初中数学二次函数的图象和性质
2.2 二次函数的图象与性质二次函数y=a(x-h)2的图象与性质 课件 初中数学北师大版九年级下册
2
(2)抛物线 y=- (x+3) 的开口向下,对称轴为直线 x=-3,顶点坐标为
(-3,0).
6.已知抛物线y=a(x-h)2向右平移4个单位长度后,所得的图象与抛物
线y=-2(x-5)2 重合,求a,h的值.
解:抛物线y=-2(x-5)2的顶点坐标为(5,0).把点(5,0)向左平移4个单
函数图象如图所示.
∴抛物线的开口向上,对称轴为直线x=3,顶点坐标为(3,0),函数有最
小值0,
当x>3时,y随x的增大而增大;当x<3时,y随x的增大而减小.
1.将二次函数y=-3x 2 的图象平移后,得到二次函数y=-3(x-1) 2 的图
象,平移方法正确的是(
A.向左平移1个单位长度
B.向右平移1个单位长度
而减小.
新知应用
2
1.已知抛物线 y=a(x+m) (m 为常数)的顶点在 y 轴的右侧,且 am<0,则
此图象的开口方向 向上 .
2
2.画出函数 y= (x-3) 的图象,并说出此函数的性质(开口方向、对称
轴、顶点坐标、最值、增减性).
解:当x=0或x=6时,y=4.5;当y=0时,x=3;当x=1或x=5时,y=2.
新知应用
1.在平面直角坐标平面内,把二次函数y=(x+1)2的图象向左平移2个
单位长度,那么图象平移后的函数表达式是( D )
A.y=(x+1)2-2
B.y=(x-1)2
C.y=(x+1)2+2
D.y=(x+3)2
2.函数y=(x+3)2的图象可以由函数y=x2的图象向 左
初三二次函数的图像与性质
初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。
在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。
本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。
一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。
它的图像是抛物线,并且开口的方向由$a$的正负决定。
当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。
二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。
其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。
【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。
解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。
由于$a>0$,所以抛物线开口向上。
考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。
首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。
代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。
因此,对称轴的方程为$x=\frac{3}{4}$。
接下来,我们需要计算抛物线的顶点坐标。
顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。
将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。
因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。
它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
初中数学二次函数知识点情况
初中数学二次函数知识点情况二次函数是数学中的重要概念之一,在初中数学中也起到了重要的作用。
它与线性函数不同,具有抛物线的特性。
接下来,我将介绍初中数学中与二次函数相关的知识点,包括二次函数的定义与性质、二次函数的图象、二次函数的最值与零点、二次函数的应用等。
一、二次函数的定义与性质1.二次函数的定义:二次函数是指形如f(x) = ax² + bx + c 的函数,其中 a、b、c 是实数且a ≠ 0。
其中,a 称为二次项系数,b 称为一次项系数,c 称为常数项。
2.二次函数的性质:(1)抛物线开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
(2)顶点坐标:二次函数的顶点坐标为(-b/2a,f(-b/2a))。
(3)轴对称性:二次函数关于与顶点坐标的x坐标轴对称。
(4)增减性:当a>0时,二次函数在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数在顶点左侧单调递增,在顶点右侧单调递减。
二、二次函数的图象1.抛物线的图象:对于抛物线y = ax² + bx + c,当 a > 0 时,抛物线向上开口,当a < 0 时,抛物线向下开口。
可以通过绘制顶点、x 轴交点和 y 轴交点来画出抛物线的图象。
2.平移与伸缩:二次函数的图象在x轴方向的平移是通过改变顶点的横坐标实现的,图象在y轴方向的平移是通过改变二次函数的常数项c来实现的。
图象在x方向的伸缩是通过改变二次函数的二次项系数a的绝对值来实现的。
三、二次函数的最值与零点1.最值:当a>0时,二次函数的最小值为f(-b/2a);当a<0时,二次函数的最大值为f(-b/2a)。
对于二次函数y = ax² + bx + c,如果 a > 0,那么这个二次函数的最小值就等于函数在顶点的函数值;如果 a < 0,那么这个二次函数的最大值就等于函数在顶点的函数值。
考点11 二次函数的图象性质及相关考点-备战2023届中考数学一轮复习考点梳理(原卷版)
考点11 二次函数的图象性质及其相关考点二次函数作为初中三大函数中考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点。
而对于二次函数图象和性质的考察,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
出题形式虽然多是选择、填空题,但解答题中也时有出现,且题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
一、二次函数的表达式二、二次函数的图象特征与最值三、二次函数图象与系数的关系四、二次函数与方程、不等式(组)五、二次函数图象上点的坐标特征考向一、二次函数的表达式1.二次函数的3种表达式及其性质作用2.二次函数平移的方法:①转化成顶点式(已经是顶点式的此步忽略),②“左加右减(x),上加下减(y)”;1.把y=(2﹣3x)(6+x)变成y=ax2+bx+c的形式,二次项 ,一次项系数为 ,常数项为 .2.用配方法将二次函数y=x2﹣2x﹣4化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣2)2﹣4B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣5D.y=(x﹣2)2﹣63.在平面直角坐标系中,若将抛物线y=2x2+1先向左平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的解析式是( )A.y=2(x﹣3)2+3B.y=2(x+3)2+3C.y=2(x﹣3)2+1D.y=2(x+3)2+24.抛物线y=2x2向下平移3个单位长度后所得新抛物线的顶点坐标为( )A.(﹣3,0)B.(3,0)C.(0,﹣3)D.(0,3)5.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(6,3).若抛物线y=mx2+2mx+m+3(m为常数,m≠0)向右平移a(a>0)个单位长度,平移后的抛物线的顶点在线段AB上,则a的取值范围为 .考向二、二次函数的图象特征与最值1.对于二次函数y =ax 2+bx +c (a ≠0):对称轴:直线;顶点坐标:;a>二次函数有最小值;a <二次函数有最大值;2.图象的增减性问题:抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须附加一定的自变量x 取值范围;1.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .函数有最小值1,有最大值3B .函数有最小值﹣1,有最大值3C .函数有最小值﹣1,有最大值0D .函数有最小值﹣1,无最大值2.如图是四个二次函数的图象,则a 、b 、c 、d 的大小关系为( )A.d<c<a<b B.d<c<b<a C.c<d<a<b D.c<d<b<a3.如图是二次函数y=ax2+bx的大致图象,则一次函数y=(a+b)x﹣b的图象大致是( )A.B.C.D.4.在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.5.已知二次函数y=x2﹣2x+2在m≤x≤m+1时有最小值m,则整数m的值是( )A.1B.2C.1或2D.±1或26.如图,点P是抛物线y=﹣x2+2x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .考向三、二次函数图象与系数的关系二次函数图象题符号判断类问题大致分为以下几种基本情形∶1.抛物线y =ax 2+bx +c 的对称轴为直线x =−1,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b +c =0;④6a ﹣2b +c <0;⑤若点(0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2,其中正确的判断是( )A .②③④⑤B .②③④C .②③⑤D .②④⑤2.已知二次函数y =ax 2+bx +c 的y 与x的部分对应值如表:x﹣1013y0﹣1.5﹣20根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x﹣1)2﹣2的形式;②二次函数y=ax2+bx+c的图象开口向下;③关于x的一元二次方程ax2+bx+c=﹣1.5的两个根为0或2;④若y>0,则x>3;⑤a(am+b)≥a﹣b(m为任意实数).其中所有正确的结论为( )A.①②④B.②③⑤C.②③④D.①③⑤3.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是( )A.a>0B.C.或a>0D.4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是( )A.①③④B.①②③⑤C.①②③④D.①②③④⑤5.已知二次函数y=x2﹣2mx+m2+2m(1)①函数的顶点坐标为 (用含m的代数式表示);②该顶点所在直线的解析式为 ;在平面直角坐标系中画出该直线的图象;(2)当m=1时,二次函数关系式为 ,在平面直角坐标系中画出此函数的图象;(3)已知点A(﹣3,1)、B(1,1)连结AB.若抛物线y=x2﹣2mx+m2+2m与线段AB有且只有一个交点,求m的取值范围;(4)把二次函数y=x2﹣2mx+m2+2m(x≤2m)的图象记为G,当G的最低点到x轴的距离为1时,直接写出m的值.考向四、二次函数与方程、不等式(组)1.二次函数y=ax2+bx+c(a≠0)与一元二次方程之间的关系:1)求交点:①求抛物线与x轴交点坐标→直接让y=0,即:ax2+bx+c=0②求抛物线与某直线l的交点坐标→联立抛物线与直线解析式,得新组成的一元二次方程,解新方程即的两图象交点横坐标,再代入直线或抛物线解析式即可得交点坐标。
《二次函数的图像和性质》PPT课件 人教版九年级数学
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
初中数学知识归纳二次函数像的性质
初中数学知识归纳二次函数像的性质二次函数是数学中常见的一类函数,其基本表达式为y = ax^2 + bx+ c,其中a、b、c为常数,且a ≠ 0。
二次函数的图像呈现出一条平滑的曲线,其性质包括顶点、对称轴、开口方向、零点等。
下面对初中数学知识中与二次函数相关的性质进行归纳和探究。
一、顶点二次函数y = ax^2 + bx + c的图像是一个开口向上(a>0)或开口向下(a<0)的抛物线,其中最高(开口向下)或最低(开口向上)点被称为顶点。
顶点在二次函数的图像上具有特殊的意义,它是图像的最值点,也是对称轴与x轴的交点所在位置。
二、对称轴对称轴是指二次函数图像的中心对称线,具有如下性质:1. 对称轴与y轴平行,其方程可以通过观察顶点坐标得到,对称轴的方程为x = -b/2a,其中b和a分别为二次项系数和一次项系数。
2. 对称轴上的点与顶点的横坐标相等,即对称轴上的点横坐标为-x、顶点横坐标为x。
这意味着对称轴将图像分成两部分,两部分的图像关于对称轴对称。
三、开口方向二次函数的开口方向与二次项系数a的正负有关,具有以下特点:1. 当a>0时,二次函数图像开口向上,形状类似“U”字,如y = x^2;2. 当a<0时,二次函数图像开口向下,形状类似倒置的“U”字,如y = -x^2。
四、零点二次函数的零点是指函数图像与x轴相交的点,也就是函数取值为0的时候对应的横坐标。
计算二次函数的零点可以采用以下两种方法:1. 根据二次函数的一般形式ax^2 + bx + c = 0,可以通过配方法或者求根公式来求得零点。
2. 根据二次函数的图像特点,零点是二次函数与x轴的交点,所以求零点就是求二次方程的解。
五、其他性质除了上述几个基本性质之外,二次函数还有一些其他值得注意的性质,比如:1. 当一次项系数b = 0时,二次函数成为纯二次函数,其图像过y 轴;2. 当a>0时,二次函数在对称轴两侧呈现上升趋势;当a<0时,二次函数在对称轴两侧呈现下降趋势;3. 当二次函数开口向上且a的绝对值越小时,开口越宽;当二次函数开口向下且a的绝对值越小时,开口越窄。
二次函数的图像和性质——y=ax^2的图像 (共14张PPT)
5.2 二次函数的图像和性质(1)
例1 已知二次函数 y = m -1 xm2 + m 的图像开口向下.
(1)求m的值和函数表达式.
解:(1)由题意知:m-1<0且m²+m=2,则m=-2.
5.2 二次函数的图像和性质(1)
例2 已知二次函数y=ax²(a≠0)的图像经过点(2,3). 求:(1)a的值和写出解析式.
列表时自变量要 均匀和对称!
5.2 二次函数的图像和性质(1)
例2 画出y=-x2图像.
x ... -3 -2 -1 0 1 2 3 ... y=-x² ... -9 -4 -1 0 -1 -4 -9 ...
5.2 二次函数的图像和性质(1)
请在直角坐标系中画出函数
y=
1 2
x2
和
y=2 x2
、
初中数学 九年级(下册)
5.2 二次函数的图像和性质(1)
5.2 二次函数的图像和性质(1)
画函数图像步骤:列表 描点 连线 研究函数性质方法:数形结合 二次函数的图像是怎样的? 试着画一画吧!
5.2 二次函数的图像和性质(1)
例1 画出函数y=x2的图像.
x ... -3 -2 -1 0 1 2 3 ... y=x² ... 9 4 1 0 1 4 9 ...
(2)确定图像的开口方向.
解:(1)将(2,3)代入y=ax²(a≠0),得a=0.75; (2)抛物线y=0.75x²,开口向上.
5.2 二次函数的图像和性质(1)
本节课我们学习了什么?
抛物 y轴 线
向上 向下
(0,0) 最低点
(0,0) 最高点
5.2 二次函数的图像和性质(2)
分别说出下列函数图像的开口方向、顶 点坐标、对称轴:
二次函数的图像和性质初中数学经典课件
________ ; 若 a < 0 , 则 当 x = _____ 时 , 二 次 函 数 y = ax2 + bx + c 有 最 _____值,为________. 2. 用 配方 法 可 将二 次 函 数 y = ax2 + bx + c(a≠0) 转 化 为 y= a(x + ____)2 + _______.
5.2 二次函数的图像和性质
1.理解二次函数y=ax2+bx+c与y=a(x+h)2+k之间的关系 2.掌握二次函数y=ax2+bx+c的图像和性质
3.体会二次函数y=ax2+bx+c的图像与a,b,c之间的关
系
思考(一) 请说出抛物线y=ax²+k, y=a(x+h)²,y=a(x+h)²+k 的开口方向、对称轴和顶点坐标.
(2)若该函数的图像不经过第三象限,当-5≤x≤1时,函
数的最大值与最小值之差为16,求b的值.
∴最大值与最小值之差是 25(不合题意,舍去). 当 b>0 时,c>0,若函数的图像不经过第三象限,则 b2 -4×2b≤0,∴0<b≤8.∴-4≤-b2<0. 当-5≤x≤1 时,函数有最小值-b42+2b, 当-b2≤-2,即 b≥4 时,函数有最大值 1+3b; 当-b2>-2,即 b<4 时,函数有最大值 25-3b.
1. “提”:提出 二次项系数;
方
y= - (x+2)2-1.
y= - (x2+4x+4-4)-5 y= - (x+2) 2-5+4 y= - (x+2) 2-1
人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
二次函数y=ax^2+bx+c(a≠0)的图象与性质-2023年新九年级数学(人教版)(解析版)
二次函数y=ax 2+bx+c(a ≠0)的图象与性质【知识梳理】一、二次函数与之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是.要点诠释:加以记忆和运用.2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 二、二次函数的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.2(0)y ax bx c a =++≠=−+≠2()(0)y a x h k a 2()y a x h k =−+2()y a x h k =−+2()y a x h k =−+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++−+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a −⎛⎫=++⎪⎝⎭2()y a x h k =−+2b h a =−244ac b k a−=2y ax bx c =++2b x a =−24,24b ac b aa ⎛⎫−− ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,三、二次函数的图象与性质 1.二次函数图象与性质向上 向下直线 直线 2y ax bx c =++2(0)y ax bx c a =++≠20()y ax bx c a =++≠2b x a=−b x =−2.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当值的情况.20()y ax bx c a =++≠2(0)y ax bx c a =++≠2bx a=−244ac b y a−=最值222y ax bx c =++最大值211y ax bx c =++最小值【考点剖析】题型一、二次函数的图象与性质例1.求抛物线的对称轴和顶点坐标. 【答案与解析】 解法1(配方法):.∴ 顶点坐标为,对称轴为直线. 解法2(公式法):∵ ,,,∴ 11122()2b x a=−=−=⨯−,. ∴ 顶点坐标为,对称轴为直线. 解法3(代入法):∵ ,,, ∴ . 将代入解析式中得,. ∴ 顶点坐标为,对称轴为直线. 【总结升华】所给二次函数关系是一般式,求此类抛物线的顶点有三种方法:(1)利用配方法将一般式化成顶点式;(2)用顶点公式直接代入求解;(3)利用公式先求顶点的横坐标,然后代入2(0)y ax bx c a =++≠2142y x x =−+−2221114(2)4(211)4222y x x x x x x =−+−=−−−=−−+−−211(1)422x =−−+−217(1)22x =−−−71,2⎛⎫−⎪⎝⎭1x =12a =−1b =4c =−2214(4)147214242ac b a ⎛⎫⨯−⨯−− ⎪−⎝⎭==−⎛⎫⨯− ⎪⎝⎭71,2⎛⎫−⎪⎝⎭1x =12a =−1b =4c =−111222bx a=−=−=⎛⎫⨯− ⎪⎝⎭1x =21711422y =−⨯+−=−71,2⎛⎫−⎪⎝⎭1x =24,24b ac b aa ⎛⎫−− ⎪⎝⎭解析式求出纵坐标.这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 【变式1】把一般式化为顶点式. (1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标. 【答案】(1)向下;x=2;D (2,2). (2)C (0,-6);A (1,0);B (3,0).例2.二次函数y=ax 2+bx +c 的图象如图所示,那么一次函数y=ax +b 的图象大致是( )A .B .C .D .【思路点拨】由y=ax 2+bx +c 的图象判断出a >0,b >0,于是得到一次函数y=ax +b 的图象经过一,二,四象限,即可得到结论. 【答案】A .【解析】解:∵y=ax 2+bx +c 的图象的开口向上, ∴a >0,∵对称轴在y 轴的左侧, ∴b >0,∴一次函数y=ax +b 的图象经过一,二,三象限.2286y x x =−+−故选A .【总结升华】本题考查了二次函数和一次函数的图象,解题的关键是明确二次函数的性质,由函数图象可 以判断a 、b 的取值范围.【变式1】 抛物线与y 轴交于(0,3)点: (1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小? 【答案与解析】(1)由抛物线与y 轴交于(0,3)可得m =3. ∴ 抛物线解析式为,如图所示.(2)由得,. ∴ 抛物线与x 轴的交点为(-1,0)、(3,0). ∵ , ∴ 抛物线的顶点坐标为(1,4).(3)由图象可知:当-1<x <3时,抛物线在x 轴上方. (4)由图象可知:当x ≥1时,y 的值随x 值的增大而减小.【总结升华】研究函数问题一般都应与图象结合起来,借助于图象的直观性求解更形象与简洁. (1)将点(0,3)代入解析式中便可求出m 的值,然后用描点法或五点作图法画抛物线; (2)令y =0可求抛物线与x 轴的交点,利用配方法或公式法可求抛物线顶点的坐标; (3)、(4)均可利用图象回答,注意形数结合的思想,2(1)y x m x m =−+−+2(1)y x m x m =−+−+223y x x =−++2230x x −++=11x =−23x =2223(1)4y x x x =−++=−−+【变式2】某同学在用描点法画二次函数y=ax 2+bx+c 的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A. -11 B. -2 C. 1 D. -5 【答案】D.提示:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上, 把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x 2+1 x=2时y=﹣11,故选:D .题型二、二次函数的最值例3.求二次函数的最小值. 【答案与解析】解法1(配方法):∵,∴ 当x =-3时,. 解法2(公式法):∵ ,b =3, ∴ 当时,.解法3(判别式法):∵ ,∴ .2(0)y ax bx c a =++≠211322y x x =++2221111(6)(639)2222y x x x x =++=++−+21(3)42x =+−4y =−最小102a =>12c =331222b x a =−=−=−⨯22114341922414242ac b y a ⨯⨯−−−====−⨯最小211322y x x =++26(12)0x x y ++−=∵ x 是实数,∴ △=62-4(1-2y)≥0,∴ y ≥-4. ∴ y 有最小值-4,此时,即x =-3.【总结升华】在求二次函数最值时,可以从配方法、公式法、判别式法三个角度考虑,根据个人熟练程度 灵活去选择.【变式1】用总长60m 的篱笆围成矩形场地.矩形面积S 随矩形一边长L 的变化而变化.当L 是多少时,矩形场地的面积S 最大? 【答案】(0<L <30).(m )时,场地的面积S 最大,为225m 2.【变式2】分别在下列范围内求函数的最大值或最小值. (1)0<x <2; (2)2≤x ≤3. 【答案与解析】∵ , ∴ 顶点坐标为(1,-4).(1)∵ x =1在0<x <2范围内,且a =1>0, ∴ 当x =1时y 有最小值,.∵ x =1是0<x <2范围的中点,在x =1两侧图象左右对称,端点处取不到,不存在最大值. (2)∵ x =1不在2≤x ≤3范围内(如图所示),又因为函数(2≤x ≤3)的图象是 抛物线的一部分,且当2≤x ≤3时,y 随x 的增大而增大,∴ 当x =3时,;当x =2时,.2690x x ++=(30)S L L =−2(30)L L =−−2(15)225L =−−+15L ∴=223y x x =−−2223(1)4y x x x =−−=−−4y =−最小值223y x x =−−223y x x =−−232330y =−⨯−=最大值222233y =−⨯−=−最小值【总结升华】先求出抛物线的顶点坐标,然后看顶点的横坐标是否在所规定的自变量的取 值范围内,根据不同情况求解,也可画出图象,借助于图象的直观性求解,如图所示,2≤x ≤3为图中实线 部分,易看出x =3时,;x =2时,.题型三、二次函数性质的综合应用例4.已知二次函数的图象过点P(2,1). (1)求证:; (2)求bc 的最大值. 【答案与解析】(1)∵ 的图象过点P(2,1), ∴ 1=4+2b+c+1,∴ c=-2b-4.(2). ∴ 当时,bc 有最大值.最大值为2.【总结升华】(1)将点P(2,1)代入函数关系式,建立b 、c 的关系即可. (2)利用(1)中b 与c 的关系,用b 表示bc ,利用函数性质求解. 【变式1】如图是二次函数y=ax 2+bx+c 的图象,下列结论: ①二次三项式ax 2+bx+c 的最大值为4; ②4a+2b+c<0;③一元二次方程ax 2+bx+c=1的两根之和为﹣1; ④使y≤3成立的x 的取值范围是x≥0. 其中正确的个数有( )223y x x =−−0y =最大值3y =−最小值2(0)y ax bx c a =++≠21y x bx c =+++24c b =−−21y x bx c =+++22(24)2(2(1)2bc b b b b b =−−=−+=−++1b =−A.1个B.2个C.3个D.4个【答案】B.提示:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.【变式2】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤【思路点拨】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.【答案】D.【解析】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,,∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a >;故④正确 ⑤∵a >0,∴b ﹣c >0,即b >c ;故⑤正确; 故选:D .【总结升华】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用. 【变式3】一条抛物线经过A (2,0)和B (6,0),最高点C 的纵坐标是1. (1)求这条抛物线的解析式,并用描点法画出抛物线;(2)设抛物线的对称轴与轴的交点为D ,抛物线与y 轴的交点为E ,请你在抛物线上另找一点P(除点A 、B 、C 、E 外),先求点C 、A 、E 、P 分别到点D 的距离,再求这些点分别到直线的距离; (3)观察(2)的计算结果,你发现这条抛物线上的点具有何种规律?请用文字写出这个规律. 【答案与解析】(1)由已知可得抛物线的对称轴是. ∴ 最高点C 的坐标为(4,1).则 解得∴ 所求抛物线的解析式为. 列表:描点、连线,如图所示:2y ax bx c =++x 2y =4x =420,3660,164 1.a b c b c a b c ++=⎧⎪++=⎨⎪++=⎩1,42,3.a b c ⎧=−⎪⎪=⎨⎪=−⎪⎩21234y x x =−+−(2)取点(-2,-8)为所要找的点P ,如图所示,运用勾股定理求得ED =5,PD =10, 观察图象知AD =2,CD =1,点E 、P 、A 、C 到直线y =2的距离分别是5、10、2、1. (3)抛物线上任一点到点D 的距离等于该点到直线y =2的距离.【总结升华】(1)描点画图时,应先确定抛物线的对称轴,然后以对称轴为参照,左右对称取点. (2)计算两点之间的距离应构造两直角边分别平行于两坐标轴的直角三角形,然后运用勾股定理求得.【过关检测】一、单选题1.(2021春·广东江门·九年级台山市新宁中学校考期中)将抛物线22()1y x =−+向左平移1个单位长度,向下平移2个单位得到抛物线的解析式为( ) A .2(1)3y x =−+ B .2=(3)1y x −− C .2(1)1y x =−− D .2(1)1y x =+−【答案】C【分析】根据抛物线平移的法则:左加右减,上加下减即可得到答案.【详解】解:将抛物线22()1y x =−+向左平移1个单位,再向下平移2个单位,得到抛物线的解析式为22211211()()y x x =−++−=−−,故选:C .【点睛】本题考查了二次函数图象的平移,根据函数图象的平移法则:左加右减,上加下减进行平移,是解题的关键.2.(2023·上海·九年级假期作业)如图,已知二次函数()2y a x m =+与一次函数y ax m =+,它们在同一直角坐标系中的图象大致是( )A .B .C .D .【答案】A【分析】利用二次函数和一次函数图象的性质“二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.”逐项判断即可. 【详解】解:A 、由抛物线可知0a >,0m >,由直线知0a >,0m >,∴A 正确; B 、由抛物线可知0a >,0m <,由直线知0a >,0m >,∴B 错误; C 、由抛物线可知a<0,0m >,由直线知a<0,0m <,∴C 错误; D 、由抛物线可知a<0,0m <,由直线知a<0,0m >,∴D 错误; 故选:A .【点睛】本题考查二次函数及一次函数的图象的性质.熟练掌握二次函数和一次函数的图象的性质是解答本题的关键.【答案】A【分析】根据抛物线开口向上,与y 轴交与y 轴负半轴,得到00a c ><,,根据抛物线对称轴为直线1x =,得到20b a =−<,由此即可判断A ;根据当1x =时,0y <,即可判断B ;根据当=1x −时,0y =,即可判断C 、D .【详解】解:∵抛物线开口向上,与y 轴交与y 轴负半轴, ∴00a c ><,,∵抛物线对称轴为直线1x =,∴12b a −=, ∴20b a =−<,∴0abc >,故A 结论正确,符合题意; ∵当1x =时,0y <,∴0a b c ++<,故B 结论错误,不符合题意; ∵当=1x −时,0y =, ∴0a b c −+=,∴02bb c −−+=,b a c =+∴32b c =,故C 、D 结论错误,不符合题意; 故选A .【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的性质等等,熟知相关知识是解题的关键.【答案】D【分析】根据已知条件可得出20ax kx a −−=,再利用根与系数的关系,分情况讨论即可求出答案.【详解】解:抛物线()20y ax a a =−≠与直线y kx =交于()11,A x y ,()22,B x y 两点,2kx ax a =−∴, 20ax kx a −−=∴.12kx x a ∴+=,<0k a ∴.当>0a ,0<k 时,直线y ax k =+经过第一、三、四象限,当0<a ,>0k 时,直线y ax k =+经过第一、二、四象限, 综上所述,y ax k =+一定经过一、四象限. 故选:D .【点睛】本题考查了二次函数与系数的关系,解题的关键在于熟练掌握根与系数关系公式.5.(2023·浙江·九年级假期作业)已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过点(1,0)−,其对称轴为直线1x =.有下列结论:①0abc <;②80a c +<;③若抛物线经过点(2,)t −,则关于x 的一元二次方程20(0)ax bx c t a ++−=≠的两根分别为2−,4,其中正确结论的个数是( ) A .0 B .1C .2D .3【答案】D【分析】根据已知条件得出a<0,2b a =−0>,根据抛物线经过点(1,0)−,得出230c b a a a a =−=−−=−>,即可判断①,根据3c a =−代入②即可判断;根据对称性可得抛物线也经过点()4,t ,即可判断③【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过点(1,0)−,其对称轴为直线1x =. ∴a<0,12b x a =−=,0a b c −+=则2b a =−0>,∴230c b a a a a =−=−−=−> ∴<0abc ,故①正确;∵88350a c a a a +=−=<,故②正确, ∵抛物线经过点(2,)t −,∴根据抛物线的对称性,抛物线也经过点()4,t ,∴抛物线2y ax bx c =++与直线y t =的交点坐标为(2,)t −和()4,t , ∴一元二次方程20(0)ax bx c t a ++−=≠的两根分别为2−,4,故③正确.故选:D .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与系数之间的关系是解答的关键.6.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数,)0a ≠上的点,现有以下四个结论:①该抛物线的对称轴是直线2x =−;②点()0,3在抛物线上;③若122x x >>−,则12y y >;④若12y y =,则122x x +=−其中,正确结论的个数为( ) A .1个 B .2个C .3个D .4个【答案】B【分析】根据对称轴公式4222b ax a a =−=−=−可判断①;当0x =时,3y =,可判断②;根据抛物线的增减性,分两种情况计算可判断③;利用对称点的坐标得到1222+=−x x ,可以判断④.【详解】解:∵抛物线243y ax ax =++(a 是常数,)0a ≠, ∴4222b ax a a =−=−=−,故①正确; 当0x =时,3y =, ∴点()0,3在抛物线上,故②正确; 当0a >时,12y y >, 当0a <时,12y y <,故③错误;根据对称点的坐标得到1222+=−x x ,124x x +=−,故④错误. 故选B .【点睛】本题考查了抛物线的对称性,增减性,熟练掌握抛物线的性质是解题的关键.A .4个B .3个C .2个D .1个【答案】B【分析】抛物线2y ax bx c =++经过点(1,0)(,0)A B m −、,且12m <<,,可以得到0a >,1022b a <−<,从而可以得到b 的正负情况,从而可以判断①;继而可得出b a −<,则0a b +>,即可判断②;由图象可知,当1x =−时,0y =,即0a b c −+=,所以有a c b +=,从而可得出0a c <<−,即可判断③;利用12512332⎛⎫−−=− ⎪⎝⎭,再根据1022b a <−<,所以252332b b a a ⎛⎫⎛⎫−−−<−− ⎪ ⎪⎝⎭⎝⎭,从而可得12y y <,即可判断④. 【详解】解 :∵抛物线2y ax bx c =++的图象开口向上, ∴0a >,∵抛物线2y ax bx c =++经过点(1,0)(,0)A B m −、,且12m <<, ∴1022b a <−<,∴0b <,故①正确; ∵1022b a <−<,0a >,∴b a −<∴0a b +>,故②正确;由图象可知,当1x =−时,0y =,即0a b c −+<, ∴a c b += ∵0a >,0b <, ∴0a c <<−,故③正确;∵12512332⎛⎫−−=− ⎪⎝⎭,又∵1022b a <−<,∴252332b b a a ⎛⎫⎛⎫−−−<−− ⎪ ⎪⎝⎭⎝⎭,∵抛物线2y ax bx c =++的图象开口向上,∴12y y <,故④错误. ∴正确的有①②③共3个, 故选:B .【点睛】本题考查二次函数图象与系数的关系,二次函数的性质,熟练掌握根据二次函数图象性质是解题的关键.A .1个B .2个【答案】A【分析】根据抛物线的开口方向、对称轴、与y 轴的交点,即可判断a b c 、、的大小,从而即可判断①,根据对称轴和经过()10−,,得到45b a c a =−=−,,代入进行求解即可判断②④,根据当2x =时二次函数取得最大值,即可判断③.【详解】解:抛物线的开口向下,<0a ∴,抛物线的对称轴为直线22b x a =−=,>0b ∴,抛物线交y 轴正半轴,0c ∴>,<0abc ∴,故①错误,抛物线的对称轴为直线22b x a =−=,4b a ∴=−,图像过点()10−,,0a b c ∴−+=,5c a ∴=−,()42452470a cb a a a a ∴+−=−−⨯−=<,42a c b ∴+<,故②错误,当2x =时,函数由最大值42a b c ++, 242a b c am bm c ∴++≥++,∴()42a b m am b +≥+(m 为常数),故③错误,()()323425121020b c a a a a a −=⨯−−⨯−=−+=−>,320b c ∴−>,故④正确,综上所述,正确的个数为1, 故选:A .【点睛】本题主要考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质,采用数形结合的思想解题,是解题的关键.9.(2023·安徽六安·校考二模)已知抛物线2y ax bx c =++和直线2y x c =+分别交于A 点和B 点,则抛物线()22y b x ax =−−的图象可能是( )A .B .C .D .【答案】C【分析】求出求出交点A 、B 的坐标,根据已知图象确定,a 与A 点的横坐标的正负,进而推断新抛物线2(2)y b x ax =−−的图象的开口方向,对称轴位置,从而确定答案.【详解】解:由22ax bx c x c ++=+,得(2)0x ax b +−=,解得,0x =或2b x a −=,抛物线2y ax bx c =++和直线2y x c =+分别交于A 点和B 点,(0,)B c ∴,A 的横坐标为:2ba −,抛物线2y ax bx c =++的开口向上,交点A 在第三象限内,0a ∴>,20ba −<,抛物线2(2)y b x ax =−−中,0a −<,对称轴202bx a −=<,∴此抛物线的开口向下,对称轴在y 轴的左边,符合此条件的图象是C , 故选:C .【点睛】本题主要考查了二次函数的图象与系数的关系,一次函数的图象与性质,关键是由已知条件确定a 和A 点横坐标的取值.A . . . .【答案】A【分析】根据函数图像的开口大小与y 轴的交点位置以及对称轴的位置进行判断即可. 【详解】解:设21111y a x b x c =++,22222y a x b x c =++,由图像知,10a >,10b <,10c <,20a <,20b >,20c >,21c c >,∴120c c +>,∵函数1y 的图像开口大于函数2y 的图像开口,∴12a a <,∴120a a +<, ∵121222b ba a −>−>, ∴221101b a b a >>>−,∴21b b <−,∴120b b +<,∴()121202b b a a +−>+,∵()()()212121212y y y a a x b b x c c =+=+++++,∴函数12y y y =+的图像是抛物线,开口向下,对称轴在y 轴的右侧,与y 轴的交点在y 轴的正半轴上, A .图像开口向下,对称轴在y 轴的右侧,与y 轴的交点在y 轴的正半轴上,故此选项符合题意; B .图像开口向上,故此选项不符合题意;C .图像对称轴在y 轴的左侧,故此选项不符合题意;D .图像开口向上,故此选项不符合题意. 故选:A .【点睛】本题考查二次函数的图像与性质,不等式的性质.熟练掌握二次函数的性质是解题的关键.注意:二次函数()20y ax bx c a =++≠的a越大,图像开口越小.二、填空题11.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =−++>,若点(,3)P m 在该函数的图象上,且0m ≠,则m 的值为________. 【答案】2【分析】将点(,3)P m 代入函数解析式求解即可.【详解】解:点(,3)P m 在223y ax ax =−++上,∴2323am am =−++,(2)0am m −−=,解得:2,0m m ==(舍去) 故答案为:2.【点睛】题目主要考查二次函数图象上的点的特点,理解题意正确求解是解题关键.12.(2022秋·甘肃平凉·九年级校考阶段练习)函数()=−−2y 2x 31的图象可由函数22y x =的图象沿x 轴向_______平移_______个单位,再沿y 轴向_______平移_______个单位得到. 【答案】 右 3 下 1【分析】根据二次函数图象“上加下减,左加右减”的平移规律进行求解即可. 【详解】解:函数()=−−2y 2x 31的图象可由函数22y x =的图象沿x 轴向右平移3个单位,再沿y 轴向下平移1个单位得到,故答案为:右,3,下,1.【点睛】本题主要考查了二次函数图象的平移,熟知二次函数图象的平移规律是解题的关键.13.(2023·浙江·九年级假期作业)如果三点()111,P y ,()223,P y 和()334,Py 在抛物线26y x x c =−++的图象上,那1y ,2y ,3y 之间的大小关系是______ . 【答案】231y y y >>/132y y y <<【分析】先求出抛物线的对称轴和开口方向,根据二次函数的性质比较即可. 【详解】解:抛物线26y x x c =−++的开口向下,对称轴是直线632x =−=−,∴当3x >时,y 随x 的增大而减小,()111,P y 关于称轴是直线3x =的对称点是()15,y , 345<<,231y y y ∴>>.故答案为:231y y y >>.【点睛】本题考查了二次函数图象上点的坐标特征和二次函数的性质,能熟记二次函数的性质是解此题的关键.【答案】②③④【分析】由图,0a >,0c <,02ba −>,得0b <,推知0a bc −<;由2OB OC =知(2,0)B c −,代入2y ax bx c =++,得20(2)(2)a c b c c =-+-+,化简得241b ac −=;将()2,0A −代入2y ax bx c =++得,420a b c −+=,由对称轴得22b ac a =+,解得14a =;将14a =代入241b ac −=得21c b =−. 【详解】解:由图,0a >,0c <,02b a −>,∴0b <∴0a b −>,0a bc −<,故①错误;(0,)C c ,由2OB OC =知(2,0)B c −,代入2y ax bx c =++,得20(2)(2)a c b c c =-+-+,2420ac bc c −+=,化简得,241b ac −=,故②正确; 将()2,0A −代入2y ax bx c =++得,420a b c −+=, 对称轴1(22)22b x c a =-=--,得22b ac a =+,代入上式得,42(22)0a c ac a +-+=,解得14a =,故③正确;将14a =代入241b ac −=得21c b =−,故④正确;综上分析可知,正确的是②③④. 故答案为:②③④.【点睛】本题考查二次函数图象性质,运用数形结合思想,理解图象与方程的联系是解题的关键.【答案】210 【分析】先求出()02C ,,()24D ,,如图所示,作点C 关于x 轴的对称点E ,连接EP DE 、,则()02E −,,然后证明当D 、P 、E 三点共线时P E D P +最小,即CP DP +最小,最小值为DE ,利用勾股定理求出DE 的长即可得到答案.【详解】解:在21222y x x =−++中,当0x =时,2y =,∴()02C ,;∵抛物线解析式为()2211222422y x x x =−++=−−+,∴()24D ,;如图所示,作点C 关于x 轴的对称点E ,连接EP DE 、,则()02E −,,∴PE CP =,∴CP DP PE DP +=+,∴当D 、P 、E 三点共线时P E D P +最小,即CP DP +最小,最小值为DE ,∴CP DP +的最小值==故答案为:.【点睛】本题主要考查了二次函数与几何综合,正确作出辅助线确定当D 、P 、E 三点共线时P E D P +最小,即CP DP +最小,最小值为DE 是解题的关键.16.(2021春·广东广州·九年级广州市育才中学校考阶段练习)关于二次函数223y x ax =−−在22x −≤≤的取值范围内,函数y 的最小值(用含a 的式子表示),下列结论:①当2a <−时,函数y 的最小值14a +;②当2a >时,函数y 的最小值是14a −;③22a −≤≤时,函数y 的最小值是23a −−;④当22a −≤≤,函数y 的最小值23a −+.其中正确的有___(填序号即可). 【答案】①②③【分析】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据22x −≤≤,即可得到相应的最值,从而可以解答本题.【详解】解:二次函数223y x ax =−−, ∴抛物线开口向上,对称轴为直线221ax a −=−=⨯,①当2a <−时,2x =−时,函数有最小值,函数y 的最小值是44314y a a =+−=+,故①正确; ②当2a >时,2x =时,函数有最小值,函数y 的最小值是44314y a a =−−=−,故②正确;③当22a −≤≤时,x a =时,函数有最小值,函数y 的最小值是222233y a a a =−−=−−;故③正确;④当22a −≤≤时,x a =时,函数有最小值,函数y 的最小值是222233y a a a =−−=−−;故④错误;故答案为:①②③.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确二次函数的性质,求出相应的最值.【答案】()2212y x =+−或()2212y x =−+−【分析】根据抛物线的图象与系数之间的关系得出1h =−,2k =−,2a =±,即可得出结果. 【详解】解:设这条抛物线的解析式为:()2y a x h k=−+,∵这条抛物线与抛物线()21122y x =−+−的顶点坐标相同,∴1h =−,2k =−,又∵这条抛物线与抛物线223y x =+形状相同,∴2=a ,即2a =±,∴这条抛物线的解析式为:()2212y x =+−或()2212y x =−+−,故答案为:()2212y x =+−或()2212y x =−+−.【点睛】本题考查二次函数的图象与系数的关系,熟记二次函数的性质是解题的关键.【答案】178(,)55和33(,)55− 【分析】先根据题意画出图形,先求出D 点坐标,当E 点在线段BC 上时:DEB ∠是△DCE 的外角,2DEB DCB ∠=∠,而DEB DCE CDE ∠=∠+∠,所以此时DCE CDE ∠=∠,有CE DE =,可求出BC 所在直线的解析式5y x =−+,设E 点(,5)−+a a 坐标,再根据两点距离公式,CE DE =,得到关于a 的方程,求解a 的值,即可求出E 点坐标;当E 点在线段CB 的延长线上时,根据题中条件,可以证明222BC BD DC +=,得到DBC ∠为直角三角形,延长EB 至E ',取BE BE '=,此时,2DE E DEE DCB ''∠=∠=∠,从而证明E '是要找的点,应为OC OB =,OCB 为等腰直角三角形, 点E 和E '关于B 点对称,可以根据E 点坐标求出E '点坐标.【详解】解:在265y x x =−+中,当0x =时,5y =,则有()05C ,,令0y =,则有2650x x −+=,解得:121,6x x ==, ∴()()1050A B ,,,,根据D 点坐标,有226253m =−⨯+=−所以D 点坐标()23−,设BC 所在直线解析式为y kx b =+,其过点()0,5C 、()5,0B有550b k b =⎧⎨+=⎩, 解得15k b =−⎧⎨=⎩∴BC 所在直线的解析式为:5y x =−+ 当E 点在线段BC 上时,设(,5)E a a −+ DEB DCE CDE ∠=∠+∠而2DEB DCB ∠=∠ ∴DCE CDE ∠=∠∴CE DE =因为:(,5)E a a −+,(0,5)C ,(2,3)D −=解得:175a =,855a −+=所以E 点的坐标为:178(,)55 当E 在CB 的延长线上时,在BDC 中,222(52)318BD =−+=,2225550BC =+=,222(53)268DC =++= ∴222BD BC DC +=∴BD BC ⊥如图延长EB 至E ',取BE BE '=,则有DEE '为等腰三角形,DE DE =', ∴DEE DE E ''∠=∠ 又∵2DEB DCB ∠=∠ ∴2DE E DCB '∠=∠ 则E '为符合题意的点, ∵5OC OB == ∴45OBC ∠=E '的横坐标:17335(5)55+−=,纵坐标为85−;综上E 点的坐标为:178(,)55或338(,)55−,故答案为:17855⎛⎫ ⎪⎝⎭,或33855⎛⎫− ⎪⎝⎭, 【点睛】本题考查了二次函数与一次函数综合应用,熟练掌握一次函数根二次函数的图象和性质,分情况找到E 点的位置,是求解此题的关键.三、解答题19.(2023·上海·九年级假期作业)已知二次函数2y ax bx c =++的图像经过点()()()10401M N P −−,、,、,12三点,求这个二次函数的解析式.【答案】2268y x x =−−【分析】根据题意设二次函数解析式为(1)(4)y a x x =+−,然后将()1P −,12代入求解即可.【详解】解:∵二次函数的图象经过点()()1040M N −,、,,∴设二次函数解析式为:(1)(4)y a x x =+−, 把()1P −,12代入,可得()1223a −=⨯⨯−,解得:2a =.∴这个二次函数的解析式为:2268y x x =−−. 【点睛】掌握待定系数法求二次函数解析式是解答本题的关键.20.(2023·上海·九年级假期作业)已知一个二次函数23y x bx =−++的图象经过点()14A ,. (1)求b 的值;(2)求抛物线关于x 轴对称的抛物线的解析式. 【答案】(1)2b =(2)2=23y x x −−【分析】(1)把()14A ,代入二次函数解析式即可求出b 的值;(2)根据轴对称的性质可得抛物线223y x x =−++关于x 轴对称的图象横坐标不变,纵坐标互为相反数,然后可得答案.【详解】(1)解:∵二次函数的图象经过点()14A ,,∴把点()14A ,代入得2413b =−++,解得:2b =;(2)解:由(1)可知二次函数解析式为223y x x =−++,∵抛物线223y x x =−++关于x 轴对称的图象横坐标不变,纵坐标互为相反数,∴所得抛物线解析式为223y x x −=−++,即2=23y x x −−.【点睛】本题考查了待定系数法,二次函数的图象与几何变换,熟练掌握轴对称的性质是解题的关键.(1)若1a =−,画出该抛物线图象,并结合图象写出(2)(),Pm t 为抛物线上的一点,若P 【答案】(1)画图见解析,1x ≤− (2)2m =±【分析】(1)利用五点作图法画出图象,然后根据图象求解即可; (2)首先求出(),P m t '−−,然后将(),P m t 和(),P m t '−−代入()2240y ax ax a a =+−≠求解即可.【详解】(1)将1a =−代入()2240y ax ax a a =+−≠得,224y x x =−−+, ∴列表如下:∴如图所示,将以上5点在坐标系中描出,然后用平滑的曲线连接.∴由图象可得,当y 随x 的增大而增大时,1x ≤−; (2)∵(),P m t ,点P 关于原点的对称点为P ',∴(),P m t '−−,∵(),P m t 和(),P m t '−−都在抛物线上,∴222424am am a t am am a t ⎧+−=⎨−−=−⎩①②,∴+①②得,2280am a −=,∴解得2m =±.【点睛】本题主要考查了五点作图法,二次函数的性质,关于原点对称的点的坐标特点,熟知二次函数的相关知识是解题的关键.(1)求抛物线的表达式和顶点坐标;(2)在直线1x =上找一点P ,使PA PC +的和最小,并求出点P 的坐标;(3)将线段AC 沿x 轴向右平移a 个单位长度,若线段AC 与抛物线有唯一交点,请直接写出a 的取值范围.【答案】(1)抛物线的表达式为2142y x x =−++,抛物线的顶点坐标为91,2⎛⎫ ⎪⎝⎭(2)()1,3(3)26a ≤≤【分析】(1)根据对称轴得出1b =,再将点代入确定解析式,即可确定顶点坐标;(2)连接BC ,交直线1x =于点P ,点P 即为所求,连接AP ,利用两点之间线段最短得出PA PC +的和最小,由待定系数法确定直线BC 的表达式为4y x =−+,即可确定点P 的坐标;(3)根据题意得:点C 的运动轨迹为射线CD ,点A 的运动轨迹为射线AB ,若线段AC 与抛物线有唯一交点,则线段AC 在线段,m n 间平移(含线段,m n ),由抛物线的对称性得212CD =⨯=,()2216AB =⨯+=,即可求解.【详解】(1)解:∵抛物线的对称轴为直线1x =,∴1122b⎛−⎫ ⎝⨯⎪⎭=−,解得1b =. ∴212y x x c=−++. 把点()2,0A −代入,得()212202c −⨯−−+=,解得4c =.∴抛物线的表达式为2142y x x =−++.把1x =代入2142y x x =−++,得191422y =−++=, ∴抛物线的顶点坐标为91,2⎛⎫⎪⎝⎭.(2)如图1,连接BC ,交直线1x =于点P ,点P 即为所求.。
22.1.3二次函数的图像与性质 初中初三九年级数学教学课件PPT 人教版
开口方向 对称轴 顶点坐标
向上 向下 向上
直线x=-3 直线x=1 直线x=3
(-3, 5 ) ( 1, -2 ) ( 3 , 7)
向下
直线x=2 ( 2 , -6 )
x=h 减小 h
x=h 增大 h
可以看作互相平移得到的.
平移规律
左 右 平 移 y = ax2 + k
பைடு நூலகம்
y = a( x - h )2 + k 上 下 平 移
简记为: 上下平移, 括号外上加下减;
y = a(x - h )2 左右平移,
上下平移 y = ax2 左右平移
括号内左加右减. 二次项系数a不变.
当堂练习
1.完成下列表格: 二次函数
左右平移:括号内 左加右减自变量; 上下平移:括号外 上加下减函数值.
一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同.
数学享有盛誉还有另一个原因: 正是数学给了各种精密自然科学一定程 度的可靠性,没有数学,它们不可能获 得这样的可靠性。
――艾伯特·爱因斯坦
这是函数 y=a(x-h)2+k 的性质
哦!
(h,k) 小
(h,k) 大
向上
增大 k
向下
减小 k
练一练
1.请回答抛物线y = 4(x-3)2+7由抛物线y=4x2怎样平移得到? 由抛物线向上平移7个单位再向右平移3个单位得到的.
2.如果一条抛物线的形状与 y 1 x2 2形状相同,且 3
顶点坐标是(4,2),试求这个函数关系式.
二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x
…
…
y
…
…
-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(1)你能描述图象的形状吗?
二次函数的图像与性质
学情分析:本节内容是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习的函数知识,是函数知识螺旋发展的一个重要环节.二次函数曲线——抛物线,也是人们最为熟悉的曲线之一.喷泉的水流、标枪的投掷等都形成抛物线路径.同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等.本节课研究最简单的二次函数y=±x2的图象,是学生学习函数知识的过程中的一个重要环节,既是前面所学知识的延续,又是探究其它二此函数的图象及其性质的基础,起到承上启下的作用.教学目标:1. 知识与技能目标(1)能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y= ax2的性质.(2)猜想并能作出y=- x2的图象,能比较它与y= x2的图象的异同.2.过程与方法目标(1)经历探索二次函数y= x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.(2)由函数y= x2的图象及性质,对比地学习y=- x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.3.情感、态度与价值观目标(1)经历探索的过程发现抛物线的性质,体会探索发现的乐趣,增强学习数学的自信心.(2)通过小组交流、讨论、比较,研究二次函数y= x2和y=- x2的图象,培养学生合作意识和交流能力.教学重点:经历探索二次函数y=±x2的图象的作法和性质的过程,理解二次函数y=a x2的性质.教学难点:描点法画y= x2的图象,体会数与形的相互联系。
教学过程:一、创设情境,提出问题学生观察:喷泉的水流、篮球的投掷形成的路径,抛物线型拱桥、抛物线型隧道,都与抛掷一个物体形成的路径的曲线类似,由此导入课题.紧接着提出两个问题:1.我们已经学过哪些函数?研究函数问题的一般步骤是怎样的?2.一次函数、反比例函数的图象各是怎样的图形?(设计意图:让学生回顾已学的函数类型、图象及研究函数问题的一般思路,以便学生运用类比的方法研究二次函数的相关问题.)二、合作交流,探究新知1.认识抛物线问题:一次函数的图象是一条直线,二次函数的图象是什么形状呢?让我们先来研究最简单的二次函数y=x2的图象.大家还记得画函数图象的一般步骤吗?(设计意图:通过这个问题让学生回忆起用描点法画图的一般步骤,以便于学生下一步的画图.)画一画:你能试着用描点法画二次函数y= x2的图象吗?(两名学生上台板演,其他学生在下面尝试画图.在学生画图时,教师溶入到学生中,了解并搜集学生可能出现的各种问题.比如:学生可能会画成折线、半个抛物线、没画出延伸的趋势等情形,这时正好针对问题鼓励小组间互相讨论、相互比较,交流各自的观点.)问题:通过刚才的分析你认为在画y= x2的图象时:(1)列表取值应注意什么问题?(取对称的7或5个点)(2)点和点之间用什么样的线连接? (用平滑曲线按自变量从小到大或从大到小的顺序连接)(学生尝试描述y= x2的图象,建立和实际问题的联系.再通过投篮的动态演示,形象的描述并体会y= x2的图象的形状是抛物线,并且与开始的引例相呼应.)(设计意图:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了.事实上,数学学习应该与学生的生活经验融合起来,让他们在生活中去发现数学、发现生活中的数学、探究数学、认识并掌握数学.)2.探究抛物线y= x2的性质议一议:请你观察y=x2的图象,你能得到哪些方面的性质,然后分组讨论.(在学生讨论交流之后,请每组的学生代表一一发表自己的观察结果.在此过程中,教师不能作裁判,而要把评判权交给学生,注意培养学生语言的规范化、条理化 .待学生发表自己的观点之后系统地总结一下y= x2的图象的性质)抛物线y=x2的性质(1)开口:抛物线的开口向上.(2)对称性:它是轴对称图形,对称轴是y轴(或x=0).(3)增减性:在对称轴的左侧(x<0时),y随x的增大而减小;在对称轴的右侧(x>0),y随着x的增大而增大.(4)顶点:图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).(5)最值:因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y= 2x2 y=2(设计意图:在此问题上,不再按课本上的问题一一叠列给学生,而是给学生一个开放的空间,给学生一个交流的平台,一个展现自我的空间.仁者见仁,智者见智,不同的学生肯定会有不同的认识,通过小组讨论与交流,学生可以相互学习,共同提高.)3.探究抛物线y=-x2的性质想一想:(1)二次函数y=- x2的图象是什么形状?先想一想,然后作出它的图象.(2) 类似的你能说出它的性质吗?(让学生先猜想再画图验证,在学生画图时可让每一小组部分同学将y= x2与y=-x2的图象画在一个坐标系内,而后学生通过讨论交流得出结论,教师只给以必要的引导.)1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y=- 2x2 y= -2(设计意图:这一问题设计为学生提供思考的空间,培养学生在观察、分析、对比、交流中发展分析能力和从图象中获取信息的能力.)议一议:函数y=x2与y=-x2的图象及其性质有何异同?(学生观察图形,通过小组讨论,归纳y=x2与y=-x2的图象及其性质的异同,然后回答,学生想不到的,及时给予引导.)不同点:开口方向不同:函数值随自变量的增大的变化趋势而不同:函数的最值不同:相同点:关系:它们的图像关于x轴对称(设计意图:通过比较y=x2与y=-x2的性质的异同,让学生更充分地理解y =±x2的性质.)三、变式训练,巩固提高(课堂检测)1.在二次函数y= x2的图象上,与点A(-5,25)对称的点的坐标是.顶点为:_____2.点(x1,y1)、 (x2,y2)在抛物线y=-3x2上,且x1> x2>0,则y1_____y2. 3.设边长为x cm的正方形的面积为y cm2,y是x的函数,该函数的图象是下列各图形中()(设计意图:通过一组简单的练习题,及时巩固所学知识,使学生品尝到成功的喜悦.)四、总结反思,纳入系统通过今天的学习,你是否对二次函数y=a x2有了一些新的认识?能谈谈你的想法吗?(由学生总结本节课所学习的主要内容.在学生归纳的基础上总结它们的区别与生的素质,并且逐渐培养学生的良好的个性品质.)五、课后延伸,提升能力你能类比地画出函数:12+y的图象吗?动手画一下吧!=x教学反思:针对本节课的特点,采用“创设情境—作图探索—总结归纳—知识运用”为主线的教学方法.把教学的重心放在如何促进学生的“学”上,引导学生采用观察、实验、自主探索、小组活动、集体交流等多样化的学习方式.教学过程中始终坚持学生为主体,教师为主导的方针,使探究知识和培养能力融为一体,让学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.。
自学初中数学资料 二次函数的解析式、图象与性质
自学资料年份题量分值考点题型2015317二次函数图象与变换;二次函数的图象性质选择、解答、解答2016222二次函数性质(解析式、顶点、函数比较大小、最值)综合题解答2017216二次函数图象上点的坐标特征;函数图象与系数的关系;二次函数图象与系数的关系选择、解答2018215二次函数图象与系数的关系、函数比较大小选择、解答2019215二次函数解析式、对称轴、最值问题以及比较大小选择、解答一、用待定系数法求正比例、反比例、一次、二次函数的解析式【知识探索】1.以求正比例函数的解析式为例:先设解析式为(),其中系数待定;再利用已知条件确定的值,这样的方法称为“待定系数法”.【错题精练】第1页共21页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训例1.如图,二次函数y=x2+bx+c(a≠0)的图象经过点A(1,0)且与y轴交卡点C,点B和点C关于该二次函数图象的对称轴直线x=2对称,一次函数y=kx+b的图象经过点A及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,直接写出不等式kx+b≤x2+bx+c的解集.【答案】解:(1)∵二次函数y=x2+bx+c(a≠0)的图象经过点A(1,0),∴1+b+c=0,∵二次函数图象的对称轴直线x=2,∴-b2=2,∴b=-4,c=3,∴二次函数的解析式为y=x2-4x+3;∴C(0,3),∵点B和点C关于该二次函数图象的对称轴直线x=2对称,∴B(4,3),设一次函数代解析式为y=kx+b,∴{k+b=04k+b=3,∴{k=1b=−1,∴一次函数的解析式为y=x-1;(2)由图象可得,不等式kx+b≤x2+bx+c的解集x≤1或x≥4.例2.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A (-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.第2页共21页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第3页 共21页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵抛物线y=(x+2)2+m 经过点A (-1,0),∴0=1+m , ∴m=-1,∴抛物线解析式为y=(x+2)2-1=x 2+4x+3, ∴点C 坐标(0,3),∵对称轴x=-2,B 、C 关于对称轴对称, ∴点B 坐标(-4,3), ∵y=kx+b 经过点A 、B , ∴{−4k +b =3−k +b =0,解得{k =−1b =−1,∴一次函数解析式为y=-x-1,(2)由图象可知,写出满足(x+2)2+m≥kx+b 的x 的取值范围为x≤-4或x≥-1.例3.如果抛物线经过点A (2,0)和B (-1,0),且与y 轴交于点C ,若OC=2.则这条抛物线的解析式是( )A. y=x 2-x-2B. y=-x 2-x-2或y=x 2+x+2C. y=-x 2+x+2D. y=x 2-x-2或y=-x 2+x+2【解答】解:设抛物线解析式为y=a (x-2)(x+1), ∵OC=2,∴C 点坐标为(0,2)或(0,-2), 把C (0,2)代入y=a (x-2)(x+1)得a•(-2)•1=2,解得a=-1,此时抛物线解析式为y=-(x-2)(x+1),即y=-x 2+x+2; 把C (0,-2)代入y=a (x-2)(x+1)得a•(-2)•1=-2,解得a=1,此时抛物线解析式为y=(x-2)(x+1),即y=x 2-x-2.即抛物线解析式为y=-x 2+x+2或y=x 2-x-2. 故选:D .【答案】D例4.已知二次函数y=ax 2+bx+c (a≠0)中,函数y 与自变量x 的部分对应值如表:x … -2 -1 0 2 … y…-3-4-35…(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标;(2)求出该函数图象与x轴的交点坐标.【答案】解:(1)由题意,得c=-3.将点(2,5),(-1,-4)代入,得{4a+2b−3=5 a−b−3=−4.解得{a=1b=2.∴y=x2+2x-3.顶点坐标为(-1,-4).(2)当y=0时,x2+2x-3,解得:x=-3或x=1,∴函数图象与x轴的交点坐标为(-3,0),(1,0).【举一反三】1.在平面直角坐标系xOy中,抛物线y=ax2+bx+1经过A(1,3),B(2,1)两点.(1)求抛物线及直线AB的解析式;(2)点C在抛物线上,且点C的横坐标为3.将抛物线在点A,C之间的部分(包含点A,C)记为图象G,如果图象G沿y轴向上平移t(t>0)个单位后与直线AB只有一个公共点,求t的取值范围.【答案】解:(1)∵抛物线y=ax2+bx+1经过A(1,3),B(2,1)两点.第4页共21页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第5页 共21页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训∴{a +b +1=04a +2b +1=1,解得,{a =−2b =4.∴抛物线的表达式是y=-2x 2+4x+1. 设直线AB 的表达式是y=mx+n , ∴{m +n =32m +n =1, 解得,{m =−2n =5,∴直线AB 的表达式是y=-2x+5;(2)∵点C 在抛物线上,且点C 的横坐标为3. ∴C (3,-5).点C 平移后的对应点为点C′(3,t-5),代入直线表达式y=-2x+5, 解得t=4.结合图象可知,符合题意的t 的取值范围是0<t≤4.2.已知下列抛物线满足以下条件,求各个抛物线的函数表达式.(1)抛物线经过两点A (1,0),B (0,-3),且对称轴是直线x=2; (2)抛物线的顶点是(-2,3),且过点(-1,5);(3)抛物线与x 轴交于(-2,0),(4,0)两点,且该抛物线的定点为(1,-92).【答案】解:(1)∵对称轴是直线x=2, ∴抛物线与x 轴另一个交点坐标为(3,0), 设抛物线解析式为y=a (x-1)(x-3),把B (0,-3)代入得a•(-1)•(-3)=-3,解得a=-1, ∴抛物线解析式为y=-(x-1)(x-3)=-x 2+4x-3; (2)设抛物线的解析式为y=a (x+2)2+3, 把(-1,5)代入得a (-1+2)2+3=5,解得a=2, 所以抛物线解析式为y=2(x+2)2+3;第6页 共21页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好 非学科培训(3)设抛物线解析式为y=a (x+2)(x-4), 把(1,-92)代入得a (1+2)•(1-4)=-92,解得a=12, 所以抛物线解析式为y=12(x+2)(x-4)=12x 2-x-4.3.已知一次函数y=kx+b 与二次函数y=ax 2的图象如图所示,其中一次函数的图象与x 轴、y 轴的交点分别为A (2,0),B (0,2),直线与抛物线的交点分别为P ,Q .且它们的纵坐标的比为1:4,求这两个函数的解析式.【答案】解:∵一次函数的图象与x 轴、y 轴的交点分别为A (2,0),B (0,2), ∴{2k +b =0b =2,解得k=-1,b=2.∴一次函数的解析式为y=-x+2, 设P (m ,-m+2),∵直线与抛物线的交点P ,Q 的纵坐标的比为1:4, ∴Q 点的纵坐标为-4m+8, 代入y=-x+2求得x=4m-6, ∴Q (4m-6,-4m+8),代入y=ax 2得,{−m +2=am 2−4m +8=a (4m −6)2,解得a=-15m−6, 代入-m+2=am 2,整理得,m 2-4m+3=0,解得m 1=1,m=3(舍去), ∴P (1,1),代入y=ax 2得,a=1,∴二次函数的解析式为y=x 2.4.如图所示,已知抛物线y=-2x 2-4x 的图象E ,将其向右平移两个单位后得到图象F .(1)求图象F所表示的抛物线的解析式:(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.【答案】解:(1)∵抛物线y=-2x2-4x=-2(x+1)2+2的图象E,将其向右平移两个单位后得到图象F,∴图象F所表示的抛物线的解析式为y=-2(x+1-2)2+2,即y=-2(x-1)2+2;(2)∵y=-2(x-1)2+2,∴顶点C的坐标为(1,2).当y=0时,-2(x-1)2+2=0,解得x1=0(不合题意舍去),x2=2,∴点B的坐标为(2,0).设A点坐标为(0,y),则y<0.∵点A到x轴的距离等于点C到x轴的距离的2倍,∴-y=2×2,解得y=-4,∴A点坐标为(0,-4).设AB所在直线的解析式为y=kx+b(k≠0),由题意,得{b=−42k+b=0,解得{k=2b=−4,∴AB所在直线的解析式为y=2x-4.二、正比例、反比例、一次、二次函数图像上的点及图像与坐标轴的交点【错题精练】例1.若函数y=(a+1)x2-2x+1的图象与x轴只有一个交点,则a为______.第7页共21页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【解答】解:当a+1=0,即a=-1时,原函数为一次函数y=-2x+1,与x轴交于点(【解答】12,0),∴a=-1符合题意;当a+1≠0,即a≠-1时,∵二次函数y=(a+1)x2-2x+1的图象与x轴只有一个交点,∴△=(-2)2-4×1×(a+1)=0,解得:a=0.综上所述:a的值为-1或0.故答案为:-1或0.【答案】-1或0例2.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+3上的三点,则y1,y2,y3的大小关系为()A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y2【解答】解:∵函数的解析式是y=-(x+1)2+3,如右图,∴对称轴是x=-1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选:A.【答案】A例3.已知函数y=k2x2+(2k-1)x+1与x轴有两个不同的交点,(1)求k的取值范围;(2)是否存在实数k,便得这两个交点关于直线x=-0.5对称?若存在,求出k;如不存在,请说明理由.第8页共21页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训例4.已知函数y=(k-1)x2-4x+4与x轴只有一个交点,则k的取值范围是()A. k≤2且k≠1B. k<2且k≠1C. k=2D. k=2或1【解答】解:当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,令y=0可得(k-1)x2-4x+4=0,由函数与x轴只有一个交点可知该方程有两个相等的实数根,∴△=0,即(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选:D.【答案】D例5.如图,一次函数y=-x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 以上结论都正确【解答】解:∵一次函数y=-x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=-x有两个不相等的实数根,ax2+bx+c=-x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.【答案】A【举一反三】1.二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1)、B(-6,y2)是它图象上的两点,则y1与y2的大小关系是()A. y1<y2B. y1=y2C. y1>y2D. 不能确定第9页共21页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【解答】解:由图可知,二次函数的对称轴为直线x=-3,∴x=-6和x=0时的函数值相同,∵x>-3时,y随x的增大而减小,∴x=0时的函数值大于x=1时的函数值,∴y1<y2.故选:A.【答案】A2.若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(5,y3)三点,则y1、y2、y3大小关系是______.【解答】解:根据二次函数图象的对称性可知,C(5,y3)中,|5-3|>|3-2|=1,A(-1,y1),B(2,y2)在对称轴的左侧,y随x的增大而减小,因为-1<1<2,于是y1>y3>y2.故答案为:y1>y3>y2.【答案】y1>y3>y23.在平面直角坐标系xOy中,直线y=x+1与y轴交于点A,并且经过点B(3,n).(1)求点B的坐标;(2)如果抛物线y=ax2-4ax+4a-1(a>0)与线段AB有唯一公共点,求a的取值范围.第10页共21页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训【答案】解:(1)把x=3代入y=x+1,y=3+1=4,∴点B的坐标为B(3,4);(2)由题意:线段ABy=x+1(0≤x≤3),∵y=ax2-4ax+4a-1=a(x-2)2-1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,-1),∵点A(0,1),点B(3,4),∵当抛物线y=ax2-4ax+4a-1(a>0)与线段AB有唯一公共点时,∴{4a−1≥132a−4×3a+4a−1<4①或{4a−1<132a−4×3a+4a−1≥4②解①得12≤a<5,②无解,综上所述,当12≤a<5时,抛物线与线段AB有一个公共点.4.小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当-1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A. ①B. ②C. ③D. ④【解答】解:二次函数y=-(x-m)2-m+1(m为常数)①∵顶点坐标为(m,-m+1)且当x=m时,y=-m+1∴这个函数图象的顶点始终在直线y=-x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得-(x-m)2-m+1=0,其中m≤1解得:x1=m-√−m+1,x2=m+√−m+1∵顶点坐标为(m,-m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|-m+1|=|m-(m-√−m+1)|解得:m=0或1,当m=1时,二次函数y=-(x-12,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x 1+x 2>2m∴x 1+x 22>m ∵二次函数y=-(x-m )2-m+1(m 为常数)的对称轴为直线x=m∴点A 离对称轴的距离小于点B 离对称轴的距离∵x 1<x 2,且-1<0∴y 1>y 2故结论③错误;④当-1<x <2时,y 随x 的增大而增大,且-1<0∴m 的取值范围为m≥2.故结论④正确.故选:C .【答案】C5.如图,二次函数的图象与x 轴交于A (-3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围;(3)若直线与y 轴的交点为E ,连结AD 、AE ,求△ADE 的面积.【答案】解:(1)设二次函数的解析式为y=ax 2+bx+c (a≠0,a 、b 、c 常数),根据题意得 {9a −3b +c =0a +b +c =0c =3,解得:{a =−1b =−2c =3,所以二次函数的解析式为:y=-x 2-2x+3;(2)如图,一次函数值大于二次函数值的x 的取值范围是:x <-2或x >1.(3)∵对称轴:x=-1.∴D (-2,3);设直线BD :y=mx+n 代入B (1,0),D (-2,3):{m +n =0−2m +n =3, 解得:{m =−1n =1, 故直线BD 的解析式为:y=-x+1,把x=0代入求得E (0,1)∴OE=1,又∵AB=4∴S △ADE=12×4×3-12×4×1=4.三、二次函数图像的开口方向、顶点坐标及对称轴【知识探索】1.二次函数(、、为常数,): (1)当时,抛物线开口向上,有最低点;当时,抛物线开口向下,有最高点;(2)函数图像的对称轴为直线,顶点坐标为(,).【错题精练】例1.已知二次函数y =ax 2+bx +c (a >0)的图象的对称轴为直线x =1,且(x 1,y1),(x 2,y2)为其图象上的两点,( )A. 若x 1>x 2>1,则(y 1−y 2)+2a (x 1−x 2)<0;B. 若1>x 1>x 2,则(y 1−y 2)+2a (x 1−x 2)<0;C. 若x 1>x 2>1,则(y 1−y 2)+a (x 1−x 2)>0;D. 若1>x 1>x 2,则(y 1−y 2)+a (x 1−x 2)>0.【答案】D在同一平面直角坐标系中的图象如图所示,则二次函数y= 2.一次函数y=ax+b和反比例函数y=cxax2+bx+c的图象大致为()A. B. C. D.【答案】C3.如图,点A、B的坐标分别为(1,1)和(5,4),抛物线y=ax2+bx+c(a≠0)的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),当抛物线的顶点为A时,点C的横坐标为O,则点D 的横坐标最大值为()A. 5B. 6C. 7D. 8【解答】解:∵抛物线的顶点为A时,点C的横坐标为O,∴设此时抛物线解析式为y=a(x﹣1)2+1,代入(0,0)得,a+1=0,∴a=﹣1,∴此时抛物线解析式为y=﹣(x﹣1)2+1,∵抛物线的顶点在线段AB上运动,∴当顶点运动到B(5,4)时,点D的横坐标最大,∴抛物线从A移动到B后的解析式为y=﹣(x﹣5)2+4,令y=0,则0=﹣(x ﹣5)2+4,解得x=7或3,∴点D 的横坐标最大值为7.【答案】C1.若抛物线y=ax 2+bx+c 与x 轴交于A ,B 两点,与y 轴交于正半轴C 点,且AC=20,BC=15,∠ACB=90°,则此抛物线的解析式为______.【解答】解:如图,∵∠ACB=90°,AC=20,BC=15,∴AB=√152+202=25,∵12OC•AB=12AC•BC ,∴OC=15×2025=12, ∴OA=√152−122=9,∴OB=25-9=16,∴抛物线与x 轴的交点坐标为(-9,0)、(16,0)或(-16,0)、(9,0),当抛物线过点(-9,0)、(16,0)时,设抛物线解析式为y=a (x+9)(x-16),把C (0,12)代入得a•9•(-16)=12,解得a=-112,此时抛物线解析式为y=-112(x+9)(x-16),即y=-112x 2+712x+12;当抛物线过点(-16,0)、(9,0)时,设抛物线解析式为y=a (x+16)(x-9),把C (0,12)代入得a•16•(-9)=12,解得a=-112,此时抛物线解析式为y=-112(x+16)(x-9), 即y=-112x 2-712x+12综上所述,抛物线解析式为y=-112x 2+712x+12或y=-112x 2-712x+12.D. 顶点坐标是(1,-3)【答案】D6.如图,在直角坐标系中,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (-1,0)、B (3,0)两点,抛物线交y 轴于点C (0,3),点D 为抛物线的顶点.直线y=x-1交抛物线于点M 、N 两点,过线段MN 上一点P 作y 轴的平行线交抛物线于点Q .(1)求此抛物线的解析式及顶点D 的坐标;(2)问点P 在何处时,线段PQ 最长,最长为多少;(3)设E 为线段OC 上的三等分点,连接EP ,EQ ,若EP=EQ ,求点P 的坐标.【答案】解:(1)∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (-1,0)、B (3,0)两点,交y 轴于点C (0,3),由题意,得{0=a −b +c0=9a +3b +c 3=c,解得:{a =−1b =2c =3∴抛物线的解析式为:y=-x 2+2x+3,∴y=-(x-1)2+4,∴D (1,4);(2)∵PQ ⊥x 轴,∴P 、Q 的横坐标相同,∵P 点在直线y=x-1上,设P (a ,a-1),则Q (a ,-a 2+2a+3),∴PQ=-a 2+2a+3-a+1=-a 2+a+4,∴PQ=-(a-12)2+174,∴当a=12时,线段PQ 最长为174,则P 点坐标为(12,-12);(3)∵E 为线段OC 上的三等分点,且OC=3, ∴E (0,1)或E (0,2),设P (p ,p-1)(在y=x-1上),则Q (p ,-p 2+2p+3). 当E (0,1)时,∵EP=EQ ,∴(p-0)2+(p-1-1)2=(p-0)2+(-p 2+2p+3-1)2, ∴p 2+(p-2)2=p 2+(p 2-2p-2)2,(p-2)2=(p 2-2p-2)2,①当 p 2-2p-2=p-2时,∴p (p-3)=0,∴p=0或3,当p=0,P (0,-1),Q (0,3),当p=3,P (3,2),Q (3,0),过线段MN 上一点P 作y 轴的平行线交抛物线于点Q . ∵直线y=x-1交抛物线于点M 、N 两点,∴x-1=-x 2+2x+3,解得:x 1=1−√172,x 2=1+√172, M 的横坐标为1−√172,N 点的横坐标为1+√172, ∴P 点横坐标:大于等于1−√172小于等于1+√172, ∴P (3,2),Q (3,0)不符合要求舍去;②p 2-2p-2=-p+2,整理得:p 2-p-4=0,解得:P 1=1−√172,p 2=1+√172, ∵直线y=x-1交抛物线于点M 、N 两点,∴x-1=-x 2+2x+3,解得:x 1=1−√172,x 2=1+√172, M 的横坐标为1−√172,N 点的横坐标为1+√172, ∵过线段MN 上一点P 作y 轴的平行线交抛物线于点Q . ∴P 点横坐标:大于等于1−√172小于等于1+√172, 当E (0,2)时,∵EP=EQ ,∴(p-0)2+(p-1-2)2=(p-0)2+(-p 2+2p+3-2)2, p 2+(p-3)2=p 2+(p 2-2p-1)2,∴(p-3)2=(p 2-2p-1)2.③当 p 2-2p-1=p-3时,∴(p-1)(p-2)=0∴p=1或2. 当p=1时,P (1,0),Q (1,4)当p=2时,P (2,1),Q (2,3)④p 2-2p-1=-p+3p 2-p-4=0,解得:P 1=1−√172<-1,p 2=1+√172>2, P (1−√172,−√17−12)或(1+√172,√17−12). 综上所述,P 点的坐标为:P (0,-1),P (1,0),P (2,1),P (1−√172,−√17−12)或(1+√172,√17−12). ∵点P 在线段MN 上,∴P 点的坐标为:P (0,-1),P (1,0),P (2,1).非学科培训。
二次函数知识点总结初中数学
二次函数知识点总结初中数学二次函数是数学中一个重要的概念,也是初中数学中常见的一种函数形式。
下面将对初中数学中关于二次函数的知识点进行总结。
一、二次函数的定义和性质1. 二次函数的定义:二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c 是常数,且a ≠ 0。
2.二次函数的图像:二次函数的图像是抛物线,开口方向由a的正负性决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3.二次函数的顶点:二次函数的图像的顶点坐标为(-b/2a,f(-b/2a))。
顶点是抛物线的最低点(当a>0)或最高点(当a<0)。
4.二次函数的对称轴:二次函数的图像的对称轴是与x轴平行的一条直线,其方程为x=-b/2a。
5. 二次函数的零点:二次函数的零点是使得 f(x) = 0 的 x 值。
可以通过求解二次方程 ax^2 + bx + c = 0 的根来求得零点。
二、二次函数的图像特点1.二次函数的开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2.二次函数的最值:当a>0时,函数的最小值为顶点的纵坐标;当a<0时,函数的最大值为顶点的纵坐标。
3.二次函数的单调性:当a>0时,函数在顶点左右两侧单调递增;当a<0时,函数在顶点左右两侧单调递减。
三、二次函数的表示方式和基本性质1.二次函数的顶点式:二次函数可以表示为f(x)=a(x-h)^2+k的形式,其中(h,k)是顶点的坐标。
2. 二次函数的一般式:二次函数可以表示为 f(x) = ax^2 + bx + c 的形式。
3. 二次函数的零点:对于二次函数 f(x) = ax^2 + bx + c,零点可以通过求解二次方程 ax^2 + bx + c = 0 而得到。
4. 二次函数的轴对称性:对于二次函数 f(x) = ax^2 + bx + c,其图像关于直线 x = -b/2a 对称。
北师大版初中九年级下册数学课件 《二次函数的图象与性质》二次函数PPT教学课件(第1课时)
-4 -2 0 2 4 x -3 -6 -9
新知讲 解
问题1:根据y=x2和y=-x2的图像,试着
探究二次函数y=ax2的性质.
5y
共同点:对称轴都是y轴
4
顶点都是坐标原点
3 2
1 y=
不同点:当上a;>0时,开口向
5
4
3
2
-1--1 2-3
O1x22 3 4
y =x2
5联系:二次下项.系数互为相反 数,开口相反,大小 相同,它们关于x轴
新知讲 解
y
2.描点:根据表中x, y的数值在坐标
9
平面中描点(x, y).
6
3.连线:用平滑的曲线顺次连接各点, 就得到y=x2的图象.
3
-O
3
3x
新知讲 解
议一议
1.你能描述图象的形状吗?
y
9
二次函数y=x2的图象是一条抛物线,并且
6 2抛.图物象线与开x口轴向有上交.点吗?如果有,交点坐标是什么?
作业布 置
1.课本习题2.2
2.点A(2,4)在二次函数y=x2的图象上吗?请分别写出点 A关于x轴的对称点B的坐标、关于y轴的对称点C的坐 标、关于原点O的对称点D的坐标.点B,C,D在二次函数 y=x2的图象上吗?在二次函数y=-x2的图象上吗?
4.若点A(2,m)在抛物线y=x2上,则点A关于y轴对(称-2点,的4)坐
标是
.
减小
5.二次函数y=-x2的图象,在y轴的右边,y随x的增大而
________.
课堂练 习
课堂练 习
7.已知:如图,直线y=3x+4与抛物线y=x2交于A、 B两点,求出A、B两点的坐标,并求出两交点与原点所
二次函数的图象和性质初中数学课件
当x>0时,y随x的增大而
减小 ,
.
5.(1)已知点(-1,y1), (-3,y2)都在二次函数y=-5x2的图象
上,则y1,y2的大小关系是
y1 >y2 .
(2)已知点(-2,y1), (3,y2)都在二次函数y=7x2的图象上,
则y1 ,y2的大小关系是
y1 <y2
.
22.1二次函数的图象和性质
第2课时 二次函数y=ax²
的图象和性质
温故知新
图象的形状;
图象的形状;
图象的位置;
性质:y随x的增
大如何变化.
一
次
函
数
类比
y=kx
(k≠0)
由
特
殊
到
一
般
二
次
函
数
y=ax²
(a≠0)
k>0,k<0,
a>0,a<0,
y=x,y=-x.
y=x²,y=-x².
图象的位置;
性质:y随x的增
二次函数 y = ax 2 的图象特征.
(1)在同一直角坐标系中,画出a<0的几个二次函数的图象,并
考虑这些抛物线有什么共同点和不同点.
(2)当a<0时,说出二次函数 y = ax 2 的图象特征.
y
1
-8
-
-2
-
0
0
0
1
-
-
-2
2
-2
-8
…
…
…
1
2
-1
1
3
2
初三下册数学《二次函数的图象和性质》知识点总结
书山有路勤为径;学海无涯苦作舟
初三下册数学《二次函数的图象和性质》知识点总结
及时对知识点进行总结,整理,有效应对考试不发愁,下文由初中频道为大家带来了二次函数的图象和性质知识点总结,欢迎大家参考阅读。
二次函数图像的性质:1.二次函数(a≠0)的图像是一条抛物线,它的对称轴是y 轴,顶点是原点(0,0)。
(1)二次函数图像怎幺画?作法:①列表:一般取5 个或7 个点,作为顶点的原点(0,0)是必取的,然后在y 轴的两侧各取2 个或3 个点,注意对称取点;
②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。
(2)二次函数与的图像和性质:
2.二次函数(a,k 是常数,a≠0)的图像是一条抛物线,它的对称轴是y 轴,顶点坐标是(0,k),它与的图像形状相同,只是位置不同。
函数的图像是由抛物线向上(或下)平移|k|个单位得到的。
当a 大于0 时,抛物线的开口向上,在对称轴的左边(x 小于0 时),曲线自左向右下降,函数y 随x 的增大而减小;在对称轴的右边(x 大于0 时),曲线
自左向右上升,函数y 随x 的增大而增大。
顶点是抛物线的最低点,在顶点处函数y 取得最小值,即当x=0 时,y 最小值=k。
当a 小于0 时,抛物线的开口向下,在对称轴的左边(x 小于0 时),曲线自左向右上升,函数y 随x 的增大而增大;在对称轴的右边(x 大于0 时),曲线
自左向右下降,函数y 随x 的增大而减小。
顶点是抛物线的最高点,在顶点处函数y 取得最大值,即当x=0 时,y 最大值=k。
今天的努力是为了明天的幸福。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学二次函数的图象和性质2019年4月9日(考试总分:160 分考试时长: 120 分钟)一、单选题(本题共计 12 小题,共计 48 分)1、(4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是().A. 5个B. 4个C. 3个D. 2个2、(4分)对于二次函数y=x2+1,则下列结论正确的是()A.图象的开口向下B. y随x的增大而增大C.图象关于y轴对称D.最大值是13、(4分)如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C.过点C作CD∥x轴于抛物线交于点D,若点A的坐标为(﹣2,0),则线段OB与线段CD的数量关系为()A. OB=3CD B. OB=2CD C. 2OB=3CD D. 3OB=4CD4、(4分)已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B ,P 是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0,②x=3是ax 2+bx+3=0的一个根,③△PAB 周长的最小值是+3.其中正确的是()A . ①②③B . 仅有①②C . 仅有①③D . 仅有②③5、(4分)两条抛物线25y x =和25y x =-在同一坐标系内,下列说法中不正确的是()A . 顶点坐标相同B . 对称轴相同C . 开口方向相反D . 都有最小值6、(4分)下列函数中,y 是x 的二次函数的是( ) A . y=2x ﹣1B . y=C . y=D . y=﹣x 2+2x7、(4分)已知抛物线y=14x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M ,3),P 是抛物线y=14x 2+1上一个动点,则△PMF 周长的最小值是()A . 4B . 5C .D .8、(4分)如图,在平面直角坐标系xOy 中,点A ,B ,C 满足二次函数2y ax bx =+的表达式,则对该二次函数的系数a 和b 判断正确的是()A . 00a b >>,B . 00a b <<,C . 00a b ><,D . 00a b ,9、(4分)如图是二次函数y=ax 2+bx+c (a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b >2a ; ③3a+c=0; ④a ﹣b <m (ma+b )(m≠﹣1的实数); 其中正确的命题是()A . ①②③B . ①②④C . ②③④D . ①③④10、(4分)在同一平面直角坐标系中,函数y =ax 2+b 与y =bx 2+ax 的图象可能是()A . AB . BC . CD . D11、(4分)若将抛物线向右平移2个单位后,所得抛物线的表达式为22y x =,则原来抛物线的表达式为( ) A . 222y x =+B . 222y x =-C . ()222y x =+D .()222y x =-12、(4分)在同一平面直角坐标系中,函数 y =ax+b 与 y =bx 2+ax 的图象可能是()A.B.C.D.二、填空题(本题共计 4 小题,共计 16 分)13、(4分)二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a +b+c=0;④当x>1时,函数y随x的增大而增大;⑤当y>0时,-1<x<3.其中,正确的说法有___________(请写出所有正确说法的序号).14、(4分)如图,在平面直角坐标系中,抛物线经过坐标原点O,交x轴的另一个交点为A,过该抛物线的顶点B分别作x轴、y轴的垂线,交x轴、y轴于点C、D,则图中阴影部分图形的面积和为______15、(4分)如图,直线与坐标轴交于、两点,过,两点的抛物线与轴的另一交点为,为抛物线上的一动点,当时,点的坐标为________.16、(4分)当-1≤x≤3时,二次函数y=-x2的最小值是_____,最大值是______.三、解答题(本题共计 8 小题,共计 96 分)17、(12分)已知点A(2,a)在抛物线y=x2上(1)求A 点的坐标;(2)在x 轴上是否存在点P ,使△OAP 是等腰三角形?若存在写出P 点坐标;若不存在,说明理由.18、(12分)如图,抛物线y=ax 2+bx+c 经过点A (2,-3),且与x 轴交点坐标为(-1,0),(3,0) (1)求抛物线的解析式;(2)在直线AB 下方抛物线上找一点D ,求出使得△ABD 面积最大时点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A ,B ,M ,N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.19、(12分)已知:一个边长为的正方形,把它的边长延长后得到一个新的正方形,那么,周长增大的部分和面积增大的部分分别是的函数.求出这两个函数的表达式,并判定它们的类型;如果是二次函数,写出表达式中,,的值. 20、(12分)已知函数y =(m 2-m)x 2+(m -1)x +2-2m. (1)若这个函数是二次函数,求m 的取值范围. (2)若这个函数是一次函数,求m 的值. (3)这个函数可能是正比例函数吗?为什么? 21、(12分)已知二次函数y=2x 2﹣4x+1. (1)求出它的顶点坐标及对称轴; (2)画出这个函数的图象.22、(12分)已知抛物线y=ax 2-bx+3的对称轴是直线x=-1 (1)求证:2a+b=0;(2)若关于x 的方程ax 2-bx-8=0的一个根是4,求方程的另一个根.23、(12分)在平面直角坐标系xOy 中,抛物线y=ax 2+bx 经过点A (﹣3,4),直线l 与x 轴相交于点B ,与∠AOB 的平分线相交于点C ,直线l 的解析式为y=kx ﹣5k (k≠0),BC=OB . (1)若点C 在此抛物线上,求抛物线的解析式;(2)在(1)的条件下,过点A 作y 轴的平行线,与直线l 相交于点D ,设P 为抛物线上的一个动点,连接PA 、PD ,当PADCOB2SS 3时,求点P 的坐标.24、(12分)如图所示,已知函数y=ax2(a≠0)的图象上的点D,C与x轴上的点A(-5,0)和B( 3,0)构成▱ABCD,DC与y轴的交点为E(0,6),试求a的值.一、 单选题 (本题共计 12 小题,共计 48 分) 1、(4分)【答案】C 【解析】∵对称轴x=-2ba=1‘∴2a+b=0,①正确; ∵a<0,∴b >0,∵抛物线与y 轴的交点在正半轴上,∴c>0,∴abc<0,②错误; ∵把抛物线y=ax 2+bx+c 向下平移3个单位,得到y=ax 2+bx-3,∴顶点坐标A (1,3)变为(1,0),抛物线与x 轴相切,∴方程ax 2+bx+c=3有两个相等的实数根,③正确;∵对称轴是直线x=1,与x 轴的一个交点是(4,0),∴与x 轴的另一个交点是(-2,0),④错误;∵1<x<4时,由图象可知y 2<y 1,∴⑤正确. 正确的有①③⑤. 故选C.2、(4分)【答案】C【解析】A .∵a=1>0,∴二次函数y=x 2+1的图象开口向上,A 不符合题意; B .∵a=1>0,b=0,∴当x <0时,y 随x 的增大而减小,B 不符合题意;C .∵a=1>0,b=0,∴ 2ba=0,∴二次函数y=x 2+1的图象关于y 轴对称,C 符合题意;D .∵a=1>0,∴二次函数y=x 2+1有最小值,最小值为1,D 不符合题意. 故选C .3、(4分)【答案】B【解析】∵抛物线的解析式为y=a (x ﹣1)2+k , ∴抛物线的对称轴为直线x=1.∵点A 的横坐标为﹣2,点C 的横坐标为0, ∴点B 的横坐标为4,点D 的横坐标为2, ∴OB=4,CD=2, ∴OB=2CD . 故选:B .4、(4分)【答案】A【解析】①根据图象知,对称轴是直线x=-=1,则b=-2a ,即2a+b=0,故①正确;②根据图象知,点A 的坐标是(-1,0),对称轴是x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x 轴的另一个交点的坐标是(3,0),所以x=3是ax 2+bx+3=0的一个根,故②正确; ③如图所示,点A 关于x=1对称的点是A′,即抛物线与x 轴的另一个交点,连接BA′与直线x=1的交点即为点P ,则△PAB 周长的最小值是(BA′+AB )的长度, ∵B (0,3),A′(3,0),∴BA′=3.即△PAB周长的最小值是3+,故③正确.综上所述,正确的结论是:①②③.故选:A.5、(4分)【答案】D【解析】y=5x2和y=−5x2的顶点坐标均为(0,0),选项A正确;y=5x2和y=−5x2的对称轴均为直线x=0,选项B正确;抛物线y=5x2开口向上,y=−5x2开口向下,选项C正确;抛物线y=5x2开口向上,有最小值,y=−5x2开口向下,无最小值;故选:D.6、(4分)【答案】D【解析】A、y=2x﹣1是一次函数,故A不是二次函数,B、y=是反比例函数,故B不是二次函数,C、y=既不是反比例函数也不是二次函数,故C不是二次函数;D、y=﹣x2+2x,是二次函数,符合题意.故选:D.7、(4分)【答案】B【解析】过点M作ME⊥x轴于点E,交抛物线y=14x2+1于点P,此时△PMF周长最小值,∵F(0,2)、M3),∴ME=3,,∴△PMF周长的最小值=ME+FM=3+2=5.故选B.8、(4分)【答案】D【解析】过点A. B. C. O大致画出抛物线图象,如图所示观察函数图象,可知:抛物线开口向下,对称轴在y 轴右侧, ∴a<0,−2ba>0, ∴b>0. 故选D.9、(4分)【答案】D【解析】由图象可知:过(1,0),代入得:a+b+c=0,∴①正确;=-1,∴b=2a ,∴②错误;由a+b+c=0和b=2a 得,3a+c=0,③正确;∵m≠-1,∴(m+1)2>0,∵a>0,∴a (m+1)2>0,∴am 2+2am+a>0,∵b=2a ,∴a-b=-a , ∴am 2+bm>a-b ,∴a-b<m (am+b ),④正确. 故选D.10、(4分)【答案】D【解析】A 、两个函数的开口方向都向上,那么a >0,b >0,可得第一个函数的对称轴是y 轴,与y 轴交于正半轴,第二个函数的对称轴在y 轴的左侧,故本选项错误; B 、两个函数的开口方向都向下,那么a <0,b <0,可得第一个函数的对称轴是y 轴,与y 轴交于负半轴,第二个函数的对称轴在y 轴的左侧,故本选项错误;C 、D 、两个函数一个开口向上,一个开口向下,那么a ,b 异号,可得第二个函数的对称轴在y 轴的右侧,故C 错误,D 正确. 故选:D .11、(4分)【答案】C【解析】根据二次函数平移的规律,上加下减,左加右减的平移规律,可将22y x =向左平移2个单位可得二次函数解析式为: ()222y x =+,故选C. 12、(4分)【答案】A【解析】若a >0,b >0,则y=ax+b 经过一、二、三象限,y=bx 2+ax 开口向上,顶点在y 轴左侧,故B 、C 错误;若a <0,b <0,则y=ax+b 经过二、三、四象限,y=bx 2+ax 开口向下,顶点在y 轴左侧,故D 错误;若a >0,b <0,则y=ax+b 经过一、三、四象限,y=bx 2+ax 开口向下,顶点在y 轴右侧,故A 正确; 故选A .二、 填空题 (本题共计 4 小题,共计 16 分) 13、(4分)【答案】②⑤【解析】∵抛物线的开口向下,与y 轴的交点在y 轴的正半轴上, ∴a <0,c >0, ∴ac <0,∴①错误; 由图象可知:-2ba=1, ∴2a+b=0,∴②正确;当x=1时,y=a+b+c >0,∴③错误;由图象可知:当x >1时,函数y 随x 的增大而减小,∴④错误; 根据图象,当-1<x <3时,y >0,∴⑤正确; 正确的说法有②⑤. 14、(4分)【答案】6【解析】由题可知函数的对称轴为直线x=2, ∵原点和点A 关于对称轴对称,∴A (4,0),将A 代入二次函数解析式得k=3 ∴顶点坐标(2,3)根据对称可知图中阴影部分的面积和=S 矩形OCBD =6 15、(4分)【答案】【解析】设二次函数的解析式为y=ax 2+bx+c , 则,解得:,二次函数的解析式为:y=x 2-x+2,过点B 作BC ⊥BP ,交x 轴于点C ,延长BP 交x 轴于点D ,则有∠CBA=45°,设点C坐标为(a,0)(a<0),∵S△ABC=BC•ABsin∠ABC=AC•BO,∴,整理得:3a2-16a-12=0,解得:a=-或a=6(不合题意,舍去),∴点C(-,0),∵BC⊥BD,BO⊥CD,∴△BCO∽DCB,则有,即BC2=CO•CD,∴,解得:OD=6,即点D(6,0),∵B(0,2),∴设直线BD的解析式为y=kx+m,代入得:,解得:,∴直线BD的解析式为y=-x+2,与二次函数的解析式联立得:,解得:,,即点P的坐标为(,).故答案为:(,).16、(4分)【答案】-9 0【解析】二次函数y=-x2对称轴为y轴,开口向下,在y轴左边y随x的增大而增大,在y轴右边,y随x的增大而减小。