线段垂直平分线综合练习题

合集下载

线段的垂直平分线经典习题及答(精.选)

线段的垂直平分线经典习题及答(精.选)

线段的垂直平分线一、选择题(共8小题)1、如图,在△ABC 中,分别以点A 和点B 为圆心,大于的21AB 的长为半径画孤,两弧相交于点M ,N ,作直线MN , 交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为( ) A 、7 B 、 14 C 、17 D 、20第1题 第2题 第3题2、如图,在Rt △ACB 中,∠C=90°,BE 平分∠ABC ,ED 垂直平分AB 于D .若AC=9,则AE 的值是( )A 、6B 、4C 、6D 、43、如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )A 、6B 、5C 、4D 、34、如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A 、80°B 、70°C 、60°D 、50°第4题 第 5题 第6题 5、如图,直线CP 是AB 的中垂线且交AB 于P ,其中AP=2CP .甲、乙两人想在AB 上取两点D 、E ,使得AD=DC=CE=EB ,其作法如下:(甲)作∠ACP 、∠BCP 之角平分线,分别交AB 于D 、E ,则D 、E 即为所求;(乙)作AC 、BC 之中垂线,分别交AB 于D 、E ,则D 、E 即为所求.对于甲、乙两人的作法,下列判断何者正确( )A 、两人都正确B 、两人都错误C 、甲正确,乙错误D 、甲错误,乙正确6、如图,在Rt △ABC 中,∠C=90°,∠B=30°.AB 的垂直平分线DE 交AB 于点D ,交BC 于点E ,则下列结论不正确的是( )A 、AE=BEB 、AC=BEC 、CE=DED 、∠CAE=∠B7、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A 、△ABC 的三条中线的交点B 、△ABC 三边的中垂线的交点 C 、△ABC 三条角平分线的交点D 、△ABC 三条高所在直线的交点第7题 第8题8、如图,AC=AD ,BC=BD ,则有( ) A 、AB 垂直平分CD B 、CD 垂直平分AB C 、AB 与CD 互相垂直平分 D 、CD 平分∠ACB二、填空题(共12小题)9、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________.第9题第10题第11题10、如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.11如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_________°.12、如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC 的周长之差为12,则线段DE的长为_________.第12题第13题第14题第15题13、如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.14、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_________度.15、如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是_________度.16、如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_________个不同的四边形.第16题第17题第18题17已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________.18、如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=1/2∠DAC;④△ABC是正三角形.请写出正确结论的序号_________(把你认为正确结论的序号都填上)19、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________cm.20、在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_________°.三、解答题(共6小题)21、如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.22、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.1、如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20考点:线段垂直平分线的性质。

北师大版数学八年级下线段的垂直平分线 同步练习含答案

北师大版数学八年级下线段的垂直平分线  同步练习含答案

线段的垂直平分线第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为()A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是()A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为()A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是()A.P是AC的垂直平分线与AB的交点B.P是BC的垂直平分线与AB的交点C.P是∠ACB的平分线与AB的交点D.P是以点B为圆心,AC长为半径的弧与边AB的交点8.如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D.求证:点D在AB的垂直平分线上.9.在△ABC中,AB=AC,边AB的垂直平分线与边AC所在的直线相交所得的锐角为50°,则∠C的度数为.10.下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB;②若PA=PB,EA=EB,则直线PE是线段AB的垂直平分线;③若EA=EB,则直线EP是线段AB的垂直平分线;④若PA=PB,则点P在线段AB的垂直平分线上.其中正确的有()A.1个B.2个C.3个D.4个11.如图,在△ABC中,DE是AC的垂直平分线,AC=6 cm,且△ABD的周长为13 cm,则△ABC的周长为()A.13 cm B.19 cmC.10 cm D.16 cm第11题图第12题图12.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=.13.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.第13题图第14题图14.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=39°,则∠AOC=.15.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE交AC于点F.求证:点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在()A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是()A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD .过点P 作直线AB 的垂线6.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是( )A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE = ;(2)AE EC ;(填“=”“>”或“<”)(3)当AB =3,AC =5时,△ABE 的周长等于 .8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.A 村 ·B 村 ·C 村·9.在平面内,到三点A,B,C距离相等的点()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有10.如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则()A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.参考答案:第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为(D)A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是(B)A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为(B)A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为30°.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.证明:∵DE是AB的垂直平分线,∴EA=EB.∴∠EAB=∠B.∵∠C=90°,∴∠CAB+∠B=90°.又∵∠AED+∠EAB=90°,∴∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有(A)A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是(B)A.P是AC的垂直平分线与AB的交点B .P 是BC 的垂直平分线与AB 的交点 C .P 是∠ACB 的平分线与AB 的交点D .P 是以点B 为圆心,AC 长为半径的弧与边AB 的交点8.如图,在△ABC 中,∠C =90°,∠A =30°,BD 平分∠ABC 交AC 于点D.求证:点D 在AB 的垂直平分线上.证明:∵∠C =90°,∠A =30°, ∴∠ABC =90°-30°=60°. ∵BD 平分∠ABC , ∴∠ABD =12∠ABC =30°.∴∠A =∠ABD. ∴DA =DB.∴点D 在AB 的垂直平分线上.9.在△ABC 中,AB =AC ,边AB 的垂直平分线与边AC 所在的直线相交所得的锐角为50°,则∠C 的度数为20°或70°.10.下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ;②若PA =PB ,EA =EB ,则直线PE 是线段AB 的垂直平分线;③若EA =EB ,则直线EP 是线段AB 的垂直平分线;④若PA =PB ,则点P 在线段AB 的垂直平分线上.其中正确的有(C)A .1个B .2个C .3个D .4个11.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6 cm ,且△ABD 的周长为13 cm ,则△ABC 的周长为(B)A .13 cmB .19 cmC .10 cmD .16 cm第11题图 第12题图12.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,将AB 边沿AD 折叠,发现B 点的对应点E 正好在AC 的垂直平分线上,则∠C =30°.13.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为76.第13题图 第14题图14.(2020·南京)如图,线段AB ,BC 的垂直平分线l 1,l 2相交于点O.若∠1=39°,则∠AOC =78°.15.如图,在△ABC 中,∠ACB =90°,D 是BC 延长线上一点,E 是BD 的垂直平分线与AB 的交点,DE 交AC 于点F.求证:点E 在AF 的垂直平分线上.证明:∵E 是BD 的垂直平分线上的一点, ∴EB =ED. ∴∠B =∠D. ∵∠ACB =90°,∴∠A=90°-∠B,∠CFD=90°-∠D.∴∠CFD=∠A.又∵∠AFE=∠CFD,∴∠AFE=∠A.∴EF=EA.∴点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.解:(1)证明:∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD垂直平分BC.(2)选择A,证明:由(1),得AD⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠CAF=∠ADE.∴∠BAF=∠ADE.∴DE=AE.选择B,线段DE,AC,BE之间的等量关系为DE=BE+AC.证明:由(1),得AF⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠EDA=∠CAF.∴∠BAF=∠EDA.∴AE=DE.∵AE=EB+AB,AB=AC,∴DE=BE+AC.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定(D)A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形(C)A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是(D) A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在(A)A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是(D)A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD.过点P作直线AB的垂线6.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是(A)A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE =90°;(2)AE =EC ;(填“=”“>”或“<”) (3)当AB =3,AC =5时,△ABE 的周长等于7.8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.解:已知:A ,B ,C 三点不在同一直线上. 求作:作一点P ,使PA =PB =PC. 如图所示,点P 即为所求的点.9.在平面内,到三点A ,B ,C 距离相等的点(D) A .只有一个B .有两个C .有三个或三个以上D .有一个或没有10.如图,在△ABC 中,∠BAC =90°,AB >AC.按下列步骤作图:①分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是(C)A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则(B)A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案③.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).解:作法:(1)作线段AD=a;(2)过点D作直线MN⊥AD于点D;(3)以点A为圆心,b为半径画弧,交MN于B,C两点,连接AB,AC,△ABC即为所求,如图所示.14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.解:(1)∵DM,EN分别垂直平分AC和BC,∴AM=CM,CN=BN.∴∠A=∠ACM,∠B=∠BCN.∴∠MCN=180°-(∠CMN+∠CNM)=180°-(2∠A+2∠B)=180°-2(180°-∠ACB)=60°.(2)∵AM=CM,BN=CN,∴△CMN的周长为CM+MN+CN=AM+MN+BN=AB.∵△CMN的周长为15 cm,∴AB=15 cm.(3)∵∠MFN=70°,∴∠MNF+∠NMF=180°-70°=110°.∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠NMF+∠MNF=110°.∴∠A+∠B=90°-∠AMD+90°-∠BNE=70°.又∵∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°-2(∠A+∠B)=40°.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.解:(1)设∠PAQ=x,∠CAP=y,∠BAQ=z,∵MP和NQ分别垂直平分AB和AC,∴AP=PB,AQ=CQ.∴∠B=∠BAP=x+z,∠C=∠CAQ=x+y.∵∠BAC=80°,∴∠B+∠C=100°,即x+y+z=80°,x+z+x+y=100°.∴x=20°.∴∠PAQ=20°.(2)∵△APQ周长为12,∴AQ+PQ+AP=12.∵AQ=CQ,AP=PB,∴CQ+PQ+PB=12,即BC+2PQ=12.∵BC=8,∴PQ=2.21。

八年级数学重点题型强化训练05 线段垂直平分线专题(解析版)

八年级数学重点题型强化训练05 线段垂直平分线专题(解析版)

八年级数学重点题型强化训练5——线段垂直平分线专题第1题第2题【分析】本题考查的是线段垂直平分线的性质:熟记:线段垂直平分线上的点到这条线段两个端点的距离第3题可证BEF CED ≌△△,可得EF =BC 的中点,第5题第6题第7题第8题 第9题【答案】B 【分析】利用全等三角形的判定以及垂直平分线的性质得出OBC Ð,以及40,OBC OCB Ð=Ð=°,再利用翻折变换的性质得出,CEF FEO =Ð进而求出即可.50,BAC BAC Ð=°ÐQ 12OAB CAO \Ð=Ð=25OAB ABO Ð=Ð=∵在等腰ABC V 中,DG Q 是BC 的垂直平分线,BD CD \=,AD Q 是BAC Ð的平分线,DE DF \=,在Rt BDE △和Rt CDF △中,C .60°D 【分析】先根据线段垂直平分线的性质得到BE CE =,则AC EC =,再根据等腰三角形的性质和三角形内,接着利用三角形外角性质计算出EBC Ð=Ð的度数.故选:C .题型2:线段垂直平分线的判定11.如图,AD AC =,BD BC =,则下列判断一定正确的是( )A .AB 垂直平分CDB .CD 垂直平分ABC .CD 平分ACB ÐD .以上都不正确第11题第12题【答案】A【分析】根据线段垂直平分线的判定求解即可.【详解】解:∵AD AC =,BD BC =,∴点A 、B 在线段CD 的垂直平分线上,即AB 垂直平分CD ,故选:A .12.如图,ABC AB AC BC >>V ,,边AB 上存在一点P ,使得PA PC AB +=.下列描述正确的是( )A .P 是AC 的垂直平分线与AB 的交点B .P 是ACB Ð的平分线与AB 的交点C .P 是BC 的垂直平分线与AB 的交点D .P 是AB 的中点【答案】C【分析】根据线段垂直平分线的判定解答即可.【详解】解:PA PC AB PA BP AB +=+=Q ,,PC BP \=,∴P 是BC 的垂直平分线与AB 的交点.故选:C .13.如图,将长方形纸片沿AC 折叠后点B 落在点E 处,则下列关于线段BE 与AC 的关系描述正确的是( )A .AC BE =B .AC 和BE 相互垂直平分C .AC BE ^且AC BE=D .AC BE ^且AC 平分BE【答案】D 【分析】只要证明AC 是线段BE 的垂直平分线即可解决问题.【详解】解:ACE QV 是由ACB △翻折得到,AE AB \=,CB CE =,AC EB \^,AC 平分EB ,故选:D .14.如图,已知:AB AC =,MB MC =.求证:直线AM 是线段BC 的垂直平分线.下面是小彬的证明过程,则正确的选项是( )证明:∵AB AC=∴点A 在线段BC 的垂直平分线上①∵MB MC=∴点M 在线段BC 的垂直平分线上②∴直线AM 是线段BC 的垂直平分线③A .①处的依据是:线段垂直平分线上的点与这条线段两个端点的距离相等B .②处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上C .③处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上D .以上说法都不对【答案】B【分析】根据垂直平分线的判定方法逐项判断即可.【详解】解:①处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上,故A 选项错误,不合题意;②处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上,故B 选项正确,符合题意;③处的依据是:两点确定一条直线;故C 选项错误,不合题意;综上可知,选项D 错误,不合题意;故选B .15.下列说法错误的是( )A .若点P 是线段AB 的垂直平分线上的点,则PA PB=B .若PA PB =,QA QB =,则直线PQ 是线段AB 的垂直平分线C .若PA PB =,则点P 在线段AB 的垂直平分线上D .若PA PB =,则过点P 的直线是线段AB 的垂直平分线【答案】D【分析】根据线段垂直平分线的判定方法,即可一一判定.【详解】解:A.若点P 是线段AB 的垂直平分线上的点,则PA PB =,故该说法正确,不符合题意;B.若PA PB =,QA QB =,则直线PQ 是线段AB 的垂直平分线,故该说法正确,不符合题意;C.若PA PB =,则点P 在线段AB 的垂直平分线上,故该说法正确,不符合题意;D.若PA PB =,则过点P 的直线不一定是线段AB 的垂直平分线,故该说法错误,符合题意;故选:D .16.如图,AD 是ABC V 的角平分线,交BC 于D ,DE DF 、分别是ABD △和ACD V 的高,分别交AB AC 、于E 、F ,连接EF 交AD 于G .下列结论:①AD 垂直平分EF ;②EF 垂直平分AD ;③AED AFD V V ≌;④当BAC Ð为60°时,AEF △是等边三角形,其中正确的结论的个数为( )A .4个B .3个C .2个D .1个第16题第17题【答案】B 【分析】根据角平分线性质求出DE DF =,证AED AFD V V ≌,推出AE AF =,再逐个判断即可.【详解】解:∵AD 是ABC V 的角平分线,DE DF 、分别是ABD △和ACD V 的高,∴DE DF =,90AED AFD Ð=Ð=°,在Rt AED △和Rt AFD △中,AD AD DE DF =ìí=î,∴()Rt Rt HL AED AFD ≌△△,故③正确;∴AE AF =,∴AD 垂直平分EF ,①正确;②错误;∵60BAC Ð=°,且AE AF =,∴AEF △是等边三角形,④正确.综上,①③④正确,共3个.故选:B .17.如图,在△ABC 中,AD 是△ABC 的角平分线,点E 、F 分别是AD 、AB 上的动点,若∠BAC =50°,当BE +EF 的值最小时,∠AEB 的度数为( )A .105°B .115°C .120°D .130°【答案】B【分析】过点B 作BB ′⊥AD 于点G ,交AC 于点B ′,过点B ′作B ′F ′⊥AB 于点F ′,与AD 交于点E ′,连接BE ′,证明AD 垂直平分BB ′,推出BE =BE ′,由三角形三边关系可知,BE EF B E EF B F B F ¢¢¢¢+=+³³,即BE +EF 的值最小为B F ¢¢,通过证明△ABE ′≌△AB ′E ′,推出∠AE ′B =AE ′B ′,因此利用三角形外角的性质求出AE ′B ′即可.【详解】解:过点B 作BB ′⊥AD 于点G ,交AC 于点B ′,过点B ′作B ′F ′⊥AB 于点F ′,与AD 交于点E ′,连接BE ′,如图:此时BE +EF 最小.∵AD 是△ABC 的角平分线,∠BAC =50°,∴∠BAD =∠B ′AD =25°,∵BB ′⊥AD ,∴∠AGB =∠AGB ′=90°,在△ABG 和△AB ′G 中,BAG B AG AG AGAGB AGB Ð=Ðìï=íïТ=Ðî¢,∴△ABG ≌△AB ′G (ASA ),∴BG =B ′G , AB =AB ′,∴AD 垂直平分BB ′,∴BE =BE ′,在△ABE ′和△AB ′E ′中,BE BE AE AE AB AB ¢¢¢¢ìï=íï=î=,∴△ABE ′≌△AB ′E ′(SSS ),∴∠AE ′B =AE ′B ′,∵AE ′B ′=∠BAD + AF ′E ′=25°+90°=115°,∴∠AE ′B =115°.即当BE +EF 的值最小时,∠AEB 的度数为115°.故选B .18.如图,点P 是AOB Ð内的一点,PC OA ^于点C ,PD OB ^于点D ,连接OP ,CD .若PC PD =,则下列结论不一定成立的是( )A .AOP BOPÐ=ÐB .OPC OPD Ð=ÐC .PO 垂直平分CD D .PD CD=【答案】D【分析】根据角平线的判定定理可判断A ,证明Rt COP Rt DOP V V ≌,可判断B ,根据Rt COP Rt DOP V V ≌,可得OC =OD ,进而可判断C ,根据等边三角形的定义,可判断D .【详解】解:∵点P 是AOB Ð内的一点,PC OA ^于点C ,PD OB ^于点D ,PC PD =,∴OP 是∠AOB 的平分线,即AOP BOP Ð=Ð,故A 成立,不符合题意;∵OP =OP ,AOP BOP Ð=Ð,第19第20题=,利用ASA Ð,再根据E是CD的中点可求出ECECF=,结合已知可得BE的垂直平分线,根据线段垂直AE EF=+,进而即可求解.即可证得AB BC AD故答案为:70.题型3:与线段垂直平分线相关的尺规作图21.如图,在ABC V 直线MN ,交BC A .9【答案】B 【分析】由题意可得MN ADC C AC BC =+V ,求解即可.【详解】解:由题意可得,A.3B 【答案】B【分析】利用基本作图得到V的周长为20再利用ABC【详解】解:由作法得DE \==,,DA DB AE BEA .①③B .①④C .②④D .③④【答案】B 【分析】依次对各个图形的作图痕迹进行分析即可.【详解】 由图①知AD AC =,AB AD >,AB AC \>,故图①能说明AB AC >;由图②知射线BD 是ABC Ð的平分线,不能说明AB AC >;由图③知CD AB ^,不能说明AB AC >;由图④知DE 是BC 的垂直平分线,DB DC \=.ADC QV 中AD DC AC +>,AD DB AC \+>,即AB AC >.故图④能说明AB AC >.故选:B24.如图所示,在Rt ABC △中,90C Ð=°,以B 为圆心,以任意长度为半径作弧,与BA ,BC 分别交于A.20°B.36【答案】C【分析】由作图可知:BO为=,再根据等腰三角形的性质得AD BD和定理即可求出AÐ的度数.【详解】解:由作图可知:平分EAC Ð;③AC CD =;④ABC S V C .①③DA .只有甲的答案正确B .甲和乙的答案合在一起才正确C .甲和丙的答案合在一起才正确D .甲乙丙的答案合在一起才正确【答案】D 【分析】分四种情况讨论:当APB Ð为锐角时,当APB Ð为钝角时,当APB Ð为直角时,当135APB Ð=°时,分别画出图形,求出x 与y 的关系,即可得出答案.【详解】解:当APB Ð为锐角时,如图所示:∵AD BP ^,∴90ADP Ð=°,∴90PAD APD Ð+Ð=°,即90x y +=;当APB Ð为钝角时,如图所示:∵AD BP ^,∴90ADP Ð=°,∵APB Ð为ADP △的外角,∴APB ADP DAP Ð=Ð+Ð,∴90x y =+,即90x y -=;当APB Ð为直角时,如图所示:此时直线n 与PA 重合,∴此时直线n 与PA 所夹的角为0°,即90x y +=或90x y -=;当135APB Ð=°时,如图所示:18013545DPA Ð=°-°=°,∵AD BP ^,∴90ADP Ð=°,∴904545DAP Ð=°-°=°,∴45135180DAP APB Ð+Ð=°+°=即180x y +=;1AB 的长为半径作弧,两弧相交于AM ;的长为半径作弧,与BC 边相交于点N ,连接C.9AC,根据中垂线的定义和性质找到相等的边,进而由AC,A .15B .16C .18D .20【答案】A 【分析】根据题意得到MN 是线段AB 的垂直平分线,进而得到点D 是AB 的中点,根据三角形的面积公式计算,得到答案.【详解】解:由尺规作图可知,MN 是线段AB 的垂直平分线,\点D 是AB 的中点,ACD BCD S S \=△△,ADE CDE CDB S S S \+=V V V ,Q CDB △的面积为12,ADE V 的面积为9,1293CDE CDB ADE S S S \=-=-=V V V ,\四边形EDBC 的面积为:12315CDE CDB EDBC S S S =+=+=V V 四边形,故选:A .30.如图,在ABC V 中,根据尺规作图痕迹,下列说法不一定正确的是( ).A .AF BF=B .90AFD FBC Ð+Ð=°C .DF AB^D .BAF CAFÐ=Ð【答案】D 【分析】由图中尺规作图痕迹可知,BE 为ABC Ð的平分线,DF 为线段AB 的垂直平分线,结合角平分线的定义和垂直平分线的性质逐项分析即可.【详解】解:由图中尺规作图痕迹可知, BE 为ABC Ð的平分线,DF 为线段AB 的垂直平分线.上求作点D ,使;,若点D 在边上,在上求作点E ,使.)作BC 的垂直平分线与BC 的交点即为所求;)如图:由题意得,只要作12BDE ABC S S △△=即可,由第(1)问得,12ABP ABC S S △△=,只要作BC ABD ACD S S =V V AB BC BDE ADEC S S △四边形=作BC 的垂直平分线与BC 交于D 点,BD CD \=,ABD QV 与ACD V 高相同,ABD ACD S S \=V V .如图1:点D 即为所求;(2)如图:由题意得,只要作12BDE ABC S S △△=即可,作BC 的垂直平分线交BC 于P 点,由第(1)问得,12ABP ABC S S △△=,故只要作BDE ABP S S △△=即可,连接D 、P ,要使得BDE ABP S S △△=,只要作根据“夹在平行线之间的垂线段相等”,即,高相等,如图2:点E 即为所求.32.如图,在中,点E 在上且.(1)请用尺规作图的方法在边上确定点D ,使得;(保留作图痕迹,不写作法)(2)在(1)的条件下,若的周长为,求的长.【分析】(1)线段AB 的垂直平分线与BC 边的交点即为所求;(2)根据线段垂直平分线的性质,通过等量代换求解.【详解】(1)解:如图所示,线段AB 的垂直平分线与BC 边交于点D ,点D 即为所求;(2)解:Q ADE V 的周长为12cm ,\12AD AE DE ++=,Q BD AD =,AE CE =,\12BC BD CE DE AD AE DE =++=++=,即BC 的长为12cm .题型4:与线段垂直平分线相关的计算与证明33.如图,在ABC V 中,AB 、AC 边的垂直平分线相交于点O ,分别交BC 边于点M 、N ,连接AM ,AN .(1)若AMN V 的周长为6,求BC 的长;(2)若30B Ð=°,25C Ð=°,求MAN Ð的度数;(3)若MON a Ð=,请用a 表示MAN Ð的度数(直接写出即可).ABC V BC AE CE =BC BD AD =ADE V 12cm BC【答案】(1)6(2)70°(3)1802MAN aÐ=°-【分析】(1)由垂直平分线的性质可得,AM BM AN CN ==,再由BC AM MN AN =++可得结论;(2)由垂直平分线的性质可得30,30,B BAM C CAN Ð=Ð=°Ð=Ð=°,再根据三角形内角和定理可得结论;(3)根据三角形内角和定理可得()1802MAN B C Ð=°-Ð+Ð,再由四边形内角和定理可得180B C MAN O Ð+Ð=°-Ð-Ð,代入求解即可【详解】(1),OM ON Q 分别是AB 、AC 边的垂直平分线,,,AM BM AN CN \==6AM MN AN ++=Q 6BM MN CN \++=,即6BC =(2),,AM BM AN CN ==Q 30,25,BAM B CAN C \Ð=Ð=°Ð=Ð=°180,B BAC C Ð+Ð+Ð=°Q 且BAC BAM MAN CANÐ=Ð+Ð+Ð180,B BAM MAN CANC \Ð+Ð+Ð+Ð+Ð=°即180,B B MANC C Ð+Ð+Ð+Ð+Ð=°18022180605070MAN B C \Ð=°-Ð-Ð=°-°-°=°(3)如图,180,B BAC C Ð+Ð+Ð=°Q 且BAC BAM MAN CAN Ð=Ð+Ð+Ð180,B BAM MAN CANC \Ð+Ð+Ð+Ð+Ð=°即180,B B MANC C Ð+Ð+Ð+Ð+Ð=°()1802MAN B C \Ð=°-Ð+Ð,,OM ON Q 分别是AB 、AC 边的垂直平分线,90AEO AFO \Ð=Ð=360AEO EAF AFO FOE \Ð+Ð+Ð+Ð=°180EAF O \Ð+Ð=°180,BAF MAN CAN O \Ð+Ð+Ð+Ð=°180,B C MAN O \Ð+Ð+Ð+Ð=°180B C MAN O\Ð+Ð=°-Ð-Ð()()180********MAN B C MAN O \Ð=°-Ð+Ð=°-°-Ð-Ð\解得,1802MAN aÐ=°-34.如图,在Rt ABC △中,45,90,ACB BAC AB AC Ð=°Ð=°=,点D 是AB 的中点,AF CD ^于H 交BC 于F ,BE AC ∥交AF 的延长线于E .求证:BC 垂直且平分DE .【答案】见解析【分析】根据全等三角形的判定证明(ASA)ABE CAD ≌V V ,在再证明(SAS)DBP EBP ≌V V 即可解决问题;【详解】证明:由题意可知,9090DAH ADH ACH ADH ÐÐÐÐ+=°+=°,,∴DAH ACH ÐÐ=,∵90BAC Ð=°,BE AC ∥,∴90CAD ABE ÐÐ==°.又∵AB CA =,∴在ABE V 与CAD V 中,DAH ACH AB AC CAD ABE Ð=Ðìï=íïÐ=Ðî,∴(ASA)ABE CAD ≌V V .∴AD BE =,又∵AD BD =,∴BD BE =,在Rt ABC V 中,45,90,ACB BAC AB AC ÐÐ=°=°=,故45ABC Ð=°.∵90ABE Ð=°,∴904545EBF Ð=°-°=°,∴(SAS)DBP EBP ≌V V ,∴DP EP =,∴BC 垂直且平分DE .35.如图,ABC V 中,AD 平分BAG Ð,DG 垂直平分BC ,DE AB ^于E ,DF AC ^于F .(1)求证:BE CF =;(2)如果9AB =,5AC =,求BE 的长.【答案】(1)见解析;(2)2BE =.【分析】(1)由DG 垂直平分BC 可得DB DC =,由AD 平分BAG Ð, DE AB ^,DF AC ^,可得DE DF =,90DEB DFC Ð=Ð=°,从而证得()Rt Rt HL DBE DCF V V ≌,得证BE CF =;(2)易证()Rt Rt HL ADE ADF ≌△△,得到AE AF =,又BE CF =,因此2AB AE BE AF BE AC CF AC BE =+=+=+=+,代入即可解答.【详解】(1)连接DB ,DC ,∵DG 垂直平分BC ,∴DB DC =,∵AD 平分BAG Ð,DE AB ^,DF AC ^,∴DE DF =,90DEB DFC Ð=Ð=°,∴在Rt DBE V 和Rt DCF V 中DB DC DE DF=ìí=î∴()Rt Rt HL DBE DCF V V ≌,∴BE CF =.(2)∵DE AB ^,DF AC ^,∴在Rt ADE △和Rt ADF V 中AD AD DE DF=ìí=î∴()Rt Rt HL ADE ADF ≌△△,∴AE AF=∵BE CF=∴2AB AE BE AF BE AC CF AC BE =+=+=+=+,∵9AB =,5AC =,∴952BE =+,∴2BE =.36.如图,AB AC >,BAC Ð的平分线与BC 边的垂直平分线GD 相交于点D ,过点D 作DE AB ^于点E ,DF AC ^于点F ,求证:BE CF =.【答案】见解析【分析】连接DC ,根据GD 是BC 边的垂直平分线,得到DC DB =,根据AD 是BAC Ð的平分线,且DE AB ^,DF AC ^,得到DE DF =,根据DE DF DB DC =ìí=î,得到()HL DEB DFC V V ≌即可得证.【详解】如图,连接DC ,∵GD 是BC 边的垂直平分线,∴DC DB =,∵AD 是BAC Ð的平分线,且DE AB ^,DF AC ^,∴DE DF =,∵DE DF DB DC =ìí=î,∴()HL DEB DFC V V ≌∴BE CF =.37.如图,在ABC V 中,BAC Ð的平分线与BC 的中垂线DE 交于点E ,过点E 作AC 边的垂线,垂足N ,过点E 作AB 延长线的垂线,垂足为M .(1)求证:BM CN =;(2)若2AB =,8AC =,求BM 的长.【分析】(1)连接BE ,CE ,由题意易得BE CE =,EM EN =,进而可证Rt Rt BME CNE ≌V V ,然后问题得解;(2)由(1)得:EM EN =,进而可证Rt Rt AME ANE ≌V V ,则有AB BM AC CN +=-,然后根据线段的和差关系可求解.【详解】(1)证明:连接BE ,CE ,DE Q 是BC 的垂直平分线,BE CE \=,AE Q 是BAC Ð的平分线,EM AB ^,EN AC ^,EM EN \=,在Rt BME △和Rt CNE △中,BE CE EM EN=ìí=î()Rt Rt BME CNE HL \V V ≌,BM CN \=;(2)由(1)得:EM EN =,在Rt AME △和Rt ANE △中,AE AE EM EN=ìí=îRt Rt AME ANE \≌V V ,请根据所给教材内容,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:V中,AB、AC的垂直平分线分别交BC于点D、E,垂足分别为M,N,已知)如图②,在ABC的周长为20,则BC的长为__________.∵AB AC AD BC ^=,,的周长为7,可得∴19712AB BE +=-=,∴6AB BE ==;(2)∵30ABC Ð=°,45C Ð=°,∴1803045105BAC Ð=°-°-°=°,在BAD V 和BED V 中,BA BE BD BD DA DE =ìï=íï=î,∴()SSS BAD BED V V ≌,∴105BED BAC Ð=Ð=°,∴1054560CDE BED C Ð=Ð-Ð=°-°=°.40.如图,在ABC V 中,点E 在AB 上,点D 在BC 上,BD BE =,BAD BCE Ð=Ð,AD 与CE 相交于F .(1)求证:AF CF =;(2)连接,试判断与的位置关系,并说明理由.【分析】(1)根据全等三角形的判定与性质,可得BA BC =,BDA BEC Ð=Ð,根据补角的性质,可得FDC FEA Ð=Ð,根据全等三角形的判定与性质,可得答案.(2)由AB CB =,AF CF =可得点B ,F 在AC 的垂直平分线,即可得出结论【详解】(1)在BAD V 和BCE V 中,∵B B BAD BCE BD BE Ð=ÐìïÐ=Ðíï=î,∴BAD V ≌BCE V ,∴AB CB =,BF BF AC与点A 重合,则 , .,四边形的直角沿直线l 折叠后(如图2),点B 落在四边形的边与AB 相交于点F ,猜想OF 、EF 、AB 三者数量关系,并证明.若折叠后点D 恰为AB 的中点(如图3),求的度数;45°,8数量关系为:AB OF EF =+;证明见解析q ==a OABC OCB ÐOABC q∴E O D FO D Ð=Ð.由折叠可得FOD EOC EOD q Ð=Ð=Ð=,∴390COA q Ð==°,∴30q =°.。

线段的垂直平分线的性质和判定精选优秀练习

线段的垂直平分线的性质和判定精选优秀练习

13.1.2 线段的垂直平分线的性质第1课时线段的垂直平分线的性质和判定一、选择题(共8小题)1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,CD边垂直平分线的交点,连接EC;则∠AEC等于()F,:第1题图第2题图第5题图第6题图第7题图第8题图B二、填空题(共10小题)9.到线段AB两个端点距离相等的点的轨迹是_________ .10.如图,有A、B、C三个居民小区是位置成三角形,现决定在三个小区之间修建一个休闲广场,使广场到三个小区的距离相等,则广场应建在_________ .11.在阿拉伯数字中,有且仅有一条对称轴的数字是____________.12、如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE= _________ 度.13、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________ cm.14.如图,已知在△ABC中,AB=AC=10,DE垂直平分AB,垂足为E,DE交AC于D,若△BDC的周长为16,则BC= _________ .15.如图,在△ABC中,∠B=30°,直线CD垂直平分AB,则∠ACD的度数为_________ .16.已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________ .17.如图,AB=AC,AC的垂直平分线DE交AB于D,交AC于E,BC=6,△CDB的周长为15,则AC= _________ .18.如图,△ABC中,AB=AC,∠A=40°,AC的垂直平分线分别交AB,AC于D,E两点,连接CD.则∠BCD=_________ 度.第10题图第12题图第13题图第14题图第15题图第16题图第17题图第18题图三、解答题(共5小题)19.如图,四边形ABCD中,AC垂直平分BD于点O.(1)图中有多少对全等三角形?请把它们都写出来;(2)任选(1)中的一对全等三角形加以证明.20.如图,在△AB C中,AB=AC,D是AB的中点,且DE⊥AB,△BCE的周长为8cm,且AC﹣BC=2cm,求AB、BC的长.21.如图,已知:在ABC中,AB、BC边上的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.22.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:AD垂直平分EF.23.如图,已知∠C=∠D=90°,AC与BD交于O,AC=BD.(1)求证:BC=AD;(2)求证:点O在线段AB的垂直平分线上.13.1.2 线段的垂直平分线的性质一、选择题(共8小题)1.B 2.A 3.A 4.A 5.C 6.C 7.A 8.A二.填空题(共10小题)9. 线段AB的中垂线;10. 三边垂直平分线的交点处;11. 3;12. 50;3. 13 ;14. 615. 60°;16. 8 ;17. 9 ;18.35°三.解答题(共5小题)19.(1)解:图中有三对全等三角形:△AOB≌△AOD,△COB≌△COD,△ABC≌△ADC;(2)证明△ABC≌△AD C.证明:∵AC垂直平分BD,∴AB=AD,CB=CD(中垂线的性质),又∵AC=AC,∴△ABC≌△ADC.20. 解:∵△ABC中,AB=AC,D是AB的中点,且DE⊥AB,∴AE=BE,∵△BCE的周长为8cm,即BE+CE+BC=8cm,∴AC+BC=8cm…①,∵AC﹣BC=2cm…②,①+②得,2AC=10cm,即AC=5cm,故AB=5cm;①﹣②得,2BC=6cm,BC=3cm.故AB=5cm、BC=3cm.21.证明:∵P在AB、BC的垂直平分线上∴AP=BP,BP=CP∴AP=CP,∴P点在AC的垂直平分线上.22.证:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD是∠BAC的平分线,∴AD垂直平分EF(三线合一)23. 证明:(1)∵∠C=∠D=90°,∴在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA,∴AD=BC;(2)∵Rt△ACB≌Rt△BDA,∴∠CAB=∠DBA,∴OA=OB,∴点O在线段AB的垂直平分线上.。

《垂直平分线》练习题(含答案)

《垂直平分线》练习题(含答案)

1题A B E C 2题D A B C 3题D AB EC 4题A B C O 5题D A BE C 11题D A B E C O 12题D A B E C 13题D A B E C 14题D A B E C 15题D A B E C6题D A BE C 8题D A B E C 7题D A B E C 10题'9题《垂直平分线》练习题1.如图,△ABC 的边AB 的垂直平分线交AC 于点E,若AE=23,则BE= 。

2.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点D, △ABC 和△DBC 的周长分别为60㎝和38㎝,则△ABC 的腰长为 ,底边长为 。

3.如图,△ABC 中,∠ACB=90°,CB 的垂直平分线DE 交AB 于点D,垂足为E ,①若∠B=20°,则∠ADC 的度数为 ;②若△ADC 的周长为14,AC=4,则AB= ;③若AB=8㎝,则CD= 。

4.如图,△ABC 中,∠A=52°,AB 、AC 的垂直平分线交于点O ,则∠BOC 的度数为 。

5.如图,∠ABC=50°,AD 垂直平分线段BC ,交BC 于点D ,∠ABC 的角平分线BE 交AD 于点E ,连接EC ,则∠AEC 的度数为 。

6.如图,△ABC 中,AC 的垂直平分线交BC 于点D ,垂足为E ,△ABD 的周长为12㎝,AC=5㎝,则△ABC 的周长为 。

7.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点E ,垂足为D, ∠EBC ∶∠EBA=1∶2,则∠A 的度数为 。

8.如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 与点E,则△CDE 的周长为 。

9.如图,某广告公司为一厂家设计的商标图案,AD 垂直平分线段BC ,E 、F 都在线段AD 上,若AB=5,BC=6,则图中阴影部分面积为 。

10.如图,△ABC 中,AB=BC=2,∠ABC=90°,D 为BC 的中点,且它关于AC 的对称点D ’,则 BD ’= 。

垂直平分线专项练习30题(有答案)ok

垂直平分线专项练习30题(有答案)ok

垂直平分线专项练习30题(有答案)1.如图,在△ABC中,∠BAC=2∠B,DE⊥AB于点D,交BC于点E,AC=AD=BD,请你猜想∠C的度数并证明.2.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC 于点M,求证:BN=CM.3.如图,在△ABC中,D是BC的垂直平分线DH上一点,DF⊥AB于F,DE⊥AC交AC的延长线于E,且BF=CE.(1)求证:AD平分∠BAC;(2)若∠BAC=80°,求∠DCB的度数.4.如图,在△ABC中,AB=AC,∠A=52°,AB的垂直平分线MN交AC于点D.求∠DBC的度数.5.如图,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC 交AF的延长线于E.求证:BC垂直且平分DE.6.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.7.如图,△ABC中,边AB、BC的垂直平分线交于点P.(1)求证:PA=PB=PC;(2)点P是否也在边AC的垂直平分线上?由此你还能得出什么结论?8.如图,在Rt△ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,求BD的长.9.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.10.如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.11.如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF 的理由.12.如图所示,在△ABC中,AB=AC=16cm,D为AB的中点,DE⊥AB交AC于E,△BCE的周长为26cm,求BC的长.13.如图,在△ABC中,EN,DM分别是AB,AC边的垂直平分线,BC=8cm.求△AED的周长.14.如图,在△ABC中,0E,OF分别是AB,AC的中垂线,∠ABO=20°,∠ABC=45°,求∠BAC和∠ACB的度数.15.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.16.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?17.如图1,△ABC中,AB=AC,∠BAC=130°,边AB、AC的垂直平分线交BC于点P、Q.(1)求∠PAQ的度数;(2)如图2,△ABC中,AB>AC,且90°<∠BAC<180°,边AB、AC的垂直平分线交BC于点P、Q.①若∠BAC=130°,则∠PAQ=_________°,若∠BAC=α,则∠PAQ用含有α的代数式表示为_________;②当∠BAC=_________°时,能使得PA⊥AQ;③若BC=10cm,则△PAQ的周长为_________cm.18.如图,△ABC中,AB=AC=14cm,D是AB的中点,DE⊥AB于D交AC于E,△EBC的周长是24cm,求BC 的长度.19.已知:如图,在△ABC中,AB=AC=32,AB的垂直平分线DE分别交AB、AC于点E、D.(1)若△DBC的周长为56,求BC的长;(2)若BC=21,求△DBC的周长.20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE 的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.21.如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于P、Q.(1)若BC=10,求△APQ周长是多少?(2)若∠BAC=110°,求∠PAQ的度数是多少?24.已知,如图,AD是BC的垂直平分线,DE⊥AB于点E,DF⊥AC于点F,求证:(1)∠ABD=∠ACD;(2)DE=DF.25.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF.求证:AD垂直平分EF.26.如图,△ABC中,E是BC边上的中点,DE⊥BC于E,DM⊥AB于M,DN⊥AC于N,BM=CN 试证明:点D在∠BAC的平分线上.27.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.28.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.29.已知,如图,DE为△ABC的边AB的垂直平分线,CD为△ABC的外角平分线,与DE交于D,DM⊥BC于M,DN⊥AC于N,求证:AN=BM.30.如图所示,在△ABC中,AB=8,AC=4,∠BAC的平分线与BC的垂直平分线交于点D,过点D作DE⊥AB 于点E,DF⊥AC(或AC的延长线)于点D.(1)求证:BE=CF;(2)求AE的长.参考答案:1.解:∠C=90°.证明:如图,连接AE,在Rt△AED和Rt△BED中,,∴△AED≌△BED(HL),∴∠DAE=∠B,又∵∠BAC=2∠B,∴∠DAE=∠CAE,在△AED和△BED中,,∴△ACE≌△ADE,∴∠C=∠ADE=90°.2.证明:连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.3.(1)证明:如图,连接BD,∵DH垂直平分BC,∴BD=CD,在Rt△BDF和Rt△CDE中,,∵DF⊥AB于F,DE⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BDF≌Rt△CDE,∴∠CDE=∠BDF,∴∠BDC=∠EDF,∵∠BAC=80°,∴∠EDF=360°﹣90°×2﹣80°=100°,∴∠BDC=100°,∵BD=CD,∴∠DCB=(180°﹣100°)=50°4.解:∵AB=AC,∠A=52°,∴∠ABC=∠ACB==64°,∵AB的垂直平分线MN,∴AD=BD,∠A=∠ABD=52°,∴∠DBC=∠ABC﹣∠ABD=64°﹣52°=12°5.证明:在△ADC中,∠DAH+∠ADH=90°,∠ACH+∠ADH=90°,∴∠DAH=∠DCA,∵∠BAC=90°,BE∥AC,∴∠CAD=∠ABE=90°.又∵AB=CA,∴在△ABE与△CAD中,∴△ABE≌△CAD(ASA),∴AD=BE,又∵AD=BD,∴BD=BE,在Rt△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,故∠ABC=45°.∵BE∥AC,∴∠EBD=90°,∠EBF=90°﹣45°=45°,∴△DBP≌△EBP(SAS),∴DP=EP,即可得出BC垂直且平分DE6.证明:∵AD是∠BAC的平分线,∴∠1=∠2,∵FE是AD的垂直平分线,∴FA=FD(线段垂直平分线上的点到线段两端的距离相等),∴∠FAD=∠FDA(等边对等角),∵∠BAF=∠FAD+∠1,∠ACF=∠FDA+∠2,∴∠BAF=∠ACF7.证明:(1)∵边AB、BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.还可得出结论:①三角形三边的垂直平分线相交于一点.②这个点与三顶点距离相等8.解:因为CE垂直平分AD,所以AC=CD=5cm.所以∠ACE=∠ECD.因为CD平分∠ECB,所以∠ECD=∠DCB.因为∠ACB=90°,所以∠ACE=∠ECD=∠DCB=30°.所以∠A=90°﹣∠ACE=60°.所以∠B=90°﹣∠A=30°.所以∠DCB=∠B.所以BD=CD=5cm9.证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B10.解:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD=∠CAD,∠EAD=∠EDA,∴∠EAC=∠B11.解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF12.解:∵点D中AB的中点,DE⊥AB,∴DE是AB的中垂线,∴AE=BE,∴△BCE的周长=BE+EC+BC=AE+EC+BC=AC+BC=26,∴BC=26﹣AC=26﹣16=10cm13.解:∵EN,DM分别是AB,AC边的垂直平分线,∴BE=AE,CD=AD,14.解:连接AO并延长,交BC于点D,∵0E,OF分别是AB,AC的中垂线,∴OB=OA,OC=OA,∴OC=OB,∠ABO=∠BAO=20°,∠CBO=∠BCO,∠CAO=∠ACO,∵∠ABC=45°,∴∠CBO=∠BCO=25°,∴∠BOC=180°﹣∠CBO﹣∠BCO=130°,∵∠BOD=∠ABO+∠BAO,∴∠BOD=40°,∠COD=90°.∵∠COD=∠CAO+∠ACO,∴∠CAO=45°,∴∠BAC=∠BAO+∠CAO=65°,∠ACB=∠BCO+∠ACO=70°15.解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG16.解:∵BC边的垂直平分线DE,∴BE=CE=5,∵BE+CE+BC=18,∴BC=18﹣5﹣5=8,答:BC的长是817.解:(1)∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;(2)①∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=α,∴∠B+∠C=180°﹣∠BAC=180°﹣α,∴∠BAP+∠CAQ=180°﹣α,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=α﹣(180°﹣α)=2α﹣180°;②当∠PAQ=90°,即2α﹣180°=90°时,PA⊥AQ,解得:α=135°,∴当∠BAC=135°时,能使得PA⊥AQ;③∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∵BC=10cm,即BP+PQ+CQ=AP+PQ+AQ=10cm,∴△PAQ的周长为10cm.故答案为:①80,2α﹣180°;②135;③1018.解:在△ABE中,∵D是AB的中点,DE⊥AB于D交AC于E,∴AE=BE;在△ABC中,∵AB=AC=14cm,AC=AE+EC,又∵CE+BE+BC=24cm,∴BC=10cm19.解:(1)∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD=AC,∵△DBC的周长为56,AC=32,∴BC=56﹣32=24;(2)∵AD=BD,AC=32,∴AD+CD=BD+CD=AC=32,∵BC=21,∴△DBC的周长=BD+CD+BC=32+21=53.故答案为:24;5320.解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.21.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∴∠EDA=180°﹣∠AED﹣∠EAD,∠FDA=180°﹣∠AFD﹣∠FAD,∴∠EDA=∠FDA,∵DE=DF(已证),∴DG垂直平分EF(三线合一),即AD垂直平分EF.22.证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B23.解:(1)∵MP、NQ分别是AB、AC的垂直平分线,∴AP=BP,AQ=CQ,∴△APQ周长=AP+PQ+AQ=BP+PQ+QC=BC,∵BC=10,∴△APQ周长=10;(2)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AP=BP,AQ=CQ(已证),∴∠BAP=∠B,∠CAQ=∠C,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=∠BAC﹣∠B﹣∠C=110°﹣70°=40°24.证明:(1)∵AD是BC的垂直平分线,∴AB=AC,BD=CD,∴∠ABC=∠ACB,∠DBC=∠DCB,∴∠ABD=∠ACD;(2)∵AB=AC,AD是BC的垂直平分线,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF25.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在△ADE和△ADF中,,∴△ADE≌△ADF(HL),∴AE=AF,又∵AD平分∠BAC,∴AD垂直平分EF26.证明:如图,连接BD、CD,∵DE⊥BC,E是BC边上的中点,∴BD=CD,在△BDM和△CDN中,,∴△BDM≌△CDN(HL),∴DM=DN,又∵DM⊥AB,DN⊥AC,∴点D在∠BAC的平分线上.27.解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.故答案为:728.解:连接DB.∵点D在BC的垂直平分线上,∴DB=DC;∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,∴DE=DF;∵∠DFC=∠DEB=90°,在Rt△DCF和Rt△DBE中,,∴Rt△DCF≌Rt△DBE(HL),∴CF=BE(全等三角形的对应边相等).29.证明:∵DE为△ABC的边AB的垂直平分线,∴AD=BD,∵CD为△ABC的外角平分线,与DE交于D,DM⊥BC于M,DN⊥AC于N,∴DN=DM,在Rt△ADN和Rt△BDM中,,∴Rt△ADN≌Rt△BDM(HL),∴AN=BM.30.(1)证明:连结BD,CD.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠AED=∠BED=∠AFD=90°,DE=DF.∵DE垂直平分BC,∴DB=DC.在Rt△DEB和Rt△DFC中,∴Rt△DEB≌Rt△DFC(HL),∴BE=CF;(2)解:在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∵AB=AE+BE,∴AB=AF+EB,∴AB=AC+CF+EB.∵AB=8,AC=4,∴8=4+CF+EB,∴CF+EB=4,∴2EB=4,∴EB=2.∴AE=8﹣2=6.答:AE的长为6.。

七年级数学下册5.3.2线段垂直平分线练习

七年级数学下册5.3.2线段垂直平分线练习

《线段垂直平分线》一、选择——基础知识运用1.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点2.如图,△ABC中,∠BAC=100°,DF,EG分别是AB,AC的垂直平分线,则∠DAE等于()A.50° B.45°C.30° D.20°3.如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC的周长为()A.14cm B.13cm C.11cm D.9cm4.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm和48cm,则△ABC的腰和底边长分别为()A.24cm和22cm B.26cm和18cm C.22cm和26cm D.23cm和24cm5.如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙两种作法:甲:分别作∠ACP、∠BCP的平分线,分别交AB于D、E,则D、E即为所求;乙:分别作AC、BC的垂直平分线,分别交AB于D、E,则D、E两点即为所求.下列说法正确的是()A.甲、乙都正确 B.甲、乙都错误C.甲正确,乙错误 D.甲错误,乙正确二、解答——知识提高运用6.利用尺规作三角形的三条边的垂直平分线,观察这三条垂直平分线的位置关系,你发现了什么?再换一个三角形试一试。

7.如图,在△ABC中,∠C=40°,∠B=68°,AB、AC的垂直平分线分别交BC于D、E.求∠EAD 的度数。

8.在△ABC中,AB=AC,BC=12,∠B=30°,AB的垂直平分线DE交BC边于点E,AC的垂直平分线MN交BC于点N。

(1)求△AEN的周长;(2)求证:BE=EN=NC。

9.敌军基地在三条公路围成的三角区域内,我军一队战士在一条公路中点垂直射击,另一队战士在另一条公路中点垂直射击,均击中敌军基地,问第三队战士在公路何处垂直射击可击中目标?10.如图,已知在△ABC中,∠C=90°,AB的垂直平分线MN交BC于点D。

线段垂直平分线专题试题精选

线段垂直平分线专题试题精选

线段垂直平分线专题试题精选一.解答题(共30小题)1.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.2.如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,则:(1)∠ADE=°;(2)AE EC;(填“=”“>”或“<”)(3)当AB=3,AC=5时,△ABE的周长=.3.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.4.如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂线分别与AD、BC相交于点E、F,连接AF.求证:AE=AF.5.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.6.如图所示,正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于H.(1)求证:①△BCG≌△DCE;②BH⊥DE.(2)试问当点G运动到什么位置时,BH垂直平分DE?请说明理由.7.如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE的垂直平分线正好经过点B,与AC相交于点F,求∠A的度数.8.数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)9.如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.若∠CAE=∠B+30°,求∠AEB的度数.10.如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE∥AB,交∠BCD的平分线于点E,连接BE.(1)求证:BC=CD;(2)将△BCE绕点C,顺时针旋转90°得到△DCG,连接EG.求证:CD垂直平分EG;(3)延长BE交CD于点P.求证:P是CD的中点.11.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.12.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.13.某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使得三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.14.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA 的长.15.在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.16.已知:如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC,AB于点M,N,求证:CM=2BM.18.如图,在梯形ABCD中,AD∥BC,E为CD中点,连接AE并延长AE交BC的延长线于点F(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上,为什么?19.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.20.在△ABC中,AB边的垂直平分线交直线BC于点D,垂足为点F,AC边的垂直平分线交直线BC于点E,垂足为点G.(1)当∠BAC=100°(如图)时,∠DAE=°;(2)当∠BAC为一任意角时,猜想∠DAE与∠BAC的关系,并证明你的猜想.21.如图所示,在△ABC中,DE是边AB的垂直平分线,交AB于E,交AC于D,连接BD.(1)若∠ABC=∠C,∠A=50°,求∠DBC的度数.(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.22.如图,在△ABC中,AD为∠BAC的平分线,FE垂直平分AD,交AD于E,交BC 的延长线于F,那么∠B与∠CAF相等吗?为什么?23.如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.24.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.25.如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点G、E、F分别为边AB、BC、AC的中点.求证:DF=BE.26.如图,DE是△ABC边AB的垂直平分线,分别交AB、BC于D、E.AE平分∠BAC.设∠B=x(单位:度),∠C=y(单位:度).(1)求y随x变化的函数关系式,并写出自变量x的取值范围;(2)请讨论当△ABC为等腰三角形时,∠B为多少度?27.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.28.已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E为BC的中点.求证:DE、AC互相垂直平分.29.如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.。

初中数学线段的垂直平分线的性质练习题

初中数学线段的垂直平分线的性质练习题

初中数学线段的垂直平分线的性质练习题AC的长为半径作弧,两弧相交1. 如图,在△ABC中,分别以点A和点C为圆心,大于12于M,N两点,作直线MN,交AC于点E,AE=3,△ABD的周长为13,则△ABC的周长是( )A.16B.17C.18D.192. 已知锐角三角形△ABC中,∠A=65∘,点O是AB、AC垂直平分线的交点,则∠BCO的度数是( )A.25∘B.30∘C.35∘D.40∘3. 如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知△CDE的面积比△CDB的面积小5,则△ADE的面积为()A.5B.4C.3D.24. 如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为()A.3 2B.76C.256D.25. 如图,在△ABC中,∠ACB=90∘,分别以点A,B为圆心,大于12AB为半径作弧,相交于点M,N,作直线MN交AB于点D,交BC于点E,连结CD,下列结论错误的是()A.MN是线段AB的中垂线B.CD=12ABC.∠A=∠BEDD.∠ECD=∠EDC6. 如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定7. 如图,在Rt△ABC中,∠B=90∘,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于12DE为半径画弧,两弧交于点F,作射线AF交边BC于点C,若BG=1,AC=4,则△ACG的面积是()A.1B.32C.2 D.528. 如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.对于以上两种作法,可以做出的判定是()A.甲正确,乙错误B.甲、乙均正确C.乙正确,甲错误D.甲、乙均错误9. 如图,在△ABC中,DE是AC的垂直平分线,垂足为E,AE=2cm,△ABD的周长为9cm,则△ABC的周长为( )A.11cmB.13cmC.14cmD.15cm10. 下列命题是假命题的是( )A.n边形(n≥3)的外角和是360∘B.矩形的对角线互相平分且相等C.线段垂直平分线上的点到线段两个端点的距离相等D.相等的角是对顶角11. 已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50∘,则此等腰三角形的顶角为________.12. 如图:已知DE垂直平分AB,如果△BCD的周长是30,BC=12,则AC=________.13. 如图,在△ABC中,∠A=35∘,∠B=90∘,线段AC的垂直平分线MN与AB交于点D,与AC交于点E,则∠BCD=________度.14. 如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为________.15. 已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E,F.若AB=8,AC=4,则AE=________.16. 如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①AD和EF互相垂直平分;②AE=AF;③当∠BAC=90∘时,AD=EF;④DE是AB的垂直平分线.其中正确的是________(填序号).17. 如图,在△ABC中,AB=8,AC=5,BC=12,DE垂直平分BC,点P是DE上的动点,则△APC周长的最小值是________.18. 如图,∠C=80∘,DE垂直平分AB于点E,交BC于点D,且∠CAD:∠CAB=1:3,则∠B=________.19. 如图,在△ABC中,AB+AC=7cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为________cm.20. 如图,△ABC中,∠C=90∘,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37∘,求∠CAD的度数.21. 如图,已知锐角∠MPN,点A在射线PN上.(1)尺规作图:在射线PM上求作点B,使得BP=BA;(保留作图痕迹,不写作法)(2)在射线AN上截取AC=PB,试判断∠BCP和∠MPN的数量关系,并说明理由.22. 作图与计算(1)已知:∠α,∠AOB求作:在图2中,以OA为一边,在∠AOB的内部作∠AOC=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹)(2)在同一平面内,过点O分别引射线OA,OB,OC且∠AOB=65∘,∠BOC=30∘,求∠AOC的度数.参考答案与试题解析初中数学线段的垂直平分线的性质练习题一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】D【考点】线段垂直平分线的性质【解析】利用线段的垂直平分线的性质即可解决问题.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6,∵AB+AD+BD=13,∴AB+BD+DC=13,∴△ABC的周长是AB+BD+DC+AC=13+6=19.故选D.2.【答案】A【考点】线段垂直平分线的性质角平分线的性质【解析】此题暂无解析【解答】解:根据题意画图可知:设AB,AC与垂直平分线的交点分别为D,E,∴AD=BD,∠ADC=∠BDC=90∘∵DC为公共边,∴△ADC≅△BDC(SAS),∴∠A=∠DBC=65∘∴∠DCB=90∘−65∘=25∘,故选A.3.【答案】A【考点】线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】勾股定理线段垂直平分线的性质【解析】此题暂无解析【解答】解:设CE=x,连接AE,如图所示,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,,解得x=76∴CE=7.6故选B.5.【答案】D【考点】线段垂直平分线的性质作图—基本作图【解析】利用基本作法对A进行判断;根据斜边上的中线性质对B进行判断;根据等角的余角相等可对C进行判断;利用等腰三角形的性质和∠ECD=∠EDC可推出∠A=60∘,由此可对D进行判断.【解答】由作法得MN垂直平分AB,所以A选项的结论正确;∵CD为斜边AB上的中线,∴CD=1AB,所以B选项的结论正确;2∵DE⊥AB,∴∠BDE=90∘,∵∠B+∠BED=90∘,而∠B+∠A=90∘,∴∠A=∠BED,所以C选项的结论正确;∵CD=BD,∴∠B=∠BCD,∴∠ADC=∠B+∠BCD=2∠ECD,而∠EDC+∠ADC=90∘,若∠ECD=∠EDC,则∠ADC=60∘,∠A=60∘,而已知条件没有给定∠A=60∘,所以D选项的说法错误.6.【答案】B【考点】线段垂直平分线的性质【解析】根据题意,画出图形,用线段垂直平分线的性质解答.【解答】解:如图,CA,CB的中点分别为D,E,CA,CB的垂直平分线OD,OE相交于点O,且点O落在AB边上,连接CO,∵OD是AC的垂直平分线,∴OC=OA.同理OC=OB,∴OA=OB=OC,∴A,B,C都落在以O为圆心,以AB为直径的圆周上,∴C是直角,即这个三角形是直角三角形.故选B.7.【答案】C【考点】作图—基本作图线段垂直平分线的性质角平分线的性质【解析】【解答】解:由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=12×4×1=2.故选C.8.【答案】B【考点】正方形的判定与性质作图—复杂作图矩形的性质【解析】直接利用基本作图方法得出对应边以及对应角的关系,进而结合正方形的判定方法分析得出答案.【解答】由甲的作法可得:DF=AD=AE,∵四边形ABCD是矩形,∴AB // DC,∠A=90∘,∵DF=∥AE,∴四边形AEFD是平行四边形,∵∠A=90∘,∴平行四边形AEFD是矩形,∵AD=AE,∴矩形AEFD是正方形;故甲的作法正确;∵四边形ABCD是矩形,∠CDA=∠DAB=90∘,由乙的作法可得:∠ADN=∠MDN=∠DAM=∠NAM=45∘,则AD=AN=DM,在△MDA和△NAD中{∠MDA=∠DANAD=AD∠DAM=∠ADN,∴△MDA≅△NAD(AAS),∴DM=AN,∴DM=∥AN,∴四边形ANMD是平行四边形,∵∠DAB=90∘,∴平行四边形ANMD是矩形,∵AD=AN,∴矩形ANMD是正方形;故乙的作法正确.9.【答案】B【考点】线段垂直平分线的性质【解析】根据线段垂直平分线性质得出AD=DC,求出AC和AB+BC的长,即可求出答案. 【解答】解:∵ DE是AC的垂直平分线,AE=2cm,∴ AC=2AE=4cm,AD=DC,∵ △ABD的周长为9cm,∴ AB+BD+AD=9cm,∴ AB+BD+DC=AB+BC=9cm,∴ △ABC的周长为AB+BC+AC=9cm+4cm=13cm.故选B.10.【答案】D【考点】命题与定理多边形的外角和线段垂直平分线的性质矩形的性质【解析】根据多边形的外角和、线段垂直平分线的性质、对顶角和矩形的性质判断即可.【解答】解:A,n边形(n≥3)的外角和是360∘,该选项为真命题;B,矩形的对角线互相平分且相等,该选项为真命题;C,线段垂直平分线上的点到线段两个端点的距离相等,该选项为真命题;D,相等的角不一定是对顶角,该选项为假命题.故选D.二、填空题(本题共计 9 小题,每题 5 分,共计45分)11.【答案】40∘或140∘【考点】等腰三角形的性质线段垂直平分线的性质【解析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:如图,当等腰三角形为锐角三角形时,∵∠ADE=50∘,∠AED=90∘,∴∠A=40∘;如图,当等腰三角形为钝角三角形时,∵∠ADE=50∘,∠DAE=40∘,∴∠BAC=180∘−40∘=140∘.综上所述,此等腰三角形的顶角为40∘或140∘.故答案为:40∘或140∘.12.【答案】18【考点】线段垂直平分线的性质【解析】根据等腰三角形的判定,可由∠ABC=∠C,得到AB=AC=6,再由线段垂直平分线的性质,可得AD=BD,即可得到△BCD的周长.【解答】解:∵DE垂直平分AB,∴BD=AD,∵△BCD的周长是30,∴BC+BD+CD=BC+AD+CD=BC+AC=30,又∵BC=12,∴AC=18.故答案为:18.13.【答案】20【考点】直角三角形的性质线段垂直平分线的性质【解析】根据直角三角形的性质可得∠ACB=55∘,再利用线段垂直平分线的性质可得AD=CD,根据等边对等角可得∠A=∠ACD=35∘,进而可得∠BCD的度数.【解答】∵∠A=35∘,∠B=90∘,∴∠ACB=55∘,∵MN是线段AC的垂直平分线,∴AD=CD,∴∠A=∠ACD=35∘,∴∠BCD=20∘,14.【答案】19cm【考点】线段垂直平分线的性质【解析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为:19cm.15.【答案】6【考点】全等三角形的性质与判定线段垂直平分线的性质角平分线的性质【解析】首先连接PB,PC,由∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,易得PE=PF,PB=PC,继而证得△PBE≅△PCF,AE=AF,又由AB=8,AC=4,即可求得答案.【解答】解:连接PB,PC,如图,∵ 点P 在BC 的垂直平分线上,∴ PB =PC .∵ AP 平分∠BAC ,PE ⊥AB ,PF ⊥AC ,∴ PE =PF ,∠PEB =∠PFC =90∘,∴ ∠APE =∠APF ,∴ AE =AF .在Rt △PBE 和Rt △PCF 中,{PB =PC,PE =PF,∴ Rt △PBE ≅Rt △PCF(HL),∴ BE =CF .∵ AB =AE +BE ,AF =AC +CF ,∴ AB =AC +CF +BE .∵ AB =8,AC =4,∴ BE =CF =2,∴ AE =AC +CF =6.故答案为:6.16.【答案】②③【考点】角平分线的性质线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答17.【答案】13【考点】线段垂直平分线的性质【解析】本题主要考查线段垂直平分线的性质.【解答】解:连结CD .∵ DE是线段BC的垂直平分线,∴ BD=CD,即BD+AD=CD+AD=AB,∵ AB=8,AC=5,∴当点P与点D重合时,△APC的周长最小,最小值为AB+AC=13,故答案为:13.18.【答案】40∘【考点】线段垂直平分线的性质三角形内角和定理【解析】设∠CAD=x,则∠DAB=2x.根据垂直平分线性质,∠B=∠DAB=2x.根据三角形内角和定理求解.【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB.设∠CAD=x,则∠DAB=2x.∵∠C=80∘,∴3x+2x+80∘=180∘,x=20∘,∴2x=40∘.即∠B=40∘.故答案为40∘.19.【答案】7【考点】线段垂直平分线的性质【解析】本题考查线段垂直平分线的性质.【解答】解:∵ BC的垂直平分线交AC于D∴ BD=CD∵ AB+AC=7cm∴ AB+AD+BD=AB+AD+CD=AB+AC=7cm故答案为:7.三、解答题(本题共计 3 小题,每题 5 分,共计15分)20.【答案】如图所示,点D即为所求;在△ABC中,∵∠C=90∘、∠B=37∘,∴∠CAB=53∘,由(1)知DA=DB,∴∠B=∠DAB=37∘,则∠CAD=∠CAB−∠DAB=16∘.【考点】线段垂直平分线的性质作图—基本作图【解析】(1)根据“到A,B两点的距离相等”可知点D在线段AB的中垂线上,据此作AB中垂线与BC交点可得;(2)先根据直角三角形的性质得∠CAB=53∘,再由DA=DB知∠B=∠DAB=37∘,从而根据∠CAD=∠CAB−∠DAB可得答案.【解答】如图所示,点D即为所求;在△ABC中,∵∠C=90∘、∠B=37∘,∴∠CAB=53∘,由(1)知DA=DB,∴∠B=∠DAB=37∘,则∠CAD=∠CAB−∠DAB=16∘.21.【答案】如图,点P即为所求.如图,点C即为所求.结论:∠MPN=2∠BCP.理由:∵BP=BA=AC,∴∠MPN=∠BAP,∠ABC=∠ACB,∵∠BAP=∠ABC+∠ACB,∴∠MPN=2∠CBP.【考点】等腰三角形的性质作图—复杂作图线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)如图所示,∠AOC即为所求;(2)当OC在∠AOB的内部时,∠AOC=∠AOB−∠BOC=65∘−30∘=35∘;当OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=65∘+30∘=95∘;综上,∠AOC的度数为35∘或95∘.【考点】作图—复杂作图【解析】此题暂无解析【解答】解:(1)如图所示,∠AOC即为所求;(2)当OC在∠AOB的内部时,∠AOC=∠AOB−∠BOC=65∘−30∘=35∘;当OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=65∘+30∘=95∘;综上,∠AOC的度数为35∘或95∘.。

垂直平分线练习题

垂直平分线练习题

垂直平分线练习题一、选择题1. 在平面几何中,垂直平分线是指:A. 连接两点的线段B. 垂直于线段的直线C. 将线段平分为两等分的直线D. 通过线段中点的直线2. 垂直平分线的性质是:A. 垂直于线段B. 平分线段C. 垂直于线段且平分线段D. 垂直于线段的两端点3. 如果线段AB的垂直平分线与线段CD相交,那么点C和点D到点A 的距离:A. 相等B. 不相等C. 可能相等D. 无法确定4. 在三角形中,垂直平分线的性质是:A. 连接顶点和对边中点B. 将对边平分为两等分C. 垂直于对边D. 以上都是二、填空题5. 垂直平分线将线段_____,并且_____该线段。

6. 如果点P在三角形ABC的边AB的垂直平分线上,那么PA_____PB。

7. 在直角三角形中,斜边的垂直平分线同时也是其_____。

三、判断题8. 垂直平分线总是通过线段的中点。

(对/错)9. 垂直平分线的长度总是等于线段长度的一半。

(对/错)10. 垂直平分线与线段的交点是线段的中点。

(对/错)四、简答题11. 描述垂直平分线在三角形中的应用。

12. 解释为什么垂直平分线可以用于确定线段的中点。

五、计算题13. 在三角形ABC中,已知AB=5cm,AC=7cm,BC=6cm,求AB边的垂直平分线的长度。

六、作图题14. 给定线段AB,请画出AB的垂直平分线,并标出中点M。

七、证明题15. 证明:如果点P在三角形ABC的边AB的垂直平分线上,那么PA=PB。

八、应用题16. 在一个矩形中,如果已知对角线AC的垂直平分线,如何确定矩形的中心点?九、探索题17. 探索并证明:在一个圆中,任意弦的垂直平分线都会经过圆心。

十、综合题18. 在一个给定的三角形ABC中,已知AB=8cm,AC=6cm,BC=10cm,求出AB边的垂直平分线与AC边的垂直平分线的交点,并证明该点是三角形ABC的重心。

以上练习题涵盖了垂直平分线的定义、性质、应用以及相关的证明和计算,旨在帮助学生全面理解和掌握垂直平分线的概念和应用。

专题13.2线段的垂直平分线专题(限时满分培优训练)-【拔尖特训】2024-2025学年八年级数学上

专题13.2线段的垂直平分线专题(限时满分培优训练)-【拔尖特训】2024-2025学年八年级数学上

【拔尖特训】2024-2025学年八年级数学上册尖子生培优必刷题(人教版)专题13.2线段的垂直平分线专题(限时满分培优训练)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•防城港期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.8B.6C.4D.22.(2022秋•东宝区期末)和三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点3.(2022秋•黄石港区期末)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AB,AC于点M,N,△BCN的周长是7cm,则BC的长为()A.4cm B.3 cm C.2cm D.1cm4.(2022秋•长安区校级期末)某地兴建的幸福小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在△ABC()A.三条高线的交点处B.三条中线的交点处C.三个角的平分线的交点处D.三条边的垂直平分线的交点处5.(易错题)(2023秋•青秀区校级月考)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC 的数量关系是()A.2∠BOC+∠BPC=360°B.∠BOC+2∠BPC=360°C.3∠BOC﹣∠BPC=360°D.4∠BPC﹣∠BOC=360°6.(易错题)(2022秋•汉南区校级期末)如图,锐角三角形ABC中,O为三条边的垂直平分线的交点,I 为三个角的平分线的交点,若∠BOC的度数为x,∠BIC的度数为y,则x、y之间的数量关系是()A.x+y=90°B.x﹣2y=90°C.x+180°=2y D.4y﹣x=360°7.(易错题)(2022秋•东阿县校级期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠OEB =46°,则∠AOC=()A.92°B.88°C.46°D.86°8.(易错题)(2022春•雅安期末)如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE=40°,则∠BAC=()A.105°B.100°C.110°D.140°9.(培优题)(2022春•舞钢市期末)如图,四边形ABCD中,DE和DF恰好分别垂直平分AB和BC,则以下结论不正确的是()A.AD=CD B.∠B=∠A+∠CC.∠EDF=∠ADE+∠CDF D.BE=BF10.(培优题)(2022春•周村区期末)如图,在△ABC中,∠BAC=80°,边AB的垂直平分线交AB于点D,交BC于点E,边AC的垂直平分线交AC于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.35°B.30°C.25°D.20°二.填空题(共6小题)11.(2022秋•句容市期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长.12.(2022秋•德城区校级期末)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线DE交BC于点E,交AC于点D,∠B=70°,∠F AE=19°,则∠C=°.13.(易错题)(2023春•甘州区校级期末)如图,在△ABC中,AC的垂直平分线与AC,BC分别交于点E,D,CE=4,△ABC的周长是25,则△ABD的周长为.14.(易错题)(2023春•荔湾区期末)在平面直角坐标系中,已知A(8,0),B(0,4),作AB的垂直平分线交x轴于点C,则点C坐标为.15.(2023春•振兴区校级期中)如图,AE是∠CAM的角平分线,点B在射线AM上,DE是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=26°,∠EBD=25°,则∠AED=.16.(2023春•振兴区校级期中)如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.已知△ADE的周长为11cm,分别连接OA、OB、OC,若△OBC的周长为23cm,则OA的长为.三.解答题(共7小题)17.(2023•渭南一模)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD 垂直平分EF.18.(2022春•合浦县期中)如图,已知点D是BC上一点,DE⊥AB,DF⊥AC,垂足分别为E、F,连接AD,若AD垂直平分EF,求证:AD是△ABC的角平分线.19.(易错题)(2023春•新民市期中)如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与P A相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与DP的位置关系,并说明理由;(2)若AC=6,BC=8,P A=2,求线段DE的长.20.(易错题)(2023春•丰城市期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.(1)若BC=9,求△AEG的周长.(2)若∠BAC=130°,求∠EAG的度数.21.(培优题)(2023春•榆林期末)如图,在△ABC中,AC边的垂直平分线分别交BC、AC于点E、F,连接AE,作AD⊥BC于点D,且D为BE的中点.(1)试说明:AB=CE;(2)若∠C=32°,求∠BAC的度数.22.(培优题)(2023春•定边县校级期末)已知,如图,AD是△ABC的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠B=40°,求∠AEF的度数;(2)求证:∠B=12∠AED.23.(培优题)(2023春•兴庆区校级期末)如图,△ABC中,D、E在AB上,且D、E分别是AC、BC的垂直平分线上一点.(1)若△CDE的周长为4,求AB的长;(2)若∠ACB=100°,求∠DCE的度数;(3)若∠ACB=a(90°<a<180°),则∠DCE=.。

七年级数学下册 线段垂直平分线的性质习题

七年级数学下册 线段垂直平分线的性质习题

1.如图,等腰△ABC中,AB=AC,∠A=40°,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于( )A.60° B.50° C.40° D.30°2.如图,△ABC中,D、E两点分别在AC、BC上,DE为BC的垂直平分线,BD 为∠ADE的角平分线,若∠A=58°,则∠ABD的度数为何?( )A.58 B.59 C.61 D.623.如图,∠ACB=90°,∠A=30°,AC的垂直平分线交AC于E,交AB于D,则图中60°的角共有( )A.6个 B.5个 C.4个 D.3个4.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12cm,AC=5cm,则AB+BD+DC=cm;△ABC的周长是cm.5. 如图,在△ABC中,AB=6,AC=4.分别以点B和点C为圆心,以大于BC一半的长为半径画弧,两弧相交于点M和N,作直线MN,直线MN交AB于点D,连接CD,则△ADC的周长为( )A.8 B.9 C.10 D.116. 线段是轴对称图形,它的一条对称轴是,线段本身所在的直线也是它的一条对称轴.7.线段垂直平分线的定义:一条线段,并且这条线段的直线,叫做该线段的垂直平分线(简称中垂线).8.线段的垂直平分线的性质:线段垂直平分线上的点到这条线段的相等.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC10.如图,在锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为() A.24° B.30° C.32° D.36°11.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,且∠BAD∶∠CAD =4∶1,则∠B=.12.如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是.13. 如图,△ABC和△A′B′C′是两个成轴对称的图形,请作出它的对称轴.14. 如图,某地由于居民增多,要在公路边增加一个公共汽车站,A、B是路边两个新建小区,这个公共汽车站建在什么位置,能使两个小区到车站的路程一样长?15. 如图,M村、N村坐落在笔直的公路上,一条小河l在M村,N村同侧沿直线流过,现要在小河边修一座灌溉水坝P,要求水坝到M村、N村的距离相等,你认为水坝P应该修在什么位置,请在图中将P点画出来.16. 如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.试说明:AB=BC+AD.17. 如图,△ABC中,∠BAC=110°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,BC=10cm.求:(1)△ADE的周长;(2)∠DAE的度数.参考答案:1—3 DDB4. 12 175. C6. 线段的垂直平分7. 垂直平分8. 两端点的距离9. C10. C11. 40°12. 313. 解:连结BB′,作BB′的垂直平分线即可.14. 解:建在AB的垂直平分线与公路的交点P处.15. 解:作线段MN的垂直平分线与l的交点即为P点.16. 解:∵E是CD中点,∴易证△AED≌△FEC,∴AE=EF,AD=CF,∵BE⊥AE,∴BE垂直平分AF,∴AB=BC+CF=BC+AD.17. 解:(1)∵DF垂直平分AB,EG垂直平分AC,∴AD=BD,AE=EC,所以△ADE 的周长等于10cm;(2)∵AD=BD,AE=EC,∴∠B=∠BAD,∠C=∠EAC,∴∠ADE=2∠B,∠AED=2∠C,而∠B+∠C=70°,∴∠ADE+∠AED=140°,∴∠DAE=40°.。

线段的垂直平分线(有答案)

线段的垂直平分线(有答案)

线段的垂直平分线一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处 C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为( ) A.18B.22C.24D.263.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是( ) A.∠ADC=45°B.∠DAC=45°C.DB=DA D.BD=DC4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为( ) A.20B.18C.16D.145.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( ) A.三边垂直平分线的交点B.三条角平分线的交点 C.三条高的交点D.三边中线的交点二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为 _________ cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是 _________ cm .8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于 _________ . 9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为 _________ .10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB= _________ .三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗为什么(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC ,求证:BF=AC+AF.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC. 线段的垂直平分线参考答案与试题解析一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处 C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质即可得出答案.解答:解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC和BC的垂直平分线上,故选B.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为( ) A.18B.22C.24D.26考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AB=2AE=8,AD=BD,求出△ABC的周长为:AB+AD+DC+AC,求出AD+DC+AC=18,即可求出答案.解答:解:∵DE是AB的垂直平分线,AE=4,∴AB=2AE=8,AD=BD,∵△ACD的周长为18,∴AD+DC+AC=18,∴△ABC的周长为:AB+BC+AC=8+BD+DC+AC=8+AD+DC+AC=8+18=26,故选D.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是( ) A.∠ADC=45°B.∠DAC=45°C.DB=DA D.BD=DC考点:线段垂直平分线的性质.专题:数形结合.分析:由∠ACB=90°,∠B=22.5°,根据三角形的内角和定理求出∠BAC的度数,然后根据线段的垂直平分线的性质得到DB与DA相等,利用等边对等角得到∠BAD与∠B相等,求出∠BAD的度数,由∠BAC的度数减去∠BAD 的度数,求出∠DAC的度数,又因为∠ADC是三角形ADB的外角,由三角形的外角性质得到∠ADC等于2∠B ,求出∠ADC的度数,从而得到选项A,B,C的结论正确,在直角三角形ACD中,根据斜边总大于直角边,判定得到AD大于CD,而AD与BD相等,等量代换得到BD大于CD,选项D的结论错误.解答:解:∵∠ACB=90°,∠B=22.5,∴∠BAC=180°﹣90°﹣22.5°=67.5°,又AB的垂直平分线交BC于D,∴DB=DA,故选项C正确;∴∠BAD=∠B=22.5°,∴∠DAC=67.5°﹣22.5°=45°,选项A正确,∠ADC=22.5°+22.5°=45°,选项B正确,在直角三角形ACD中,∵AD>CD,又AD=BD,∴BD>CD,选项D错误,则不正确的选项为D.故选D.点评:此题考查了线段垂直平分线的性质,外角性质及直角三角形的边角关系.遇到线段垂直平分线,往往根据垂直平分线上的点到线段两端点的距离相等,构造出等腰三角形,从而利用等腰三角形的有关知识解决问题.4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为( ) A.20B.18C.16D.14考点:线段垂直平分线的性质.专题:计算题.分析:先根据线段垂直平分线的性质得到AD=CD,即BD+CD+BC=12,再根据CE=4得到AC=8即可进行解答.解答:解:∵ED是线段AC的垂直平分线,∴AD=CD,∵△BCD的周长等于12,∴△BCD的周长=BC+BD+CD=AB+BC=12,∵CE=4,∴AC=8.∴△ABC的周长=AB+BC+AC=12+8=20.故选A.点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( ) A.三边垂直平分线的交点B.三条角平分线的交点 C.三条高的交点D.三边中线的交点考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.解答:解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选A.点评:本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为 18 cm.考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质得出AE=BE=5cm,代入AB+AE+BE求出即可.解答:解:∵DE是线段AB的垂直平分线,BE=5cm,∴AE=BE=5cm,∵AB=8cm,∴△ABE的周长是AB+AE+BE=8cm+5cm+5cm=18cm,故答案为:18.点评:本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两端点的距离相等.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是 14 cm.考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线得出CE=AE=2,AD=DC,根据已知得出AB+BD+AD=AB+BD+DC=AB+BC=10,即可求出答案.解答:解:∵DE是AC的中垂线,∴AE=CE=2,AD=DC,∵△ABD的周长是10cm,∴AB+BD+AD=10,∴AB+BD+DC=AB+BC=10,∴△ABC的周长是AB+BC+AC=10+2+2=14,故答案为14.点评:本题考查了线段的垂直平分线性质的应用,关键是求出AB+BC=10,题目比较典型,难度适中.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于 9 .考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,求出△BCD的周长=AB+BC,代入求出即可.解答:解:∵DE是AC的垂直平分线,∴AD=DC,∴△BCD的周长是BD+DC+BC=BD+AD+BC=AB+BC=5+4=9,故答案为:9.点评:本题考查了线段垂直平分线的应用,关键是求出△BCD的周长等于AB+BC.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为 23 .考点:线段垂直平分线的性质.分析:由已知条件,根据垂直平分线的性质得到线段相等,由△BCE的周长=EC+BE+BC得到答案.解答:解:AB的垂直平分线交AB于点D,所以EA=BE.∵AC=13,BC=10,∴△BCE的周长是EC+BE+BC=BC+CE+EA=AC+BC=13+10=23,故答案为23.点评:本题考查了垂直平分线的性质;由于已知三角形的两条边长,根据垂直平分线的性质,求出另一条的长,相加即可.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB= 4 .考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,根据BC长求出AD+BD=8,代入AB+AD+BD=12即可求出答案.解答:解:∵MN垂直平分AC,∴AD=DC,∵BC=8,∴BD+DC=8=AD+BD,∵△ABD的周长为12,∴AB+AD+BD=12,∴AB=12﹣8=4,故答案为:4.点评:本题考查了线段的垂直平分线性质,注意:线段垂直平分线上的点到线段两端点的距离相等.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.考点:线段垂直平分线的性质.专题:计算题.分析:(1)根据线段的垂直平分线性质求出AC即可;(2)根据线段的垂直平分线性质求出AD=DC,AC=2AE=6,根据△ABD的周长为13求出AB+BC的值即可求出答案.解答:解:(1)∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,∴AC=BC=6,答:BC的长是6.(2)∵DE是AC的垂直平分线,AE=3,∴AD=DC,AC=2AE=6,∵△ABD的周长为13,∴AB+AD+BD=13,∴AB+CD+BD=13,即AB+BC=13,∴△ABC的周长是AB+BC+AC=13+6=19.答:△ABC的周长是19.点评:本题主要考查对线段的垂直平分线性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗为什么(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.考点:线段垂直平分线的性质;全等三角形的判定与性质.分析:(1)根据SSS证△ABC≌△ADC,推出∠BAC=∠DAC,根据等腰三角形的三线合一定理推出即可;(2)求出四边形ABCD的面积为S=S△ABD+S△CBD=BD×AC,代入求出即可.解答:解:(1)∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,BE=DE(三线合一定理);(2)∵AC=a,BD=b,∴四边形ABCD的面积S=S△ABD+S△CBD=×BD×AE+×BD×CE=×BD×(AE+CE)=BD×AC=ab.点评:本题考查了等腰三角形的性质和线段垂直平分线性质,三角形的面积等知识点的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,等腰三角形的顶角的平分线垂直于底边,且平分底边.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AM=BM,推出∠BAM=∠B,设∠B=x,则∠BAM=x,∠C=3x,在△ABC中,由三角形内角和定理得出方程x+x+3x+50°=180°,求出即可.解答:解:∵MN是边AB的中垂线,∴AM=BM,∴∠BAM=∠B,设∠B=x,则∠BAM=x,∵∠C=3∠B,∴∠C=3x,在△ABC中,由三角形内角和定理,得x+x+3x+50°=180°,∴x=26°,即∠B=26°.点评:本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,关键是求出关于x的方程,注意:线段垂直平分线上的点到线段两端点的距离相等,等边对等角.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC ,求证:BF=AC+AF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:过D作DN⊥AC,垂足为N,连接DB、DC,推出DN=DF,DB=DC,根据HL证Rt△DBF≌Rt△DCN,推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.解答:证明:过D作DN⊥AC,垂足为N,连接DB、DC,则DN=DF(角平分线性质),DB=DC(线段垂直平分线性质),又∵DF⊥AB,DN⊥AC,∴∠DFB=∠DNC=90°,在Rt△DBF和Rt△DCN中∵,∴Rt△DBF≌Rt△DCN(HL)∴BF=CN,在Rt△DFA和Rt△DNA中∵,∴Rt△DFA≌Rt△DNA(HL)∴AN=AF,∴BF=AC+AN=AC+AF,即BF=AF+AC.点评:本题考查了全等三角形的性质和判定,线段的垂直平分线定理,角平分线性质等知识点,会添加适当的辅助线,会利用中垂线的性质找出全等的条件是解此题的关键.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线性质求出CE长,代入BE+CE+BC=18求出BC即可.解答:解:∵BC边的垂直平分线DE,∴BE=CE=5,∵BE+CE+BC=18,∴BC=18﹣5﹣5=8,答:BC的长是8.点评:本题考查了线段垂直平分线的应用,关键是求出CE长,题目较好,难度不大.16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.考点:线段垂直平分线的性质.专题:证明题.分析:根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.解答:证明:∵AD是高,∴AD⊥BC,又BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.点评:本题考查了线段的垂直平分线的应用,解此题的关键是熟练地运用性质进行推理,培养了学生分析问题和解决问题的能力.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点:一次函数综合题;线段垂直平分线的性质;作图—应用与设计作图;轴对称-最短路线问题.专题:综合题.分析:(1)连接AB,作出线段AB的垂直平分线,与x轴的交点即为所求的点;(2)找到点A关于x轴的对称点,连接对称点与点B与x轴交点即为所求作的点.解答:解:(1)存在满足条件的点C;作出图形,如图所示.(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.设A′B所在直线的解析式为:y=kx+b,把(2,﹣2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).点评:本题是一道典型的一次函数综合题,题目中还涉及到了线段的垂直平分线的性质及轴对称的问题.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:根据线段垂直平分线得出AC=BC,BD=AD,推出∠CBE=∠CAF,证△BCE≌△ACF,推出BE=AF,即可得出答案.解答:证明:∵线段CD垂直平分AB,∴AC=BC,AD=BD,∴∠CAB=∠CBA,∠BAD=∠ABD,∴∠CAB+∠BAD=∠CBA+∠ABD,即∠CBE=∠CAF,在△BCE和△ACF中∵,∴△BCE≌△ACF(ASA),∴BE=AF,∵BD=AD,∴BE﹣BD=AF﹣AD,即DE=DF.点评:本题考查了等腰三角形的性质和判定,线段垂直平分线性质,全等三角形的性质和判定等知识点的综合运用.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.考点:线段垂直平分线的性质;全等三角形的判定与性质.专题:证明题.分析:连接AC、AD,根据线段垂直平分线定理求出AC=AD,根据全等三角形的判定SSS证△ABC≌△AED即可.解答:证明:连接AC,AD,∵AF⊥CD,F为CD的中点,∴AC=AD,在△ABC和△AED中,∴△ABC≌△AED,∴∠B=∠E.点评:本题考查了对线段的垂直平分线定理和全等三角形的性质和判定的应用,关键是构造三角形ABC和三角形AED,并推出两三角形全等,题目比较典型,难度适中.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)根据全等三角形的判定SSS证出△ABC和△ADC即可;(2)根据线段垂直平分线定理得出点A,C都在线段BD的垂直平分线上即可.解答:证明:(1)在△ABC和△ADC中∴△ABC≌△ADC,∴∠ABC=∠ADC.(2)∵AB=AD,CB=CD,∴点A,C都在线段BD的垂直平分线上,∴AC⊥BD.点评:本题综合运用全等三角形的性质和判定和线段的垂直平分线定理,难度适中,题型较好.通过作题培养了学生分析问题和解决问题的能力.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.考点:线段垂直平分线的性质.专题:探究型.分析:(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE ,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE ,同理可得出DE=2EF即可得出结论.解答:解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.考点:线段垂直平分线的性质;角平分线的定义;三角形内角和定理.专题:证明题.分析:根据线段垂直平分线得出AF=DF,推出∠FAD=∠FDA,根据角平分线得出∠BAD=∠CAD,根据三角形外角性质推出即可.解答:证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B.点评:本题考查了三角形的外角性质,角平分线定义,线段垂直平分线性质等知识点的运用,关键是推出∠FAD=∠FDA,培养了学生综合运用性质进行推理的能力.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?考点:线段垂直平分线的性质.专题:计算题.分析:利用线段的垂直平分线的性质得到:AD=BD,AF=CF,就可以将△ADF的周长转化为线段BC的长.解答:解:∵DE,FG分别是△ABC的边AB、AC的垂直平分线∴AD=BD,AF=CF∴△ADF的周长=AD+DF+AF=BD+DF+CF=BC=10∴△ADF的周长是10.点评:本题考查了线段的垂直平分线的性质以及转化思想的应用.24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.考点:线段垂直平分线的性质;三角形三边关系.专题:数形结合.分析:PA大于PB,理由是:如图连接PA,与直线l交于C,连接PB,BC,因为直线l为线段AB的垂直平分线,根据线段垂直平分线的定理得直线l上的点C到线段两端点的距离相等,即AC=BC,在三角形PBC中,根据三角形的两边之和大于第三边得到PC+BC大于PB,然后利用等量代换把其中的BC换为AC,根据图形可得证.解答:解:PA>PB.理由如下:(3分)如图,连接PA,与直线l交于点C;连接PB、BC.(2分)因为直线l是线段AB的垂直平分线,所以CA=AB;(2分)因为三角形任意两边之和大于第三边,所以PC+CB>PB;(2分)所以PC+CA>PB,即PA>PB.(1分)点评:此题考查了线段垂直平分线的定理,以及三角形的三边关系.遇到线段垂直平分线,常常连接垂直平分线上的点与线段的两端点,构造等腰三角形.同时注意运用在三角形中,任意两边之和大于第三边,两边之差小于第三边.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)由已知和BC=BC,根据SSS即可推出两三角形全等;(2)由全等得出∠DBC=∠ACB,推出MB=MC,根据线段垂直平分线定理得出即可.解答:(1)证明:∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS).(2)证明:∵由(1)知:△ABC≌△DCB,∴∠ACB=∠DBC,∴MB=MC,∴点M在BC的垂直平分线上.点评:本题考查了全等三角形的性质和判定和线段垂直平分线定理的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出BD=AD=16cm,推出∠B=∠BAD=15°,根据三角形的外角性质求出∠ADC=30°,根据含30度角的直角三角形性质得出AC=AD,代入求出即可.解答:解:∵DE垂直平分AB,∴BD=AD=16cm,∴∠B=∠BAD=15°,∴∠ADC=15°+15°=30°,∵∠C=90°,∴AC=AD=8cm,点评:本题考查了三角形的外角性质,线段垂直平分线性质,等腰三角形性质,含30度角的直角三角形性质等知识点的综合运用,题目比较典型,是一道比较好的题目.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.考点:三角形的五心;线段垂直平分线的性质.专题:作图题.分析:首先根据线段的垂直平分线的性质,推出垂心H关于三边的对称点,均在△ABC的外接圆上,作△H1H2H3的外接圆O,根据线段的垂直平分线的性质作出弧H1H2、弧H2H3、弧H1H3的中点即可得到答案.解答:作法:1、作△H1H2H3的外接圆O,2、连接H1H2,作H1H2的垂直平分线EF交圆O于A,同法可作H2H3和H1H3的垂直平分线,分别交圆于B、C,3、连接AB、BC、AC,则△ABC为所求.点评:本题主要考查了三角形的五心,线段的垂直平分线的性质等知识点,解此题的关键是理解△ABC的垂心H 关于三边的对称点,均在△ABC的外接圆上.题型较好,但有一定的难度.21。

八年级数学上册《第二章 线段的垂直平分线》练习题-含答案(湘教版)

八年级数学上册《第二章 线段的垂直平分线》练习题-含答案(湘教版)

八年级数学上册《第二章线段的垂直平分线》练习题-含答案(湘教版)一、选择题1.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误..的是( ) A.① B.② C.③ D.④2.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为( )A.40°B.50°C.60°D.70°3.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,适当长度(大于BC长的一半)为半径作圆弧,两弧相交于点M和N;②作直线MN交AB于点D,连接CD.若AB=9,AC=4,则△ACD的周长是( )A.12B.13C.17D.184.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于12AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为( )A.8B.10C.11D.135.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若AD=AC,∠A=80°则∠ACB的度数为( )A.65°B.70°C.75°D.80°6.如图,AB∥CD,BE垂直平分AD,DC=BC,若∠A=70°,则∠C=( )A.100°B.110°C.115°D.120°7.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )A.BC>PC+APB.BC<PC+APC.BC=PC+APD.BC≥PC+AP8.如图,已知在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D 恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为( )A.10°B.20°C.30°D.35°二、填空题9.如图,在△ABC中,AB=AC=8,BC=6,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则△BEC的周长为 .10.如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为 .11.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC= cm.12.小军做了一个如图所示的风筝,其中EH=FH,ED=FD,小军说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是 .13.如图,在△ABC中,∠C=35°,AB=AD,DE是AC的垂直平分线,则∠BAD=度.14.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为.三、作图题15.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.四、解答题16.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于点D,垂足为E,且∠CAD∶∠CAB=1∶3,求∠B的度数.17.在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D点,交AC于点E. (1)若∠ABE=38°,求∠EBC的度数;(2)若△ABC的周长为36cm,一边为13cm,求△BCE的周长.18.如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.19.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.20.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是________.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P 的位置并求△PBC的周长最小值;若不存在,说明理由.参考答案1.C.2.B.3.B.4.A.5.C.6.D.7.C8.B.9.答案为:14.10.答案为:28cm.11.答案为:7.12.答案为:与线段两个端点距离相等的点在这条线段的垂直平分线线上.13.答案为:40.14.答案为:6.15.解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;16.解:设∠CAD=x°则∠CAB=3x°,∠BAD=2x°.∵DE是AB的垂直平分线∴DA=DB∴∠B=∠BAD=2x°.∵∠C=90°∴∠CAB+∠B=90°即3x+2x=90,解得x=18∴∠B=2×18°=36°.17.解:∵DE是AB的垂直平分线∴AE=BE∴∠A=∠ABE=38°∵AB=AC∴∠ABC=∠C=71°∴∠EBC=∠ABC-∠ABE=71°-38°=33°由△ABC的周长为36cmAB>BC,AB=AC可知AB=AC=13cm BC=10cm△BCE的周长=BE+CE+BC=AC+BC=13+10=23(cm) 18.解:∵AD平分∠BAC∴∠BAD=∠DAE∵∠BAD=29°∴∠DAE=29°∴∠BAC=58°∵DE垂直平分AC∴AD=DC∴∠DAE=∠DCA=29°∵∠BAC+∠DCA+∠B=180°∴∠B=93°.19.证明:∵EF垂直平分AD∴AF=DF,∠ADF=∠DAF∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD又∵AD平分∠BAC∴∠BAD=∠CAD∴∠B=∠CAF.20.解:(1)50°(2)猜想的结论为:∠NMA=2∠B﹣90°.理由:∵AB=AC∴∠B=∠C∴∠A=180°﹣2∠B又∵MN垂直平分AB∴∠NMA=90°﹣∠A=90°﹣(180°﹣2∠B)=2∠B﹣90°. 如图:①∵MN垂直平分AB.∴MB=MA又∵△MBC的周长是14cm∴AC+BC=14cm∴BC=6cm.②当点P与点M重合时,PB+CP的值最小,最小值是8cm.。

尺规作图:线段的垂直平分线专项训练(含解析)印刷版

尺规作图:线段的垂直平分线专项训练(含解析)印刷版

尺规作图:线段的垂直平分线专项训练一.选择题(共8小题)1.如图所示的尺规作图的痕迹表示的是()A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段C.尺规作一个角等于已知角D.尺规作角的平分线2.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°3.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A.90°B.95°C.100°D.105°5.如图,已知△ABC中,AC<BC,分别以点A、点B为圆心,大于AB长为半径作弧,两弧交于点D、点E;作直线DE交BC边于点P,连接AP.根据以上作图过程得出下列结论,其中不一定正确的是()A.PA+PC=BC B.PA=PB C.DE⊥AB D.PA=PC6.如图,已知Rt△ABC中,∠C=90°,∠A=30°.按下列步骤作图:分别以A、B为圆心,以大于AB的长为半径作弧,两弧相交于点P和Q作直线PQ,分别交AC于点D,交AB于点E;连接BD.则下列结论中:①AD=BD,②∠CBD=30°③BC=AB;④S△ABC=4S△BCD正确的个数有()A.1个B.2个C.3个D.4个7.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则下列说法中正确的是()A.DF平分∠ADC B.AF=3CF C.BE=8 D.DA=DB8.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列结论:①BH垂直平分线段AD;②AC平分∠BAD;③S△ABC=BC•AH;④AB=AD正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共4小题)9.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.10.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.(如图1)小芸的作法如下:如图2(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C,D两点.(2)作直线CD老师说:“小芸的作法正确.”请回答:小芸的作图依据是.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=8,AC=3,则△ACD的周长为.12.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC=°.三.解答题(共4小题)13.证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P证明:∵点P是AB边垂直平线上的一点,∴=().同理可得,PB=.∴=(等量代换).∴(到一条线段两个端点距离相等的点,在这条线段的)∴AB、BC、AC的垂直平分线相交于点P,且.14.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.15.如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.16.尺规作图如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)尺规作图:线段的垂直平分线专项训练参考答案与试题解析一.选择题(共8小题)1.如图所示的尺规作图的痕迹表示的是()A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段C.尺规作一个角等于已知角D.尺规作角的平分线【分析】利用线段垂直平分线的作法进而判断得出答案.【解答】解:如图所示:可得尺规作图的痕迹表示的是尺规作线段的垂直平分线.故选:A.2.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.3.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A.90°B.95°C.100°D.105°【分析】利用线段垂直平分线的性质得出DC=BD,再利用三角形外角的性质以及三角形内角和定理得出即可.【解答】解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:D.5.如图,已知△ABC中,AC<BC,分别以点A、点B为圆心,大于AB长为半径作弧,两弧交于点D、点E;作直线DE交BC边于点P,连接AP.根据以上作图过程得出下列结论,其中不一定正确的是()A.PA+PC=BC B.PA=PB C.DE⊥AB D.PA=PC【分析】根据作图过程可得DE是AB的垂直平分线,根据线段垂直平分线的定义和性质可得AP=BP,DE ⊥AB,利用等量代换可证得PA+PC=BC.但是AP和PC不一定相等.【解答】解:由作图可得:DE是AB的垂直平分线,∵DE是AB的垂直平分线,∴AP=BP,DE⊥AB,∴AP+CP=BP+CP=BC,故A、B、C选项结论正确;∵P在AB的垂直平分线上,∴AP和PC不一定相等,故D选项结论不一定正确,故选:D.6.如图,已知Rt△ABC中,∠C=90°,∠A=30°.按下列步骤作图:分别以A、B为圆心,以大于AB的长为半径作弧,两弧相交于点P和Q作直线PQ,分别交AC于点D,交AB于点E;连接BD.则下列结论中:①AD=BD,②∠CBD=30°③BC=AB;④S△ABC=4S△BCD正确的个数有()A.1个B.2个C.3个D.4个【分析】根据作已知线段的垂直平分线可对①进行判断;利用∠DBA=∠CBD=30°可对②进行判断;利用含30度的直角三角形三边的关系可对③进行判断;通过证明△DCB≌△DEB≌△DEA,可对④进行判断.【解答】解:①用作法可得PQ垂直平分AB,则AD=BD,故此选项正确;②因为DA=DB,则∠A=∠DBA=30°,则∠CBD=30°,故此选项正确;③∵∠C=90°,∠A=30°,∴BC=AB,故此选项正确;④由以上可得:在△DCB和△DEB中,∴△DCB≌△DEB(AAS),在△ADE和△BDE中,,∴△ADE≌△BDE(SAS),故△DCB≌△DEB≌△DEA,∴S△ABC=3S△BCD,故此选项错误.故选:C.7.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则下列说法中正确的是()A.DF平分∠ADC B.AF=3CF C.BE=8 D.DA=DB【分析】根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选:C.8.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列结论:①BH垂直平分线段AD;②AC平分∠BAD;③S△ABC=BC•AH;④AB=AD正确的个数是()A.1个B.2个C.3个D.4个【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:①、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.②、错误.CA不一定平分∠BAD.③、错误.应该是S△ABC=•BC•AH.④、错误.根据条件AB不一定等于AD.故选:A.二.填空题(共4小题)9.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=5.【分析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题.【解答】解:由题意直线CD是线段AB的垂直平分线,∵点F在直线CD上,∴FA=FB,∵FA=5,∴FB=5.故答案为5.10.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.(如图1)小芸的作法如下:如图2(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C,D两点.(2)作直线CD老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两端点相等的点在线段的垂直平分线上.【分析】直接利用作图方法得出C点到A,B点距离相等,D点到A,B点距离相等,即可得出直线CD 垂直平分AB.【解答】解:小芸的作图依据是:到线段两端点相等的点在线段的垂直平分线上.故答案为:到线段两端点相等的点在线段的垂直平分线上.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=8,AC=3,则△ACD的周长为11.【分析】根据作图可得MN是BC的垂直平分线,根据线段垂直平分线的性质可得CD=DB,然后可得AD+CD=8,进而可得△ACD的周长.【解答】解:根据作图可得MN是BC的垂直平分线,∵MN是BC的垂直平分线,∴CD=DB,∵AB=8,∴CD+AD=8,∴△ACD的周长为:3+8=11,故答案为:11.12.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC=8°.【分析】连接OA,根据三角形内角和定理求出∠ABC+∠ACB,根据线段垂直平分线的性质、等腰三角形的性质得到∠OAB=∠OBA,∠OAC=∠OCA,根据三角形内角和定理计算即可.【解答】解:连接OA,∵∠BAC=82°,∴∠ABC+∠ACB=180°﹣82°=98°,∵AB、AC的垂直平分线交于点O,∴OB=OA,OC=OA,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBC+∠OCB=98°﹣(∠OBA+∠OCA)=16°,∴∠OBC=8°,故答案为:8.三.解答题(共4小题)13.证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P证明:∵点P是AB边垂直平线上的一点,∴PB=PA(垂直平分线上任意一点,到线段两端点的距离相等).同理可得,PB=PC.∴PA=PC(等量代换).∴点P在AC的垂直平分线上,(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.【分析】根据线段垂直平分线的性质可得出PB=PA,同理可得出PA=PC,由此即可得出PA=PC,再根据线段垂直平分线的性质可得出点P是AC边垂直平线上的一点,从而证出结论.【解答】证明:∵点P是AB边垂直平线上的一点,∴PB=PA (垂直平分线上任意一点,到线段两端点的距离相等).同理可得,PB=PC.∴PA=PC(等量代换).∴点P是AC边垂直平线上的一点(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上),∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:PB;PA;垂直平分线上任意一点,到线段两端点的距离相等;PC;PA;PC;点P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.14.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.【分析】连接AB.根据“到线段两个端点距离相等的点在线段的垂直平分线上”知,点P应是AB线段的垂直平分线与直线m的交点.【解答】解:如图所示,点P是AB线段的垂直平分线与直线m的交点.15.如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.【分析】(1)分别以A、B点为圆心,以大于的长为半径作弧,两弧相交于M,N两点;作直线MN,即MN为线段AB的垂直平分线;(2)由AB的垂直平分线MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由∠A=40°,根据等边对等角的性质,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得∠DBC 的度数.【解答】解:(1)如图:(2)解:∵AB的垂直平分线MN交AC于D,∴AD=BD,∵∠A=40°,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=70°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.16.尺规作图如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【解答】解:如图所示:P点即为所求.。

线段垂直平分线的性质与判定 综合练习 文档

线段垂直平分线的性质与判定 综合练习 文档

AD 线段垂直平分线的性质与判定综合练习1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于 点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm第2题图 第3题图 第5题图 2、如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长是12 cm ,AC=5cm ,则AB+BD+AD= cm ;AB+BD+DC= cm ;△ABC 的周长是 cm.3、如图,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC 于E ,BE=5,则AE=__________,∠AEC=__________,AC=__________ .4、从镜子中看到背后墙上电子钟的示意数为,这时的实际时间为______.5、小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时,针与分针的位置如图所示,此时时间是 .6、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足,连接CD ,且交OE 于点F . 求证:OE 是CD 的垂直平分线.7、如图所示,在△ABC 中,AB=AC ,DE 垂直平分AB 交AC 、AB 于D 、E 两点. 若AB=9cm ,BC=7cm ,求△BCD 的周长.8、如图,D 、E 分别是AB 、AC 的中点,CD ⊥AB 于D , BE ⊥AC 于E ,求证:AC=AB .9、在△ABC 中,D 为BC 的中点,DE ⊥BC 交∠BAC 线AE 于点E ,EF ⊥AB 于F 点,EG ⊥AC 于G 点 求证:BF=CGADOCF EBOE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课型 精讲点拨
学习目标:
1、 能利用轴对称图形的特点,补全简单
的轴对称图形,能掌握两个图形关于某条直线成轴对称和轴对称图形的区别与联系.
2、 能掌握线段垂直平分线的概念与性
质.
3、 能利用过一点作已知直线的垂线解决
问题,如“解决最短路径问题”.
第三学段 精讲点拨
题型一:轴对称图形的概念
例1、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )
A .
B .
C .
D .
同步练习: 下面四个多边形:等边三角形,正方形,梯形,正六边形.其中是轴对称图形的个数有( )
A .1个
B .2个
C .3个
D .4个 题型二:作轴对称图形的对称轴 例2、如图所示的图形分别有几条对称轴?分别画出它们的对称轴
.
同步练习: 1、如图,AB 左边是计算器上的数字“5”,若以直线AB 为对称轴,那么
它的轴对称图形是数字
.
2、求作△ABC 关于对称轴l 的轴对称图形△A B C '''
.
题型三:线段垂直平分线的性质 例3、如图,在△ABC 中,AB =AC =14 cm,AB 的垂直平分线MN 交AC 于点D ,△DBC 的周长为24cm ,则BC =
.
分析:
同步练习:如图,AC 垂直平分BD ,垂足为E ,连接AB ,BC ,CD ,AD ,下列结论不一定成立的是( )
A .AB=AD
B .A
C 平分∠BCD
C .AE=CE
D .△BEC ≌△DEC
题型四:应用线段垂直平分线性质解决最短路径问题
例4、如图,直线m 表示一条公路,,A B 表示两所大学,要在公路旁修建一个车站P 使到两所大学的距离相等,请在图上找出这点P
.
分析:
同步练习:课本50页“挑战自我”. 三、合作学习 展示反馈(依据学情)
第四学段 训练二(检测)
一、 题型练习(共5题,1-4题每题5分,5题10分,共30分)
1、下列说法中错误的是( ) A .过“到线段两端点距离相等的点”的直线是线段的垂直平分线
B .线段垂直平分线的点到线段两端点的距离相等
C .线段有且只有一条垂直平分线
D .线段的垂直平分线是一条直线 2、如图,已知在△ABC 中,AD 垂直平分BC ,AC=EC ,点B 、D 、C 、
E 在同一直线上,则AB DB +与DE 之间的关系是() A .AB DB DE +> B .AB DB DE +< C .AB DB DE += D .以上都不对
第2题 第3题
3、如图,CD 是线段AB 的垂直平分线,若AC=1.6cm ,BD=2.3cm ,则四边形ABCD 的周长是______cm .
4、下列图形:①角;②线段;③等边三角形;④有一个角为30°的直角三角形中
是轴对称图形的有(填序号)______.
5、如图,在△ABC 中,BC=10,AB 、 AC 的垂直平分线分别交BC 于点D 、E, 求△ADE 的周长.
三、展示反馈(依据学情)
第二课型课后巩固练习
1.下列奥运会会徽的图案中是轴对称图形的是()
A.B.C. D.
2.下列结论错误的是()
A.等边三角形是轴对称图形
B.轴对称图形的对应边相等,对应角相等
C.成轴对称的两条线段必在对称轴同侧
D.成轴对称的两个图形的对应点的连线被对称轴垂直平分
3.如图,△ABC中,BC=10,DH为AB的中垂线,EF垂直平分AC,则△ADE的周长是()A.6 B.8 C.10 D.12
第3题第4题
4.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()
A.30°B.40°C.50°D.60°
5.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有______个.
第5题第6题
6.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有______.(填序号).
①AC⊥BD;②AC、BD互相平分;③AC平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为.
7.如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A、B、C且凉亭用长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹),并简要说明理由.
8.如图,△ABC中,∠BAC=110°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.
(1)求∠DAF的度数;
(2)如果BC=10cm,求△DAF的周长.
9.如图,已知:△ABC中,BD、CE分别是AC、AB边上的高,G、F分别是BC、DE 的中点.
(1)试探索FG与DE的关系.
(2)ED=7,BC=12,求△EGD的周长.。

相关文档
最新文档