耐久性损伤容限复习
结构力学复习资料
![结构力学复习资料](https://img.taocdn.com/s3/m/13bde482e53a580216fcfea1.png)
1、飞机外载荷分类按产生载荷的环境,分为:飞行载荷和地面载荷 按载荷所作用的结构部位,分为:表面力和体力 按载荷作用的区域大小,分为:分布力和集中力按载荷随时间的变化速率,分为:静载荷、动载荷、冲击载荷和疲劳载荷2、飞机结构强度设计准则静强度设计。
静载荷特点:不考虑载荷随时间的变化的影响。
以飞机使用中遭遇到的载荷中的最严重的情况为依据进行结构强度校核。
动强度设计。
动载荷特点:非常迅速地作用到结构上,结构上质点的形变和位移的变化也很快,从而产生惯性力。
采用在静载荷基础上乘以一个大于1的动载荷系数的方法考虑动载荷的影响。
保证结构的颤振临界速度大于使用中的最大速度。
冲击强度设计。
冲击载荷特点:载荷作用极其迅猛,使结构局部产生很大的变形和应力集中。
采用“冲击韧性”作为强度准则。
疲劳强度设计。
交变(疲劳)载荷特点:波动的、呈现重复加载和卸载形式,载荷变化幅度较小——准静态载荷;结构和材料在远小于静态极限强度的交变应力的长时间作用下可能产生疲劳裂纹,并持续扩展,直至发生突然的断裂破坏。
采用疲劳或断裂破坏准则。
3、飞机结构强度设计准则的演变历程:传统的静强度设计;应用疲劳设计准则的安全寿命设计;考虑使用与维修的经济性和应用断裂力学准则的耐久性和损伤容限设计;应用结构可靠性分析方法的可靠性设计。
4、《飞机强度(刚度)规范》的一些基本概念⑴设计情况:飞机结构能够承受各种可能载荷分布中最不利、最严峻的组合。
⑵限制载荷(使用载荷):在整个飞机使用寿命期内预期出现的最大载荷。
⑶极限载荷(设计载荷):考虑飞机乘员的生理承受能力并不至于导致飞机结构发生破坏或永久变形的最大飞行载荷。
⑷安全系数:极限载荷和限制载荷的比值,大于1;对飞机结构,除了个别特殊要求外,一般都取为1.5。
⑸飞机重心过载:作用在飞机某方向除重力之外的外载荷与飞机重量的比值;飞机在y 轴方向的过载是飞机结构设计的主要指标之一。
5、 《飞机强度(刚度)规范》的主要内容根据不同的飞机类型和所执行的特定飞行任务,对飞机载荷的类型和大小、飞机的设计情况和飞机的强度、刚度等建立明确的要求,规定相应的设计准则。
复合材料飞机结构耐久性损伤容限设计指南
![复合材料飞机结构耐久性损伤容限设计指南](https://img.taocdn.com/s3/m/b1042cfcdc3383c4bb4cf7ec4afe04a1b071b0e8.png)
复合材料飞机结构耐久性损伤容限设计指南下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!复合材料飞机结构耐久性损伤容限设计指南1. 引言复合材料在飞机结构中的应用日益广泛,然而其耐久性和损伤容限设计仍然是一个挑战。
复合材料复习总结
![复合材料复习总结](https://img.taocdn.com/s3/m/87b15830640e52ea551810a6f524ccbff021ca71.png)
120114班聚合物基复合材料复习总结(初)出品人:黄程程你们复习的时候可以把重点记在空白处n(*叁VW *)n,欢迎补充UD:unidirectional 单向性的Quasi-isotropic准各向同性的Cure固化precure预固化stiffness 刚度strength 强度toughness韧性ILSS层间剪切强度CTE 热膨胀系数(coefficient of thermal expansion)carbon fiber 碳纤维VGCF 气相生长碳纤维(vapor-phase growth)SNCB气相生长纳米碳纤维CNT碳纳米管(carbon nanotube)sizing 上浆Torayca日本东丽台塑Tairyfil 三菱树脂DialeadPCF:沥青基碳纤维(pitched-based carbon fiber)Glass fiber玻璃纤维C-GF:耐化学腐蚀玻璃纤维A-GF:普通玻纤D-GF:低介玻纤,雷达罩材料E-GF:电工用玻纤(碱金属含量<1%)S-GF高强M-GF高模AF:芳纶纤维(Aramid fiber)「「丁人:聚对苯二甲酰对苯二胺poly-p-phenylene terephthamide对位芳酰胺纤维Kevlar) PMIA:间位芳酰胺纤维(代表Nomex)DuPont杜邦Boron Fiber 硼纤维Alumina Fiber氧化铝纤维Basalt Fiber玄武岩纤维UHMWPE Fiber(ultrahigh molecular weight polyethylene超高分子量聚乙烯纤维8”1:双马来酰亚胺树脂curing agent固化剂PEEK:聚醚醚酮树脂PEK:聚醚酮树脂PES:聚醚砜树脂PEI:聚醚酰亚胺树脂PPS:聚苯硫醚树脂Epoxy resin 环氧树脂Unsaturated polyester resin丁£丁人:三乙烯四胺(triethylene tetramine)DDS:二氨基二苯基砜(diaminodiphenyl sulfone);DDM 二氨基二苯基甲烷Vinyl ester resin:乙烯基环氧树脂Phenolic resin 酚醛树脂RTM: (resin transfer molding)树脂传递模塑CAI:压缩后冲击强度Individual tows:单向带laminate 层压板Multiaxielmultiply fabric 多轴向织物或者Non-crimp fabric :NCF无皱褶织物Prepreg 预浸料unidirectional prepreg 单向预浸料Pot life 适用期(树脂)workinglife(纤维)Shelf life储存期Resin flowability 树脂流动度Lay Up铺贴Gel time凝胶时间Tack粘性drape铺覆性resin content树脂含量Fiber areal density 纤维面密度volatile content 挥发分含量Separation film 分离膜Honeycomb sandwich construction 蜂窝夹心结构Infrared spectroscopy 红外光谱ATL: Automated tape-laying自动铺带法(CATL曲面铺带;FATL平面铺带)AFP:纤维自动铺放技术Automated fiber placementPultrusion拉挤成型OoA:非热压罐成型工艺out of autoclaveAllowables 许用值design Allowables 设计许用值Robustness 鲁棒性BVID目视勉强可检ISO国际标准ASTM美国标准HB中国航空标准JC中国建筑材料工业部标准FTIR-ATR傅里叶变换衰减全反射红外光谱法1.碳纤维PAN 一般采用湿法纺丝?因为干纺生产的纤维中溶剂不易洗净,在预氧化及碳化的过程将会由于残留溶剂的挥发或者分解而造成纤维粘结,产生缺陷。
损伤容限设计-例题
![损伤容限设计-例题](https://img.taocdn.com/s3/m/f493e9bcd1f34693daef3e96.png)
现在假设有一块很宽的20钢的冷轧板,承受恒幅单轴循环载荷,由此产生循环名义应力,其最大应力为Mpa 200max =σ,最小应力为Mpa 50min -=σ。
这种钢的单轴加载性能为:抗拉强度Mpa b 670=σ,屈服强度Mpa s 630=σ,弹性模量Gpa E 207=,断裂韧度m Mpa K c ∙=104,疲劳裂纹扩展门槛值m Mpa K th ∙=5.6。
当有一条穿透边缘裂纹,其长度不超过0.5mm 时,求裂纹扩展寿命。
解题的步骤如下:1) 根据零件中裂纹的尺寸和位置,查形状因子α。
对于无限宽版单侧裂纹,1215.1=α。
2) 计算初始裂纹尺寸对应的应力强度因子幅度值K ∆。
如K ∆小于疲劳裂纹扩展门槛值th K ∆,表示裂纹不会扩展;如K ∆大于th K ∆,需要将计算进行下去。
当Mpa 250=∆σ,和mm 5.00=α时,初始K ∆值为m Mpa x x x K ∙==∆=∆11.110005.02501215.10ππασα这一数值大于疲劳裂纹扩展门槛值,因而需要根据m NaK C d d )(∆=估算裂纹扩展寿命。
3) 求临界裂纹尺寸c α。
由式2max 1⎪⎪⎭⎫⎝⎛=ασπIcc K a 得 mm x K a cc 068.02001215.11041122max=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=πασπ 4) 由试验得或者又手册查得上述冷轧低碳钢的裂纹扩展公式为m NaK x d d )(109.612∆=- 即12109.6-=x C ,3=m (在表中查得)5) 应用式⎰⎰⎰∆=∆==ccca amaa amaN Np a C d K C d dN N 0)()(πσα求裂纹扩展寿命p N 。
可以认为很小的压应力(-50Mpa )对裂纹扩展影响不大,允许忽略不计。
这样Mpa 2000200=-=∆σ。
考虑2/1m m C C πα=,由式mm m c pC m a a N )()21(12/102/1σ∆--=--有 mm m c pC m a a N )()21(12/102/1σ∆--=--)次(189000)()1215.1()200)(109.6)(331()0005.0()068.0(2/333122/312/31=--=---πx。
结构可靠性复习试题和答案解析
![结构可靠性复习试题和答案解析](https://img.taocdn.com/s3/m/31fb9950192e45361166f54a.png)
一﹑单项选择题1.我国现行规范中一般建筑物的设计使用年限为 C A.5年B。
25年C.50年D。
100年2.对普通房屋和构筑物,《建筑结构可靠度设计统一标准》给出的设计使用年限为C A.5年B。
25年C.50年D。
100年3.对临时性结构,《建筑结构可靠度设计统一标准》给出的设计使用年限为A A.5年B。
25年C.50年D。
100年4.我国现行建筑规范中设计基准期为 C A.10年B。
30年C.50年D。
100年5. 现行《建筑结构荷载规范》规定的基本风压值的重现期为BA.30年B.50年C.100年D.150年6. 称确定可变作用及与时间有关的材料性能的取值而选用的时间参数为AA. 结构设计基准期B. 结构设计使用年限C. 结构使用年限D. 结构全寿命7.下面哪一个变量不是随机变量? DQA.结构构件抗力B.荷载最大值TC.功能函数Z D.永久荷载标准值8.结构可靠性是指 DA .安全性B 。
适用性C .耐久性D 。
安全性﹑适用性和耐久性的总称9.在结构可靠度分析中,描述结构的极限状态一般用 AA .功能函数B 。
极限状态方程C .可靠度D 。
失效概率10.裂缝超标破坏属于哪个极限状态范畴.BA .承载力极限状态 B. 正常使用极限状态C. 稳定极限状态D. 强度极限状态11.规定时间规定条件预定功能相同时,可靠指标 越大,结构的可靠程度AA.越高B.越低C.不变D.视情况而定12. 结构的失效概率与可靠度之和AA.等于1B.大于1C.小于1D.不确定13.当功能函数服从哪一个分布时,可靠指标与失效概率具有一一对应关系。
A A .正态分布B 。
均匀分布C .极值分布D .指数分布14. 结构的失效概率f P 与结构抗力R 和荷载效应S 的概率密度干涉面积。
DA.无关B.相等C.有关D. 有关,但不相等15. 静定结构体系可用下列逻辑模型表示。
BA.并联模型B.串联模型C.并串联模型D.串并联模型16.若结构系统的任一单元失效,则该系统失效,此类结构系统可用哪个模型表示A A.串联模型B。
第八章复合材料结构耐久性损伤容限设计4-2概论
![第八章复合材料结构耐久性损伤容限设计4-2概论](https://img.taocdn.com/s3/m/bee6eff777a20029bd64783e0912a21614797fdc.png)
第八章复合材料结构耐久性损伤容限设计4-2概论第八章复合材料结构耐久性损伤容限设计(二)第2 页共8 页课题第八章复合材料结构耐久性损伤容限设计(二)目的与要求耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素了解耐久性/损伤容限设计实例材料因素对耐久性/损伤容限设计的影响程度重点耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素难点耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则教具复习提问耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素?新知识点考查耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则布置作业课堂布置课后回忆耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?备注教员第八章复合材料结构耐久性损伤容限设计(二)第2 页共8 页第八章复合材料结构耐久性损伤容限设计(二)第2 页共8 页1.耐久性/损伤容限设计方法1.1.概述1.1.1目的耐久性/损伤容限的设计方法主要是正确地制定和执行,对结构的耐久性/损伤容限控制计划。
1.1.2主要的两项任务●确定关键件根据系统的整体性、零件在系统中的位置、作用以及零件的服役环境,又设计人员预先或者设计过程中确定零件或部件是否属于关键件,或者重要件。
●对关键件进行全面的质量控制由设计人员,协同工艺人员、质量控制、操作人员和其他方面的人员,共同完成关注关键件或重要件的制造过程,要求从材料的定制、运输、存储、下料、铺贴、固化、成形、机械加工,以及随后的试验等方面进行控制。
1.1.3设计原则●关键部位、关键件可能出现的缺陷/损伤的类型、尺寸、位置、范围以及他们的相对严重性;●评定损伤对疲劳载荷的敏感性及其疲劳扩展性,修理的最佳方案和可能保留的剩余强度值;●最后剩余强度的验证,确定检查间隔时间、检查方法,以及中间发生的损伤扩展;●环境对带有缺陷或损伤的零部的影响程度,突发事件可能导致的损伤和缺陷的发展。
2-复合材料结构设计-设计要求和原则(课堂PPT)
![2-复合材料结构设计-设计要求和原则(课堂PPT)](https://img.taocdn.com/s3/m/5d4c4760998fcc22bcd10dfd.png)
4
耐久性设计要求
一般要求
飞机结构的经济寿命必须大于设计使用寿命 飞机结构的经济寿命必须进行试验验证 在设计使用寿命期内,飞机结构不允许出现开裂、分层、脱胶、变形
为了保证结构安全而需进行修理、更换和检查 干扰飞机的机械操作 影响飞机的气动特性 产生功能性障碍 在稳态飞行或地面运输条件下引起裂纹/分层的持续扩展
10
结构分析要求
一般要求
复合材料的结构分析是主要的设计内容之一,包括静动分析,气动 弹性剪裁及耐久性与损伤容限分析 结构分析过程中使用的方法,手段,工具都应经过验证并有足够的 设计和使用经验。
静强度与刚度分析
金属结构静强度与刚度分析的要求原则上适用于复合材料结构 1)复合材料的层压板的应力应变关系在破坏前呈线性,无屈服极限 2)结构所用层压板的弹性常数一般采用经典层压板理论,层压板破 坏分析应采用经验证的失效准则,并辅以适当的刚度削减法则 3)判断复合材料结构失效的设计许用值,一般不直接采用无损试样 得到的极限破坏强度
2
结构设计要求 静强度设计要求
一般要求
在进行部件结构静强度分析与试验验证时,应保证在使用载荷下 结构不产生有害的变形和损伤,在设计载荷下结构不出现总体破坏
应通过设计载荷下的部件试验程序来验证复合材料结构的静强度、 符合设计准则的程度和可能的强度储备。
对安全裕度大的复合材料结构,可通过试样、元件和组合件试验结 果支持的分析来验证
14
动力分析
原则上与金属结构的动力学分析要求一致,是动力学设计 的基础,主要包括动特性分析,动载荷与动响应分析,结 构敏感度分析与动力学优化分析,鸟撞损伤和射弹损伤分 析,声响应和声疲劳分析。
11
第八章-复合材料结构耐久性损伤容限设计4-3
![第八章-复合材料结构耐久性损伤容限设计4-3](https://img.taocdn.com/s3/m/10fb09ab04a1b0717fd5dd68.png)
课题第八章复合材料结构耐久性损伤容限设计(三)目的与要求提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素损伤容限分析和疲劳特性概述了解耐久性/损伤容限设计实例复合材料制件的疲劳特性分析方法重点损伤容限分析和疲劳特性概述复合材料制件的疲劳特性分析方法难点复合材料制件的疲劳特性分析方法教具复习提问耐久性/损伤容限设计的特点是什么?复合材料制件的疲劳特性分析方法有哪些?新知识点考查损伤容限分析和疲劳特性布置作业课堂布置课后回忆损伤容限分析和疲劳特性?复合材料制件的疲劳特性分析方法有哪些?备注教员1.提高零部件耐久性/损伤容限的特殊设计方法1.1.损伤的极限1.1.1通常损伤程度●碳纤维复合材料存在缺陷/损伤时,因其强度下降时可能高达60%左右,因此按照损伤容限设计的结构厂采取较低的许用值进行控制,一般情况不超过4000μξ。
●零部件强度的下降必定导致系统性能的下降,设计过程中使用的降低了的许用值,必定不能充分发挥材料的最大性能,不但影响了设计的效率,而且给工艺制造过程和质量控制造成过大的裕度和能源浪费。
1.1.2当前的设计目标●为了充分发挥复合材料的潜在优势,近年来国内外提高了损伤容限,也提高设计许用值。
●从最初设计阶段、工艺制造过程和质量控制方面综合考察,要求设计许用值达到6000μξ。
●根据国外的相关报道,经过数年的科研工作,在飞机设计方面采用的复合材料构件已经达到上述要求。
✧机翼结构设计的拉、压设计许用应变值提高到6000μξ;✧剪切应变值提高10000μξ。
1.1.3设计思想●提高结构的抗损伤能力✧抑制损伤的形式;✧减少损伤范围,如减少冲击的区域;✧抑制或阻止损伤进一步发生。
●提高结构包容损伤的能力✧提高复合材料结构受损后的剩余强度和疲劳强度/疲劳寿命;✧采用更先进的复合材料成形技术,增加制件自身的性能;✧使用强度更高的体积材料和增强材料,保证“原材料”的性能;✧采用合理的浸润工艺,提高界面相的性能。
复合材料结构设计设计要求和原则课堂PPT
![复合材料结构设计设计要求和原则课堂PPT](https://img.taocdn.com/s3/m/eecc381a2f3f5727a5e9856a561252d381eb2001.png)
境,
• 复合材料结构的厚度,单面或双面暴露,表面状况以及在飞机的 部位
• C) 对于热冲击敏感材料,超声速飞行的高温剖面造成的冷热冲击可 能产生微裂纹,引起材料不可逆损伤,并增大吸湿量
• D) 应根据飞机设计使用寿命和预期使用环境,确定复合材料结构达
.
11
.
12
结构分析要求
耐久性与损伤容限分析
复合材料结构的耐久性分析主要是指在使用载荷谱以及化学/湿热环境 条件下的寿命估算 损伤容限分析主要是指对含损伤结构的损伤扩展寿命预测和剩余强度 估算。
由于复合材料的破坏机理与金属不同,金属结构使用的方法和程序基 本上不能用于复合材料结构
积木式设计试验验证方法是有效可靠的途径
2)飞机到结平构衡的吸极湿端量气后候,条它与件使用中结构最高温度组合成的最严重环境条 A) 按件飞机预定使用地区内的气候高温,加上日光暴晒引起的最大 可能升温,确定气候引起的结构最高温度,按地面最低温度和
空中飞行低温之最低值确定气候引起的结构最低温度
B) 应考虑使用寿命期内的吸湿量和气候最高温度组合作用对不具 备控温条件的亚,跨声速飞机复合材料结构强度与刚度的影响
全尺寸部件结构完整性试验验证大纲
承制方应制定复合材料全尺寸部件结构完整性试验验证大纲,大纲应
规定试验内容,顺序安排,载荷情况,试验件要求,环境影响的处理,
人工缺陷/损伤的引入,试验数据的处理 积木式设计验证试验方法
多层次试验验证有助于使技术难点如环境影响,损伤性能等在低层次 上通过试验研究得到解决,并避免全尺寸试验的复杂性和实施困难
复合材料结构的安全水平不能低于同类金属结构
复合材料耐久性损伤容限设计
![复合材料耐久性损伤容限设计](https://img.taocdn.com/s3/m/13387de1a2161479171128fc.png)
现有的飞机金属结构耐久性/损伤容限要求,原则上也适用于复合材料结构,但由于材料特性和破坏机理的不同,对复合材料结构有一些特殊要求,相应地在结构设计和分析过程中也会有一些与金属材料不同的特点。
金属结构的耐久性/损伤容限设计分析方法以金属断裂力学为基础,主要包括:改进的疲劳设计分析方法;确定性裂纹扩展方法;概率断裂力学法。
复合材料通常采用低应变设计和损伤无扩展概念来设计。
在试验验证和设计应用时,采用积木式设计试验验证方法。
3.1金属结构与复合材料结构的不同目前飞机复合材料结构的主要形式为由单向预浸带铺叠并固化而成的层压结构。
单向带呈现强烈的正交各向异性(沿纤维方向的性能和垂直纤维方向的性能差1-2个数量级),层压结构各向异性的另一个表现是层间性能远低于其面内性能,以及其组分材料—纤维与基体力学性能的巨大差距。
复合材料的层压板的各向异性、脆性和非均质性等特点,是复合材料层压板的失效机理与金属完全不同,因而他们的损伤、断裂和疲劳性能也有很大差别。
下表概述了影响复合材料结构与金属结构疲劳和损伤容限的主要因素。
(1)结构主要的缺陷和损伤类型裂纹是金属结构的主要损伤形式。
复合材料结构的主要缺陷/损伤形式是界面脱胶、分层和低能量(特别是低速)外来物产生的冲击损伤。
冲击损伤的威胁在于当内部产生大范围基体开裂和分层时,外表面往往仍目视不可检,但其压缩承载能力已大幅下降。
(2)复合材料结构的特殊要求:冲击损伤源:在设计时必须考虑使用引起的损伤(低能量冲击损伤等)研究它对修理、维护和功能可能产生的影响,并证实外表面不易检查出的损伤不会影响其耐久性。
重复的低能量冲击,要研究重复低能量冲击对结构耐久性影响(冰雹撞击、工具掉落或由于踩踏)。
(3)缺口敏感性金属一般都有屈服阶段,而复合材料往往直至破坏时,其应力—应变曲线仍呈现线性,所以复合材料的静强度缺口敏感性高于金属。
疲劳缺口敏感性则低于金属,其疲劳缺口系数(一定循环次数下,无缺口试件疲劳强度与含缺口疲劳强度之比)远小于静应力集中系数,并且在中长寿命情况下接近于1。
8_损伤容限设计方法
![8_损伤容限设计方法](https://img.taocdn.com/s3/m/e4cfdec5aa00b52acfc7ca06.png)
对比前面所讲的损伤容限设计思想。我们可知这 两种不同的设计原理在对结构初始缺陷状态的认 识出发点上就存在着差异,这样,在结构设计方 法、分析评估体系以及试验验证的关心焦点等诸 方面也就存在着差异。因此,安全寿命设计与损 伤容限设计在概念内容、方法等方面有着实质的 不同。但应当说是在不同意义上解决结构的使用 寿命设计及飞机安全问题,总的目标是一致的, 而且在结构件抗疲劳细节设计的原理上仍有许多 共同之处。
(1)剩余强度与裂纹尺寸的关系如何? (2)在预期的工作载荷下,能够容许多大的裂纹?即临界裂纹尺寸是多少? (3)裂纹从一定长度的初始尺寸,扩展到临界尺寸需要多长时间? (4)在结构工作寿命开始时,允许存在多大的初始缺陷? (5)每隔多长时间,应该对结构进行一次裂纹检查(即裂纹检查周期的确定)?
可以说,损伤容限设计的分析评估体系完全有赖于断裂力 学的研究与发展。
(7) 对关键部位进行裂纹扩展和剩余强度分析,确定临界裂纹长度、 剩余强度水平和裂纹扩展寿命。修改结构设计直到满足设计要求。 (8) 进行结构损伤容限实验 (9) 制定维修计划,并给出使用维修大纲 针对飞机达到使用寿命前需要修理的全部部位,根据分析与试验结 果给出的检查方法、检修周期和允许的最大初始损伤尺寸等,制 定维修计划并给出使用维修大纲。 (10) 使用期间进行跟踪。
同一批生产飞机由于使用过程不同,实际的损伤度并不相同。 为此需要测出并记录实际的载荷谱,以便和设计载荷谱相比较。 通过数据处理,定出实际损伤度和实际可用寿命。根据实际寿命 的差别调整飞机的检修周期和部件的更换计划,直到经济上不值 得再修理为止。这种用经济价值来决定的飞机寿命称经济寿命。 故跟踪也是损伤容限设计中的一个重要环节。
结构损伤容限设计的基本概念
损伤容限设计、分析、试验以及使用维修四大方面的技术内 容: (1) 设计 ① 制定设计规范与设计要求;② 结构分类划分及其设计选择 原则; ③ 结构材料的选择; ④ 结构布局、结构细节设计; ⑤ 制造装配中的质量控制设计。 (2) 分析 ① 危险部位的选择与分析;② 载荷和应力谱的分析; ③ 初始损伤品质的评定;④ 裂纹扩展分析; ⑤ 剩余强度分析。 (3) 试验 重要结构部件与全机损伤容限试验。 (4) 使用与维修 ① 结构损伤的无损检测; ② 检查能力评估与检查间隔制定。
飞机结构的损伤容限及其耐久性分析
![飞机结构的损伤容限及其耐久性分析](https://img.taocdn.com/s3/m/19518d5fc850ad02df804100.png)
飞机结构的损伤容限及其耐久性分析【摘要】随着航空航天技术的发展,飞机结构设计的理论与思想也不断更新,从静强度、动强度、疲劳强度及断裂强度的进化,而损伤容限/耐久性分析也已成为目前飞机结构设计的重要规范。
本文将从飞机结构设计的发展历史说起,详细介绍飞机损伤容限与耐久性分析的设计思想、理论和基本方法,为飞机结构设计提供理论基础。
【关键词】飞机结构设计思想;耐久性分析;损伤容限1、前言随着航空技术的快速进步,基础力学包括结构力学,断裂力学等基础理论的发展,飞机结构设计的方法也日新月异。
飞机结构的损伤容限及耐久性分析在理论的基础上,以及长期的飞机结构设计经验和服役工作历史的数据积累上,国际航空届以标准设计规范的形式确立下来的一种飞机设计方法。
基于损伤容限和耐久性分析的飞机结构设计方法延续以往的设计方法的优点,并相应的补充发展,经过不断的实践发展,目前已具备实用性和形成了相对完整的设计系统。
目前各国的适航认证规定最新设计的民用飞机必须按照损伤容限设计,这充分说明了损伤容限及耐久性分析设计方法的重要性,因此其在国内的推广与应用是必然。
2、飞机结构设计理论的进程从飞机诞生以来,飞机的飞行实践应用推动者飞机设计思想的不断进化。
飞机分为军用机和民用机,民用飞机注重安全与成本,军用机则更加注重飞机的战斗能力和存活性能等方面。
因此飞机结构设计思想随着对飞机要求的不断变化而更新,目前正向着高机动、高稳定性、低成本、长使用寿命的全面设计方法方向进步。
飞机结构最初是采用目前熟知的静强度分析,即对飞机结构的抗拉、压、扭转等各种强度与载荷进行设计计算,引入一定的安全余量系数,使其满足各种结构强度设计的规范。
这是最早期的设计方法,静强度设计的要求主要考虑的飞机结构强度,但相对来说过于简单不够全面。
随着第一次世界大战的进行,在飞机使用的过程中发现,飞机的结构设计不断要有强度上的要求,而且在刚度方面也要满足,这对于飞机的振动有很大的影响。
损伤容限
![损伤容限](https://img.taocdn.com/s3/m/46965e7531b765ce05081496.png)
耐久性——结构具有在使用寿命期内承受重复载荷谱作用而不产生功能性损坏或引起不经济维修等问题的特性。
损伤容限——结构经受定量的疲劳、腐蚀、意外或离散源损伤,在使用期内,结构保持其所要求的剩余强度的能力。
破损安全——当一主要结构件破坏或部分破坏后,在未修使用期内,结构保持其所要求的剩余强度的能力。
安全寿命——是指极小可能发生的飞机结构由于疲劳开裂,其强度降低到它的设计极限值时所经历的时间(以飞行次数、起落次数或飞行小时数计)。
设计服役目标——是设计(或)合格审定时所确定的时间期限(以飞行次数或飞行小时数计),在该时期内,主结构应当不出现重大开裂。
重要结构件(PSE或SSI)——是对承受飞行、地面和增压载荷有重要作用的结构件,其完整性是维持整个飞机结构完整性必不可少的。
单途径传力——外加载荷明显地通过一个元件承受,该单元的破坏将导致结构承受外加载荷能力的丧失。
多途径传力——属于超静定结构,当单个元件破坏后,其外加载荷将安全地分配到其余承载元件。
广布疲劳损伤(WFD)——结构多个细节部位同时出现具有足够尺寸和密度的裂纹,从而使结构不再满足其损伤容限要求(即当部分结构破坏后,维持其剩余强度要求)。
多部位损伤(MSD)——以同一结构元件中同时出现多条疲劳裂纹为特征的一种广布疲劳损伤源,彼此合并或不合并的多条疲劳裂纹导致不满足剩余强度要求。
多元件损伤(MED)——以相邻诸结构元件中同时出现多条疲劳裂纹为特征的一种广布疲劳损伤源。
分散系数——用于描述疲劳分析和实验结果的寿命缩减系数。
基本原理耐久性和损伤容限是现代飞机结构设计必须满足的结构特性,其含义简单说来是:耐久性是结构防止和抵抗损伤(包括疲劳、腐蚀、应力腐蚀、热退化、剥离、脱层、磨损和外来物损伤)的能力。
损伤容限是结构防止损伤增长至灾难性破坏的能力。
耐久性设计的目的是:赋予结构高的疲劳品质,使结构具有对抗疲劳、腐蚀(包括应力腐蚀)和意外损伤的高度阻力,从而确保飞机以低维修成本达到长经济寿命。
损伤容限
![损伤容限](https://img.taocdn.com/s3/m/46965e7531b765ce05081496.png)
耐久性——结构具有在使用寿命期内承受重复载荷谱作用而不产生功能性损坏或引起不经济维修等问题的特性。
损伤容限——结构经受定量的疲劳、腐蚀、意外或离散源损伤,在使用期内,结构保持其所要求的剩余强度的能力。
破损安全——当一主要结构件破坏或部分破坏后,在未修使用期内,结构保持其所要求的剩余强度的能力。
安全寿命——是指极小可能发生的飞机结构由于疲劳开裂,其强度降低到它的设计极限值时所经历的时间(以飞行次数、起落次数或飞行小时数计)。
设计服役目标——是设计(或)合格审定时所确定的时间期限(以飞行次数或飞行小时数计),在该时期内,主结构应当不出现重大开裂。
重要结构件(PSE或SSI)——是对承受飞行、地面和增压载荷有重要作用的结构件,其完整性是维持整个飞机结构完整性必不可少的。
单途径传力——外加载荷明显地通过一个元件承受,该单元的破坏将导致结构承受外加载荷能力的丧失。
多途径传力——属于超静定结构,当单个元件破坏后,其外加载荷将安全地分配到其余承载元件。
广布疲劳损伤(WFD)——结构多个细节部位同时出现具有足够尺寸和密度的裂纹,从而使结构不再满足其损伤容限要求(即当部分结构破坏后,维持其剩余强度要求)。
多部位损伤(MSD)——以同一结构元件中同时出现多条疲劳裂纹为特征的一种广布疲劳损伤源,彼此合并或不合并的多条疲劳裂纹导致不满足剩余强度要求。
多元件损伤(MED)——以相邻诸结构元件中同时出现多条疲劳裂纹为特征的一种广布疲劳损伤源。
分散系数——用于描述疲劳分析和实验结果的寿命缩减系数。
基本原理耐久性和损伤容限是现代飞机结构设计必须满足的结构特性,其含义简单说来是:耐久性是结构防止和抵抗损伤(包括疲劳、腐蚀、应力腐蚀、热退化、剥离、脱层、磨损和外来物损伤)的能力。
损伤容限是结构防止损伤增长至灾难性破坏的能力。
耐久性设计的目的是:赋予结构高的疲劳品质,使结构具有对抗疲劳、腐蚀(包括应力腐蚀)和意外损伤的高度阻力,从而确保飞机以低维修成本达到长经济寿命。
耐久性和损伤容限笔记详解
![耐久性和损伤容限笔记详解](https://img.taocdn.com/s3/m/be00ffb48762caaedd33d4be.png)
结构耐久性和损伤容限设计第一课概述:飞机设计思想的发展●静强度/刚度设计:结构可承受最大设计载荷,变形满足设计要求。
●安全寿命设计:在设计时认为结构中是无缺陷的,在整个飞机使用寿命期间,结构不会发生可见的裂纹。
●损伤容限设计:在规定未经维修的使用阶段内,结构抵抗由于存在瑕疵、裂纹或其他损伤导致损坏的能力。
损伤容限设计结构:按照损伤容限的概念来设计使用的结构。
损伤容限结构的特点:该结构的某一部分产生裂纹后,结构仍能在规定载荷下工作一定时间,直到下一次检修为止,在这段时间内裂纹不会发展到临界尺寸,或即使某一部分发生断裂,结构仍能承受规定的载荷。
耐久性:是指在规定期限内,飞机结构抵抗疲劳开裂(包括应力腐蚀等引起的开裂)、腐蚀、热退化、剥离、磨损和外表损伤作用的能力。
耐久性设计:使飞机结构承受设计使用载荷/环境谱时,其经济寿命大于设计寿命的耐久性分析计算。
耐久性设计的目的:确保飞机结构在整个使用寿命期间,结构的强度、刚度、维形、保压和运动等功能的可靠和最经济性维修,使飞机经常处于良好的备用状态。
耐久性方法:设计使用寿命≤经济寿命=1/2(全尺寸结构耐久性试验或分析寿命)经济寿命:由于疲劳、意外损伤/环境侵蚀引起结构损伤的情况,使得战备状态目标不能通过可接受的经济维修方式保持的时候,所对应的使用时间为经济寿命。
第二课断裂力学第一章 线弹性断裂力学1.1引言◆ 线弹性断裂力学:用弹性力学的线性理论研究含裂纹体在载荷作用下的力学行为和失效准则的工程学科。
◆ 裂纹种类:张开型、滑移型、撕开型。
如图1所示。
(I )张开型 (II )滑移型 (III )撕开型图1裂纹的基本类型1. 张开型或I 型外载荷为垂直于裂纹平面的正应力,裂纹面相对位移垂直于裂纹平面。
2. 滑开型或II 型外载荷为面内垂直裂纹前缘的剪力。
裂纹在其自身平面内作垂直于裂纹前缘的滑动。
3. 撕开型或III 型外载荷为离面剪力。
裂纹面在其自身平面内作平行于裂纹前缘的错动。
损伤容限
![损伤容限](https://img.taocdn.com/s3/m/c7c523c358f5f61fb7366631.png)
• 所设计的结构
破损安全结构
• 缓慢裂纹扩展结构(提高检测水平) • 多传力途径--破损安全结构 • 破损安全止裂结构
确定 • 初步确定损伤容限设计结构类型 • 确定初始缺陷尺寸
耐久性设计
• 概念:在规定期限内,飞机结构抵抗疲劳开裂腐 蚀、磨损等的能力。 • 设计准则:
经济寿命 ≥ 设计寿命
• 理论基础:疲劳强度、断裂力学 • 结构特点:经济性好
可靠性设计
• 对系统和结构进行可靠性分析和预测,采 用简化系统和结构、余度设计和可维修设 计等措施以提高系统和结构可靠度的设计。
谢谢大家
• 理论基础:结构疲劳强度理论 • 特点:剖面尺寸庞大,结构重 量加大
1969年F111左翼脱落坠毁
损伤容限设计
• 概念:在规定的未经检验的介质内,结构有 抵抗由于缺陷或损伤所导致的破坏的能力。 • 设计准则:
剩余强度 ≥ 设计载荷
• 理论基础:断裂力学 • 特点:注重安全性
损伤容限设计
• 检修周期=裂纹扩展周期/分散系数
静强度设计
1.设计准则: σ ≤ [σ ] = σ b max n 2.理论基础:理论力学 材料力学 结构力学 弹性力学 塑性力学 3.特点:寿命短,应力 水平低,强度储备大 4.问题:疲劳强度问题
δ max ≤ δ c
彗星号客机的爆炸坠毁
安全寿命设计
• 设计寿命的概念(设计准则):
平均试件寿命 设计寿命 ≤ n
金属结构材料的设计发展
DY1105101 郭翔DY1101101 董建民DY110110 王弘 DY110110 卢国鑫DY1101110 刘杨 PT1101 马楠楠 PT1101
• 损伤容限设计是怎么来的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
破损安全结构一般分为三种类型:缓慢裂纹扩展结构,多传力途径-破损安全结构,破损安全止裂结构。
13.缓慢裂纹扩展结构:
是根据结构中的缺陷或瑕疵不允许达到不稳定快速扩展所要求的裂纹临界尺寸设计概念所设计的结构。
14.多传力途径—破损安全结构:
是由多个元件或分段组成多条传力途径的结构,结构分段可控制局部损伤,而防止结构完全破坏。
应力强度因子是构件几何、裂纹尺寸与外载的函数,它表征了裂纹尖端受载和变形的强度。是裂纹扩展趋势或裂纹扩展推动力的度量。
1.应力强度因子可分为三类:张开型/Ⅰ型;滑开型/Ⅱ型;撕开型/Ⅲ型。
2.相应无限大板含中心裂纹应力强度因子表达式如下:
3.断裂准则:
4.断裂韧度是材料抵抗裂纹扩展的抗力。 , 等称为材料的断裂韧度。
4、采用断裂韧度高、抗裂纹扩展性能好的材料。
5、改善结构损伤检测手段,提高检测灵敏度。
6、对于较大的零件应考虑止裂措施,以防止裂纹快速扩展。
7、合理地控制结构设计应力水平,应综合强度、刚度、损伤容限、耐久性和可靠性几方面的要求。
17.确定损伤容限设计的结构类型:
(1)不可检结构。应设计成缓慢裂纹扩展结构。
特点:采用损伤容限设计原则设计的结构称损伤容限结构。该结构的某一部分已经产生裂纹之后,结构仍能在规定载荷下工作一定时间(直到下依次检修为止),在这段时间内裂纹不会发展到临界尺寸,或者即便某一部分发生断裂但结构仍能继续承受规定的载荷。也就是说,结构应满足规定的剩余强度要求,以保证飞机结构的安全性和可靠性。
15.破损安全止裂结构:
是在完全破坏前使裂纹不稳定快速扩展停止在结构的某一连接区域内而设计和制造的结构。
16.损伤容限设计的要点
1、尽量将结构设计成破损安全结构,并且使结构具有缓慢裂纹扩展特性。
2、对于易于产生裂纹的重要构件,要尽量设计成可检结构,以使日常维护、检查、修理和更换。
3、正确合理地确定检查周期,以保证结构破损安全。
28.IFQ:表征结构细节原始疲劳品质的参量或模型称原始疲劳质量模型。它表示了材料质量,结构几何参数误差、工艺过程中加工质量等对疲劳品质的影响。合理地确定IFQ是结构耐久性分析,评估损伤度,预测经济寿命的基础和关键。
29.TTCI:是结构细节在给定载荷谱作用下达到某一指定裂纹尺寸 值所经历的时间,简写为T。TTCI是一个随机变量,与载荷谱及指定的 值有关。
设计方法:通过结构细节疲劳设计,和元件、部件及全机疲劳试验来验证飞机的“安全寿命”。
安全寿命设计的问题:要取安全系数以达到安全寿命设计要求,结构重量大。因此引入损伤容限设计,即考虑当裂纹出现后的裂纹扩展寿命对结构使用寿命的贡献,充分发挥材料和结构的承载潜力。
11.损伤容限
定义:所谓损伤容限是指在规定的未经修理的使用阶段内,结构抵抗由于存在瑕疵、裂纹或其他损伤导致损坏的能力。按照损伤容限概念来设计和使用结构一般称为损伤容限设计。
22.耐久性设计Байду номын сангаас准则:设计使用寿命≤经济寿命=(全尺寸结构耐久性试验或分析寿命)
23.经济寿命是指当若干疲劳、意外损伤和/或环境侵蚀引起结构的损伤情况使飞机不能通过可能接受的经济维修方式保持其适航状态所对应的时间。
24.经济寿命准则:
(1)裂纹超越数概率准则
在给定使用时间,裂纹尺寸超过极限裂纹尺寸的细节数量称为裂纹超越数。裂纹超越数所占结构细节总数的比率称为裂纹超越数概率。
(3)设计分析时采用的载荷/环境谱和实验时一致。
(4)得到经济寿命大于或等于两倍使用寿命。
3.耐久性实验要求
(1)试验件必须是真实飞机生产线上加工成型的全尺寸结构
(2)在决定飞机生产前,对全尺寸结构进行一倍使用时间的耐久性试验,然后对临界结构区域进行检查。
(3)对于批量生产,对全尺寸结构进行两倍使用时间的耐久性试验,然后对临界结构区域进行检查。
Ⅰ、与试件厚度有关系
Ⅱ、与材料状态(热处理等)有关
Ⅲ、与温度有关。如:玻璃、石墨和岩石随温度升高,断裂韧度下降;金属材料随温度升高,断裂韧度上升。
5.脆性断裂:
材料是理想脆性,裂纹尖端无塑性区,可用K或G准则。
准脆性断裂:
裂纹尖端附近材料存在小范围屈服,但仍使用K或G准则
6.J积分与积分路径无关;
J积分在物理上可解释为变形功的差率;
目的:解决飞机结构的安全性问题。
要求:当结构存在裂纹或局部零件破坏时仍能承受足够的载荷,即结构是破损安全的。
设计过程:
1、确定飞行安全结构。
2、确定断裂关键结构。
3、选择断裂关键部位,确定可能的断裂型式。
4、分析计算结构剩余强度。
12.破损安全结构:在使用中结构的某些部分产生裂纹,要求通过定期检查发现这些裂纹前,还能承受足够的载荷,此类结构称为破损安全结构。
(2)可检结构。原则上设计成破损安全止裂结构或破损安全多传力途径结构。但场站和基地水平可检,使用中不可检要考虑设计成成缓慢裂纹扩展结构。
(3)易更换的结构可用破损安全设计;不易更换的结构,尽可能采用缓慢裂纹扩展结构。
(4)静定结构应设计成缓慢裂纹扩展结构;静不定结构尽可能设计成破损安全多传力途径或破损安全止裂结构。
1.一般要求
(1)飞机结构的经济寿命必须超过一倍的使用寿命。
(2)低于一倍设计使用寿命内不允许出现功能性的损伤。
(3)由设计分析得到的经济寿命需要得到试验验证
2.设计分析阶段要求
(1)设计分析时要考虑结构的初始质量、材料特性、工艺方法、载荷和环境等因素。
(2)设计分析时采用的原始数据和元件耐久性分析数据应通过试验验证。
J积分可作为弹塑性含裂纹体断裂准则,即在裂纹起裂时有 , 为平面应变条件的临界J积分——以J积分表示的断裂韧度。
7.J积分使用范围的前提条件:
1)
2)
3)
4)
8.COD断裂准则:当裂纹顶端张开位移达到其临界值值,裂纹将会起裂扩展,断裂准则可写成:
9.J积分与COD之间的关系:
10.安全寿命设计:在设计时认为结构无缺陷,在整个飞机使用寿命期间,结构不发生可见裂纹。
关系由题目给出,积分得到N。
20.耐久性设计的定义:耐久性是指在规定期限内,飞机结构抵抗疲劳开裂、腐蚀、热退化、剥离、磨损和外来损伤作用的能力。
21.耐久性设计的目的:是确保飞机结构在整个使用寿命期间结构强度、刚度、维形、保压和运动功能可靠和最经济的维修使飞机经常处于良好的适航状态。(安全性、经济性)
4.当全尺寸结构耐久性试验未达到两倍使用寿命时,则要求:
(1)结束耐久性试验,先进行无损检查,然后作拆毁检查。
(2)结束耐久性试验,进行损伤容限试验,然后作拆毁检查。
(3)在审定时间内进行耐久性试验,然后按上述两条之一进行。
27.采用概率断裂力学方法(PFMA)是以某个完整结构的细节群作为研究对象,研究该结构内全部相同细节的裂纹尺寸随时间的变化规律,从而得到损伤度与使用时间的关系,按照裂纹超越数概率准则或修理/更换费用比准则确保耐久性设计要求与目标的实现。
当裂纹超越概率达到一定许用值时,可认为结构达到其经济寿命。
(2)修理/更换费用比准则
结构中裂纹超越数增加使修理费用增加,修理与更换费用超过一定限度后,可认为结构达到其经济寿命。
25.结构耐久性设计方法:
(1)传统疲劳设计分析法。
(2)确定性裂纹扩展方法。
(3)概率断裂力学法。
26.耐久性设计的要求:
(5)结构的不同部位可以按不同的破损安全结构类型设计。
(6)对于一些特殊的结构,例如,气密座舱、整体油箱等,不允许采用破损安全设计类型,而要求采用缓慢裂纹扩展设计。
18.结构剩余强度定义:含裂纹结构在使用期中任一时刻所能达到的静强度值。在结构使用过程中它随裂纹增长而递减。
19. (积分时下限)
(积分时上限)