绝对值不等式的解法教学设计教学内容

合集下载

高中数学_绝对值不等式的解法教学设计学情分析教材分析课后反思

高中数学_绝对值不等式的解法教学设计学情分析教材分析课后反思

《绝对值不等式的解法》教学设计课题:绝对值不等式的解法科目数学教学对象学生课时1提供者单位一、教学目标熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力二、教学内容及模块整体分析含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。

三、学情分析学生基础差,少讲多练,以基础题为主。

四、教学策略选择与设计讲练结合,多媒体展现。

五、教学重点及难点熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.六、教学过程教师活动学生活动设计意图提问的方式总结前面学过的知识问题:你能一眼看出下面两个不等式的解集吗?⑴1x<⑵1x>让学生熟练掌握一般地,可得解集规律:形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集:不等式|x|<a的解集为{x|-a<x<a}不等式|x|>a的解集为{x|x<-a或课堂练习一:试解下列不等式:熟练地掌握方法(1)|32|7x-≥x>a }注:如果0a≤,不等式的解集易得.利用这个规律可以解一些含有绝对值的不等式.解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()()f x a a f x a f x a(0)>>⇔><-或;⑵()()(0)f x a a a f x a<>⇔-<<;⑶()()()f xg x f x g x f x g x()()()>⇔><-或;⑷()()()()()f xg x g x f x g x<⇔-<<;⑸()()()()22f xg x f x g x⎡⎤⎡⎤>⇔>⎣⎦⎣⎦更熟练的掌握一般情况试解不等式|x-1|+|x+2|≥5利用|x-1|=0,|x+2|=0的零点,将数轴分为三个区间,然后在这三个区间上将原不等式分别化为不含绝对值符号的不等式求解.体现了分类讨论的思想.{}23≥≤x x x-或熟练掌握零点分段法在解不等式中的应用。

教学设计1:第1讲 绝对值不等式

教学设计1:第1讲 绝对值不等式

第一节绝对值不等式1.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集不等式 a >0 a =0 a <0 |x |<a (-a ,a )∅∅ |x |>a(-∞,-a )∪(a ,+∞)(-∞,-0)∪(0,+∞)R(2)|ax ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.对于绝对值三角不等式,易忽视等号成立的条件.对|a +b |≥|a |-|b |,当且仅当a >-b >0时,等号成立,对|a |-|b |≤|a -b |≤|a |+|b |,如果a <-b <0当且仅当|a |≥|b |且ab ≥0时左边等号成立,当且仅当ab ≤0时右边等号成立.2.形如|x -a |+|x -b |≥c (c >0)的不等式解法在讨论时应注意分类讨论点处的处理及c 的符号判断,若c <0则不等式解集为R. [试一试]1.已知不等式|2x -t |+t -1<0的解集为(-12,12),则t =________________.【解析】|2x -t |<1-t ,t -1<2x -t <1-t , 2t -1<2x <1,t -12<x <12,∴t =0.【答案】02.不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围为________.【解析】法一:根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于|P A |-|PB |>k 恒成立.∵|AB |=3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.法二:令y =|x +1|-|x -2|,则y =⎩⎨⎧-3,x ≤-1,2x -1,-1<x <23,x ≥2,,要使|x +1|-|x -2|>k 恒成立,从图像中可以看出,只要k <-3即可.故k <-3满足题意.【答案】(-∞,-3)含绝对值不等式的常用解法1.基本性质法:对a ∈R +,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a . 2.平方法:两边平方去掉绝对值符号.3.零点分区间法(或叫定义法):含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解. 4.几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解. 5.数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图像,利用函数图像求解. [练一练]1.在实数范围内,不等式|2x -1|+|2x +1|≤6的解集为____________. 【解析】法一:分类讨论去绝对值号解不等式.当x >12时,原不等式转化为4x ≤6⇒x ≤32;当-12≤x ≤12时,原不等式转化为2≤6,恒成立;当x <-12时,原不等式转化为-4x ≤6⇒x ≥-32.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32. 法二:利用几何意义求解.原不等式可化为⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12≤3,其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x =32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32. 【答案】⎩⎨⎧x ⎪⎪⎭⎬⎫-32≤x ≤32 2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.【解析】利用绝对值不等式的性质求解. ∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4. 【答案】[-2,4]考点一绝对值不等式的解法1.不等式|x -2|的解集为________.【解析】原不等式等价于|x -2|>|x -1|,则(x -2)2>(x -1)2,解得x <32.【答案】⎝⎛⎭⎫-∞,32 2.(2014·西安质检)若关于x 的不等式|x -a |<1的解集为(1,3),则实数a 的值为________. 【解析】原不等式可化为a -1<x <a +1,又知其解集为(1,3),所以通过对比可得a =2. 【答案】23.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,则实数a 的取值范围是________. 【解析】注意到||x -3|-|x -4||≤|(x -3)-(x -4)|=1,-1≤|x -3|-|x -4|≤1.若不等式|x -3|-|x -4|<a 的解集是空集,则有|x -3|-|x -4|≥a 对任意的x ∈R 都成立,即有(|x -3|-|x -4|)min ≥a ,a ≤-1.因此,由不等式|x -3|-|x -4|<a 的解集不是空集可得,实数a 的取值范围是a >-1. 【答案】(-1,+∞)[备课札记] [类题通法]利用零点分类讨论法解绝对值不等式时,注意分类讨论时要不重不漏.考点二绝对值不等式的证明[典例] 已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. 【解】(1)f (x )=|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2,∴M =(-2,2). (2)证明:a ,b ∈M 即-2<a <2,-2<b <2. ∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2) =(a 2-4)·(4-b 2)<0,∴4(a +b )2<(4+ab )2,∴2|a +b |<|4+ab |.[备课札记]【解】由f (x )≥0知a ≤|又|x +1|+|x -1|≥|(x +1)-(x -1)|=2,∴a ≤2. 故a 的取值范围为(2,+∞). [类题通法]证明绝对值不等式主要有三种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明; (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明; (3)转化为函数问题,数形结合进行证明. [针对训练]设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围. 【解】(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,∴要使f (x )=a 2+2a 2+1成立,需且只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2,解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12∪⎣⎡⎭⎫52,+∞.考点三绝对值不等式的综合应用[典例] (2013·新课标卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. [解] (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则 y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈⎣⎡⎭⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎤-1,43. [备课札记] [类题通法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.[针对训练](2014·镇江模拟)已知f (x )=|x +a |+|x -2|. (1)当a =-1时,解关于x 的不等式f (x )>5;(2)已知关于x 的不等式f (x )+a <2 014(a 是常数)的解集是非空集合,求实数a 的取值范围. 【解】(1)构造函数g (x )=|x -1|+|x -2|-5, 则g (x )=⎩⎪⎨⎪⎧-2x -2x ≤1,-41<x <2,2x -8x ≥2.令g (x )>0,则x <-1或x >4,∴原不等式的解集为(-∞,-1)∪(4,+∞). (2)∵f (x )+a =|x +a |+|x -2|+a ≥|a +2|+a ,又关于x 的不等式f (x )+a <2 014的解集是非空集合, ∴|a +2|+a <2 014,解得a <1 006.[课堂练通考点]1.(2013·江西高考)在实数范围内,不等式||x -2|-1|≤1的解集为________. 【解析】依题意得-1≤|x -2|-1≤1,即|x -2|≤2,解得0≤x ≤4. 【答案】[0,4]2.(2013·重庆高考)若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________.【解析】|x -5|+|x +3|≥|(x -5)-(x +3)|=8,故a ≤8. 【答案】(-∞,8]3.(2014·南昌模拟)若对任意的a ∈R ,不等式|x |+|x -1|≥|1+a |-|1-a |恒成立,则实数x 的取值范围是________.【解析】由|1+a |-|1-a |≤2得|x |+|x -1|≥2,当x <0时,-x +1-x ≥2,x ≤-12;当0≤x ≤1时,x +1-x ≥2,无解;当x >1时,x +x -1≥2,x ≥32.综上,x ≤-12或x ≥32.【答案】(-∞,-12]∪[32,+∞)4.(2014·西安检测)已知函数f (x )=|x -2|,g (x )=-|x +3|+m .若函数f (x )的图像恒在函数g (x )图像的上方,则m 的取值范围为________.【解析】函数f (x )的图像恒在函数g (x )图像的上方,即为|x -2|>-|x +3|+m 对任意实数x 恒成立,即|x -2|+|x +3|>m 恒成立.因为对任意实数x 恒有|x -2|+|x +3|≥|(x -2)-(x +3)|=5,所以m <5,即m 的取值范围是(-∞,5).【答案】(-∞,5)5.(2014·长春模拟)已知实数t ,若存在t ∈[12,3]使得不等式|t -1|-|2t -5|≥|x -1|+|x -2|成立,求实数x 的取值范围.【解】∵t ∈[12,3],∴|t -1|-|2t -5|=⎩⎪⎨⎪⎧-t +4,t ≥52,3t -6,1<t <52,t -4,t ≤1,可得其最大值为32.∴只需解不等式|x -1|+|x -2|≤32即可,当x ≥2时,可解得2≤x ≤94,当1<x <2时不等式恒成立,当x ≤1时可解得34≤x ≤1,综上可得x 的取值范围为[34,94].。

最新绝对值不等式的解法教学设计

最新绝对值不等式的解法教学设计

《绝对值不等式的解法》教学设计富源四中朱树平课题:绝对值不等式的解法科目数学教学对象学生课时1提供者朱树平单位富源四中一、教学目标熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力二、教学内容及模块整体分析含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。

三、学情分析学生基础差,少讲多练,以基础题为主。

四、教学策略选择与设计讲练结合,多媒体展现。

五、教学重点及难点熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.六、教学过程教师活动学生活动设计意图提问的方式总结前面学过的知识问题:你能一眼看出下面两个不等式的解集吗?⑴1x<⑵1x>让学生熟练掌握一般地,可得解集规律:形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集:不等式|x|<a的解集为{x|-a<x<a}不等式|x|>a的解集为{x|x<-a或课堂练习一:试解下列不等式:熟练地掌握方法(1)|32|7x-≥x>a }注:如果0a≤,不等式的解集易得.利用这个规律可以解一些含有绝对值的不等式.解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()()f x a a f x a f x a(0)>>⇔><-或;⑵()()(0)f x a a a f x a<>⇔-<<;⑶()()()f xg x f x g x f x g x()()()>⇔><-或;⑷()()()()()f xg x g x f x g x<⇔-<<;⑸()()()()22f xg x f x g x⎡⎤⎡⎤>⇔>⎣⎦⎣⎦更熟练的掌握一般情况试解不等式|x-1|+|x+2|≥5利用|x-1|=0,|x+2|=0的零点,将数轴分为三个区间,然后在这三个区间上将原不等式分别化为不含绝对值符号的不等式求解.体现了分类讨论的思想.{}23≥≤x x x-或熟练掌握零点分段法在解不等式中的应用。

2.2绝对值不等式的解法-教学设计公开课

2.2绝对值不等式的解法-教学设计公开课

1.2.2绝对值不等式的解法一、教学目标1.理解绝对值的几何意义,掌握去绝对值的方法.2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c;|x-a|+|x-b|≤c.3.能利用绝对值不等式解决实际问题.二、课时安排1课时三、教学重点理解绝对值的几何意义,掌握去绝对值的方法.四、教学难点会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c;|x-a|+|x-b|≤c.五、教学过程(一)导入新课解关于x的不等式|2x-1|<2m-1(m∈R).【解】若2m-1≤0,即m≤,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>,则-(2m-1)<2x-1<2m-1,所以1-m<x<m.综上所述:当m≤时,原不等式的解集为∅,当m>时,原不等式的解集为{x|1-m<x<m}.(二)讲授新课教材整理1 绝对值不等式|x|<a与|x|>a的解集法1.|ax+b|≤c⇔.2.|ax+b|≥c⇔.教材整理3 |x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法1.利用绝对值不等式的几何意义求解.2.利用零点分段法求解.3.构造函数,利用函数的图象求解.(三)重难点精讲题型一、|ax+b|≤c与|ax+b|≥c型不等式的解法例1求解下列不等式.(1)|3x-1|≤6;(2)3≤|x-2|<4;(3)|5x-x2|<6.【精彩点拨】关键是去绝对值符号,转化为不含绝对值符号的不等式.【自主解答】(1)因为|3x-1|≤6⇔-6≤3x-1≤6,即-5≤3x≤7,从而得-≤x≤,所以原不等式的解集是.(2)∵3≤|x-2|<4,∴3≤x-2<4或-4<x-2≤-3,即5≤x<6或-2<x≤-1.所以原不等式的解集为{x|-2<x≤-1或5≤x<6}.(3)法一由|5x-x2|<6,得|x2-5x|<6.∴-6<x2-5x<6.∴∴即∴-1<x<2或3<x<6.∴原不等式的解集为{x|-1<x<2或3<x<6}.法二作函数y=x2-5x的图象,如图所示.|x2-5x|<6表示函数图象中直线y=-6和直线y=6之间相应部分的自变量的集合.解方程x2-5x=6,得x1=-1,x2=6.解方程x2-5x=-6,得x′1=2,x′2=3.即得到不等式的解集是{x|-1<x<2或3<x<6}.规律总结:1.形如a<|f(x)|<b(b>a>0)型不等式的简单解法是利用等价转化法,即a<|f(x)|<b(0<a<b)⇔a<f(x)<b或-b <f(x)<-a.2.形如|f(x)|<a,|f(x)|>a(a∈R)型不等式的简单解法是等价命题法,即(1)当a>0时,|f(x)|<a⇔-a<f(x)<a.|f(x)|>a⇔f(x)>a或f(x)<-a.(2)当a=0时,|f(x)|<a无解.|f(x)|>a⇔|f(x)|≠0.(3)当a<0时,|f(x)|<a无解.|f(x)|>a⇔f(x)有意义.[再练一题]1.解不等式:(1)3<|x+2|≤4;(2)|5x-x2|≥6.【解】(1)∵3<|x+2|≤4,∴3<x+2≤4或-4≤x+2<-3,即1<x≤2或-6≤x<-5,所以原不等式的解集为{x|1<x≤2或-6≤x<-5}.(2)∵|5x-x2|≥6,∴5x-x2≥6或5x-x2≤-6,由5x-x2≥6,即x2-5x+6≤0,∴2≤x≤3,由5x-x2≤-6,即x2-5x-6≥0,∴x≥6或x≤-1,所以原不等式的解集为{x|x≤-1或2≤x≤3或x≥6}.题型二、含参数的绝对值不等式的综合问题例2已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.【精彩点拨】→【自主解答】(1)由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以解得a=2.(2)法一由(1)知a=2,此时f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|,于是g(x)=利用g(x)的单调性,易知g(x)的最小值为5.因此g(x)=f(x)+f(x+5)≥m对x∈R恒成立,知实数m的取值范围是(-∞,5].法二当a=2时,f(x)=|x-2|.设g(x)=f(x)+f(x+5)=|x-2|+|x+3|.由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得g(x)的最小值为5.因此,若g(x)=f(x)+f(x+5)≥m恒成立,则实数m的取值范围是(-∞,5].规律总结:1.第(2)问求解的关键是转化为求f(x)+f(x+5)的最小值,法一是运用分类讨论思想,利用函数的单调性;法二是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向.解题时应强化函数、数形结合与转化化归思想方法的灵活运用.[再练一题]2.关于x的不等式lg(|x+3|-|x-7|)<m.(1)当m=1时,解此不等式;(2)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立?【解】(1)当m=1时,原不等式可变为0<|x+3|-|x-7|<10,可得其解集为{x|2<x<7}.(2)设t=|x+3|-|x-7|,则由对数定义及绝对值的几何意义知0<t≤10,因y=lg x在(0,+∞)上为增函数,则lg t≤1,当t=10,x≥7时,lg t=1,故只需m>1即可,即m>1时,f(x)<m恒成立.题型三、含两个绝对值的不等式的解法例3 (1)解不等式|x+2|>|x-1|;(2)解不等式|x+1|+|x-1|≥3.【精彩点拨】(1)可以两边平方求解,也可以讨论去绝对值符号求解,还可以用数轴上绝对值的几何意义来求解;(2)可以分类讨论求解,也可以借助数轴利用绝对值的几何意义求解,还可以左、右两边构建相应函数,画图象求解.【自主解答】(1)|x+2|>|x-1|,可化为(x+2)2-(x-1)2>0,即6x+3>0,解得x>-,∴|x+2|>|x-1|的解集为.(2)如图,设数轴上与-1,1对应的点分别为A,B,那么A,B两点间的距离为2,因此区间[-1,1]上的数都不是不等式的解.设在A点左侧有一点A1到A,B两点的距离和为3,A1对应数轴上的x.所以-1-x+1-x=3,得x=-.同理设B点右侧有一点B1到A,B两点的距离和为3,B1对应数轴上的x,所以x-1+x-(-1)=3.所以x=.从数轴上可看到,点A1,B1之间的点到A,B的距离之和都小于3;点A1的左边或点B1的右边的任何点到A,B的距离之和都大于3,所以原不等式的解集是∪.规律总结:|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.[再练一题]3.已知函数f(x)=|x-8|-|x-4|.(1)作出函数f(x)的图象;(2)解不等式f(x)>2.【解】(1)f(x)=函数的图象如图所示.(2)不等式|x-8|-|x-4|>2,即f(x)>2.由-2x+12=2,得x=5,根据函数f(x)的图象可知,原不等式的解集为(-∞,5).(四)归纳小结绝对值不等式的解法—(五)随堂检测1.不等式|x|·(1-2x)>0的解集是( )A.B.(-∞,0)∪C.D.【解析】原不等式等价于解得x<且x≠0,即x∈(-∞,0)∪.【答案】B2.不等式|x2-2|<2的解集是( )A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(-2,0)∪(0,2)【解析】由|x2-2|<2,得-2<x2-2<2,即0<x2<4,所以-2<x<0或0<x<2,故解集为(-2,0)∪(0,2).【答案】D3.不等式≥1的实数解为________.【解析】≥1⇔|x+1|≥|x+2|,且x+2≠0.∴x≤-且x≠-2.【答案】六、板书设计七、作业布置同步练习1.2.2:绝对值不等式的解法八、教学反思。

最新人教B版高中数学选修4-5《绝对值不等式的解法》教学设计

最新人教B版高中数学选修4-5《绝对值不等式的解法》教学设计

《绝对值不等式的解法》(第一课时)教学设计一、教学内容解析《绝对值不等式的解法》是选修4-5第一章第三节内容,我们这里讲解第一课时。

该内容是在初中学习了绝对值的概念,学习了一元一次不等式;高中必修1学习了绝对值函数图像的画法,必修5学习了一元二次不等式的基础上展开的。

通过本节课可渗透数形结合、分类讨论、化归与转化等数学思想方法,因此它是本章的重点之一,在整个数学学科中占有重要地位。

解含绝对值不等式问题的基本思想是设法去掉绝对值符号,转化为同解的不含绝对值符号的一般不等式去解.而去绝对值的方法主要有定义法(分类讨论法)、平方法、几何法、图像法等,实际上,这四种方法也是解绝对值不等式问题的基本思路,为下一节学习含有两个绝对值的不等式的解法做好铺垫.而本节的重点是运用绝对值的几何意义去掉绝对值符号,转化为不含绝对值的不等式求解,并从中总结规律,形成解绝对值不等式的规律公式及口诀。

本节课在求解过程中也是对集合知识的应用和巩固,同时,为以后不等式的学习打下了基础,对培养学生分析问题、解决问题的能力、理解能力、思维的灵活性有很大的帮助,同时能使学生养成多角度认识研究事物的习惯;并通过不等式变换的等价性培养思维的可容性。

二、教学目标设置【教学目标】1、知识与技能:使学生熟练掌握()()()0>≤≥aaxfaxf与型不等式的解法;2、过程与方法:培养学生观察、分析、归纳、概括的能力,渗透数形结合、分类讨论、转化与化归等数学思想方法;培养学生养成多角度认识研究事物的习惯;并通过不等式变换的等价性培养思维的可容性。

3、情感态度价值观:向学生渗透“具体-抽象-具体”辩证唯物主义的认识论观点,使学生形成良好的个性品质。

感悟形与数不同的数学形态间的和谐统一美。

【教学重点与难点】重点:()()()0>≤≥aaxfaxf与型不等式的解法;难点:利用绝对值的几何意义解绝对值不等式。

三、学生学情分析学生在初中已经学过绝对值的定义,在高中必修1中,也会画简单的绝对值函数的图像,也接触过两边平方的方法。

《绝对值不等式的解法》教学设计

《绝对值不等式的解法》教学设计

Copyright©博看网 . All Rights Reserved.
a
b
一起研究此类型解法。
二、新课探究
例 3.解不等式 x-1 + x+2 逸5。
问题一:研究 ax+b 臆c 和 ax+b 逸c 型不等式的解法。
方法一:利用绝对值的几何意义求解。
探索不等式 x 约2 的解法,请同学们思考这个绝对值不等式
解:如图,数轴上-2,1 对应的点分别是 A ,B,-3,2 对应的点
a
(3)(f x) 跃g(x)圳(f x)跃g(x)或 (f x)约-g(x);
0
a
绝对值 a-b 表示数轴上两点 a,b 之间的距离(如下图)。
a-b
(4)(f x) 约g(x)圳-g(x)约(f x)约g(x); (5)(f x) 约 g(x) 圳(f x)2约g(x)2. 问题二:x-a + x-b 臆c 和 x-a + x-b 逸c 型不等式的解法 解绝对值不等式的基本思想是去绝对值符号,通过下面例题
-2
亦x臆1 或 x逸4。解集为{x讦x臆1 或 x逸4} 总结:ax+b 约c 和 ax+b 跃c 型不等式解集比较。 (1) ax+b 约c圳{x讦ax+b跃-c}疑{x讦ax+b约c}
总结,关于 x-a + x-b 臆c 和 x-a + x-b 逸c 型不等式 的解法:
(2) ax+b 跃c圳{x讦ax+b约-c}胰{x讦ax+b跃c}
解:当 x臆-2 时,等价于:(1-x)-(x+2)逸5,所以 x臆-3,
当-2约x臆1 时,等价于(1-x)+(x+2)逸5,即:3逸5,解为 椎。

绝对值不等式的解法优秀教学设计

绝对值不等式的解法优秀教学设计

绝对值不等式的解法【教学目标】(1)理解并掌握c b ax <+与)0(>>+c c b ax 型不等式的解法,并能初步地应用它解决问题;(2)了解数形结合,分类讨论的思想,培养数形结合的能力,培养通过换元转化的思想方法,培养抽象思维的能力;(3)绝对值的几何意义的应用; (4)激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。

【教学重点】 a x <与)0(>>a a x 型不等式的解法。

【教学难点】绝对值意义的应用,和应用a x <与)0(>>a a x 型不等式的解法解决c b ax <+与)0(>>+c c b ax 型不等式【授课类型】新授课【课时安排】1课时【教学准备】多媒体、实物投影仪【教学过程】一、复习引入:1.什么叫不等式?什么叫不等式组的解集? 2.初中已学过的不等式的三条基本性质是什么?你能用汉语语言叙述这三条性质吗? 如果a>b,那么a+c>b+c;如果a>b,c>0,那么 ac > bc;如果a>b,c<0,那么ac < bC.3.实数的绝对值是如何定义的?几何意义是什么?绝对值的定义: | a | = ⎪⎩⎪⎨⎧<-=>0,0,00,a a a a a|a|的几何意义:数轴上表示数a 的点离开原点的距离|x-a|(a ≥0)的几何意义是x 在数轴上的对应点a 的对应点之间的距离。

实例:按商品质量规定,商店出售的标明500g 的袋装食盐,按商品质量规定,其实际数与所标数相差不能超过5g ,设实际数是x g ,那么,x 应满足怎样的数量关系呢?能不能用绝对值来表示?.5500≤-x (⎩⎨⎧≤-≤-.5500,5500x x 由绝对值的意义,也可以表示成.5500≤-x ) 意图:体会知识源于实践又服务于实践,从而激发学习热情引出课题二、讲解新课:1.)0(><a a x 与)0(>>a a x 型的不等式的解法先看含绝对值的方程|x|=2几何意义:数轴上表示数x 的点离开原点的距离等于2.∴x=±2 提问:2<x 与2>x 的几何意义是什么?表示在数轴上应该是怎样的?数轴上表示数x 的点离开原点的距离小(大)于2即 不等式 2<x 的解集是{}22<<-x x不等式 2>x 的解集是{}2,2>-<x x x 或。

人教版高中选修(B版)4-51.3绝对值不等式的解法教学设计

人教版高中选修(B版)4-51.3绝对值不等式的解法教学设计

人教版高中选修(B版)4-51.3绝对值不等式的解法教学设计一、设计背景绝对值不等式是高一数学必修课程中的重点内容,也是高二数学选修课程中的重点内容。

本次教学设计针对人教版高中选修(B版)4-51.3节中的绝对值不等式的解法进行设计与探讨。

二、教学目标1.理解绝对值不等式的意义和性质;2.能够熟练掌握基于绝对值的不等式的解法;3.能够灵活运用绝对值不等式解决实际问题。

三、教学重点难点1.理解绝对值的概念和性质;2.掌握基于绝对值的不等式的解法;3.灵活运用绝对值不等式解决实际问题。

四、教学过程4.1. 导入环节1.利用生活中的例子引入绝对值的概念;2.让学生思考,如果解不等式时含有绝对值,该怎么办?4.2. 概念讲解1.讲解绝对值的概念;2.讲解绝对值的性质,并结合例子加深学生的理解。

4.3. 基本绝对值不等式的讲解1.结合例子讲解基本绝对值不等式的含义和性质;2.讲解基于基本绝对值不等式的不等式的解法;3.利用例题让学生掌握基础的解题方法。

4.4. 拓展绝对值不等式的讲解1.结合例子讲解拓展绝对值不等式的含义和性质;2.讲解基于拓展绝对值不等式的不等式的解法;3.利用例题让学生掌握拓展绝对值不等式的解题方法。

4.5. 综合练习1.配置一定量的练习题;2.整合基本绝对值不等式、拓展绝对值不等式的解法;3.强化学生案例分析和问题解决的能力。

4.6. 总结与反思1.让学生自主总结绝对值不等式的解法;2.结合例题让学生自我评估巩固学习成果。

五、教学方法与工具1.探究式教学法及其他教学方法;2.PPT、写字板、教材。

六、教学评估1.利用课堂练习、考试、期末综合测试等方式考核学生对绝对值不等式的理解与应用;2.结合平时表现、作业完成情况、小组活动等,考核学生的参与度和分析问题、解决问题的能力。

七、教学反思1.在教学过程中,要多注重学生的思考和自主探索,让学生通过实际问题去理解绝对值的概念和解法;2.建立完整的练习题库,帮助学生巩固绝对值不等式的解决方法;3.拓宽应用场景,强化学生解决实际问题的技巧和方法。

绝对值不等式的解法优秀教学设计

绝对值不等式的解法优秀教学设计

绝对值不等式的解法【教学目标】1:理解并掌握ax<和ax>型不等式的解法。

2:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学思想,并能运用绝对值三角不等式公式进行推理和证明。

【教学重点】绝对值三角不等式的含义,绝对值三角不等式的理解和运用。

【教学难点】绝对值三角不等式的发现和推导、取等条件。

【教学过程】一、复习引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。

请同学们回忆一下绝对值的意义。

在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。

即在此基础上,本节讨论含有绝对值的不等式。

⎪⎩⎪⎨⎧<-=>=xxxxxx,如果,如果,如果二、新课学习关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。

下面分别就这两类问题展开探讨。

1.解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。

主要的依据是绝对值的几何意义。

2.含有绝对值的不等式有两种基本的类型。

第一种类型:设a为正数。

根据绝对值的意义,不等式ax<的解集是}|{axax<<-,它的几何意义就是数轴上到原点的距离小于a的点的集合是开区间(-a,a),如图所示。

a-图1-1 a如果给定的不等式符合上述形式,就可以直接利用它的结果来解。

第二种类型:设a 为正数。

根据绝对值的意义,不等式a x >的解集是{|x a x >或a x -<},它的几何意义就是数轴上到原点的距离大于a 的点的集合是两个开区间),(),,(∞--∞a a 的并集。

如图1-2所示。

–a a图1-2同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解。

3.c b ax ≤+和c b ax ≥+型不等式的解法。

c b ax c c b ax ≤+≤-⇔≤+c b ax c b ax c b ax ≥+-≤+⇔≥+或 4.c b x a x ≤-+-和c b x a x ≥-+-型不等式的解法。

含绝对值的不等式的解法教案

含绝对值的不等式的解法教案

含绝对值的不等式的解法(第2课时)教学目标:1. 掌握一些简单的含绝对值的不等式的解法。

2. 会用零点分段法解含两个绝对值的不等式。

3. 提高学生在解决问题过程中熟练运用“等价转化”与“数形结合”的思想。

教学重点、难点:重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式难点:含绝对值不等式解法及绝对值几何意义的应用教学方法:启发,引导,探索发现,讲练结合教学方式:复习回顾、巩固练习、新知探究、本节小结教学过程:一. 知识点回顾 1.)0(>>+c c b ax 或)0(><+c c b ax 的解法||ax b c ax b c +>⇔+>或ax b c +<-,||ax b c c ax b c +<⇔-<+<; 2.)()(x g x f >或)()(x g x f <的解法()f x >()g x ⇔()f x >()g x 或)()(x g x f -<;()()()()()f x g x g x f x g x <⇔-<< 3.)()(x g x f >或)()(x g x f <的解法 )()()()(22x g x f x g x f >⇔>)()()()(22x g x f x g x f <⇔< 4.b x a x -±-的几何意义数轴上的动点x 到两个定点a,b 的距离之和(差)主要方法:解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式进行求解;巩固练习:解下列不等式:① 332>-x ② 532<-x二. 典型例题例1. 解下列关于x 的不等式:① 5323<-<x② 43222-->--x x x x分析:①由于原不等式等价于332>-x 且532<-x ,因此可先分别解出两个绝对值不等式的解集,然后求其交集。

绝对值不等式的解法的教学设计

绝对值不等式的解法的教学设计

绝对值不等式的解法的教学设计一、教学设计的基本理念《国家数学课程标准》已经把“双基”扩展为“四基”即基础知识、基本技能、基本数学活动经验、基本数学思想方法。

基于“四基”,基于倡导积极主动勇于探索的学习方式、注重提高学生的数学思维能力、注重本质适度形式化,教师课堂教学提供的问题要具有潜在意义,主体的解题认知结构中要有与之可建立非人为和实质性联系的策略、思想、方法,不仅可以更好地促进学生发展,而且也更加突出数学的学科性质,提高学习水平,实现有意义学习,使本节课学生对绝对值不等式的解法更为有效。

二、教学内容分析本节课是《普通高中课程标准实验教科书·数学(选修4-5)》(人教A版)《不等式选讲》第一章第二节第二课《绝对值不等式的解法》。

根据我所任教的学生的实际情况,我将《绝对值不等式的解法》划分为两节课,这是第一课时。

教材的安排是直接从绝对值的几何意义出发,介绍两种特殊类型的绝对值不等式的解法,本节课只学习第一种类型。

三、学情分析学法指导1学生已经对解不等式的问题不陌生,在初中学习了一元一次不等式(组)的解法,高二又学习了一元二次不等式(组)的解法,在解不等式时,“等价转化”意识要伴随解不等式的始终。

需要教师引导。

2学生已经掌握了绝对值的定义、几何意义和性质,但往往不知道怎么应用。

需要教师的分析、引导、帮助。

3学生在表述过程中往往出现不完整、不规范,甚至错写的现象。

需要教师的板书示范来进一步的引导规范。

四、教学目标布鲁姆认为,科学地确立学习目标是教学的首要环节。

根据以上分析和所任教班级学生的实际情况,本节课教学目标如下:1知识与技能目标:掌握形如≤|ax+b|c的不等式的解法|ax+b|c和≥2.过程与方法目标:采用从具体到抽象的方法,通过类比、归纳得到解绝对值不等式的思想方法,并注意从几何意义的角度对不等式作出解释。

3.情感、态度与价值观目标通过经历数学发现的过程,培养学生主动学习、合作交流的意识和积极探索的精神。

试讲教案模板(含绝对值的不等式解法)

试讲教案模板(含绝对值的不等式解法)

试讲教案模板(含绝对值的不等式解法)一、教学目标:1. 理解绝对值的概念及其性质。

2. 掌握绝对值不等式的解法。

3. 能够运用绝对值不等式解决实际问题。

二、教学内容:1. 绝对值的概念及性质。

2. 绝对值不等式的解法。

3. 实际问题中的应用。

三、教学重点与难点:1. 教学重点:绝对值的概念及其性质,绝对值不等式的解法。

2. 教学难点:绝对值不等式的解法,实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生探究绝对值的性质。

2. 通过案例分析,让学生掌握绝对值不等式的解法。

3. 利用实际问题,培养学生的应用能力。

五、教学过程:1. 导入:讲解绝对值的概念,引导学生理解绝对值的含义。

2. 探究绝对值的性质:引导学生通过举例分析,总结绝对值的性质。

3. 讲解绝对值不等式的解法:结合实际例子,讲解绝对值不等式的解法。

4. 练习:布置练习题,让学生巩固绝对值不等式的解法。

5. 拓展:利用实际问题,让学生运用绝对值不等式解决实际问题。

6. 总结:对本节课的内容进行总结,强调绝对值的概念、性质和解法。

7. 作业布置:布置相关作业,巩固所学知识。

8. 板书设计:绝对值的概念:|x| = {x, x ≥0-x, x < 0}绝对值的性质:1. |x| ≥02. |x| = |-x|3. |x + y| ≤|x| + |y|绝对值不等式的解法:1. 去掉绝对值符号,转化为一般不等式。

2. 根据绝对值的性质,分情况讨论解不等式。

9. 教学反思:本节课通过问题驱动法和案例分析,使学生掌握了绝对值的概念、性质和解法。

在实际问题中的应用环节,培养了学生的动手能力。

但在讲解绝对值不等式的解法时,部分学生仍存在理解困难,需要在后续教学中加强针对性辅导。

六、教学评价:1. 课堂讲解:评价学生对绝对值概念、性质和绝对值不等式解法的理解程度。

2. 练习题:评价学生运用绝对值不等式解决实际问题的能力。

3. 小组讨论:评价学生在团队合作中的参与度和思考问题的深度。

绝对值不等式的解法教学设计

绝对值不等式的解法教学设计

《绝对值不等式的解法》教学设计富源四中朱树平课题:绝对值不等式的解法科目数学教学对象学生课时1提供者朱树平单位富源四中一、教学目标熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力二、教学内容及模块整体分析含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。

三、学情分析学生基础差,少讲多练,以基础题为主。

四、教学策略选择与设计讲练结合,多媒体展现。

五、教学重点及难点熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.六、教学过程教师活动学生活动设计意图提问的方式总结前面学过的知识问题:你能一眼看出下面两个不等式的解集吗⑴1x<⑵1x>让学生熟练掌握一般地,可得解集规律:形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集:不等式|x|<a的解集为{x|-a<x<a}不等式|x|>a的解集为{x|x<-a或x>a }课堂练习一:试解下列不等式:熟练地掌握方法(1)|32|7x-≥注:如果0a ≤,不等式的解集易得.利用这个规律可以解一些含有绝对值的不等式.解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()()f x a a f x a f x a (0)>>⇔><-或;⑵()()(0)f x a a a f x a <>⇔-<<;⑶()()()f x g x f x g x f x g x ()()()>⇔><-或;⑷()()()()()f x g x g x f x g x <⇔-<<; ⑸()()()()22f xg x f x g x ⎡⎤⎡⎤>⇔>⎣⎦⎣⎦更熟练的掌握一般情况试解不等式 |x-1|+|x+2|≥5利用|x-1|=0,|x+2|=0的零点,将数轴分为三个区间,然后在这三个区间上将原不等式分别化为不含绝对值符号的不等式求解.体现了分类讨论的思想.{}23≥≤x x x -或 熟练掌握零点分段法在解不等式中的应用。

含绝对值不等式的解法教案

含绝对值不等式的解法教案

我今天讲的是普通高中课程标准实验教科书选修4-5不等式选讲中的第一讲第二个问题——绝对值不等式的解法绝对值不等式的解法一、教学目标(1)掌握|x|<a与|x|>a(a>0)型的绝对值不等式的解法.(2)掌握|ax+b|<c与|ax+b|>c(c>0)型的绝对值不等式的解法.(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;(4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;二、教学重点:|x|<a与|x|>a(a>0)型的不等式的解法;三、教学难点:利用绝对值的意义分析、解决问题.四、教学过程设计(一)、导入新课提问:正数的绝对值是什么?负数的绝对值是什么?零的绝对值是什么?举例说明?|a|的几何意义是在坐标轴上表示坐标为a的那个点到原点的距离。

(二)、新课讲授设问1:解绝对值不等式|x|<1,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?根据绝对值的意义,由下面的数轴可以看出,不等式|x|<1的解集就是表示数轴上到原点的距离小于1的点的集合,即(-1,1).不等式|x|<1的解集表示为{x|-1<x<1}即(-1,1)设问2:解绝对值不等式|x|>1,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?根据绝对值的意义,由下面的数轴可以看出,不等式|x|>1的解集就是表示数轴上到原点的距离大于1的点的集合,即(,1)(1,).-∞∞不等式|x|>1的解集为{}{}|1|1x x x x <-> 或表示为{x|x<-1或x>1}设问3:如果a>0解绝对值不等式|x|<a ,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?根据绝对值的意义,由下面的数轴可以看出,不等式|x|<a 的解集就是表示数轴上到原点的距离小于a 的点的集合,即(-a,a ).不等式|x|<a (a>0)的解集表示为{x|-a<x<a}设问4:当a>0时解绝对值不等式|x|>a ,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?根据绝对值的意义,由下面的数轴可以看出,不等式|x|>a 的解集就是表示数轴上到原点的距离大于a 的点的集合,即(,)(,)a a -∞∞ .不等式|x|>a (a>0)的解集表示为{x|x<-a 或x>a }因而,|x|<a ⇔-a<x<a ;|x|>a ⇔x<-a 或x>a.故 不等式|x|<a 的解集是(-a,a );不等式|x|>a 的解集是(,)(,)a a -∞∞ .上述绝对值不等式是解其它不等式的基础,即其它绝对值不等式的解一般可以通过转化为上述不等式而得到。

高一数学 《绝对值不等式的解法》教学案

高一数学 《绝对值不等式的解法》教学案

绝对值不等式的解法【教学目标】1. 理解绝对值不等式的几何意义2. 学会解绝对值不等式的一般方法3. 会用绝对值不等式的几何意义解一些特殊的绝对值不等式【教学重点与难点】1. 绝对值不等式的几何意义2. 解绝对值不等式的一般方法【教学过程】I. 自学指导1. 绝对值可以转化为什么样的形式?它有什么几何意义?2. 不等式)0(><a a x 的几何意义是什么?3. 请总结出不等式)0(><a a x 和不等式)0(>>a a x 的解集.4. 绝对值不等式还有其他的解题途径吗?5. 回顾不等式的几何意义,你能用用几种方法来解决不等式521>-++x x ?6. 如果我们将分式不等式和绝对值不等式结合起来,解题的时候应该注意什么?并解不等式232+-x x >1.II. 自学点评与拓展1. 绝对值的几何意义就是表示实数在数轴上所对应的点到原点的距离.2. 不等式)0(><a a x 几何意义就是求数轴上到原点距离小于a 的点所对应的实数x 的集合.3. 绝对值不等式)0(><a a x 的解集为}{a x a x <<-,)0(>>a a x 的解集为}{a x a x x -<>或.4. 绝对值不等式还可以转化为一元二次不等式来解.5. 绝对值521>-++x x 可以用x 分段讨论或用不等式几何意义等多种解法来解决,强调通法,解释几何意义来解不等式.6. 注意提醒绝对值不等式和分式不等式整合时候的解题要领和注意问题.III .自学检测一. 必做题1.解下列不等式(1)462≤-x(2)432>-x x(3)1232>+-x x (4)321≤-+-x x(5)3223+>+x x二.选做题1.解不等式xx x x +>+11 2.已知b a x <-的解集是}93{<<-x x ,求a,b3.若A=}107{>+x x ,B=}0,5{><-a a x x ,且A B=B ,求实数a 的取值范围。

《绝对值不等式的解法》教案-如何解绝对值不等式

《绝对值不等式的解法》教案-如何解绝对值不等式

《绝对值不等式的解法》教案教学目标1、理解并掌握x a <和x a >型不等式的解法.2、充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学思想,并能运用绝对值三角不等式公式进行推理和证明.教学重、难点重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用.难点:绝对值三角不等式的发现和推导、取等条件.教学过程一、复习引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解. 请同学们回忆一下绝对值的意义.在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值.即⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果.在此基础上,本节讨论含有绝对值的不等式.二、新课学习:关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式.下面分别就这两类问题展开探讨.1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式.主要的依据是绝对值的几何意义.2、含有绝对值的不等式有两种基本的类型.第一种类型:设a 为正数.根据绝对值的意义,不等式a x <的解集是}|{a x a x <<-,它的几何意义就是数轴上到原点的距离小于a 的点的集合是开区间(-a ,a ),如图所示.a - a如果给定的不等式符合上述形式,就可以直接利用它的结果来解.第二种类型:设a 为正数.根据绝对值的意义,不等式a x >的解集是{|x a x >或a x -<},它的几何意义就是数轴上到原点的距离大于a 的点的集合是两个开区间),(),,(∞--∞a a 的并集.如下图所示.-a a同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解.3、c b ax ≤+和c b ax ≥+型不等式的解法.c b ax c c b ax ≤+≤-⇔≤+c b ax c b ax c b ax ≥+-≤+⇔≥+或例3 解不等式31 2.x -≤例4 解不等式237.x -≥4、c b x a x ≤-+-和c b x a x ≥-+-型不等式的解法.例5 解不等式12 5.x x -++≥思考:例5中给出了三种绝对值不等式的方法,你能概括一下它们各自的特点吗? 从例5的解题过程看到,上述三种方法各有特点.解法一利用了绝对值不等式的几何意义,体现了数形结合思想.从中可以发现,理解解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.解法二利用10,20x x -=+=的解,将数轴分为三个区间,然后在这三个区间上将原不等式转化为不含绝对值的不等式而解之,体现了分类讨论的思想.从中可以看出,以绝对值的“零点”为分界点,将数轴分为几个区间的目的是为了确定各个绝对值符号内多项式取值得正、负性,进而去掉绝对值符号.解法三通过构造函数,利用了函数的图象,体现了函数与方程的思想.从中可以发现,正确求出函数的零点并画出函数图象(有时需要考察函数的增减性)是解题的关键.5、课堂小结回顾本课学习了哪些知识?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值不等式的解法
教学设计
《绝对值不等式的解法》教学设计
富源四中朱树平
课题:绝对值不等式的解法
科目数学教学对象学生课

1
提供者朱树平单位富源四中
一、教学目标
熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力
二、教学内容及模块整体分析
含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。

三、学情分析
学生基础差,少讲多练,以基础题为主。

四、教学策略选择与设计
讲练结合,多媒体展现。

五、教学重点及难点
熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.
六、教学过程
教师活动学生活动设计意图
提问的方式总结前面学过的知识问题:
你能一眼看出下面两个不等式的解集吗?
⑴1
x<

1
x>
让学生熟练
掌握
一般地,可得解集规律:
形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集: 不等式|x|<a的解集为{x|-a<x<a}
不等式|x|>a的解集为
{x|x<-a或x>a } 课堂练习一:
试解下列不等式:
熟练地掌握
方法
(1)|32|7
x
-≥
注:如果0
a≤,不等式的解集易得.
利用这个规律可以解一些含有绝对值的不等式.
解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()()
f x a a f x a f x a
(0)
>>⇔><-
或;
⑵()()
(0)
f x a a a f x a
<>⇔-<<;
⑶()()()
f x
g x f x g x f x g x
()()()
>⇔><-
或;
⑷()()
()()()
f x
g x g x f x g x
<⇔-<<;
⑸()()()()
22
f x
g x f x g x
⎡⎤⎡⎤
>⇔>
⎣⎦⎣⎦
更熟练的掌
握一般情况
试解不等式
|x-1|+|x+2|≥5
利用|x-1|=0,|x+2|=0的零
点,将数轴分为三个区间,
然后在这三个区间上将原不
等式分别化为不含绝对值符
号的不等式求解.体现了分
类讨论的思想.
{}
23
≥≤
x x x-
或熟练掌握零点分段法在解不等式中的应用。

学习小结:
解绝对值不等式的基本思路是去绝对值符号转化为一般不等式来处理。

主要方法有:
1、同解变形法:运用解法公式直接转化;
2、分类讨论去绝对值符1、解不等式|2x-4|-|3x+9|<1
2、对任意实数x,若不等式|x+1|-|x-2|>k 恒成立,则k的取值范围是()
()3
A k<()3
B k<-()3
C k≤()3
D k-

3.不等式有解的条件是
2
(2)|3|4
x x
-<
(3)|32|1
x->
43
x x a
-+-<
号:
①含一个绝对值符号直接分
类;
②含两个或两个以上绝对值
符号:零点分段法确定.
3、数形结合(运用绝对值
的几何意义);
利用函数图象来分析.
( )
七、板书设计
你能一眼看出下面两个不等式的解集吗?
(1)
1
x<⑵1
x>
一般地,可得解集规律:
形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集:
不等式|x|<a的解集为{x|-a<x<a}
不等式|x|>a的解集为{x|x<-a或x>a }
注:如果0
a≤,不等式的解集易得.
2、课堂练习一:
试解下列不等式:
3、课堂练习二(挑战):
试解不等式|x-1|+|x+2|≥5
4、学习小结:
1
()0
10
A a
<<()1
B a>
1
()
10
C a<
()1
D a<-
(1)|32|7
x
-≥2
(2)|3|4
x x
-< (3)|32|1
x->
解绝对值不等式的基本思路是去绝对值符号转化为一般不等式来处理。

主要方法有:
1、同解变形法:运用解法公式直接转化;
2、分类讨论去绝对值符号: ①含一个绝对值符号直接分类;
②含两个或两个以上绝对值符号:零点分段法确定. 3、数形结合(运用绝对值的几何意义); 4、利用函数图象来分析.
5、练习:
解不等式|2x-4|-|3x+9|<1
2.对任意实数x ,若不等式|x+1||x 2|>k 恒成立,则k 的取值范围是( ) ()3A k < ()3B k <-()3C k ≤ ()3D k -≤
3.不等式 有解的条件是( )
43x x a -+-<1()010A a <<()1B a >1
()10C a <()1D a <-。

相关文档
最新文档