间电动势,
当形成电池或是测定电极电位时,应尽可能使该项小一些, 因此通常用KCl作盐桥的充填盐。相反,在使用玻璃电极的
2.氢电极和标准电极电位
氢电极的结构如图5-1所示。由溶入氢气的水溶液相,用氢气作为充填 气的气相和贵金属Pt这三相构成,记为H+(aq)|H2(g)|Pt。aq表示水溶液, g表示气体。Pt本身的溶解反应不活泼,但在氢的氧化还原反应中起到触 媒作用,通常用作氢电极的金属极。确定这种半电池电位的反应为 2H+(aq) + 2e- → H2(g) (5-11) 因此,溶液和金属间的电位差可参照讨论式(5-6)时的顺序求出
so ln
第五章 电化学步骤动力学
电化学步骤动力学
如果电化学反应步骤的速度很慢,成为整个过程的控制步骤, 如果电化学反应步骤的速度很慢,成为整个过程的控制步骤, 电极过程的速度就将由电化学反应步骤的速度控制。 电极过程的速度就将由电化学反应步骤的速度控制。 由电化学步骤缓慢所引起的极化叫电化学极化。 由电化学步骤缓慢所引起的极化叫电化学极化。 电化学极化 电化学步骤控制的电极过程的动力学规律就是电化学步骤的动 力学规律。 力学规律。 因此找到了影响电化学步骤的反应速度的主要因素, 因此找到了影响电化学步骤的反应速度的主要因素,也就找到 了影响电极过程速度的主要因素, 了影响电极过程速度的主要因素, 电化学步骤动力学就是研究电极过程处于电化学反应步骤所控 制时的动力学规律或动力学特征。 制时的动力学规律或动力学特征。
5.1巴特勒-伏尔摩方程 5.1
一.电化学极化经验公式
过电位服从一个半经验公式: 过电位服从一个半经验公式:
与电极材料、电极表 面状态、溶液组成和 温度有关 它只在一定的电流 范围内适用
1905年塔费尔根据大量实验事实, 1905年塔费尔根据大量实验事实,发现氢离子的放电过程中其放电 年塔费尔根据大量实验事实
a,b的物理意义不明确,不 , 的物理意义不明确 的物理意义不明确, 能说明电位的变化是怎样影 响电极反应速度的。 响电极反应速度的。
即电极电位直接影响到电子在两相间的传递, 即电极电位直接影响到电子在两相间的传递,直接与电化学步骤的 快慢有关。 快慢有关。 为了从理论上证明这个公式的合理性, 为了从理论上证明这个公式的合理性,必须从理论上来进行推导和 说明,因此必须建立起描叙电化学步骤动力学状态的方程。 说明,因此必须建立起描叙电化学步骤动力学状态的方程。
电极过程最重要的特征就是电极电位对电极反应速度的影响, 电极过程最重要的特征就是电极电位对电极反应速度的影响,这种影 响有直接的,也有间接的。 响有直接的,也有间接的。 直接影响主要指对电化学步骤的活化能的影响, 直接影响主要指对电化学步骤的活化能的影响,主要影响电极表面上 参加反应粒子的浓度。 参加反应粒子的浓度。 当扩散步骤成为控制步骤,电位的变化是由于参加反应的粒子的浓度 当扩散步骤成为控制步骤, 变化而引起的,可用能斯特方程计算电位变化,这种影响称为“ 变化而引起的,可用能斯特方程计算电位变化,这种影响称为“热力 学方式” 学方式”。 如果电子转移步骤是电极过程的控制步骤时, 如果电子转移步骤是电极过程的控制步骤时,电极电位直接影响电子 转移步骤和整个电极反应过程的速度,这种影响称为“ 转移步骤和整个电极反应过程的速度,这种影响称为“动力学方 式” 。
电化学分析法
2、电解条件的特殊性 离子到达电极表面除扩散外,还有迁移和对流,后 两者应该除去。
(1)消除迁移电流——加支持电解质, 使池内阻变小,电压降低。
(2)消除对流电流——不搅拌消除。
(3)消除氧波和极谱极大——
极谱分析还需加入除氧剂和表面活性剂,以 除氧和消除极谱极大。 O2 + 2 H+ + 2e H2O2 + 2e +2H+ i 极谱极大 H2O2 2H2O E = - 0.05V E = - 0.9V
电化学分析的关键是电极:
Pt电极系统——电解分析和库仑分析 离子选择性电极——电位分析和电位型传感器 滴汞、铂碳或微铂电极——极谱与伏安分析、电流 型传感器
3、电化学分析的特点:
1、仪器简单,价格较光学分析仪器便宜;
2、灵敏度高,如极谱分析可达10-12 M;
由于电导分析比较简单,教材没有讲。
电导分析的一个重要用途是测量水的纯度。如果水的纯 度达到18M,则认为是高纯水。
Cd2+ + 2e +Hg
分三个阶段
Cd(Hg)
(1)电位尚未负到Cd 的还原电位;
(2)Cd开始还原,扩 散电流产生; (3)极限扩散电流产 生。
i
极限扩散电流 id 电流上升阶段 i
残余电流 ir
-0.2
-0.5
-1
E(V)
C
C C0 X C0—电极表面浓度 C—本体溶液浓度
X
C [Cd ] [Cd ] i X
— +
纳米传感
Semi-conducting Nanotube Molecular Wires as Chemical Sensors for NH3 and NOx. Hydrogen Sensors / Palladium Mesowire Arrays
第五章电化学
电解池
电极①: 与外电源负极相接,是负极。 发生还原反应,是阴极。 Cu2++2e-→Cu(S)
①
②
电极②: 与外电源正极相接,是正极。 发生氧化反应,是阳极。 Cu(S)→ Cu2++2e-
物 理 化 学 简 明 教 程
(3). 几组基本概念 正极: 电势高的极称为正极,电流从正极流向 负极。在原电池中正极是阴极;在电解 池中正极是阳极。 负极: 电势低的极称为负极,电子从负极流向 正极。在原电池中负极是阳极;在电解 池中负极是阴极。
3.电解后含某离子的物质的量n(终了)。
4.写出电极上发生的反应,判断某离子浓度是增加了、减少了 还是没有发生变化。 5.判断离子迁移的方向。
物 理 化 学 简 明 教 程
【5-1】在Hittorf 迁移管中,用Ag电极电解AgNO3水溶液,电解前,溶 液中每 1kg 水中含 43.50 mmol AgNO3。实验后,串联在电路中的银库 仑计上有0.723mmol Ag析出。据分析知,通电后阳极区含 23.14g 水和 1.390 mmol AgNO3。试求Ag+和NO3-的离子迁移数。
上有4 mol 阴离子氧化,阴极上有4 mol阳离子还原。
两电极间正、负离子要共同承担4 mol电子电量的运输
任务。
现在离子都是一价的,则离子运输电荷的数量只取决于 离子迁移的速度。
物 理 化 学 简 明 教 程
设正、负离子迁移的速率相等, u+ = u- ,则导电任务各分 担2mol,在假想的AA、BB平面上各有2mol正、负离子逆向通 过。
物 理 化 学 简 明 教 程
Hittorf 法中必须采集的数据:
1. 通入的电量,由库仑计中称重阴极质量的增加而得,例如, 银库仑计中阴极上有0.0405 g Ag析出,
《物理化学》第五章(电化学)知识点汇总
弱电解质: 电导率随浓度的变化不显著。
c/mol· dm-3
2. 摩尔电导率与浓度的关系 强电解质: 遵从科尔劳许经验关系:
m m (1 c )
m2· mol-1 Λ m/S·
HCl
NaOH AgNO3
Λ m -为极限摩尔电导率 弱电解质:
HAc
c /( mol dm )
3
$ RT aH 2 H / H ln 2 2 2 F aH
Cu
H
2
/ Cu
$ Cu 2 / Cu
aCu RT ln 2F aCu2
/ H2
$ H / H2
RT aH 2 ln 2 2 F aH
氧化态 ze 还原态
m Vm
m
1 Vm c
1mol 电解质
c
电导率
三、电导率、摩尔电导率与浓度的关系
1. 电导率与浓度的关系 强电解质: 浓度增加,电导率增加; 浓度增加到一定值后,低。 m-1 κ/S·
H2SO4
KOH NaOH NaCl HAc
2. 离子迁移数
定义:当电流通过电解质溶液时,某种离子迁移 的电量与通过溶液的总电量的比称为该离子的迁 移数。
Q r Q t = Q r r- Q Q-
Q t Q
Q- Q Q- -
r r r-
2. 摩尔电导率
是把含有1mol电解质的溶液置于相距1m的两个平行 电极之间,溶液所具有的电导。
( HCl ) ( NaAc ) m m m ( NaCl )
§5.4 溶液中电解质的活度和活度系数
《物理化学》第五章-电化学 ppt课件
0.05
0.830 0.823 0.815 0.823 0.818 0.574 0.529 0.340 0.304 0.556 0.230 0.202
第五章 电化学
(Charper 5 Electrochemistry)
电化学:研究电子导体/离子导体(电解质溶液)和离子 导体/离子导体的界面结构、界面现象及其变化过程与 机理的科学。
应用:1、生命现象最基本的过程是电荷运动。生 物电的起因可归结为细胞膜内外两侧的电势差。
a: 细胞的代谢作用可以借用电化学中的燃料电池的 氧化和还原过程来模拟;
根据离子的无限稀释摩尔电导率 m.、m.,可以计
算弱电解质的
m
,也可以用强电解质的
m
计算弱
电解质的
m
。
m (HA )C m (H ) m (A)c m (H ) m (A)c m (C)l m (C)l m (N)a m (N)a
m (H)C lm (Na) A m (cNa ) Cl
(1)在电极上发生化学反应的物质的量与通入 的电量成正比;
(2)通入相同的电量时,在各个电极上发生反 应的物质的量相同。
n = Q/zF 或 Q = nzF
Q = nzF
Q — 通入的电量 n — 参加反应的物质的量 z — 电极反应式中的电子计量系数 F — 法拉第常数(1 mol元电荷所具有的电量) F = e×L = 1.6022×10-19 C ×6.0221×1023 mol-1
课堂练习
1、在一定温度和较小的浓度情况下,增大强电解质溶液的浓
度,则溶液的电导率κ与摩尔电导率 m的变化为( B)
A、κ增大,
增大
m
B、κ增大, 减m 少
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 电 化 学四 习题解答5.1 将两个银电极插入AgNO 3溶液,通以0.2A 电流共30 min ,试求阴极上析出银的质量。
解: 通过电解池的电量 Q = It =(0.2×30×60)C=360 C根据法拉第定律 Q =nF则电极上起反应的物质的量:-1360C(Ag)0.003731mol 96485C moln ==⋅ 阴极上析出Ag 的质量 (Ag)(Ag)0.003731107.9g 0.4026g m n M =⨯=⨯=5.2 用银电极电解KCl 水溶液,电解前每100 g 溶液中含KCl 0.7422 g 。
阳极溶解下来的银与溶液中的Cl -反应生成AgCl(s),其反应可表示为 Ag =Ag + + e ﹣, Ag + + Cl ﹣=AgCl(s),总反应为Ag +Cl ﹣=AgCl(s)+e ﹣。
通电一段时间后,测得银电量计中沉积了0.6136 g Ag ,并测知阳极区溶液重117.51 g ,其中含KCl 0.6659 g 。
试计算KCl 溶液中的K +和Cl -的迁移数。
解:通电前后水的量不变。
以水的质量为2H O m =(117.51-0.6659)g =116.83g 作为计算基准。
对于阳极区K +的物质的量进行衡算(K +不参与电极反应)有:n n n =-迁后前 ,KCl 3KCl 0.7422116.83mol 11.7210mol (1000.7422)74.551m n M -⨯===⨯-⨯前前,KCl 3KCl0.6659mol 8.9310mol 74.551m n M -===⨯后后 33(11.728.93)10mol 2.7910mol n n n --=-=-⨯=⨯迁后前由银电量计的测试数据可知发生电极反应的物质的量 Ag 3Ag0.6136mol 5.6910mol 107.868m n M -===⨯电K +的迁移数t ( K +):332.7910mol(K )0.495.6910moln t n -+-⨯===⨯迁电Cl -的迁移数: (Cl )1(K )10.490.51t t -+=-=-= 5.3 见例题5.1 5.4 见例题5.25.5 291K 时,纯水的电导率为κ(H 2O )=3.8×10-6 S·m -1。
当H 2O(l)解离成H +和OH -并达到平衡时,求该温度下H 2O(l)的摩尔电导率、解离度和H +的浓度。
已知此时水的密度为998.6kg·m -3。
解:2,H O ,H ,OH m m m λλ+-∞∞∞Λ=+=(3.4982×10-2+1.980×10-2 )S·m 2·mol -1=5.4782×10-2 S·m 2·mol -1 223H O4331H O998.6kg m 5.541610mol m 18.0210kg molc M ρ----⋅===⨯⋅⨯⋅ 2611121,H O433.810S m 6.85710S m mol5.541610mol m m c κ-----⨯⋅Λ===⨯⋅⋅⨯⋅ 221121,H O9221,H O6.85710S m mol 1.252105.478210S m mol m m ΛαΛ---∞--⨯⋅⋅===⨯⨯⋅⋅ ,H O26153221H 3.810S m 6.93710mol m 5.478210S m mol m c κ+----∞--⨯⋅===⨯⋅Λ⨯⋅⋅ 5.6 298K 时,浓度为0.01 mol·m -3的HAc 溶液在某电导池中测得其电阻为2220Ω,已知该电导池常数为K cell = 37.7 m -1。
试求该条件下HAc 的解离度和解离平衡常数。
解:根据离子独立移动定律+m,HAc m,H m,Ac λλ-∞∞∞Λ=+=(3.4982×10-2+0.409×10-2 )S·m 2·mol -1=3.9072×10-2 S·m 2·mol -1 121cell 36.7m 1.65310S m 2220K R κ---===⨯⋅Ω21321331.65310S m 1.65310S m mol 0.0110mol mm c κ-----⨯⋅Λ===⨯⋅⋅⨯⋅ 3212211.65310S m mol 0.04233.907210S m mol m mα--∞--Λ⨯⋅⋅===Λ⨯⋅⋅2352230.01(1.65310) 1.86910()(3.907210)(3.907210 1.65310)mc m m m c c K ΛΛΛΛ--∞∞---⋅⨯⨯===⨯-⨯⨯⨯-⨯5.7 见例题5.45.8 有下列不同类型的电解质:①HCl ;②MgCl 2; ③CuSO 4; ④LaCl 3; ⑤Al 2(SO 4)3。
设其均为强电解质,当它们的质量摩尔浓度均为0.025 mol·kg ﹣1时,试计算各种溶液的:(1)离子强度;(2)离子平均质量摩尔浓度m ±;(3)用德拜-休克尔极限公式计算离子平均活度因子γ±;(4)电解质的离子平均活度α±以及电解质的活度αB 。
解:①HCl(1) HCl =H ++Cl - z + = +1; z - = -1--222221111222H H Cl Cl ()(11)0.025mol kg B B BI m z m z m z m m m ++-==+=⨯+⨯==⋅∑ (2)v += 1; v -= 1 ; v= v + + v -= 2112111()()0.025mol kg m m m m m m ννν+--±+-==⨯==⋅(3)德拜-休克尔极限公式lg A z z γ±+=-室温和水溶液中,A=0. 509(mo l ·kg -1)1/2lg 0.509110.08048A z z γ±+=--⨯⨯⨯=- ; 所以 0.831γ±=(4)1210.025mol kg 0.831 2.078101.0mol kg m m αγ--±±±-⋅==⨯=⨯⋅ 224(2.07810) 4.31810ναα--±==⨯=⨯②MgCl 2(1) MgCl 2 的离子强度 MgCl 2 = Mg 2++2Cl -22--222221111222Mg Mg Cl Cl ()(221)30.075mol kg B B BI m z m z m z m m m ++-==+=⨯+⨯==⋅∑ (2)v += 1; v -= 2 ; v= v + + v -= 311133121()((2))40.0397mol kg m m m m m m ννν+--±+-==⨯==⋅(3)德拜-休克尔极限公式lg A z z γ±+=-室温和水溶液中,A=0.509(mol·kg -1)1/2lg 0.509210.2788A z z γ±+=-=-⨯⨯⨯=- ; 所以0.526γ±=(4)110.0397mol kg 0.5260.02091.0mol kgm m αγ-±±±-⋅==⨯=⋅ 36(0.0209)9.12910ναα-±===⨯③CuSO 4(1) CuSO 4 = Cu 2+ + SO 42-22+2-2-44222221111222Cu Cu SO SO ()(22)40.10mol kg B B BI m z m z m z m m m +-==+=⨯+⨯==⋅∑ (2)CuSO 4 = Cu 2+ + SO 42- ν+ = 1,ν﹣ = 1 ;ν = ν+ + ν﹣= 2112111()()0.025mol kg m m m m m m ννν+--±+-==⨯==⋅(3)lg 0.509220.6438A z z γ±+=--⨯⨯⨯=- ; 所以0.227γ±=(4)1310.025mol kg 0.227 5.675101.0mol kgm m αγ--±±±-⋅==⨯=⨯⋅ 325(5.67510) 3.22110ναα--±==⨯=⨯④LaCl 3;(1) LaCl 3= La 3+ + 3Cl -3+3+--222221111222La La Cl Cl ()(331)60.15mol kg B B BI m z m z m z m m m -==+=⨯+⨯==⋅∑ (2)ν+ =1,ν﹣= 3 ;ν = ν+ + ν﹣= 411144131()((3))270.0570mol kg m m m m m m ννν+--±+-==⨯==⋅(3)lg 0.509130.5914A z z γ±+-=-=-⨯⨯=- ; 所以0.256γ±=(4)1210.0570mol kg 0.256 1.459101.0mol kgm m αγ--±±±-⋅==⨯=⨯⋅ 248(1.45910) 4.53110ναα--±==⨯=⨯⑤Al 2(SO 4)3(1) Al 2(SO 4)3= 2Al 3+ + 3SO 42-3+3+2-2-44222221111222Al Al SO SO ()(2332)150.375mol kg B B BI m z m z m z m m m -==+=⨯+⨯==⋅∑(2)ν+= 2,ν﹣=3 ;ν = ν+ + ν﹣= 511155231()((2)(3))1080.0638mol kg m m m m m m ννν+--±+-==⨯==⋅(3)lg 0.50932 1.8702A z z γ±+-=--⨯⨯⨯=- ; 求得0.0135γ±=(4)1410.0638mol kg 0.01358.613101.0mol kg m m αγ--±±±-⋅==⨯=⨯⋅ 4516(8.61310) 4.74010ναα--±==⨯=⨯5.9 试写出下列电极分别作为电池正极和负极时的电极反应(1) Cu(s) |Cu 2+ (2) Pt(s) |I 2(s) |I -(3) Hg(l)-Hg 2Cl 2(s) |Cl -(4) Pt|H 2(g) |OH -(5) Pt|O 2(g) |H + (6) Pt |Cr 3+,Cr 2O 72-,OH -解:电极作为电池正极,发生还原反应,得到电子。