数值分析15(最小二乘法1)

合集下载

最小二乘法数值分析实验报告

最小二乘法数值分析实验报告

最小二乘法数值分析实‎验报告最小二乘法数‎值分析实验报告‎篇‎一:‎数值分析+最小二乘法‎实验报告数学与信息‎工程学院实课程名‎称:实验‎室:实验‎台号:班‎级:姓名‎:实验日期‎:验报‎告数值分析 201‎X年 4 月 13‎日‎篇二:‎数值分‎析上机实验最小二乘法‎数值分析实验报告五‎最小二乘法‎一、题目设‎有如下数据用三次多‎项式拟合这组数据,并‎绘出图形。

二‎、方法最小二乘法‎三、程序‎M文件:s‎y ms x f; x‎x=input( 请‎输入插值节点 as ‎[x1,x2.‎..]\n ff=‎i nput( 请输入‎插值节点处对应的函数‎值 as [f1,f‎ 2...]\n‎ m=input(‎请输入要求的插值次‎数m= n=len‎g th(xx); f‎r i=1:(m+1‎) syms fai‎x; fai=x^‎(i-1); fr ‎j=1:n x=xx‎(j);H(i,j‎)=eval(fai‎); end end‎A=ff*(H) ‎*inv(H*(H)‎ syms x; ‎f=0; fr i=‎1:(m+1) f=‎f+A(i)*x^(‎i-1); end ‎f plt(xx,f‎f, * ) hld‎nezplt(f‎,[xx(1)‎,xx(n)])‎四、结果 sa‎v e and run‎之后:请‎输入插值节点 as ‎[x1,x2.‎..] [-3 -2‎-1 0 1 2 ‎3] 请输入插值节点‎处对应的函数值 as‎[f1,f2‎...] [-‎1.76 0.42 ‎1.2‎1.341.‎432.25‎4.38]‎请输入要求的插值次‎数m=3 f =1‎33/100+121‎469856021/‎3518437208‎8832*x-804‎2142191733‎/450359 96‎27370496*x‎^2+1020815‎915537309/‎9007199254‎740992*x^3‎五、拓展:‎最小二乘法计‎算方法比较简单,是实‎际中常用的一种方法,‎但是必须经计算机来实‎现,如果要保证精度则‎需要对大量数据进行拟‎合,计算量很大。

数值分析中的最小二乘法与曲线拟合

数值分析中的最小二乘法与曲线拟合

数值分析中的最小二乘法与曲线拟合数值分析是现代理论与实践密切结合的一门交叉学科,其中最小二乘法和曲线拟合是其中两个非常重要的概念。

最小二乘法是一种数学运算方法,用于求解一组方程组的未知参数,使得每个方程的误差平方和最小。

在实际应用中,最小二乘法广泛应用于数据拟合、信号处理、回归分析等领域。

在数据拟合中,最小二乘法是一种常见的方法,它可以用于拟合曲线和函数。

它通过延伸曲线以获得局部数据之间的交点,并通过在它们上进行平均化的方法来尝试匹配数据。

最小二乘法的概念为我们提供了一个理论基础,以便在一定程度上预测新的数据中对象的行为或趋势。

但是,即使在相对简单的问题中,最小二乘法可能并不是最佳选择。

曲线拟合是对一系列数据进行插值的过程,以便获得与原始数据点更准确相匹配的曲线或函数。

曲线拟合可以通过在相邻数据点之间进行插值来完成。

在曲线拟合中,只有在数据有很好的统计关系或在相邻数据点
有很好的相关性时,才会产生准确的结果。

否则,结果可能并不
准确,因为这些结果取决于数据点的数量和分布。

需要注意的是,曲线拟合和最小二乘法并不是一个可以代替另
一个的工具。

它们的适用范围不同。

曲线拟合适用于对离散数据
点进行联合分析,而最小二乘法适用于求解连续数据的线性模型。

总之,数值分析中的最小二乘法和曲线拟合是非常实用的概念,可以应用于各种领域。

它们作为现代数据分析的主要工具之一,
不断吸引着越来越多的学者和工程师投入到其中,将继续发挥重
要作用。

数值分析模板

数值分析模板

数值分析模板最小二乘法是数值分析中一种常用的数学方法,用于拟合数据的线性模型。

它的基本思想是通过最小化观测数据和线性模型之间的残差平方和,找到最佳的模型系数。

最小二乘法的应用十分广泛,可以用于拟合数据、求解最优化问题、解决线性方程组、估计参数等等。

在数值分析中,我们主要关注最小二乘法在数据拟合中的应用。

首先,我们来看最小二乘法的基本原理。

假设我们有一组观测数据$(x_i, y_i)$,我们希望找到一个线性模型$y = ax + b$,其中$a$和$b$是我们要确定的参数。

我们的目标是通过最小化所有观测数据与模型的残差平方和,来确定最佳的参数。

残差是观测数据与模型预测值之间的差异。

对于每个观测数据$(x_i, y_i)$,其残差为$y_i - (ax_i + b)$。

我们希望通过最小化所有残差的平方和来确定最佳的参数。

也就是说,我们要求解以下最小化问题:$$\text{minimize }\sum_{i=1}^{n}(y_i - (ax_i + b))^2$$其中,$n$是观测数据的数量。

为了解决这个最小化问题,我们需要对目标函数进行求导,并令导数为0。

具体来说,我们对$a$和$b$分别求偏导数,并令导数为0,得到以下两个方程:$$\frac{\partial}{\partial a}\sum_{i=1}^{n}(y_i - (ax_i + b))^2 = 0$$$$\frac{\partial}{\partial b}\sum_{i=1}^{n}(y_i - (ax_i + b))^2 = 0$$化简上述方程,我们可以得到一个线性方程组:$$\begin{bmatrix}\sum_{i=1}^{n}x_i^2 & \sum_{i=1}^{n}x_i \\ \sum_{i=1}^{n}x_i &n\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}=\begin{bmatrix}\s um_{i=1}^{n}x_iy_i\\ \sum_{i=1}^{n}y_i\end{bmatrix}$$通过求解上述线性方程组,我们可以得到最佳的参数$a$和$b$。

数值分析之最小二乘法与最佳一致逼近

数值分析之最小二乘法与最佳一致逼近

就要求矩阵 G非奇异,
而 0 ( x), 1 ( x), , n ( x)在 [a, b]上线性无关不能推出 矩阵 G非奇异,必须加上另外的条件.
8
定义10
设 0 ( x), 1 ( x), , n ( x) [a, b]的任意线
性组合在点集 {xi , i 0,1,, m}(m n) 上至多只有 n 个
只在一组离散点集 {xi , i 0,1,, m} 上给定,这就是科
学实验中经常见到的实验数据 {( xi , yi ), i 0,1,, m}的
曲线拟合.
1
问题为利用 yi f ( xi ), i 0,1,, m, 求出一个函数
y S * ( x) 与所给数据{( xi , yi ), i 0,1,, m} 拟合.
13
令 S1 ( x) a0 a1 x, 这里 m 4, n 1, 0 ( x) 1, 1 ( x) x, 故
( 0 , 0 ) i 8,
i 0 4
( 0 , 1 ) (1 , 0 ) i xi 22,
i 0
4
(1 , 1 ) i xi2 74,
这样就变成了线性模型 .
19
例2
设数据 ( xi , yi )(i 0,1,2,3,4) 由表3-1给出,
表中第4行为 ln yi yi ,通过描点可以看出数学模型为 及 b. y aebx , 用最小二乘法确定 a
表3 1 i xi yi 0 1.00 5.10 1 1.25 5.79 2 1.50 6.53 3 1.75 7.45 4 2.00 8.46
4
S ( x ) 的一般表达式为线性形式.
若 k ( x)是 k 次多项式,S ( x ) 就是 n 次多项式. 为了使问题的提法更有一般性,通常在最小二乘法中 S ( x) a00 ( x) a11 ( x) ann ( x) (n m) 考虑加权平方和

《数值分析》第四章答案

《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。

再给13169=建立3次插值公式,给出相应的结果。

解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。

数值分析

数值分析

数值分析模拟试题1注:计算题取小数点后四位。

1. (10分)利用Gauss-Legendre 求积公式⎰-++-≈11)7746.0(5556.0)0(8889.0)7746.0(5556.0)(f f f dx x f导出求积分03()f x dx -⎰的三点高斯型求积公式。

2. (15分)写出求解线性代数方程组123121322531272x x x x x x x -+=⎧⎪-+=-⎨⎪+=⎩ 的Gauss-Seidel 迭代格式,并分析此格式的敛散性。

3. (15分)设矩阵21011000201010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎥⎥⎦, (1)试计算||||A ∞。

(2)用Householder 变换阵H 将A 相似约化为上Hessenberg 阵,即HAH 为上Hessenberg 阵。

4. (10分) 求关于点集{}1,2,3,4的正交多项式{}012(),(),()x x x ϕϕϕ。

5. (10分)用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据1.02.03.04.00.81.51.82.0iix y ⎧⎨⎩6. (20分)给出数据点: 013419156i i x y =⎧⎨=⎩(1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算 1.5x =的近似值2(1.5)L 。

(2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算 1.5x =的近似值2(1.5)N 。

(3)用事后误差估计方法估计2(1.5)L 、2(1.5)N 的误差。

7.(10分) 设矩阵A 可逆,A δ为A 的误差矩阵,证明:当11A Aδ-<时,A Aδ+也可逆。

8.(10分)设()f x 四阶连续可导,0,0,1,2i x x ih i =+=。

试建立如下数值微分公式''01212()2()()()f x f x f x f x h-+≈,并推导该公式的截断误差。

最小二乘法数值分析实验报告

最小二乘法数值分析实验报告

最小二乘法数值分析实验报告数学与信息工程学院实课程名称:实验室:实验台号:班级:姓名:实验日期:验报告数值分析2012 年 4 月 13 日数值分析实验报告五最小二乘法一、题目设有如下数据用三次多项式拟合这组数据,并绘出图形二、方法最小二乘法三、程序M文件: syms x f;xx=input(‘请输入插值节点as [x1,x2...]\n’);ff=input(‘请输入插值_ __________________ ___________________ ___________________ ___________________实验一MATLAB在数值分析中的应用插值与拟合是来源于实际、又广泛应用于实际的两种重要方法随着计算机的不断发展及计算水平的不断提高,它们已在国民生产和科学研究等方面扮演着越来越重要的角色下面对插值中分段线性插值、拟合中的最为重要的最小二乘法拟合加以介绍分段线性插值所谓分段线性插值就是通过插值点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理实现分段线性插值不需编制函数程序,MATLAB自身提供了内部函数interp1其主要用法如下:interp1(x,y,xi) 一维插值◆yi=interp1(x,y,xi)对一组点(x,y) 进行插值,计算插值点xi的函数值x为节点向量值,y为对应的节点函数值如果y为矩阵,则插值对y 的每一列进行,若y 的维数超出x 或xi 的维数,则返回NaN ◆ yi=interp1(y,xi)此格式默认x=1:n ,n为向量y的元素个数值,或等于矩阵y的size(y,1) ◆ yi=interp1(x,y,xi,’method’)method用来指定插值的算法默认为线性算法其值常用的可以是如下的字符串nearest 线性最近项插值linear线性插值spline 三次样条插值贵州师范大学数学与计算机科学学院学生实验报告1. 对函数f(x)?,哪一种曲线拟合较好?为什么?能找出更好的拟合曲线吗?七、总结1、从图像可以看出用lagrange插值函数拟合数据中间拟合的很好,但两边与原函数图象相比波动太大,逼近效果很差,出现所谓的Runge现象2、从图像可以看出用最小二乘法去拟合较少的数据点,曲线拟合比直线拟合得好,高次的会比低次的拟合得好3.一般情形高次插值比低次插值精度高,但是插值次数太高也不一定能提高精度.八、附录1、M文件:function cy=Lagrange(x,y,n,cx)m=length(cx);cy=zeros(1,m);for k=1:n+1t=ones(1,m);for j=1:n+1if j~=kt=t.*(cx-x(j))./(x(k)-x(j));endendcy=cy+y(k).*t ;end>> x=-5::5;>> y=1./(x. +1);>> plot(x,y)>> n=10;>> x0=-5:10/n:5;>> y0=1./(1+x0. );>> cx=-5::5;>> cy=Lagrange(x0,y0,n,cx);>> hold on>> plot(cx,cy)e1 =xxxx大学数值分析实验报告题目:学院:专业:年级:学生姓名:学号:日期:曲线拟合的最小二乘法xxxx学院xxxxxxx xxxx级xxx xxx 2014年12月24日课题八曲线拟合的最小二乘法一、问题的提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘拟合求得拟合曲线在某冶炼过程中,根据统计数据的含碳量与时间关系,试求出含碳量y与时间t的拟合曲线0 5 10 15 20 25 30 35 40 45 50 55t(分)y(x10?4)0 二、要求1、用最小二乘法进行曲线的拟合;2、近似表达式为:?(t)?a0?a1t?a2t2?a3t3;?(t),3、打印出拟合函数:并打印出?(tj)与y(tj)的误差,其中j?1,2,3,?,12;4、另外选取一个近似表达式,尝试拟合效果的比较;5、*绘制出拟合曲线图;三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线性方程组;3、探索拟合函数的选择与拟合进精度间的关系;四、MATLAB2011a简介及算法介绍MATLAB2011a本实验是基于MATLAB2011a软件平台进行程序设计MATLAB2011a是一款将数据结构、程序特性以及图形用户界面完美地结合在一起的一款强大的软件MATLAB的核心是矩阵和数组,在MATLAB2011a中,所有的数据都是以矩阵或数组的形式来表示和存储的MATLAB2011a提供了常用的矩阵代数运算功能,同时还提供了非常广泛的、灵活的数组运算功能,用于数据集的处理MATLAB的编程特性与其他高级语言类似,同时它还可以与其他语言(如Fortran和C语言)混合编程,进一步扩展了自身的功能这次作业课题,主要采用了MATLAB语言进行程序的编写,误差计算,拟合函数的输出,以及拟合曲线(1)和拟合曲线(2)与原离散数据点在一个图形界面中的现实的显示最小二乘拟合法在函数的最佳平方逼近中f(x)?C[a,b],如果f(x)只在一组离散的点集?xi,i?0,1,2,3,?,m?上给出,这就是科学实验中经常见到的实验数据?(xi,yi),i?0,1,2,3,?m?的曲线拟合,这里yi?f(xi)(i?0,1,2,3,?,m),要求一个函数y?S*(x)与所给数据?(xi,yi),i?0,1,2,3,?m?拟合若记误差?i?S(xi)?yi(i?0,1,2,3,?,m),??(?0,?1,?2,?3,??m)T,设?0(x),?1(x),?,?n(x)是*?C[a,b]上线性无关的函数族,在??span??0(x),?1(x),?,?n(x)?中找一个函数S*(x)使误差平方和??这里22[S(xi)?yi]?min?[S*(xi)?yi]2, ()2i*2i?0i?0s(x)??i?0mmmS(x)?a0?0(x)?a1?1(x)?a2?2(x )?a3?3(x)??an?n(x) (n?m). () 这就是一般的最小二乘逼近,用几何语言说,就称为曲线拟合的最小二乘法. 用最小二乘法拟合曲线时,首先要确定S(x)的形式,这不是单纯的数学问题,还与所研究问题的运动规律及所得到的观测数据(xi,yi)有关;通常要从问题的运动规律或给定的数据描图,确定S(x)的形式,并通过实际计算选出最好的结果——这点将从下面的例题得到说明. S(x)的一般表达式为()式表示的线性形式.若?k(x)是k次多项式,S(x)就是n次多项式为了使问题的提法更有一般性,通常在最小二乘法中都考虑加权平方和2?2??22(xi)[S*(xi)?yi]2. ()i?0m 这里?(x)?0 (i?0,1,2,3,?m)是[a,b]上的权函数它表示不同的点(xi,yi)处的数据比重不同,列如:?(xi)可以表示点(xi,yi)处的重复观测次数用最小二乘法拟合曲线的问题,就是在形如()式的S(x)中求一函数y?S(x),使()式取得最小值它转化为求取多元函数*I(a0,a1,?an)(xi)[?aj?(xi)?f(xi)]2i?0j?0mn***的极小点(a0,a1,?,an)的问题这与多元函数求极值的必要条件的问题一样,则有:mn?I?2??(xi)[?aj?(xi)?f(xi)]?k(xi)?0k?0,1,2,?,n. ?aki?0j?0若记(?j,?k)(xi)?j(xi)?k(xi),()i?0mm(f,?k)(xi)f(xi)?k(xi)?dk,k?0,1,2,3?,n, ()i?0上式可以改写为:?(?j?0mk,?j)aj?dk, k?0,1,2,3?,n, ()线性方程组()称为法方程,可以将其写成:Ga?d其中??Ta?(a0,a1,?a2),d?(d0,d1,?dn)T,(0,0)(0,1)(,)(,)11G10(n,0)(n, 1)(0,n)(n,1)() (?n,?n)?五、课题分析拟合近似表达式:?(t)?a0?a1t?a2t2?a3t3的最高次数为三次,我们知道当拟合多项式的最高次数n?3时,与连续的情形一样,在求解法方程Ga?d的过程中,会出现系数矩阵(格拉姆矩阵)G为病态的问题但是如果?0(x),?1(x),?2(x),?,?n(x)是关于点集?xi?(i?0,1,2,?,m)带权?(xi)(i?0,1,2,?,m)正交的函数族,即:0,jk,()(?j,?k)(xi)?j(xi)?k(xi)??i?0?Ak?0,j?k,m则法方程的解为:(f,?k)?(?k,?k)*ak(x)f(x)?iii?0mk(xi),k?0,1,2,?,n ()??(x)?ii?0m2k(xi)这样就能避免求解格拉姆矩阵,也不会在求解线性方程组是就不会出现病态问题现在我们需要根据给定的节点x0,x1,?xm及权函数?(xi)?0,造出带权?(xi)正交的多项式?Pn(x)?.注意n?m,用递推公式表示Pk(x),即:?P0(x)?1,?() ?P1(x)?(x??1)P0(x),?P(x)?(x??)P(x) P(x),k?1,2,3,?,n?1.k?1kkk?1?k?1这里Pk(x)是首项系数为1的k次多项式,根据Pk(x)的正交性,得:m??(xi)xiPk2(xi)??(xPk(x),Pk(x))??k?1?i?0?m?(Pk(x),Pk(x))2?(x)P(x)?iki?i?0??(xPk,Pk),k?0,1,2,3,?,n?1, () ??(P,P)kk?m??(xi)Pk2(xi)??(Pk,Pk)i?0?,k?1,2,3 ,?,n??k(Pk?1,Pk?1)?(xi)Pk2?1(xi)??i?0?用正交多项式?Pk(x)?的线性组合做最小二乘曲线拟合,只要根据公式()和()逐步求Pk(x)得同时,相应计算出系数(f,Pk)*ak??(Pk,Pk)??(x)f(x)P(x)iikii?0m??(x)Pii?0m, k?0,1,2,?,n,()2k(xi)*并逐步把ak,Pk(x)累加到S(x)中去,最后就会得到所求的拟合曲线。

最小二乘法

最小二乘法

数值分析作业最小二乘法最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得最佳”结果或最可能”表现形式。

如已知两变量为线性关系y= a+ bx,对其进行n(n> 2)次观测而获得n对数据。

若将这n对数据代入方程求解a,b之值则无确定解。

最小二乘法提供了一个求解方法,其基本思想就是寻找最接近”这n 个观测点的直线。

最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。

相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。

作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。

正如美国统计学家斯蒂格勒(S.M. Stigler)所说,最小二乘法之于数理统计学犹如微积分之于数学”最小二乘法创立的历史过程充满着丰富的科学思想,这些对今日的数学创造仍有着重要的启示意义。

本文旨在全面认识最小二乘法的历史系统发育过程以及创立者的思路。

一先驱者的相关研究天文学和测地学的发展促进了数理统计学及其他相关科学的发展。

丹麦统计史家哈尔德曾指出天文学在数理统计学发展中所起的作用。

“天文学自古代至18 世纪是应用数学中最发达的领域。

观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。

天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。

” 这也说明了最小二乘法的显著地位。

有关统计计算思想记载的著作要首推天文学家罗杰柯茨的遗作,即1715年其所发论文中所蕴含的统计方法,亦即对各种观测值赋予加权后求其加权平均。

尽管当时得到认可,然而事实证明如此计算的结果不太精确。

1749年,欧拉(L. Euler,1707—1783)在研究木星和土星之间相互吸引力作用对各自轨道影响时,最后得到一个含8个未知量75个方程的线性方程组。

欧拉的求解方法繁杂而奇特,只能看作是一次尝试。

(整理)数值分析计算方法超级总结

(整理)数值分析计算方法超级总结

工程硕士《数值分析》总复习题(2011年用)[由教材中的习题、例题和历届考试题选编而成,供教师讲解和学生复习用]一. 解答下列问题:1)下列所取近似值有多少位有效数字( 注意根据什么? ):a) 对 e = 2.718281828459045…,取*x = 2.71828b) 数学家祖冲之取 113355作为π的近似值.c) 经过四舍五入得出的近似值12345,-0.001, 90.55000, 它们的有效 数字位数分别为 位, 位, 位。

2) 简述下名词:a) 截断误差 (不超过60字) b) 舍入误差 (不超过60字)c) 算法数值稳定性 (不超过60字)3) 试推导( 按定义或利用近似公式 ): 计算3x 时的相对误差约等于x 的相对误差的3倍。

4) 计算球体积334r Vπ= 时,为使其相对误差不超过 0.3%,求半径r 的相对 误差的允许范围。

5) 计算下式3418)1(3)1(7)1(5)1(22345+-+---+---=x x x x x x P)(时,为了减少乘除法次数, 通常采用什么算法? 将算式加工成什么形式?6) 递推公式 ⎪⎩⎪⎨⎧=-==-,2,1,110210n y y y n n如果取*041.12y y =≈= ( 三位有效数字 ) 作近似计算, 问计算到10y 时误差为初始误差的多少倍? 这个计算过程数值稳定吗 ?二. 插值问题:1) 设函数)(x f 在五个互异节点 54321,,,,x x x x x 上对应的函数值为54321,,,,f f f f f ,根据定理,必存在唯一的次数 (A ) 的插值多项式)(x P ,满足插值条件 ( B ) . 对此,为了构造Lagrange 插值多项式 )(x L ,由5个节点作 ( C ) 个、次数均为 ( D ) 次的插值基函数)(x l i = _(E ) , 从而得Lagrange 插值多项式)(x L = (F ) ,而插值余项 )()()(x L x f x R -== (G ) 。

数值分析方法(讲义)

数值分析方法(讲义)

第十章 数值分析方法在生产实际中,常常要处理由实验或测量所得到的一批离散数据,数值分析中的插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。

插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。

相应的理论和算法是数值分析的内容,这里不作详细介绍。

§1 数据插值方法及应用在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。

与此有关的一类问题是当原始数据),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。

1、分段线性插值这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。

如果b x x x a n =<<<= 10那么分段线性插值公式为n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11111 =≤<--+--=-----可以证明,当分点足够细时,分段线性插值是收敛的。

其缺点是不能形成一条光滑曲线。

例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

根据地图的比例,18 mm 相当于40 km 。

根据测量数据,利用MA TLAB 软件对上下边界进行线性多项式插值,分别求出上边界函数)(2x f ,下边界函数)(1x f ,利用求平面图形面积的数值积分方法—将该面积近似分成若干个小长方形,分别求出这些长方形的面积后相加即为该面积的近似解。

数值分析论文--曲线拟合的最小二乘法

数值分析论文--曲线拟合的最小二乘法

曲线拟合的最小二乘法姓名:学号:专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。

根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。

后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作 x,而把所有的误差只认为是y的误差。

设 x 和 y 的函数关系由理论公式y=f(x;c1,c2,……cm)(0-0-1)给出,其中 c1,c2,……cm 是 m 个要通过实验确定的参数。

对于每组观测数据(xi,yi)i=1,2,……,N。

都对应于xy 平面上一个点。

若不存在测量误差,则这些数据点都准确落在理论曲线上。

只要选取 m 组测量值代入式(0-0-1),便得到方程组yi = f (x ;c1 ,c2 ,……cm)(0-0-2)式中 i=1,2,……,m.求 m 个方程的联立解即得 m 个参数的数值。

显然N<m 时,参数不能确定。

y 2 y 在 N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。

设测量中不存在着系统误差,或者说已经修正,则 y 的观测值 yi 围绕着期望值 <f (x ;c1,c2,……cm)> 摆 动,其分布为正态分布,则 yi 的概率密度为p y i1 exp,式中i是分布的标准误差。

为简便起见,下面用 C 代表(c1,c2,……cm )。

(完整版)数值分析课后习题答案

(完整版)数值分析课后习题答案

第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

用最小二乘法拟合数据并求均方偏差

用最小二乘法拟合数据并求均方偏差
28.1
41.9
72.3
91.4
根据表2-1所给的数据,用0rigin软件得出它的散点图2-1
图2-1
根据散点图2-1可看出该图形可能为多项式函数,所以不妨设该方程式为y=a*x2+b*x+c。根据所给数据,由最小二乘法,取
故得方程: 6*a+28.4*b+165.58*c=247.3………………… ①
由上述式子得线性方程组
6a0+28.4a1=247.3
28.4a0+165.58a1=1595.51
解得a0=-23.3498,a1=13.6408。
于是所求拟合曲线为:
S(x)=13.6408*x-23.3498
3.2另一种曲线拟合方程的Matlab编程
Matlab编程编程如下:
>> x=[1.2,2.8,4.3,5.4,6.8,7.9];
用最小二乘法拟合数据并求均方偏差
摘要:数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。本文通过对一组数据用origin先得到散点图,然后根据散点图来预测函数。接着用matlab软件采用最小二乘法拟合,得到两个不同的函数,并计算它们的均方偏差,以便比较这两个拟合函数的优劣。
Keyword:Numerical analysis;origin;matlab;the least square method;Mean Square Error
1、引言
数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合。随着科学技术的迅速发展,运用数学方法解决科学研究和工程计算领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。

数值分析模拟试题(XAUT)(15套)

数值分析模拟试题(XAUT)(15套)

模拟试题一一、填空(每小题3分,共30分)1. 设2.40315x *=是真值 2.40194x =的近似值,则x *有 位有效数字。

2. 牛顿—柯特斯求积公式的系数和()0nn k k c =∑ 。

3 已知 12,()_________01A A ∞⎛⎫== ⎪⎝⎭则条件数cond 。

4 若332x -1x 1S(x)=1(x -1)+a(x -1)+b(x -1)+c 1x 220⎧≤≤⎪⎨≤≤⎪⎩是三次样条函数,则a =_______, b =______, c =______.5 以n + 1个 整 数 点k ( k =0,1,2,…,n ) 为 节 点 的 Lagrange 插 值 基函 数 为()k l x ( k =0,1,2,…,n ),则 nk k=0kl (x)=_____.∑6 序列{}n n=0y ∞满足递推关系:n n-1y =10y -1,(n =1,2,...),若0y 有误差, 这个计算过程____________稳定.7 若42f(x)=2x +x -3, 则f[1,2,3,4,5,6]=_____. 8 数值求积公式10311f(x)dx f()+f(1)434=⎰的代数精度是____________. 9.当x很大时,为防止损失有效数字,应该使 .10.已知A =⎢⎢⎢⎣⎡761 852 ⎥⎥⎥⎦⎤943,x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111,则=1Ax . 二、(10分) 用最小二乘法确定一条经过原点的二次曲线,使之拟合下列数据x 0 1.0 2.0 3.0 y 0.2 0.5 1.0 1.2三、(10分)2011A =050,b =3,203-1⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭用迭代公式(1)()()()(0,1,2,)k k k x x Ax b k α+=+-=求解,Ax b =问取什么实数α可使迭代收敛,什么α可使迭代收敛最快。

四、(10)设()f x 四阶连续可导,0,0,1,2,,i x x ih i =+= 试建立如下数值微分公式''01212()2()()()f x f x f x f x h -+≈并推导该公式的截断误差。

数值分析最小二乘拟合法实验报告

数值分析最小二乘拟合法实验报告

一实验名称:实验五最小二乘拟合法二.实验题目:在某化学反应中,测得某物质的浓度y(单位:%)随时间t(单位:min)的变化数据如表。

理论上已知y和t的关系为Y=ae b/t,其中a>0和b<0为待定系数,上式两端取对数lny=lna+b/t.做变量替换z=lny,x=1/t,并记A=lna,B=b,则有z=A+Bx.根据所测数据,利用最小二乘直线拟合法确定A和B,进而给出y和t的关系。

三.实验目的:(1)要求我们掌握逐次最小二乘拟合法的原理和运用方法。

(2)培养编程和上机调试能力。

四.基础理论:要求会熟练运用C语言中的基本数学函数和逐次超松弛迭代法的具体操作思路。

五.实验环境:必须要有一台PC机,并且装有winXP,win7及以上版本的操作系统,还必须有Visual C++6.0或其他编程软件。

六实验过程:理解题意,然后试着在草稿纸上写出伪代码,接着再用C语言编译,接着要在编程环境中调试。

在实验过程中,经常遇到一些棘手的问题,需要通过百度才能够解决,最后还是很艰难的把代码都做好,最后写成实验报告。

七.实验完整代码:#include<stdio.h>#include<math.h>void main(){int i,n;doubletx,ty,x[16],y[16],sum_x=0,sum_y=0,sum_x2=0,sum_xy=0,D,a,b, A,B;for(i=0;i<16;i++){scanf("f%f",&tx,&ty);x[i]=1/tx,y[i]=log(ty);}for(i=0;i<15;i++){sum_x=sum_x+x[i];sum_x2=sum_x2+x[i]*x[i];sum_y=sum_y+y[i];sum_xy=sum_xy+x[i]*y[i];}D=sum_x2*15-sum_x*sum_x;a=(n*sum_xy-sum_x*sum_y)/D;b=(sum_x2*sum_y-sum_x*sum_xy)/D;A=log(a);B=b;printf("A=%.6f B= %.6f\n");}八实验结果:y=11.343e-1.057/t.。

数值分析所有常考例题及详细答案

数值分析所有常考例题及详细答案

数值分析所有常考例题及详细答案第二章线性方程组的直接解法 (2)第三章解线性方程组的迭代法 (4)第五章非线性方程和方程组的数值解法 (7)第六章插值法与数值微分 (11)第七章数据拟合与函数逼近 (16)第八章数值积分 (20)第九章常微分方程的数值解法 (25)第二章 线性方程组的直接解法1、用LU 分解法求如下方程组的解(1)3351359059171⎛⎫⎛⎫ ⎪ ⎪X = ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,(2)3235220330127X ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦解:(1)13351124522133A L U ⎛⎫⎛⎫⎪⎪ ⎪⎪== ⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭4(101)(1,1,)339(,,2)22T TTL Y Y UX Y X =⇒=-=⇒=-(2)132332352222012333301271313b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦15521133371311y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⇒=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦ 3235121123321313X X ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=-⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦2121311()21()44254213142541425421310212127127350624r r r r r r +-↔+-⎡⎤⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥-⎣⎦→→ 32344254102127210084r r +⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥-⎣⎦→得同解方程组1232334254121272184x x x x x x ⎧⎪++=⎪⎪-+=-⎨⎪⎪-=⎪⎩回代求解得(9,1,6)TX =--②212131112312323111011323231110523523111011323032323122112215747012323r r r r r r +↔+⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦⎢⎥-⎣⎦→→323252()57231110231110574757470101232323235235193223030023235757r r r r +-↔⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦→→得同解方程组12323323110574701232319322300()5757x x x x x x ⎧⎪-++=⎪⎪++=-⎨⎪⎪++-=⎪⎩回代得(0.212435,0.549222, 1.15544)T X =-4、用Jordan 消去法解矩阵方程,AX B =其中:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=112221111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011001B 解:容易验证0A ≠,故A 可逆,有1X A B -= .因此,写出方程组的增广矩阵,对其进行初等变换得111101111011110122010111101111211100313000263---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→--→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦100211002110111101022330013001322⎡⎤⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥→--→-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦121122332X A B -⎡⎤⎢⎥-⎢⎥⎢⎥∴==-⎢⎥⎢⎥⎢⎥-⎣⎦5、用LU 分解法求解如下方程组12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦解:100256210037341004A LU -⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦12312311021193413010,19201,34304(10,1,4)TLy by y y y y y y =⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦==-=-=-==-(1)解得即 123321(2)25610371441,2,3(3,2,1)T Ux yx x x x x x x =-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦====解解得:所以方程组的解为。

西安理工大学研究生《数值分析》复习题

西安理工大学研究生《数值分析》复习题

1 1 1 2 1 3 1 x1 1 x 六 求解矛盾方程组 2 5 2 2 1 x3 2 3 1 5
七 已知初值问题 y ax b, y(0) 0 有精确解 y ( x)
2 1 5 10.设 A 3 1 4 ,则 || A ||1 2 7 8 2 x1 2 x2 3x3 12 二 给定线性方程组 4 x1 2 x2 x3 12 x 2 x 3x 16 2 3 1
1. 用列主元消元法求解所给线性方程组。 2. 写出 Gauss-Seidel 迭代格式,并分析该迭代格式是否收敛。 三 设 M 2 Span 1, x 四 对于积分
. 试在 M
2
2
中求 f ( x) | x | 在区间 [1,1] 上的最佳平方逼近元。

1
0
1 1 4 f ( x)dx ,若取节点 x0 , x1 , x2 , 试推导一个插值型求积公式,并用这个公式求 5 2 5
e
0
1
x
dx 的值。
五 给定方程 x Lnx 2 0 (1)分析该方程存在几个根,找出每个根所在的区间; (2)构造求近似根的迭代公式,并证明所用的迭代公式是收敛的。 六 已知观测数据(1,-5) , (2,0) , (4,5) , (5,6) ,试用最小二乘法求形如 ( x) ax 七 已知初值问题 y ax b, y(0) 0 有精确解 y ( x)
x4 y4 . .
y m0 m1 m2 m3 m4 则可利用 插值,其插值多项式的次方为 3 2 4.设 f(x)=3x +2x +1,则差商 f [0,1,2,3,4]=

昆明理工数值分析大作业最小二乘法

昆明理工数值分析大作业最小二乘法

昆明理工数值分析大作业最小二乘法最小二乘法(Least Squares Method)是数值分析中的一种重要方法,用于处理数据拟合问题。

在大作业中,我们将通过使用最小二乘法来拟合给定的数据,并解释其原理和应用。

最小二乘法是一种用于找到使得拟合曲线与数据点之间的误差最小化的方法。

使用最小二乘法进行数据拟合的基本思想是,找到一个函数,可以描述数据点的分布,并通过优化算法调整函数的参数,使得函数的拟合曲线与数据点的残差最小。

首先,我们需要确定拟合函数的形式。

在拟合直线的情况下,我们选择一条直线的方程 y = mx + b,其中 m 和 b 是需要衡量和优化的参数。

在更复杂的情况下,比如多项式拟合,拟合函数可以是二次函数、三次函数等。

最小二乘法的关键是定义误差函数或损失函数。

通常,最小二乘法使用残差平方和来作为误差函数。

残差是指拟合曲线与实际数据点之间的垂直距离。

对于一条直线来说,残差可以通过计算每个数据点在垂直方向上的距离来得到。

如果我们有n个数据点,那么残差平方和可以通过以下公式计算:S = Σ(yᵢ - (mxᵢ + b))²其中,(xᵢ,yᵢ)表示第i个数据点的坐标。

我们的目标是找到最佳的参数m和b,使得S最小化。

为了找到最小化残差平方和的解,可以使用最优化算法,如梯度下降法、牛顿法等。

这些算法根据误差函数的梯度(导数)来更新参数的值,直到达到最小化误差的目标。

最小二乘法在实际应用中有广泛的用途。

例如,在回归分析中,可以使用最小二乘法进行线性回归,以确定自变量和因变量之间的关系。

此外,最小二乘法还可以用于曲线拟合、信号处理、图像处理等领域。

在大作业中,你可以选择一个合适的数据集,并使用最小二乘法进行拟合。

你可以尝试不同的拟合函数和最优化算法,比较它们的性能和误差。

此外,你还可以进一步探索最小二乘法的应用领域,并说明其优缺点。

总之,最小二乘法是一种重要的数值分析方法,用于拟合数据并优化参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
k 1
m
k
y1 x a0 y2 n xm an y mm y k m k 1 n x k m a k 1 0 x k yk
一个无解的方程组称为不相容。许多情况下方程 个数大于未知量个数使解不大可能满足所有的方程。 定义: 一个方程组称为相容方程(consistent equation),若 至少存在一个解能够严格满足该方程组。 定理: 线性方程Ax=b是相容的当且仅当增广矩阵的秩 等于矩阵A的秩, 即rank([A,b])=rank(A) 。
T T
20:23
10/43
1 1 2 例2 x1 1 1 1 x 2 1 1 3 1 1 1 1 1 3 1 T A A 1 1 1 3 1 1 1 1 1 2 x 3 1 1 1 1 6 1 T A b 1 1 1 1 4 1 3 x2 3 0.5 残差( residuals )r b Ax 0 2 20:23 2 2 2 r 2 r1 r2 r3 ( least squares ) 0.5
20:23
2/43
离散数据的拟合 x x1 f(x ) y1
求拟合函数:
x2 y2
· · · · · · · · · · xm · · · · · · · · · · ym
c1 c2 x1 y1 c1 c2 x2 y2

( x ) c1 c2 x

y1 1 x1 1 x c y 1 2 2 Ac=y c2 1 x m ym
如果b不属于v1和v2张成的平面?
20:23
9/43
寻求x的公式(b Ax ) { Ax | x R }
2
( Ax) (b Ax ) 0, x R
T
2
x A (b Ax ) 0, x R
T T
2
A (b Ax ) 0
T
正规方程(normal equation) A Ax A b
设 u 是 f(x) 极小值点。取非零向量 x∈R n,
对任意 t∈R , 有
1 g( t ) f ( u tx ) ( A( u tx ), u tx ) ( b, u tx ) 2 2 t f ( u) t ( Au b, x ) ( Ax , x ) 2 当 t=0 时, g(0)= f(u)达到极小值, 所以 g′ (0) =0,即 ( Au – b , x ) = 0 Au – b = 0

y1 1 x1 1 x c y 1 2 2 Ac=y c2 1 x m ym
m 超定方程组 x y i i i 1 i 1 c =AT A \ AT y m m 2 x i x i yi 20/43 i 1 i 1
给定n+2个数据, n次插值多项式有多少个?
(m个方程n个未知量, 超定方程组 overdetermined)
20:23
4/43
不相容方程组(inconsistent equation)
x1 x2 2, x1 x2 1, x x 3. 1 2
Ax b
x1 x2 · · · · · · · · · · xm
y1
y2
· · · · · · · · · · ym
6 4
11/43
任一m n方程组Ax =b都可以看作向量方程组 x1v1 x2v2 xnvn b
寻求x的公式(b Ax ) { Ax | x R }
n
( Ax ) (b Ax ) 0, x R
T
n
x A (b Ax ) 0, x R
plot(x,y,'o',u,v,'-')
20:23
19/43
离散数据的拟合 x x1 f(x ) y1
求拟合函数:
x2 y2
· · · · · · · · · · xm · · · · · · · · · · ym
c1 c2 x1 y1 c1 c2 x2 y2

( x ) c1 c2 x
x
1 x arg min ( Ax , x ) (b, x ) x 2 线性方程组 Ax = b 的解 x 。 证明: 设 u 是 Ax = b的解 1 Au = b f ( u) ( Au, u) 2 对任意 x∈R n , 只须证明 f (x) – f (u) ≥ 0 1 1 f ( x ) f ( u) ( Ax , x ) (b, x ) ( Au, u) 2 2
2
3
20:23
21/43
离散数据的多项式拟合 x x1 x2 f(x ) y1 y2
求拟合函数:
1 1 x1 xm
n 1
· · · · · · · · · · xm · · · · · · · · · · ym
( x) a0 a1 x
m T T A Aa A y m xn 20:23 k k 1
T T x
20:23
arg min ( A Ax , x ) ( A b, x )
x 1 2 T T
13/43
定理4.10(初等变分原理) 设A =(aij )n×n为实对称正 n 定矩阵, x, b R ,则二次函数的极值点
1 ( A( x u), ( x u)) 0 20:23 2 T T T T 1 x argmin 2 ( A Ax, x) ( A b, x) A Ax A b 14/43
所以u 是方程组 Ax = b 的解。 思考: 如果矩阵半正定呢?
20:23
15/43
定理 如果矩阵A 列满秩, 则ATA正定。
证明 : 如果矩阵列满秩则矩阵列向量
1 , 2 ,
,m
线性无关, 则对于任意的非零向量 Ac c11 c2 2 cm m 0, 进一步对任意非零向量cT AT Ac 0, 故矩阵A A正定, A A可逆。
2
2
n
2 2
20:23
i 1
6/43
例1: 研究弹簧伸长的长度跟引起形变的外力的关系。
load Hooke.mat
Hooke's Law
u=0.08:.0001:0.35; plot(x,y,‘o’);
v=interp1(x,y,u,'spline');hold on, plot(u,v,‘-’);
m
c1 c2 xm ym
m AT Ac AT y m 20:23 xi i 1
例3: 美国人口统计数据(censusgui)
load census 研究美国人口增长的规律并预测2010年的人口。 求拟合函数:
( x) a0 a1 x a2 x a3 x
|| Ax b || = (Ax–b , Ax–b )
2 2
=(Ax, Ax) – 2(Ax, b )+(b, b) =(ATAx, x) – 2(ATb, x)+(b, b)
arg min( A Ax , x ) 2( A b, x ) (b, b)
T T x
= arg min( A Ax , x ) 2( A b, x )
20:23
5/43
不相容方程组(inconsistent equation)
Ax b
当方程组不相容时, 如何寻求次佳(next-best)解。
r Ax b 0
我们希望残差r尽可能小,这 b 2 即 min r ( x ) ri ( least squares) min x x
T T
20:23
16/43
回顾:
Ax b
m n
超定方程Ax b, 其中A R
x
,m n
最小二乘解 x arg min || Ax b ||2 (least squares) 2
初等变分原理 arg min Ax b 2 AT Ax AT b ( normal eqaution )
T T
n
AT (b Ax ) 0
正规方程(normal equation)A Ax A b
T T
20:23
12/43
方程组 Ax b 的残差: r = b – Ax
|| Ax b || 最小二乘问题 x arg min x (least squares)
2 2
Ax b
( arg ument of the min imum)
超定方程组
c1 c2 xm ym
20:23
3/43
给定n+1个数据, 存在唯一性定理保证小于等于n次插 值多项式的存在且唯一。
(n个方程n个未知量, 适定方程组)
注释: m>n
给定n+1个数据, n+1次插值多项式有无穷多个。 (n个方程m个未知量, 欠定方程组 underdetermined)
20:23
7/43
离散数据的拟合 x x1 f(x ) y1
求拟合函数:
x2 y2
· · · · · · · · · · xm · · · · · · · · · · ym
相关文档
最新文档