2013年宁波市中考数学试卷(解析版)

合集下载

2013年浙江省宁波市中考数学试题及参考答案(word解析版)

2013年浙江省宁波市中考数学试题及参考答案(word解析版)

2013年浙江省宁波市中考数学试题及参考答案与解析一、选择题(共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一项符号题目要求)1.﹣5的绝对值为()A.﹣5 B.5 C.15D.152.下列计算正确的是()A.a2+a2=a4B.2a﹣a=2 C.(ab)2=a2b2D.(a2)3=a53.下列电视台的台标,是中心对称图形的是()A.B.C.D.4.在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A.15B.13C.38D.585.备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()A.7.7×109元B.7.7×1010元C.0.77×1010元D.0.77×1011元6.一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5 B.6 C.7 D.87.两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是()A.内含B.内切C.相交D.外切8.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.129.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是()A.B.C.D.10.如图,二次函数y=ax2=bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<011.如图,梯形ABCD中,AD∥BC,AB=52,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为()A.43B.32C.53D.212.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b二、填空题(共6小题,每小题3分,满分18分)13.实数﹣8的立方根是.14.分解因式:x2﹣4=.15.已知一个函数的图象与6yx的图象关于y轴成轴对称,则该函数的解析式为.16.数据﹣2,﹣1,0,3,5的方差是.17.如图,AE是半圆O的直径,弦AB=BC=CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.18.如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=反比例函数3 yx =(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为.三、解答题(共8小题,满分76分)19.(6分)先化简,再求值:(1+a)(1﹣a)+(a﹣2)2,其中a=﹣3.20.(7分)解方程:35 11xx x=---.21.(7分)天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)22.(9分)2013年5月7日浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的极差、众数和中位数分别是多少?(2)当0≤AQI≤50时,空气质量为优.求这11个城市当天的空气质量为优的频率;(3)求宁波、嘉兴、舟山、绍兴、台州五个城市当天的空气质量指数的平均数.23.(9分)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.24.(12分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.25.(12分)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD 是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.26.(14分)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.参考答案与解析一、选择题(共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一项符号题目要求)1.﹣5的绝对值为()A.﹣5 B.5 C.15D.15【知识考点】绝对值.【思路分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答过程】解:﹣5的绝对值为5,故选:B.【总结归纳】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.。

数学:中考2013年各地数学试题解析(宁夏、宁波)

数学:中考2013年各地数学试题解析(宁夏、宁波)

宁夏回族自治区2013年中考数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.(3分)(2013•宁夏)计算(a2)3的结果是()A.a5B.a6C.a8D.3a2考点:幂的乘方与积的乘方.分析:根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.解答:解:(a2)3=a6.故选B.点评:本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.(3分)(2013•宁夏)一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1B.2C.1和2D.﹣1和2考点:解一元二次方程-因式分解法.专题:计算题.分析:先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.解答:解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.点评:本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.3.(3分)(2013•宁夏)如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()A.25m B.25m C.25m D.m考点:解直角三角形的应用-坡度坡角问题.分析:首先过点C作CE⊥AB于点E,易得∠CBE=60°,在Rt△CBE中,BC=50m,利用正弦函数,即可求得答案.解答:解:过点C作CE⊥AB于点E,∵∠ABC=120°,∴∠CBE=60°,在Rt△CBE中,BC=50m,∴CE=BC•sin60°=25(m).故选A.点评:此题考查了坡度坡角问题.注意能构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.4.(3分)(2013•宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°考点:翻折变换(折叠问题).分析:由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.解答:解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选C.点评:此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.5.(3分)(2013•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:等量关系有:①甲种帐篷的顶数+乙种帐篷的顶数=1500顶;②甲种帐篷安置的总人数+乙种帐篷安置的总人数=8000人,进而得出答案.解答:解:根据甲、乙两种型号的帐篷共1500顶,得方程x+y=1500;根据共安置8000人,得方程6x+4y=8000.列方程组为:.故选:D.点评:此题主要考查了由实际问题抽象出二元一次方程组,列方程组解应用题的关键是找准等量关系,此题中要能够分别根据帐篷数和人数列出方程.6.(3分)(2013•宁夏)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:首先把一次函数化为y=ax﹣a,再分情况进行讨论,a>0时;a<0时,分别讨论出两函数所在象限,即可选出答案.解答:解:y=a(x﹣1)=ax﹣a,当a>0时,反比例函数在第一、三象限,一次函数在第一、三、四象限,当a<0时,反比例函数在第二、四象限,一次函数在第二、三、四象限,故选:C.点评:此题主要考查了反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.7.(3分)(2013•宁夏)如图是某几何体的三视图,其侧面积()A.6B.4πC.6πD.12π考点:由三视图判断几何体.分析:先判断出该几何体为圆柱,然后计算其侧面积即可.解答:解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2π×3=6π.故选C.点评:本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.8.(3分)(2013•宁夏)如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为()A.B.C.D.考点:扇形面积的计算;相切两圆的性质.分析:根据题意可判断⊙A与⊙B是等圆,再由直角三角形的两锐角互余,即可得到∠A+∠B=90°,根据扇形的面积公式即可求解.解答:解:∵⊙A与⊙B恰好外切,∴⊙A与⊙B是等圆,∵AC=2,△ABC是等腰直角三角形,∴AB=2,∴两个扇形(即阴影部分)的面积之和=+==πR2=.故选B.点评:本题考查了扇形的面积计算及相切两圆的性质,解答本题的关键是得出两扇形面积之和的表达式,难度一般.二、填空题(每小题3分,共24分)9.(3分)(2013•宁夏)分解因式:2a2﹣4a+2=2(a﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:先提公因式2,再利用完全平方公式分解因式即可.解答:解:2a2﹣4a+2,=2(a2﹣2a+1),=2(a﹣1)2.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(3分)(2013•宁夏)点P(a,a﹣3)在第四象限,则a的取值范围是0<a<3.考点:点的坐标;解一元一次不等式组.分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.解答:解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3.故答案为:0<a<3.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(3分)(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.考点:概率公式;轴对称图形.分析:根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.解答:解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为:3.点评:本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.(3分)(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm.考点:垂径定理;勾股定理.分析:通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.解答:解:过点O作OD⊥AB交AB于点D,∵OA=2OD=2cm,∴AD===cm,∵OD⊥AB,∴AB=2AD=cm.点评:本题综合考查垂径定理和勾股定理的运用.13.(3分)(2013•宁夏)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为﹣6.考点:反比例函数图象上点的坐标特征;菱形的性质.专题:探究型.分析:先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k 的值.解答:解:∵菱形的两条对角线的长分别是6和4,∴A(﹣3,2),∵点A在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.14.(3分)(2013•宁夏)△ABC中,D、E分别是边AB与AC的中点,BC=4,下面四个结论:①DE=2;②△ADE∽△ABC;③△ADE的面积与△ABC的面积之比为1:4;④△ADE的周长与△ABC的周长之比为1:4;其中正确的有①②③.(只填序号)考点:相似三角形的判定与性质;三角形中位线定理.分析:根据题意做出图形,点D、E分别是AB、AC的中点,可得DE∥BC,DE=BC=2,则可证得△ADE∽△ABC,由相似三角形面积比等于相似比的平方,证得△ADE的面积与△ABC的面积之比为1:4,然后由三角形的周长比等于相似比,证得△ADE 的周长与△ABC的周长之比为1:2,选出正确的结论即可.解答:解:∵在△ABC中,D、E分别是AB、AC的中点,∴DE∥BC,DE=BC=2,∴△ADE∽△ABC,故①②正确;∵△ADE∽△ABC,=,∴△ADE的面积与△ABC的面积之比为1:4,△ADE的周长与△ABC的周长之比为1:2,故③正确,④错误.故答案为:①②③.点评:此题考查了相似三角形的判定与性质以及三角形中位线的性质,难度不大,注意掌握数形结合思想的应用,要求同学们掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方.15.(3分)(2013•宁夏)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C 按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为2a.考点:旋转的性质.分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α,由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α,∴∠BCD=180°﹣∠B﹣∠CDB=2α.即旋转角的大小为2α.故答案为:2α.点评:此题考查了旋转的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.16.(3分)(2013•宁夏)若不等式组有解,则a的取值范围是a>﹣1.考点:不等式的解集.分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.解答:解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1.故答案为:a>﹣1.点评:考查了不等式组的解集,求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.三、解答题(共24分)17.(6分)(2013•宁夏)计算:.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:分别进行负整数指数幂、二次根式的化简及绝对值的运算,代入特殊角的三角函数值合并即可.解答:解:原式===.点评:本题考查了实数的运算,涉及了绝对值、负整数指数幂及特殊角的三角函数值,属于基础题.18.(6分)(2013•宁夏)解方程:.考点:解分式方程.分析:观察可得最简公分母是(x﹣2)(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以(x﹣2)(x+3),得6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),6x+18=x2﹣2x﹣x2﹣x+6,化简得,9x=﹣12x=,解得x=.经检验,x=是原方程的解.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定要验根.19.(6分)(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.考点:作图-位似变换;作图-旋转变换.分析:(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.解答:解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.点评:此题考查了位似变换的性质与旋转的性质.此题难度不大,注意掌握数形结合思想的应用.20.(6分)(2013•宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168167170165168166171168167170(二)班:165167169170165168170171168167(1)补充完成下面的统计分析表班级平均数方差中位数极差一班1681686二班168 3.8(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.考点:方差;加权平均数;中位数;极差;统计量的选择.分析:(1)根据方差、中位数及极差的定义进行计算,得出结果后补全表格即可;(2)应选择方差为标准,哪班方差小,选择哪班.解答:解:(1)一班的方差=[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;二班的极差为171﹣165=6;二班的中位数为168;补全表格如下:班级平均数方差中位数极差一班168 3.21686二班168 3.81686(2)选择方差做标准,∵一班方差<二班方差,∴一班可能被选取.点评:本题考查了方差、极差及中位数的知识,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.四、解答题(共48分)21.(6分)(2013•宁夏)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.考点:频数(率)分布直方图;列表法与树状图法.分析:(1)根据班级总人数有50名学生以及利用条形图得出m的值即可;(2)根据在6~10小时的5名学生中随机选取2人,利用树形图求出概率即可.解答:解:(1)m=50﹣6﹣25﹣3﹣2=14;(2)记6~8小时的3名学生为,8~10小时的两名学生为,P(至少1人时间在8~10小时)=.点评:此题主要考查了频数分布表以及树状图法求概率,正确画出树状图是解题关键.22.(6分)(2013•宁夏)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.考点:矩形的性质;全等三角形的判定与性质.专题:证明题.分析:根据矩形的性质和DF⊥AE于F,可以得到∠DEC=∠AED,∠DFE=∠C=90,进而依据AAS可以证明△DFE≌△DCE.然后利用全等三角形的性质解决问题.解答:证明:连接DE.(1分)∵AD=AE,∴∠AED=∠ADE.(1分)∵有矩形ABCD,∴AD∥BC,∠C=90°.(1分)∴∠ADE=∠DEC,(1分)∴∠DEC=∠AED.又∵DF⊥AE,∴∠DFE=∠C=90°.∵DE=DE,(1分)∴△DFE≌△DCE.∴DF=DC.(1分)点评:此题比较简单,主要考查了矩形的性质,全等三角形的性质与判定,综合利用它们解题.23.(8分)(2013•宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可;(2)证△AEO∽△ACB,得出关于r的方程,求出r即可.解答:证明:(1)连接OE,∵OD=OE,∴∠ODE=∠OED,∵BD=BF,∴∠ODE=∠F,∴∠OED=∠F,∴OE∥BF,∴∠AEO=∠ACB=90°,∴AC与⊙O相切;(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,∴△AOE∽△ABC,∴,设⊙O的半径为r,则,解得:r=4,∴⊙O的面积π×42=16π.点评:本题考查了等腰三角形的性质,切线的判定,平行线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理和计算能力,用了方程思想.24.(8分)(2013•宁夏)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.考点:二次函数综合题.专题:综合题.分析:(1)根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点理由待定系数法求解即可;(2)首先求得点B的坐标,然后分CM=BM时和BC=BM时两种情况根据等腰三角形的性质求得点M的坐标即可.解答:解:(1)设抛物线的解析式把A(2,0)C(0,3)代入得:解得:∴即(2)由y=0得∴x1=1,x2=﹣3∴B(﹣3,0)①CM=BM时∵BO=CO=3即△BOC是等腰直角三角形∴当M点在原点O时,△MBC是等腰三角形∴M点坐标(0,0)②BC=BM时在Rt△BOC中,BO=CO=3,由勾股定理得∴BC=∴BM=∴M点坐标(点评:本题考查了二次函数的综合知识,第一问考查了待定系数法确定二次函数的解析式,较为简单.第二问结合二次函数的图象考查了等腰三角形的性质,综合性较强.25.(10分)(2013•宁夏)如图1,在一直角边长为4米的等腰直角三角形地块的每一个正方形网格的格点(纵横直线的交点及三角形顶点)上都种植同种农作物,根据以往种植实验发现,每株农作物的产量y(单位:千克)受到与它周围直线距离不超过1米的同种农作物的株数x(单位:株)的影响情况统计如下表:x(株)1234y(千克)21181512(1)通过观察上表,猜测y与x之间之间存在哪种函数关系,求出函数关系式并加以验证;(2)根据种植示意图填写下表,并求出这块地平均每平方米的产量为多少千克?y(千克)21181512频数(3)有人为提高总产量,将上述地块拓展为斜边长为6米的等腰直角三角形,采用如图2所示的方式,在每个正方形网格的格点上都种植了与前面相同的农作物,共种植了16株,请你通过计算平均每平方米的产量,来比较那种种植方式更合理?考点:一次函数的应用.分析:(1)设y=kx+b,然后根据表格数据,取两组数x=1,y=21和x=2,y=18,利用待定系数法求一次函数解析式解答;(2)根据图1查出与它周围距离为1米的农作物分别是1株、2株、3株、4株棵树即为相应的频数,然后利用加权平均数的计算方法列式进行计算即可得解;(3)先求出图2的面积,根据图形查出与它周围距离为1米的农作物分别是1株、2株、3株、4株棵树即为相应的频数,然后利用加权平均数的计算方法列式进行计算求出平均每平方米的产量,然后与(2)的计算进行比较即可得解.解答:解(1)设y=kx+b,把x=1,y=21和x=2,y=18代入y=kx+b得,,解得,则y=﹣3x+24,当x=3时y=﹣3×3+24=15,当x=4时y=﹣3×4+24=12,故y=﹣3x+24是符合条件的函数关系;(2)由图可知,y(千克)21、18、15、12的频数分别为2、4、6、3,图1地块的面积:×4×4=8(m2),所以,平均每平方米的产量:(21×2+18×4+15×6+12×3)÷8=30(千克);(3)图2地块的面积:×6×3=9,y(千克)21、18、15、12的频数分别为3、4、5、4,所以,平均每平方米产量:(21×3+18×4+15×5+12×4)÷9=258÷9≈28.67(千克),∵30>28.67,∴按图(1)的种植方式更合理.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,(2)(3)两个小题,理解“频数”的含义并根据图形求出相应的频数是解题的关键.26.(10分)(2013•宁夏)在▱ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,▱ABCD的两边AB与BC应满足什么关系?考点:四边形综合题.专题:计算题.分析:(1)延长PE交CD的延长线于F,设AP=x,△CPE的面积为y,由四边形ABCD 为平行四边形,利用平行四边形的对边相等得到AB=DC,AD=BC,在直角三角形APE中,根据∠A的度数求出∠PEA的度数为30度,利用直角三角形中30度所对的直角边等于斜边的一半表示出AE与PE,由AD﹣AE表示出DE,再利用对顶角相等得到∠DEF为30度,利用30度所对的直角边等于斜边的一半表示出DF,由两直线平行内错角相等得到∠F为直角,表示出三角形CPE的面积,得出y与x的函数解析式,利用二次函数的性质即可得到三角形CPE面积的最大值,以及此时AP的长;(2)由△CPE≌△CPB,利用全等三角形的对应边相等,对应角相等得到BC=CE,∠B=∠PEC=120°,进而得出∠ECD=∠CED,利用等角对等边得到ED=CD,即三角形ECD为等腰三角形,过D作DM垂直于CE,∠ECD=30°,利用锐角三角形函数定义表示出cos30°,得出CM与CD的关系,进而得出CE与CD的关系,即可确定出AB与BC满足的关系.解答:解:(1)延长PE交CD的延长线于F,设AP=x,△CPE的面积为y,∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=8,∵Rt△APE,∠A=60°,∴∠PEA=30°,∴AE=2x,PE=x,在Rt△DEF中,∠DEF=∠PEA=30°,DE=AD﹣AE=8﹣2x,∴DF=DE=4﹣x,∵AB∥CD,PF⊥AB,∴PF⊥CD,=PE•CF,∴S△CPE即y=×x×(10﹣x)=﹣x2+5x,配方得:y=﹣(x﹣5)2+,当x=5时,y有最大值,即AP的长为5时,△CPE的面积最大,最大面积是;(2)当△CPE≌△CPB时,有BC=CE,∠B=∠PEC=120°,∴∠CED=180°﹣∠AEP﹣∠PEC=30°,∵∠ADC=120°,∴∠ECD=∠CED=180°﹣120°﹣30°=30°,∴DE=CD,即△EDC是等腰三角形,过D作DM⊥CE于M,则CM=CE,在Rt△CMD中,∠ECD=30°,∴cos30°==,∴CM=CD,∴CE=CD,∵BC=CE,AB=CD,∴BC=AB,则当△CPE≌△CPB时,BC与AB满足的关系为BC=AB.点评:此题考查了四边形的综合题,涉及的知识有:平行四边形的性质,含30度直角三角形的性质,平行线的判定与性质,以及二次函数的性质,是一道多知识点综合的探究题.2013年浙江省宁波市中考数学试卷一、选择题(共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一项符号题目要求)1.(3分)(2013•宁波)﹣5的绝对值为()A.﹣5B.5C.﹣D.考点:绝对值.分析:根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.解答:解:﹣5的绝对值为5,故选:B.点评:此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•宁波)下列计算正确的是()A.a2+a2=a4B.2a﹣a=2C.(ab)2=a2b2D.(a2)3=a5考点:幂的乘方与积的乘方;合并同类项.分析:根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.解答:解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C.点评:本题考查了同底数幂的乘法,合并同类项,一定要记准法则才能做题.3.(3分)(2013•宁波)下列电视台的台标,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.4.(3分)(2013•宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A.B.C.D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是=.故选:D.点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.(3分)(2013•宁波)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()A.7.7×109元B.7.7×1010元C.0.77×1010元D.0.77×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:77亿=7700000000=7.7×109,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3分)(2013•宁波)一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5B.6C.7D.8考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:多边形的边数是:360÷72=5.故选A.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.7.(3分)(2013•宁波)两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由两个圆的半径分别为2和3,圆心之间的距离是d=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两个圆的半径分别为2和3,圆心之间的距离是d=5,又∵2+3=5,∴这两个圆的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.8.(3分)(2013•宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6B.8C.10D.12考点:三角形中位线定理;三角形三边关系.分析:本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于14小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于7而小于10,看哪个符合就可以了.解答:解:设三角形的三边分别是a、b、c,令a=4,b=6,则2<c<10,14<三角形的周长<20,故7<中点三角形周长<10.故选B.点评:本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.9.(3分)(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是()A.B.C.D.考点:展开图折叠成几何体.分析:根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别分析得出即可.解答:解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选:C.点评:此题主要考查了展开图折叠成几何体,培养了学生的空间想象能力.10.(3分)(2013•宁波)如图,二次函数y=ax2=bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()。

2013年宁波市数学中考部分试题评析及教学建议

2013年宁波市数学中考部分试题评析及教学建议

2013年宁波市数学中考部分试题评析及教学建议作者:王伟来源:《理科考试研究·初中》2014年第01期()求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式点评本题较好地考查了二次函数的解析式、顶点坐标、图象平移等知识,第(2)问的设置属于开放性形式,充分考查学生的开拓思维能力,又体现了数学的灵活性和和谐性0若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫做这个四边形的和谐线,这个四边形叫做和谐四边形如菱形就是和谐四边形()如图6,在梯形ABCD中,AD∥BC,∠BAD=20°,∠C=7°,BD平分∠ABC求证:BD是梯形ABCD的和谐线;(2)如图7,在2×6的网格图上(每个小正方形的边长为)有一个扇形BAC,点A,B,C均在格点上,请在答题卷给出的两个网格图上各找出一个点D,使得以A,B,C,D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线求∠BCD的度数点评本题是一道新定义形式的试题,又是课题学习型的一个创新型试题,将初中阶段的几何相关知识考查得淋漓尽致很清晰地展示了一类课题学习的研究模式:定义—问题—推理判断—操作探究—应用试题以四边形、特殊三角形等核心知识为载体,要求学生通过阅读理解、判断推理、操作计算、分类讨论等方式进行即时的学习和研究问题的设置简洁而内涵丰富,试题呈现方式新颖独特,第(2)小题借助于网格图有效地降低了试题的难度,题中给出的扇形,打破了常规思维,起到了较好的提示作用此题属于一道原创题,很好地体现命题的公平性原则,问题的设置起点低、梯度明显,有利于不同层次学生的发挥,是考查学生数学素养和潜能的好题本题特别重视学生对新知识的理解和应用能力,彰显了新课标中“由知识立意向能力立意”过渡的要求,是坚持学生“可持续发展”理念的体现今后教学的建议与启示()重视课本,注重基础知识、基本技能的落实试题中相当数量的基本题是课本上的例题、习题的直接引用或稍作改编而成的,充分体现出教材的基础功能本卷中基础知识、基本技能的考查占到了7%左右双基的考查仍旧是学业考试中考查的重点,所以落实双基是初三复习的一个重要内容(2)教学中关注知识的形成过程,加强学生学习能力的培养教学过程中必须注重引导学生关注知识的形成过程,让学生学会研究问题的方式方法,体验探究性学习过程的乐趣,逐步培养学生利用已有知识解决实际问题的能力,增强学生学习的迁移能力,激励创新只有提高了学生的学习能力,学生在面对陌生的题目背景时也能自主探究,利用已有的知识和信息独立解决实际问题(3)加强数学思想方法的教学数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁初中数学思想方法教育,是培养和提高学生素质的重要内容数学思想方法的形成有一个循序渐进的过程,并经过反复训练才能使学生真正领悟也只有经过一个反复训练,不断完善的过程才能使学生形成直觉的运用数学思想方法的意识若学生能在解决问题的过程中充分发挥数学思想方法的解题功能,不仅少走弯路,而且还可大大提高学生的数学能力与综合素质。

2013宁波中考数学试题(解析版)

2013宁波中考数学试题(解析版)

2013宁波中考数学试题(解析版)2013年浙江省宁波市中考数学试卷一、选择题(共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一项符号题目要求)1.(3分)(2013·浙江宁波)﹣5的绝对值为( )A . ﹣5B . 5C . ﹣D .考点: 绝对值. 分析: 根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案. 解答: 解:﹣5的绝对值为5, 故选:B . 点评: 此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.考点: 中心对称图形. 分析: 根据中心对称图形的概念对各选项分析判断后利用排除法求解. 解答: 解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选D . 点评: 本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.4.(3分)(2013·浙江宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( )A .B .C .D .考点: 概率公式. 分根据概率的求法,找准两点:①全部情况的析: 总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答: 解:解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个, 从中随机摸出一个,则摸到红球的概率是=.故选:D .点评: 本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A )=.5.(3分)(2013·浙江宁波)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为( )A . 7.7×109元B . 7.7×1010元C . 0.77×1010元D . 0.77×1011元考点:科学记数法—表示较大的数.分析: 科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答: 解:77亿=77 0000 0000=7.7×109, 故选:A . 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n 的值.6.(3分)(2013·浙江宁波)一个多边形的每个外角都等于72°,则这个多边形的边数为( )A . 5B . 6C . 7D . 8考点: 多边形内角与外角. 分析: 利用多边形的外角和360°,除以外角的度数,即可求得边数.解解:多边形的边数是:360÷72=5.答: 故选A .点评: 本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.7.(3分)(2013·浙江宁波)两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是( )A . 内含B . 内切C . 相交D . 外切考点: 圆与圆的位置关系. 分析: 由两个圆的半径分别为2和3,圆心之间的距离是d=5,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可得出两圆位置关系.解答: 解:∵两个圆的半径分别为2和3,圆心之间的距离是d=5,又∵2+3=5,∴这两个圆的位置关系是外切.故选D .点评: 此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.8.(3分)(2013·浙江宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的( )A . 6B . 8C . 10D . 12考点: 三角形中位线定理;三角形三边关系. 分析: 本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于14小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于7而小于10,看哪个符合就可以了.解答: 解:设三角形的三边分别是a 、b 、c ,令a=4,b=6, 则2<c <10,14<三角形的周长<20,故7<中点三角形周长<10.故选B .点评:本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.9.(3分)(2013·浙江宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( )A .B .C .D .考点: 展开图折叠成几何体. 分析: 根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别分析得出即可. 解答: 解:A 、剪去阴影部分后,组成无盖的正方体,故此选项不合题意; B 、剪去阴影部分后,无法组成长方体,故此选项不合题意;C 、剪去阴影部分后,能组成长方体,故此选项正确;D 、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选:C .点此题主要考查了展开图折叠成几何体,培养评: 了学生的空间想象能力.10.(3分)(2013·浙江宁波)如图,二次函数y=ax 2=bx+c 的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A . a bc <0B . 2a+b <0C . a ﹣b+c <0D . 4ac ﹣b 2<0考点: 二次函数图象与系数的关系. 分析: 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解答: 解:A 、根据图示知,抛物线开口方向向上,则a >0.抛物线的对称轴x=﹣=1>0,则b <0.抛物线与y轴交与负半轴,则c<0,所以abc>0.故本选项错误;B、∵x=﹣=1,∴b=﹣2a,∴2a+b=0.故本选项错误;C、∵对称轴为直线x=1,图象经过(3,0),∴该抛物线与x轴的另一交点的坐标是(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故本选项错误;D、根据图示知,该抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,则4ac﹣b2<0.故本选项正确;故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.11.(3分)(2013·浙江宁波)如图,梯形ABCD 中,AD ∥BC ,AB=,BC=4,连结BD ,∠BAD 的平分线交BD 于点E ,且AE ∥CD ,则AD 的长为( )A .B .C .D . 2考点: 梯形;等腰三角形的判定与性质. 分析: 延长AE 交BC 于F ,根据角平分线的定义可得∠BAF=∠DAF ,再根据两直线平行,内错角相等可得∠DAF=∠AFB ,然后求出∠BAF=∠AFB ,再根据等角对等边求出AB=BF ,然后求出FC ,根据两组对边平行的四边形是平行四边形得到四边形AFCD是平行四边形,然后根据平行四边形的对边相等解答. 解答: 解:延长AE 交BC 于F ,∵AE 是∠BAD 的平分线,∴∠BAF=∠DAF ,∵AE ∥CD ,∴∠DAF=∠AFB ,∴∠BAF=∠AFB ,∴AB=BF ,∵AB=,BC=4,∴CF=4﹣=,∵AD ∥BC ,AE ∥CD ,∴四边形AFCD 是平行四边形,∴AD=CF=.故选B .点评:本题考查了梯形的性质,等腰三角形的性质,平行四边形的判定与性质,梯形的问题,关键在于准确作出辅助线.12.(3分)(2013·浙江宁波)7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A . a =bB . a =3bC . a =bD . a =4b考点: 整式的混合运算. 专题: 几何图形问题. 分析: 表示出左上角与右下角部分的面积,求出之差,根据之差与BC 无关即可求出a 与b 的关系式.解答: 解:左上角阴影部分的长为AE ,宽为AF=3b ,右下角阴影部分的长为PC ,宽为a , ∵AD=BC ,即AE+ED=AE+a ,BC=BP+PC=4b+PC ,∴AE+a=4b+PC ,即AE ﹣PC=4b ﹣a ,∴阴影部分面积之差S=AE •AF ﹣PC •CG=3bAE ﹣aPC=3b (PC+4b ﹣a )﹣aPC=(3b ﹣a )PC+12b 2﹣3ab ,则3b ﹣a=0,即a=3b .故选B点评: 此题考查了整式的混合运算的应用,弄清题意是解本题的关键.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2013·浙江宁波)实数﹣8的立方根是 ﹣2 .考点: 立方根. 分析: 利用立方根的定义即可求解. 解答: 解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案﹣2.点评: 本题主要考查了立方根的概念.如果一个数x 的立方等于a ,即x 的三次方等于a (x 3=a ),那么这个数x 就叫做a 的立方根,也叫做三次方根.14.(3分)(2013·浙江宁波)分解因式:x 2﹣4= (x+2)(x ﹣2) .考点: 因式分解-运用公式法. 分析: 直接利用平方差公式进行因式分解即可. 解答: 解:x 2﹣4=(x+2)(x ﹣2). 点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.15.(3分)(2013·浙江宁波)已知一个函数的图象与y=的图象关于y 轴成轴对称,则该函数的解析式为 y=﹣ .考点: 反比例函数的性质. 分析: 根据图象关于x 轴对称,可得出所求的函数解析式. 解答: 解:关于x 轴对称,横坐标不变,纵坐标互为相反数,即﹣y=,∴y=﹣故答案为:y=﹣. 点评: 本题考查了反比例函数图象的对称性,是识记的内容.16.(3分)(2013·浙江宁波))数据﹣2,﹣1,0,3,5的方差是 .考点: 方差. 分析:先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解答: 解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=; 故答案为:.点评: 本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].17.(3分)(2013·浙江宁波)如图,AE 是半圆O 的直径,弦AB=BC=4,弦CD=DE=4,连结OB ,OD ,则图中两个阴影部分的面积和为10π .考点: 扇形面积的计算;勾股定理;垂径定理;圆心角、弧、弦的关系. 专题:综合题. 分根据弦AB=BC ,弦CD=DE ,可得析:∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG于点N,判断△CNG、△OMN为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.解:解答:∵弦AB=BC,弦CD=DE,∴点B是弧AC的中点,点D是弧CE的中点,∴∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,则BF=FG=2,CG=GD=2,∠FOG=45°,在四边形OFCG中,∠FCD=135°,过点C作CN∥OF,交OG于点N,则∠FCN=90°,∠NCG=135°﹣90°=45°,∴△CNG 为等腰三角形,∴CG=NG=2,过点N 作NM ⊥OF 于点M ,则MN=FC=2, 在等腰三角形MNO 中,NO=MN=4,∴OG=ON+NG=6,在Rt △OGD 中,OD===2, 即圆O 的半径为2, 故S 阴影=S 扇形OBD ==10π. 故答案为:10π.点评: 本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考察的知识点较多,解答本题的关键是求出圆0的半径,此题难度较大.18.(3分)(2013·浙江宁波)如图,等腰直角三角形ABC 顶点A 在x 轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x >0)的图象分别与AB ,BC 交于点D ,E .连结DE ,当△BDE ∽△BCA 时,点E 的坐标为 (,) .考点: 反比例函数综合题. 分析: 由相似三角形的对应角相等推知△BDE 的等腰直角三角形;根据反比例函数图象上点的坐标特征可设E (a ,),D (b ,),由双曲线的对称性可以求得ab=3;最后,将其代入直线AD 的解析式即可求得a 的值.解答: 解:如图,∵∠BCA=90°,AC=BC=2,反比例函数y=(x >0)的图象分别与AB ,BC 交于点D ,E ,∴∠BAC=∠ABC=45°,且可设E (a ,),D (b ,),∴C (a ,0),B (a ,2),A (2﹣a ,0), ∴易求直线AB 的解析式是:y=x+2﹣a . 又∵△BDE ∽△BCA ,∴∠BDE=∠BCA=90°,∴直线y=x 与直线DE 垂直,∴点D 、E 关于直线y=x 对称,则=,即ab=3.又∵点D 在直线AB 上,∴=b+2﹣a ,即2a 2﹣2a ﹣3=0,解得,a=,∴点E 的坐标是(,). 故答案是:(,).点评:本题综合考查了相似三角形的性质、反比例函数图象上点的坐标特征、一次函数图象上的点的坐标特征、待定系数法求一次函数的解析式.解题时,注意双曲线的对称性的应用.三、解答题(共8小题,满分76分)19.(6分)(2013·浙江宁波)先化简,再求值:(1+a )(1﹣a )+(a ﹣2)2,其中a=﹣3.考点: 整式的混合运算—化简求值. 分析:原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a 的值代入计算即可求出值. 解答: 解:原式=1﹣a 2+a 2﹣4a+4=﹣4a+5, 当a=﹣3时,原式=12+5=17. 点评: 此题考查了整式的混合运算,涉及的知识有:平方差公式,完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(7分)(2013·浙江宁波)解方程:=﹣5.考点: 解分式方程. 专题: 计算题. 分析:观察可得最简公分母是(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答: 解:方程的两边同乘(x ﹣1),得﹣3=x ﹣5(x ﹣1),解得x=2(5分)检验,将x=2代入(x ﹣1)=1≠0,∴x=2是原方程的解.(6分)点评: 本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.(7分)(2013·浙江宁波)天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C 测得两建筑物底部A ,B 的俯角分别为45°和60°,若此观测点离地面的高度为51米,A ,B 两点在CD 的两侧,且点A ,D ,B 在同一水平直线上,求A ,B 之间的距离(结果保留根号)考点: 解直角三角形的应用-仰角俯角问题. 分析: 在Rt △ACD 和Rt △CDB 中分别求出AD ,BD 的长度,然后根据AB=AD+BD 即可求出AB 的值. 解答: 解:由题意得,∠EAC=45°,∠FCB=60°,∵EF ∥AB , ∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=90°,在Rt △CDB 中,tan ∠CBD=,∴BD==17米,∵AD=CD=51米,∴AB=AD+BD=51+17.答:A ,B 之间的距离为(51+17)米.点评:本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.22.(9分)(2013·浙江宁波)2013年5月7日浙江省11个城市的空气质量指数(AQI )如图所示:(1)这11个城市当天的空气质量指数的极差、众数和中位数分别是多少?(2)当0≤AQI ≤50时,空气质量为优.求这11个城市当天的空气质量为优的频率;(3)求宁波、嘉兴、舟山、绍兴、台州五个城市当天的空气质量指数的平均数.考点: 条形统计图;频数与频率;算术平均数;中位数;众数;极差. 分析:(1)根据极差=最大值﹣最小值进行计算即可;根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可. 解答: 解:(1)极差:80﹣37=43,众数:50,中位数:50;(2)这11个城市中当天的空气质量为优的有6个,这11个城市当天的空气质量为优的频率为;(3)=(50+60+57+37+55)=51.8.点评: 此题主要考查了条形统计图,以及极差、众数、中位数、平均数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(9分)(2013·浙江宁波)已知抛物线y=ax 2+bx+c 与x 轴交于点A (1,0),B (3,0),且过点C (0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x 上,并写出平移后抛物线的解析式.考点: 二次函数图象与几何变换;待定系数法求二次函数解析式. 分析: (1)利用交点式得出y=a (x ﹣1)(x ﹣3),进而得出a 求出的值,再利用配方法求出顶点坐标即可;(2)根据左加右减得出抛物线的解析式为y=﹣x 2,进而得出答案.解答: 解:(1)∵抛物线与x 轴交于点A (1,0),B (3,0),可设抛物线解析式为y=a (x ﹣1)(x ﹣3), 把C (0,﹣3)代入得:3a=﹣3,解得:a=﹣1,故抛物线解析式为y=﹣(x ﹣1)(x ﹣3),即y=﹣x 2+4x ﹣3,∵y=﹣x 2+4x ﹣3=﹣(x ﹣2)2+1,∴顶点坐标(2,1);(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x 2,平移后抛物线的顶点为(0,0)落在直线y=﹣x 上.点评:此题主要考查了二次函数的平移以及配方法求二次函数解析式顶点坐标以及交点式求二次函数解析式,根据平移性质得出平移后解析式是解题关键.24.(12分)(2013·浙江宁波)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲 乙进价(元/部) 4000 2500售价(元/部) 4300 3000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元. (毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.考点: 一次函数的应用;二元一次方程组的应用;一元一次不等式的应用. 分析: (1)设商场计划购进甲种手机x 部,乙种手机y 部,根据两种手机的购买金额为15.5万元和两种手机的销售利润为2.1万元建立方程组求出其解即可;(2)设甲种手机减少a 部,则乙种手机增加2a 部,表示出购买的总资金,由总资金部超过16万元建立不等式就可以求出a 的取值范围,再设销售后的总利润为W 元,表示出总利润与a 的关系式,由一次函数的性质就可以求出最大利润.解答: 解:(1)设商场计划购进甲种手机x 部,乙种手机y 部,由题意,得, 解得:, 答:商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机减少a 部,则乙种手机增加2a 部,由题意,得0.4(20﹣a )+0.25(30+2a )≤16,解得:a ≤5.设全部销售后获得的毛利润为W 元,由题意,得W=0.03(20﹣a )+0.05(30+2a )=0.07a+2.1∵k=0.07>0,∴W 随a 的增大而增大,∴当a=5时,W 最大=2.45.答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.45万元.点评:本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用及一次函数的性质的运用,解答本题时灵活运用一次函数的性质求解是关键.25.(12分)(2013·浙江宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD 中,AD ∥BC ,∠BAD=120°,∠C=75°,BD 平分∠ABC .求证:BD 是梯形ABCD 的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC ,点A .B .C 均在格点上,请在答题卷给出的两个网格图上各找一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数.考点: 四边形综合题. 分析: (1)要证明BD 是四边形ABCD 的和谐线,只需要证明△ABD 和△BDC 是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D 在上任意一点构成的四边形ABDC 就是和谐四边形;连接BC ,在△BAC 外作一个以AC 为腰的等腰三角形ACD ,构成的四边形ABCD 就是和谐四边形,(3)由AC 是四边形ABCD 的和谐线,可以得出△ACD 是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD 的度数.解答: 解:(1)∵AD ∥BC ,∴∠ABC+∠BAD=180°,∠ADB=∠DBC .∵∠BAD=120°,∴∠ABC=60°.∵BD 平分∠ABC ,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB ,∴△ADB 是等腰三角形.在△BCD 中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD 为等腰三角形,∴BD 是梯形ABCD 的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD 于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.点本题是一道四边形的综合试题,考查了和谐评:四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键.26.(14分)(2013·浙江宁波)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y 轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x ,DF=y .请求出y 关于x 的函数解析式;(3)请你探究:点P 在运动过程中,是否存在以B ,D ,F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.考点: 一次函数综合题. 分析: (1)设直线AB 的函数解析式为y=kx+4,把(4,0)代入即可;(2)①先证出△BOD ≌△COD ,得出∠BOD=∠CDO ,再根据∠CDO=∠ADP ,即可得出∠BDE=∠ADP ,②先连结PE ,根据∠ADP=∠DEP+∠DPE ,∠BDE=∠ABD+∠OAB ,∠ADP=∠BDE ,∠DEP=∠ABD ,得出∠DPE=∠OAB ,再证出∠DFE=∠DPE=45°,最后根据∠DEF=90°,得出△DEF 是等腰直角三角形,从而求出DF=DE ,即y=x ;(3)当=2时,过点F 作FH ⊥OB 于点H ,则∠DBO=∠BFH ,再证出△BOD ∽△FHB ,===2,得出FH=2,OD=2BH ,再根据∠FHO=∠EOH=∠OEF=90°,得出四边形OEFH 是矩形,OE=FH=2,EF=OH=4﹣OD ,根据DE=EF ,求出OD 的长,从而得出直线CD 的解析式为y=x+,最后根据求出点P 的坐标即可; 当=时,连结EB ,先证出△DEF 是等腰直角三角形,过点F 作FG ⊥OB 于点G ,同理可得△BOD ∽△FGB ,===,得出FG=8,OD=BG ,再证出四边形OEFG 是矩形,求出OD 的值,再求出直线CD 的解析式,最后根据即可求出点P 的坐标. 解答: 解:(1)设直线AB 的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=﹣1,则直线AB 的函数解析式为y=﹣x+4;(2)①由已知得:OB=OC ,∠BOD=∠COD=90°,又∵OD=OD,∴△BOD≌△COD,∴∠BOD=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,∴DF=DE,即y=x;(3)当BD:BF=2:1时,过点F作FH⊥OB于点H,∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,∴∠DBO=∠BFH,又∵∠DOB=∠BHF=90°,∴△BOD∽△FHB,∴===2,∴FH=2,OD=2BH,∵∠FHO=∠EOH=∠OEF=90°,∴四边形OEFH是矩形,∴OE=FH=2,∴EF=OH=4﹣OD,∵DE=EF,∴2+OD=4﹣OD,解得:OD=,∴点D的坐标为(0,),∴直线CD的解析式为y=x+,由得:,则点P的坐标为(2,2);当=时,连结EB,同(2)①可得:∠ADB=∠EDP,而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,∵∠DEP=∠DPA,∴∠DBE=∠DAP=45°,∴△DEF是等腰直角三角形,过点F作FG⊥OB于点G,同理可得:△BOD∽△FGB,∴===,∴FG=8,OD=BG,∵∠FGO=∠GOE=∠OEF=90°,∴四边形OEFG是矩形,∴OE=FG=8,∴EF=OG=4+2OD,∵DE=EF,∴8﹣OD=4+2OD,OD=,∴点D的坐标为(0,﹣),直线CD的解析式为:y=﹣x﹣,由得:,∴点P的坐标为(8,﹣4),综上所述,点P的坐标为(2,2)或(8,﹣4).点评:此题考查了一次函数的综合,用到的知识点是一次函数、矩形的性质、圆的性质,关键是综合运用有关知识作出辅助线,列出方程组.。

【VIP专享】2013年宁波市初中毕业生学业考试数学试卷(word)

【VIP专享】2013年宁波市初中毕业生学业考试数学试卷(word)

体包装盒的是()23.(本题9分)已知抛物线与x 轴交于点A (1,0),B (3,0)且过点c bx ax y ++=2C (0,-3)(1)求抛物线的解析式和顶点坐标(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x 上,并写出平移后抛物线的解析式。

24.(本题12分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润。

25.(本题12分)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫做这个四边形的和谐线,这个四边形叫做和谐四边形。

如菱形就是和谐四边形。

(1)如图1,在梯形ABCD 中,AD ∥BC ,∠BAD=120°,∠C=75°,BD 平分∠ABC,求证:BD 是梯形ABCD 的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC ,点A ,B ,C 均在格点上,请在答题卷给出的两个网格图上各找出一个点D ,使得以A ,B ,C,D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连接CP与y轴交于点D,连接BD,过P,D,B三点作⊙Q,与y轴的另一个交点为E,延长DQ交⊙Q于点F,连接EF,BF(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时①求证:∠BDE=∠ADP②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标;如果不存在,请说明理由。

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题06 函数的图像与

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题06 函数的图像与

某某市2002-2013年中考数学试题分类解析 专题06 函数的图像与性质一、选择题1. (2002年某某某某3分)二次函数y =x 2-2x +3的最小值为【 】(A )4 (B )2 (C )l (D )-l 2. (2003年某某某某3分)如果双曲线y=x k 经过点(-2,3),那么此双曲线也经过点【 】 (A)(-2,-3) (B)(3,2) (C)(3,-2) (D)(-3,-2)3. (2004年某某某某3分)抛物线2y (x 2)1=-+的顶点坐标为【 】A .(2,1)B .(2,-1)C .(-2,-1)D .(-2,1)4.(2005年某某某某3分)正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB⊥x 轴于B ,CD⊥y 轴于D(如图),则四边形ABCD 的面积为【 】5. (2007年某某某某3分)如图,是一次函数y kx b =+与反比例函数y=2x 的图像,则关于x 的方程kx+b=2x的解为【 】6. (2008年某某某某3分)如图,正方形ABOC的边长为2,反比例函数kyx过点A,则k的值是【】7. (2008年某某某某3分)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则以下说法错误..的是【】A.若通话时间少于120分,则A方案比B方案便宜20元B.若通话时间超过200分,则B方案比A方案便宜12元C.若通讯费用为60元,则B方案比A方案的通话时间多D.若两种方案通讯费用相差10元,则通话时间是145分或185分8. (2009年某某某某3分)反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是【 】9. (2009年某某某某3分)如图,点A 、B 、C 在一次函数y 2x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是【 】10. (2010年某某某某3分)已知反比例函数1y x=,下列结论不正确的是【 】 A 、图象经过点(1,1) B 、图象在第一、三象限C 、当x 1>时,0y 1<<D 、当x 0<时,y 随着x 的增大而增大当x 0<时,y 随着x 的增大而减小。

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题06 函数的图像与

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题06 函数的图像与

宁波市2002-2013年中考数学试题分类解析 专题06 函数的图像与性质一、选择题1. (2002年浙江宁波3分)二次函数y =x 2-2x +3的最小值为【 】(A )4 (B )2 (C )l (D )-l2. (2003年浙江宁波3分)如果双曲线y=xk 经过点(-2,3),那么此双曲线也经过点【 】 (A)(-2,-3) (B)(3,2) (C)(3,-2) (D)(-3,-2)3. (2004年浙江宁波3分)抛物线2y (x 2)1=-+的顶点坐标为【 】A .(2,1)B .(2,-1)C .(-2,-1)D .(-2,1)4. (2005年浙江宁波3分)正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB⊥x 轴于B ,CD⊥y 轴于D(如图),则四边形ABCD 的面积为【 】5. (2007年浙江宁波3分)如图,是一次函数y kx b =+与反比例函数y=2x 的图像,则关于x 的方程kx+b=2x的解为【 】6. (2008年浙江宁波3分)如图,正方形ABOC的边长为2,反比例函数kyx过点A,则k的值是【】7. (2008年浙江宁波3分)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则以下说法错误..的是【】A.若通话时间少于120分,则A方案比B方案便宜20元B.若通话时间超过200分,则B方案比A方案便宜12元C.若通讯费用为60元,则B方案比A方案的通话时间多D.若两种方案通讯费用相差10元,则通话时间是145分或185分8. (2009年浙江宁波3分)反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是【 】9. (2009年浙江宁波3分)如图,点A 、B 、C 在一次函数y 2x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是【 】10. (2010年浙江宁波3分)已知反比例函数1y x=,下列结论不正确的是【 】 A 、图象经过点(1,1) B 、图象在第一、三象限C 、当x 1>时,0y 1<<D 、当x 0<时,y 随着x 的增大而增大当x 0<时,y 随着x 的增大而减小。

浙江省宁波市鄞州区2013年中考数学模拟试卷(解析版)

浙江省宁波市鄞州区2013年中考数学模拟试卷(解析版)

浙江省宁波市鄞州区2013年中考数学模拟试卷一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2013•鄞州区模拟)一个数的相反数是2,则这个数是()A.B.C.﹣2 D.2考点:相反数分析:根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(2的相反数)+(2)=0,则2的相反数是﹣2.故选C.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•鄞州区模拟)据中国宁波网讯,在刚刚过去的蛇年春节黄金周里,我市旅游业交出圆满“成绩单”:七天长假共接待海内外游客221.5万人次,旅游总收入16.15亿元.旅游总收入16.15亿元用科学记数法表示为()A.16.15×108元B.1.615×109元C.0.1615×1010元D.1.615×108元考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:将16.15亿元用科学记数法表示为1.615×109元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2013•鄞州区模拟)下列计算正确的是()A.a3•a2=a6B.a5+a5=a10C.(﹣3a3)2=6a2D.(a3)2•a=a7考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法专题:计算题.分析:A、利用同底数幂的乘法法则计算得到结果,即可作出判断;B、合并同类项得到结果,即可作出判断;C、利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、利用幂的乘方及同底数幂的乘法运算得到结果,即可作出判断.解答:解:A、a3•a2=a5,本选项错误;B、a5+a5=2a5,本选项错误;C、(﹣3a3)2=9a2,本选项错误;D、(a3)2•a=a6•a=a7,本选项正确.故选D.点评:此题考查了幂的乘方与积的乘方,合并同类项,去括号与添括号,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.4.(3分)(2013•鄞州区模拟)如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图分析:根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.解答:解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图有两列:左边一列三个,右边一列1个,所以主视图是:.故选:A.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.(3分)(2013•鄞州区模拟)在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.B.C.D.1考点:概率公式;中心对称图形分析:确定既是中心对称的有几个图形,除以4即可求解.解答:解:∵是中心对称图形的有圆、菱形,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是=;故选B.点评:此题考查了概率公式,概率等于所求情况数与总情况数之比,关键是能够找出中心对称图形.6.(3分)(2013•鄞州区模拟)已知一元二次方程(x﹣3)2=1的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.10 B.10或8 C.9D.8考点:解一元二次方程-直接开平方法;三角形三边关系;等腰三角形的性质分析:由一元二次方程(x﹣3)2=1的两个解恰好分别是等腰△ABC的底边长和腰长,利用直接开平方法求解即可求得等腰△ABC的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案.解答:解:∵(x﹣3)2=1,∴x﹣3=±1,解得,x1=4,x2=2,∵一元二次方程(x﹣3)2=1的两个解恰好分别是等腰△ABC的底边长和腰长,∴①当底边长和腰长分别为4和2时,4=2+2,此时不能构成三角形;②当底边长和腰长分别是2和4时,∴△ABC的周长为:2+4+4=10;故选A.点评:此题考查了直接开平方法解一元二次方程、等腰三角形的性质以及三角形三边关系.此题难度不大,注意分类讨论思想的应用.7.(3分)(2013•鄞州区模拟)某校在开展“爱心捐助”的活动中,初三(1)班六名同学捐款的数额为:8,10,10,4,8,10(单位:元).关于这组数据,下列说法错误的是()A.众数是10元B.极差是6元C.平均数是10元D.中位数是9元考点:众数;加权平均数;中位数;极差、分析:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;极差就是这组数中最大值与最小值的差;平均数是数据总数除以总个数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:A、众数是10元,∵在这一组数据中10是出现次数最多的,∴故众数是10元,故本选项正确,不符合题意;B、极差是6元,∵极差10﹣4=6,故本选项正确,不符合题意;C.平均数是元,∵(8+10+10+4+8+10)÷6=,故本选项错误,符合题意;D、中位数是9元,∵将这组数据从小到大的顺序排列4,8,8,10,10,10,∴处于中间位置的数是8和10,那么由中位数的定义可知,这组数据的中位数是(8+10)÷2=9;故本选项正确,不符合题意.故选C.点评:此题主要考查了极差、众数与中位数以及加权平均数的意义.特别注意中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2013•鄞州区模拟)清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为()A.﹣=20 B.﹣=20 C.﹣=D.﹣=考点:由实际问题抽象出分式方程分析:首先表示出骑自行车速度为2xkm/h,再根据时间=路程÷速度表示出去距离学校4km的烈士陵园扫墓步行所用的时间与骑自行车所用时间,根据时间相差20min可得方程.解答:解:20min=h,步行的速度为x km/h,则骑自行车速度为2xkm/h,由题意得:﹣=,故选C.点评:此题主要考查了由实际问题抽象出分式方程,关键是弄懂题意,表示出步行所用时间与骑自行车所用时间.9.(3分)(2012•泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则的长为()A.πB.2πC.3πD.5π考点:切线的性质;弧长的计算分析:连接OB,由于AB是切线,那么∠ABO=90°,而∠ABC=120°,易求∠OBC,而OB=OC,那么∠OBC=∠OCB,进而求出∠BOC的度数,再利用弧长公式即可求出的长.解答:解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠ABC=120°,∴∠OBC=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,∴的长为==2π,故选B.点评:本题考查了切线的性质、弧长公式,解题的关键是连接OB,构造直角三角形.10.(3分)(2013•鄞州区模拟)如图,函数y=kx和y=﹣x+3的图象相交于(a,2),则不等式kx<﹣x+3的解集为()A.x<B.x>C.x>2 D.x<2考点:一次函数与一元一次不等式分析:首先求得点A的坐标,然后根据kx<﹣x+3得到两条图象的位置上的关系,从而得到其解集;解答:解:∵函数y=kx和y=﹣x+3的图象相交于(a,2),∴2=﹣a+3解得a=∴kx<﹣x+3的解集为x<故选A.点评:本题考查了一次函数与一元一次不等式的关系,解题的关键是求得交点坐标的横坐标.11.(3分)(2013•鄞州区模拟)如图,在梯形ABCD中,AD∥BC,∠B=∠C=70°,点E是DC上的一点,沿直线AE折叠,使点D落在D′处,则∠1+∠2等于()A.180°B.150°C.135°D.120°考点:翻折变换(折叠问题)专题:压轴题.分析:首先根据折叠的性质可得:∠3=∠4,∠5=∠6,再根据AD∥BC求出∠BAD的度数,再求出∠3+∠5的度数,然后根据∠1+2∠3=110°,∠2+2∠5=180°,即可求出答案.解答:解:△AD′E是由△ADE沿AE折叠而成的,∴∠3=∠4,∠5=∠6,∵∠B=70°,∴∠BAD=∠D=110°,∴∠3+∠5=180°﹣110°=70°,∵∠1+2∠3=110°,∠2+2∠5=180°,∴∠1+2∠3+∠2+2∠5=180°+110°=290°,∴∠1+∠2=290°﹣2(∠3+∠5)=290°﹣140°=150°.故选:B.点评:此题主要考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,找准角之间的关系,进行等量代换即可.12.(3分)(2013•鄞州区模拟)如图,正方形ABCD边长为2,AB∥x轴,AD∥y轴,顶点A恰好落在双曲线y=上,边CD、BC分别交双曲线于点E、F,若线段AE过原点,则△AEF的面积为()A.1B.C.D.考点:反比例函数系数k的几何意义分析:根据反比例函数的对称性可得点A、E关于坐标原点对称,然后求出点A的纵坐标为﹣1,再根据反比例函数的解析式求出点A的横坐标,从而得到点A、E的坐标,然后求出点F的横坐标,再代入反比例函数解析式求出点F的纵坐标,再求出DE、EC、CF、FB的长,然后利用△AEF所在的正方形的面积减去四周三个直角三角形的面积列式计算即可得解.解答:解:∵线段AE过原点,∴点A、E关于坐标原点对称,∵正方形ABCD的边长为2,∴点A的纵坐标为﹣1,代入反比例函数解析式得,=﹣1,解得x=﹣,∴点A(﹣,﹣1),E(,1),∴点F的横坐标为2﹣=,代入反比例函数解析式得y==,∴点F(,),∴DE=+=1,EC=2﹣1=1,CF=1﹣=,FB=1+=,△AEF的面积=22﹣×2×1﹣×1×﹣×2×=4﹣1﹣﹣=.故选D.点评:本题考查了反比例函数系数k的几何意义,正方形的性质,反比例函数图象上点的坐标特征,根据对称性确定出点A、E关于坐标原点对称并求出其坐标是解题的关键.二、填空题(每小题3分,共18分)13.(3分)(2013•鄞州区模拟)分解因式:9﹣x2= (3+x)(3﹣x).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:9﹣x2=32﹣x2=(3+x)(3﹣x).点评:本题主要考查利用平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征是解题的关键.14.(3分)(2013•鄞州区模拟)已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ABD=110°,则∠FCD的度数为55 度.考点:平行线的性质分析:由已知平行线的性质推知∠ABD=∠ECD=110°;然后根据角平分线线的定义来求∠FCD的度数.解答:解:如图,∵CE∥AB,∠ABD=110°,∴∠ECD=∠ABD=110°.又∵CF平分∠DCE,∴∠FCD=∠ECD=55°.故填:55.点评:本题考查了平行线的性质、角平分线的定义.此题利用了“两直线平行,同位角相等”的性质.15.(3分)(2012•衡阳)某校为了丰富学生的课外体育活动,欲增购一批体育器材,为此该校对一部分学生进行了一次题为“你喜欢的体育活动”的问卷调查(每人限选一项)根据收集到的数据,绘制成如图的统计图(不完整):根据图中提供的信息得出“跳绳”部分学生共有50 人.考点:条形统计图;扇形统计图分析:先求得总人数,然后用总人数减去其他各个小组的频数即可.解答:解:∵从条形统计图知喜欢球类的有80人,占40%∴总人数为80÷40%=200人∴喜欢跳绳的有200﹣80﹣30﹣40=50人,故答案为50.点评:本题考查了条形统计图及扇形统计图的知识,解题的关键是从两种统计图中整理出进一步解题的有关信息.16.(3分)(2012•上海)在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么AB的长为 3 .考点:相似三角形的判定与性质分析:由∠AED=∠B,∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,即可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长.解答:解:∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴,∵△ADE的面积为4,四边形BCED的面积为5,∴△ABC的面积为9,∵AE=2,∴,解得:AB=3.故答案为:3.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握有两角对应相等的三角形相似与相似三角形面积的比等于相似比的平方定理的应用.17.(3分)(2013•鄞州区模拟)如图,Rt△ABC和Rt△ECD中,∠ACB=∠ECD=90°,CA=CB,CE=CD,点D 在AB上,若EC+AC=3,则△EAD的周长为 6 .考点:全等三角形的判定与性质;等腰直角三角形分析:求出AB+DE=6,证△ACE≌△BCD,推出AE=BD,求出△EAD的周长为AE+AD+DE=AB+DE,代入求出即可.解答:解:∵Rt△ABC和Rt△ECD中,∠ACB=∠ECD=90°,CA=CB,CE=CD,EC+AC=3,∴DE+AB=×=6,∵∠ACB=∠ECD=90°,∠ACD=∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△BCD(SAS),∴AE=BD,∴△EAD的周长为AE+AD+DE=BD+AD+DE=AB+DE=6,故答案为:6.点评:本题考查了等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,关键是求出DE+AB 的值和推出△EAD的周长=AB+DE.18.(3分)(2013•鄞州区模拟)己知二次函数y=﹣x2+x+2图象与坐标轴交于三点A,B,C,则经过这三点的外接圆半径为.考点:二次函数综合题专题:综合题.分析:设抛物线y=﹣x2+x+2与y轴的交点为A,与x轴的交点分别为B、C两点,先求出A、B、C三点的坐标,设经过这三个点的外接圆的圆心为M(m,n),由AM=BM=CM即可求出m、n的值,进而得出外接圆的半径.解答:解:设抛物线y=﹣x2+x+2与y轴的交点为A,与x轴的交点分别为B、C两点,令x=0,则y=2,则点A的坐标为:(0,2),令y=0,则﹣x2+x+2=0,解得x=2或x=﹣1,故B(2,0),C(﹣1,0),设经过这三个点的外接圆的圆心为M(m,n),则,解得:,故点M坐标为(,),故外接圆的半径AM==.故答案为:.点评:本题考查抛物线与坐标轴的交点、三角形的外接圆,根据题意得出A、B、C三点的坐标是解答此题的关键,要求同学们掌握三角形外接圆圆心到三角形各顶点的距离相等.三、解答题(本大题有8小题,共76分)19.(6分)(2013•鄞州区模拟)先化简,再求值:已知x=2,求代数式(x+1)(x﹣1)﹣x(2x﹣3)的值.考点:整式的混合运算—化简求值分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:∵原式=x2﹣1﹣2x2+3x=﹣x2+3x﹣1.∴当x=2时,原式=﹣22+3×2﹣1=1.点评:本题考查的是整式的混合运算﹣化简求值,熟知分式混合运算的法则是解答此题的关键.20.(7分)(2010•贵阳)如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,图5中四边形ABCD就是一个格点四边形.(1)图中四边形ABCD的面积为12 ;(2)在《答题卡》所给的方格纸中画一个格点三角形EFG,使△EFG的面积等于四边形ABCD的面积.考点:作图—复杂作图专题:网格型.分析:(1)易得图中四边形是平行四边形,那么面积=底×高;(2)由于面积等于12,所以应保证三角形的底与高的积等于24.解答:解:(1)∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴面积为:4×3=12;(2)如图.点评:若平行四边形的面积和三角形的面积相等,那么三角形的底与高的积应等于平行四边形底与高的积的2倍.21.(7分)(2011•保山)为贯彻落实云南省教育厅提出的“三生教育”,在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布和扇形统计图:组别做家务的时间频数频率A 1≤t<2 3 0.06B 2≤t<4 20 0.40C 4≤t<6 A 0.30D 6≤t<8 8 BE t≥8 4 0.08根据上述信息回答下列问题:(1)a= 15 ,b= 0.16 ;(2)在扇形统计图中,B组所占圆心角的度数为144°;(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?考点:频数(率)分布表;用样本估计总体;扇形统计图专题:图表型;数形结合.分析:(1)读图可知:总人数减去其余4级的人数即为a的值,D级的人数除以总人数即可求得b的值;(2)求出B级人数占总人数的百分比,再乘以360度即可解答.(3)先求出样本中平均每周做家务时间不少于4小时的学生所占的频率,在用样本估计总体的方法计算即可解答.解答:解:(1)a=50﹣3﹣4﹣8﹣20=15,b=8÷50=0.16;(2)B组所占圆心角的度数为20÷50×360°=144°;(3)2000×(0.3+0.08+0.16)=1080(人),即该校平均每周做家务时间不少于4小时的学生约有1080人.故答案为15,0.16,144°.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.同时考查了用样本估计总体的知识.22.(9分)(2013•鄞州区模拟)如图,已知△ABC中,AB=AC,∠C=30°,AD⊥BC于D,以A为圆心,AD 为半径画⊙O与AB、AC分别相交于点G、F,与CA的延长线交于点E,连接BE.(1)求证:BE是⊙A的切线;(2)连接DG、DF,判断四边形AGDF的形状,并说明理由.考点:切线的判定;全等三角形的判定与性质;菱形的判定.分析:(1)根据等腰三角形性质求出∠EAB=∠DAB,根据SAS证△EAB≌△DAB,推出∠AEB=∠ADB=90°,根据切线判定推出即可;(2)根据等边三角形的判定得出等边三角形△AGD、△A FD,推出AG=GD=AD=DF=AF,根据菱形判定推出即可.解答:(1)证明:∵AB=AC,∠C=30°,∴∠ABC=∠C=30°,∵AD⊥BC,∴∠BAD=∠CAD=60°,∴∠EAB=60°=∠BAD,∵在△AEB和△ADB中∴△AEB≌△ADB(SAS),∴∠AEB=∠ADB=90°,即AE⊥BE,∵AE为半径,∴BE是⊙O的切线;(2)解:四边形AGDF的形状是菱形.理由如下:∵∠BAD=∠CAD=60°,AG=AD=AF,∴△AGD、△AFD是等边三角形,∴AG=GD=AD=DF=AF,即AG=GD=DF=AF,∴四边形AGDF是菱形.点评:本题考查了切线的判定,等腰三角形性质,等边三角形性质和判定,菱形判定的应用,主要考查学生的推理能力.23.(9分)(2013•鄞州区模拟)在平面直角坐标系xOy中,定义一种变换:使平面内的点P(x,y)对应的像为P′(ax+by,bx﹣ay),其中a、b为常数.己知点(2,1)经变换后的像为(1,﹣8).(1)求a,b的值;(2)已知线段OP=2,求经变换后线段O′P′的长度(其中O′、P′分别是O、P经变换后的像,点O为坐标原点).考点:一次函数综合题分析:(1)根据新定义运算列出关于a、b的方程组,通过解方程组来求得它们的值;(2)根据勾股定理知OP2=x2+y2=4,由新定义变换得到O′、P′的坐标,然后由两点间的距离公式即可求得O′P′的长度.解答:解:(1)根据题意,得,解得,.即a、b的值分别是2、﹣3.(2)∵OP=2,点P的坐标是(x,y),∴根据勾股定理知,x2+y2=4.∵O′、P′分别是O、P经变换后的像,点O为坐标原点,∴O′(0,0),P′(2x﹣3y,﹣3x﹣2y),∴O′P′====2,即经变换后线段O′P′的长度是2.点评:本题综合考查了一元一次方程组的解法,两点间的距离公式.解答该题的难点是弄清楚新定义运算的法则,列出关于a、b的二元一次方程组,通过解方程组求得它们的值,从而求得点P′的坐标.24.(12分)(2013•鄞州区模拟)随着私家车拥有量的增加,停车问题已经给人们的生活带来了很多不便.为了缓解停车矛盾,某小区开发商欲投资18万元,全部用于建造x个室内车位和若干个露天车位,考虑到实际因素,计划露天车位的个数大于室内车位个数的2倍,但不超过室内车位个数的3倍,假设两种新建车位能全部出租.据测算,建造费用及月租金如下表:类别室内车位露天车位建造费用(元/个)6000 2000月租金(元/个)200 100(1)该小区开发商有哪几种符合题意的建造方案?(2)已知开发商投资18万元的建造费用全部依靠租金来收回,问至少需要几年才能收回全部投资?考点:一次函数的应用;一元一次不等式组的应用分析:(1)设建造室内车位x个,则可以建造露天车位=(90﹣3x)个,根据条件的不想到呢过关系建立不等式组求出其解即可;(2)设月租金为w元,就有w=200x+100(90﹣3x),根据一次函数的性质就可以求出月租金的最大值,由180000÷7500=24就可以求出收回投资的时间.解答:解:(1)设建造室内车位x个,则可以建造露天车位=(90﹣3x)个,由题意,得,解得:15≤x<18,∵x为整数,∴x=15,16,17.∴共有三种建造方案:方案一:室内车位15个,露天车位45个;方案二:室内车位16个,露天车位42个;方案三:室内车位17个,露天车位39个;(2)设月租金为w元.由题意,得w=200x+100(90﹣3x),=﹣100x+9000,∵k=﹣100<0,∴w随x的增大而减小.∴当x=15时,月租金最多为w=﹣100×15+9000=7500元,∴投资全部收回至少需要180000÷7500=24(月)即至少需要2年时间.点评:本题是到方案设计题,考查了列一元一次不等式组解实际问题的运用,根据一次函数的性质求函数的最值的运用.解答时求出月租金的最大值是关键.25.(12分)(2013•鄞州区模拟)对于二次函数C:y=x2﹣4x+6和一次函数l:y=﹣x+6,把y=t(x2﹣4x+6)+(1﹣t)(﹣x+6)称为这两个函数的“再生二次函数”,其中,t是不为零的实数,其图象记作抛物线E.设二次函数C和一次函数l的两个交点为A(x1,y1),B(x2,y2)(其中x1<x2).(1)求点A,B的坐标,并判断这两个点是否在抛物线E上;(2)二次函数y=﹣x2+5x+5是二次函数y=x2﹣4x+6和一次函数y=﹣x+6的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;(3)若抛物线E与坐标轴的三个交点围成的三角形面积为6,求抛物线E的解析式.考点:二次函数综合题专题:几何综合题.分析:(1)联立二次函数C与一次函数l的解析式,消掉y得到关于x的一元二次方程,解方程再求出相应的y的值,即可得到A、B的坐标,然后把点A、B的坐标代入抛物线E的解析式进行验证即可;(2)根据抛物线E必过定点A、B,代入二次函数y=﹣x2+5x+5进行验证即可;(3)设抛物线E截x轴的线段长为a,先利用三角形的面积求出a的长,再根据点B的坐标求出与x轴的另一交点的坐标,然后代入抛物线求解即可得到t的值,从而得解.解答:解:(1)联立,消掉y得,x2﹣4x+6=﹣x+6,整理得,x2﹣6x=0,解得x1=0,x2=6,∴y1=6,y2=﹣6+6=0,∴点A(0,6),B(6,0),当x=0时,y=t(×02﹣4×0+6)+(1﹣t)(﹣0+6)=6t+6﹣6t=6,当x=6时,y=t(×62﹣4×6+6)+(1﹣t)(﹣6+6)=0,∴点A、B在抛物线E上;(2)∵抛物线E一定经过点A、B,而对于二次函数y=﹣x2+5x+5,当x=0时,y=5≠6,∴二次函数y=﹣x2+5x+5不是二次函数y=x2﹣4x+6和一次函数y=﹣x+6的一个“再生二次函数”;(3)由(1)得,抛物线E与x轴的一个交点为B,与y轴的交点为A,设抛物线E截x轴的线段长为a,则S=a×6=6,解得a=2,所以,与x轴的另一个交点为(4,0)或(8,0),点(4,0)代入抛物线E得,y=t(×42﹣4×4+6)+(1﹣t)(﹣4+6)=0,解得t=,此时y=(x2﹣4x+6)+(1﹣)(﹣x+6)=x2﹣x+6,点(8,0)代入抛物线E得,y=t(×82﹣4×8+6)+(1﹣t)(﹣8+6)=0,解得t=,此时,y=(x2﹣4x+6)+(1﹣)(﹣x+6)=x2﹣x+6.点评:本题考查了二次函数综合题型,主要利用了联立两函数解析式求交点坐标,验证点是否在二次函数图象上,三角形的面积,二次函数图象上点的坐标特征,读懂题目信息,理解“再生二次函数”的定义是解题的关键.26.(14分)(2013•鄞州区模拟)如图1,己知矩形ABCD中,BC=2,AB=4,点E从点A出发沿AB方向以每秒1个单位的速度向点B匀速运动,同时点F从点C出发沿BC的延长线方向以每秒2个单位的速度匀速运动,当E运动到点B时,点F停止运动.连接EF交DC于K,连接DE,DF,设运动时间为t秒.(1)求证:△DAE∽△DCF;(2)当DK=KF时,求t的值;(3)如图2,连接AC与EF相交于O,画EH⊥AC于H.①试探索点E、F在运动过程中,OH的长是否发生改变,若不变,请求出OH的长;若改变,请说明理由.②当点O是线段EK的三等分点时,直接写出tan∠FOC的值.考点:相似形综合题分析:(1)求出==,∠DAE=∠DCF=90°,根据相似三角形的判定推出即可;(2)根据相似得出∠ADE=∠CDF,求出EK=KF,证△FKC∽△FEB,得出=,求出即可;(3)①点E、F在运动过程中,OH的长不变,理由是:作EM∥BC,交AC于M,设∠BAC=α,则tanα=,得出AE=t,CF=2t,求出EM=t,证△MEO∽△CFO,得出==,求出MO=CM,设HM=a,则EH=2a,AH=4a,求出MH=AM,推出OH=AC,求出AC即可求出OH;②tan∠FOC的值是或,理由是:根据△FKC∽△FEB求出KC=,根据△CKO∽△AEO得出=,当==时得出=2,求出t,即可得出AE长,根据△AEH∽△ACB,求出EH,当==时得出=,求出t,根据△AEH∽△ACB,求出EH的值,解直角三角形求出即可.解答:解:(1)由题意,得AE=t,CF=2t.∵矩形ABCD中,BC=AD=2,AB=CD=4,∴==,∵∠DAE=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴∠ADE=∠CDF,∵∠ADE+∠EDC=90°,∴∠CDF+∠EDC=90°,即∠EDF=90°,∵DK=KF,∴∠KDF=∠KFD,∵∠DEK+∠KFD=90°,∠EDK+∠KDF=90°,∴∠DEK=∠EDK,∴DK=EK,∴EK=KF,∵AB∥CD,∴△FKC∽△FEB,∴=,t=1;(3)①点E、F在运动过程中,OH的长不变,理由是:作EM∥BC,交AC于M,设∠BAC=α,则tanα=,∵AB⊥BC,∴ME⊥AB,∵AB⊥AC,∴∠HEM=α,∵AE=t,CF=2t,∴EM=t,∵∠EOM=∠FOC,∠MEO=∠CFO,∴△MEO∽△CFO,∴==,∴MO=OC,∴MO=CM,设HM=a,则EH=2a,AH=4a,∴MH=AM,∴OH=OM+MH=CM+AM=AC,在Rt△ABC中,AB=4,BC=2,由勾股定理得:AC=2,∴OH=,即点E、F在运动过程中,OH的长度不变,是;②tan∠FOC的值是或,理由是:∵四边形ABCD是矩形,∴CD∥AB,∴△FKC∽△FEB,∴=,∴=,∴KC=,∵AB∥CD,∴△CKO∽△AEO,∴=,当==时,=2,t=0(舍去),t=,∵EH⊥AC,∴∠EHA=∠ABC=90°,∵∠EAH=∠BAC,∴△AEH∽△ACB,∴=,∴=,∴EH=,∴tan∠FOC=tan∠EOH===;当==时,=,t=0(舍去),t=,∵EH⊥AC,∴∠EHA=∠ABC=90°,∵∠EAH=∠BAC,∴△AEH∽△ACB,∴=,∴=,∴EH=,∴tan∠FOC=tan∠EOH===.点评:本题考查了相似三角形的性质和判定,矩形性质和判定,直接直角三角形的应用,主要考查学生的推理能力,题目比较好,但是难度偏大.。

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题10 四边形

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题10 四边形

宁波市2002-2013年中考数学试题分类解析专题10 四边形一、选择题1. (2002年浙江宁波3分)已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是【】(A)(B)(C)3 (D)62. (2003年浙江宁波3分)如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=2cm,则这个八边形的面积等于【】3. (2005年浙江宁波3分)若四边形的两条对角线相等,则顺次连结该四边形各边中点所得的四边形是【】A.梯形B.矩形C.菱形D.正方形4. (2006年浙江宁波大纲卷3分)如图所示,在平行四边形ABCD中,O为对角线AC、BD的交点,与△AOD 全等的是【】A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形AMON与四边形AB CD是位似图形D.四边形MBCO和四边形NDCO都是等腰梯形6.(2013年浙江宁波3分)如图,梯形ABCD中,AD∥BC,AB=52,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为【】二、填空题1. (2003年浙江宁波3分)如图,BD是 ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是▲ (填上你认为正确的一个即可,不必考虑所有可能情形).2. (2009年浙江宁波3分)如图,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,作DE∥AB交BC于点E,若AD=3,BC=10,则CD的长是▲ .【答案】7。

【考点】平行四边形的判定和性质,三角形内角和定理,等腰三角形的判定和性质。

【分析】∵DE∥AB,∴∠DEC=∠B。

∵∠B=70°,∴∠DEC=∠B=70°。

∵∠C=40°,∴∠CDE =180°-70°-40°=70°。

2013年宁波市北仑区中考数学一模试卷及答案(word解析版)

2013年宁波市北仑区中考数学一模试卷及答案(word解析版)

2013年浙江省宁波市北仑区中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2012•宜昌)如图,数轴上表示数﹣2的相反数的点是()4.(3分)(2013•瓯海区二模)为了支援青海玉树灾区学生,“爱心小组”的七位同学为灾区捐款,捐款金5.(3分)(2011•陕西)我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三某一种彩票中奖概率是,那么买、概率是针对数据非常多时,趋近的一个数,所以概率是正面朝上的概率是,7.(3分)(2012•西藏)2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有()8.(3分)(2012•张家界)下面四个几何体中,左视图是四边形的几何体共有()9.(3分)(2006•青岛)某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老元,10.(3分)(2013•北仑区一模)已知反比例函数y=,下列结论中不正确的是()y=11.(3分)(2007•济南)世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是()B.)倍,第三个数的分母是第二个数的分母的(个位置上的数是=12.(3分)(2010•丽水)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()y=y=,×二、填空题(本题有6小题,每小题3分,共18分)13.(3分)(2013•平凉)分解因式:x2﹣9=(x+3)(x﹣3).14.(3分)(2007•福州)当x≥3时,二次根式在实数范围内有意义.因为式概念:式子(15.(3分)(2010•丽水)如图,直线DE交∠ABC的边BA于点D,若DE∥BC,∠B=70°,则∠ADE的度数是70度.16.(3分)(2011•河南)点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1与y2的大小关系为y1<y2(填“>”、“<”、“=”).17.(3分)(2010•台州)如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是相切,阴影部分面积为(结果保留π)6﹣π.BD=4CE=DE=BE=2=18.(3分)(2013•北仑区一模)如图,在矩形ABCD中,AB=2,BC=4,⊙D的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与⊙D切于点H,此时两直角边与AD交于E,F两点,则tan∠EFO的值为.BD==2OD=BD=HOD=X=.即HDE==三、解答题(本题有8小题,共76分,各小题都必须写出解答过程)19.(6分)(2013•北仑区一模)计算:.=2﹣.20.(7分)(2013•北仑区一模)解不等式组并写出该不等式组的整数解.解:21.(7分)(2013•北仑区一模)如图所示,用5根相同的火柴棒首尾顺次相接可以围成一个梯形,那么7根相同的火柴棒首尾顺次相接可以围成几个不同的梯形?请分别在下面的方框中画出示意图并标出各边的长度.(至少两种)22.(9分)(2013•长清区二模)重庆一中综合实践活动艺体课程组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题:(1)求这次接受调查的学生人数,并补全条形统计图;(2)求扇形统计图中喜欢排球的圆心角度数;(3)若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或画树状图的方法,求出刚好抽到一男一女的概率.所占百分比为:××23.(9分)(2012•青海)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.∵,24.(12分)(2011•随州)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,≈1.732).=∴,即得h=,即得a=30+10∴,30+10×=1025.(12分)(2012•新疆)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A 村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.26.(14分)(2012•兰州)如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD 交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.x=上,得出时,求出ON=x===,﹣所求函数关系式为;AB=y=y=,解得:∴x=时,(∴即ON=((×,∵=PF=﹣t×S=﹣﹣t+(t=时,,。

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题04 图形的变换

【2013版中考12年】浙江省宁波市2002-2013年中考数学试题分类解析 专题04 图形的变换

某某市2002-2013年中考数学试题分类解析专题04 图形的变换一、选择题1. (2003年某某某某3分)图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是【】(A)25 (B)66 (C)91 (D)1202. (2006年某某某某课标卷3分)如图,水平放置的圆柱形物体,中间有一细棒,则此几何体的左视图是【】A. B. C. D.3. (2006年某某某某课标卷3分)如图,为保持原图案的模式,应在空白处补上【 】4. (2006年某某某某课标卷3分)如图,直角梯形ABCD 中,AD∥BC,AB⊥BC,AD=3,BC=5,将腰DC 绕点D 逆时针方向旋转90°至DE ,连接AE ,则△ADE 的面积是【 】∴CG=BC-BG=5-3=2。

∴EF=2。

∴ADE 11S AD EF 32322∆=⨯⨯=⨯⨯=。

故选C 。

5. (2007年某某某某3分)与如图所示的三视图对应的几何体是【 】6. (2008年某某某某3分)已知圆锥的母线长为5,底面半径为3,则圆锥的表面积...为【】A.15π B.24πC.30π D.39π7. (2008年某某某某3分)由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是【】A.8 B.7 C.6 D.58. (2009年某某某某3分)如图是由4个立方块组成的立体图形,它的俯视图是【】A.B.C.D.9. (2010年某某某某3分)骰子是一种特的数字立方体(见图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是【】10. (2011年某某某某3分)如图所示的物体的俯视图是【】(A) (B) (C) (D)11. (2011年某某某某3分)如图,Rt△ABC中,∠ACB=90°,AC=BC=22Rt△绕边AB所在直线旋转一周,则所得几何体的表面积为【】12. (2012年某某某某3分)如图是某物体的三视图,则这个物体的形状是【】A.四面体B.直三棱柱C.直四棱柱D.直五棱柱13. (2012年某某某某3分)如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是【】14. (2012年某某某某3分)如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是【】15.(2013年某某某某3分)下列四X正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是【】二、填空题1. (2002年某某某某3分)如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形,2. (2003年某某某某3分)如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:3. (2004年某某某某3分)仔细观察下列图案,并按规律在横线上画出合适的图形.4. (2005年某某某某3分)已知一个底面直径为10cm,母线长为8cm的圆锥形漏斗,它的侧面积是▲ cm2.5. (2005年某某某某3分)矩形纸片ABCD中,AD=4cm ,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE= ▲ cm.6. (2006年某某某某大纲卷3分)如图,将Rt△ABC 绕点C 按顺时针方向旋转90°到△A′B′C 的位置,已知斜边AB=10cm ,BC=6cm ,设A′B′的中点是M ,连接AM ,则AM= ▲ cm .【答案】41。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年浙江省宁波市中考数学试卷解析版一、选择题(共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一项符号题目要求)1.(3分)(2013•宁波)﹣5的绝对值为()A.﹣5 B.5C.﹣D.考点:绝对值.分析:根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.解答:解:﹣5的绝对值为5,故选:B.点评:此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•宁波)下列计算正确的是()A.a2+a2=a4B.2a﹣a=2 C.(ab)2=a2b2D.(a2)3=a5考点:幂的乘方与积的乘方;合并同类项.分析:根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.解答:解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C.点评:本题考查了同底数幂的乘法,合并同类项,一定要记准法则才能做题.3.(3分)(2013•宁波)下列电视台的台标,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.4.(3分)(2013•宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A.B.C.D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是=.故选:D.点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.(3分)(2013•宁波)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()A.7.7×109元B.7.7×1010元C.0.77×1010元D.0.77×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:77亿=77 0000 0000=7.7×109,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3分)(2013•宁波)一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5B.6C.7D.8考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:多边形的边数是:360÷72=5.故选A.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.7.(3分)(2013•宁波)两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由两个圆的半径分别为2和3,圆心之间的距离是d=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两个圆的半径分别为2和3,圆心之间的距离是d=5,又∵2+3=5,∴这两个圆的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.8.(3分)(2013•宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6B.8C.10 D.12考点:三角形中位线定理;三角形三边关系.分析:本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于14小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于7而小于10,看哪个符合就可以了.解答:解:设三角形的三边分别是a、b、c,令a=4,b=6,则2<c<10,14<三角形的周长<20,故7<中点三角形周长<10.故选B.点评:本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.9.(3分)(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是()A.B.C.D.考点:展开图折叠成几何体.分析:根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别分析得出即可.解答:解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选:C.点评:此题主要考查了展开图折叠成几何体,培养了学生的空间想象能力.10.(3分)(2013•宁波)如图,二次函数y=ax2=bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.a bc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<0考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:A、根据图示知,抛物线开口方向向上,则a>0.抛物线的对称轴x=﹣=1>0,则b<0.抛物线与y轴交与负半轴,则c<0,所以abc>0.故本选项错误;B、∵x=﹣=1,∴b=﹣2a,∴2a+b=0.故本选项错误;C、∵对称轴为直线x=1,图象经过(3,0),∴该抛物线与x轴的另一交点的坐标是(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故本选项错误;D、根据图示知,该抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,则4ac﹣b2<0.故本选项正确;故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.11.(3分)(2013•宁波)如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD 的平分线交BD于点E,且AE∥CD,则AD的长为()A.B.C.D.2考点:梯形;等腰三角形的判定与性质.分析:延长AE交BC于F,根据角平分线的定义可得∠BAF=∠DAF,再根据两直线平行,内错角相等可得∠DAF=∠AFB,然后求出∠BAF=∠AFB,再根据等角对等边求出AB=BF,然后求出FC,根据两组对边平行的四边形是平行四边形得到四边形AFCD 是平行四边形,然后根据平行四边形的对边相等解答.解答:解:延长AE交BC于F,∵AE是∠BAD的平分线,∴∠BAF=∠DAF,∵AE∥CD,∴∠DAF=∠AFB,∴∠BAF=∠AFB,∴AB=BF,∵AB=,BC=4,∴CF=4﹣=,∵AD∥BC,AE∥CD,∴四边形AFCD是平行四边形,∴AD=CF=.故选B.点评:本题考查了梯形的性质,等腰三角形的性质,平行四边形的判定与性质,梯形的问题,关键在于准确作出辅助线.12.(3分)(2013•宁波)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b考点:整式的混合运算.专题:几何图形问题.分析:表示出左上角与右下角部分的面积,求出之差,根据之差与BC无关即可求出a与b 的关系式.解答:解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.故选B点评:此题考查了整式的混合运算的应用,弄清题意是解本题的关键.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2013•宁波)实数﹣8的立方根是﹣2.考点:立方根.分析:利用立方根的定义即可求解.解答:解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案﹣2.点评:本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.14.(3分)(2011•海南)分解因式:x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.15.(3分)(2013•宁波)已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为y=﹣.考点:反比例函数的性质.分析:根据图象关于x轴对称,可得出所求的函数解析式.解答:解:关于x轴对称,横坐标不变,纵坐标互为相反数,即﹣y=,∴y=﹣故答案为:y=﹣.点评:本题考查了反比例函数图象的对称性,是识记的内容.16.(3分)(2013•宁波)数据﹣2,﹣1,0,3,5的方差是.考点:方差.分析:先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解答:解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为:.点评:本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].17.(3分)(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.考点:扇形面积的计算;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:综合题.分析:根据弦AB=BC,弦CD=DE,可得∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG 于点N,判断△CNG、△OMN为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.解答:解:∵弦AB=BC,弦CD=DE,∴点B是弧AC的中点,点D是弧CE的中点,∴∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,则BF=FG=2,CG=GD=2,∠FOG=45°,在四边形OFCG中,∠FCD=135°,过点C作CN∥OF,交OG于点N,则∠FCN=90°,∠NCG=135°﹣90°=45°,∴△CNG为等腰三角形,∴CG=NG=2,过点N作NM⊥OF于点M,则MN=FC=2,在等腰三角形MNO中,NO=MN=4,∴OG=ON+NG=6,在Rt△OGD中,OD===2,即圆O的半径为2,故S阴影=S扇形OBD==10π.故答案为:10π.点评:本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考察的知识点较多,解答本题的关键是求出圆0的半径,此题难度较大.18.(3分)(2013•宁波)如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为(,).考点:反比例函数综合题.分析:由相似三角形的对应角相等推知△BDE的等腰直角三角形;根据反比例函数图象上点的坐标特征可设E(a,),D(b,),由双曲线的对称性可以求得ab=3;最后,将其代入直线AD的解析式即可求得a的值.解答:解:如图,∵∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E,∴∠BAC=∠ABC=45°,且可设E(a,),D(b,),∴C(a,0),B(a,2),A(2﹣a,0),∴易求直线AB的解析式是:y=x+2﹣a.又∵△BDE∽△BCA,∴∠BDE=∠BCA=90°,∴直线y=x与直线DE垂直,∴点D、E关于直线y=x对称,则=,即ab=3.又∵点D在直线AB上,∴=b+2﹣a,即2a2﹣2a﹣3=0,解得,a=,∴点E的坐标是(,).故答案是:(,).点评:本题综合考查了相似三角形的性质、反比例函数图象上点的坐标特征、一次函数图象上的点的坐标特征、待定系数法求一次函数的解析式.解题时,注意双曲线的对称性的应用.三、解答题(共8小题,满分76分)19.(6分)(2013•宁波)先化简,再求值:(1+a)(1﹣a)+(a﹣2)2,其中a=﹣3.考点:整式的混合运算—化简求值.分析:原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a的值代入计算即可求出值.解答:解:原式=1﹣a2+a2﹣4a+4=﹣4a+5,当a=﹣3时,原式=12+5=17.点评:此题考查了整式的混合运算,涉及的知识有:平方差公式,完全平方公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(7分)解方程:=﹣5.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1),得﹣3=x﹣5(x﹣1),解得x=2(5分)检验,将x=2代入(x﹣1)=1≠0,∴x=2是原方程的解.(6分)点评:本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.(7分)(2013•宁波)天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.解答:解:由题意得,∠EAC=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=90°,在Rt△CDB中,tan∠CBD=,∴BD==17米,∵AD=CD=51米,∴AB=AD+BD=51+17.答:A,B之间的距离为(51+17)米.点评:本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.22.(9分)(2013•宁波)2013年5月7日浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的极差、众数和中位数分别是多少?(2)当0≤AQI≤50时,空气质量为优.求这11个城市当天的空气质量为优的频率;(3)求宁波、嘉兴、舟山、绍兴、台州五个城市当天的空气质量指数的平均数.考点:条形统计图;频数与频率;算术平均数;中位数;众数;极差.分析:(1)根据极差=最大值﹣最小值进行计算即可;根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.解答:解:(1)极差:80﹣37=43,众数:50,中位数:50;(2)这11个城市中当天的空气质量为优的有6个,这11个城市当天的空气质量为优的频率为;(3)=(50+60+57+37+55)=51.8.点评:此题主要考查了条形统计图,以及极差、众数、中位数、平均数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(9分)(2013•宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.考点:二次函数图象与几何变换;待定系数法求二次函数解析式.分析:(1)利用交点式得出y=a(x﹣1)(x﹣3),进而得出a求出的值,再利用配方法求出顶点坐标即可;(2)根据左加右减得出抛物线的解析式为y=﹣x2,进而得出答案.解答:解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),可设抛物线解析式为y=a(x﹣1)(x﹣3),把C(0,﹣3)代入得:3a=﹣3,解得:a=﹣1,故抛物线解析式为y=﹣(x﹣1)(x﹣3),即y=﹣x2+4x﹣3,∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标(2,1);(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,平移后抛物线的顶点为(0,0)落在直线y=﹣x上.点评:此题主要考查了二次函数的平移以及配方法求二次函数解析式顶点坐标以及交点式求二次函数解析式,根据平移性质得出平移后解析式是解题关键.24.(12分)(2013•宁波)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)4000 2500售价(元/部)4300 3000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为15.5万元和两种手机的销售利润为2.1万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金部超过16万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.解答:解:(1)设商场计划购进甲种手机x部,乙种手机y部,由题意,得,解得:,答:商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机减少a部,则乙种手机增加2a部,由题意,得0.4(20﹣a)+0.25(30+2a)≤16,解得:a≤5.设全部销售后获得的毛利润为W元,由题意,得W=0.03(20﹣a)+0.05(30+2a)=0.07a+2.1∵k=0.07>0,∴W随a的增大而增大,∴当a=5时,W最大=2.45.答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.45万元.点评:本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用及一次函数的性质的运用,解答本题时灵活运用一次函数的性质求解是关键.25.(12分)(2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.考点:四边形综合题.分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在上任意一点构成的四边形ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD的度数.解答:解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.如图5,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.点评:本题是一道四边形的综合试题,考查了和谐四边形的性质的运用,和谐四边形的判定,等边三角形的性质的运用,正方形的性质的运用,30°的直角三角形的性质的运用.解答如图6这种情况容易忽略,解答时合理运用分类讨论思想是关键.26.(14分)(2013•宁波)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q 于点F,连结EF,BF.学而提教育-中高考数学快速提分系统(),中高考数学快速提分第一品牌!“学而提教育” 最新创举!免费赠送100套中高考数学快速提分培训课程,任何学生、任何基础,都一定能通过它快速提高中高考数学成绩!(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.考点:一次函数综合题.分析:(1)设直线AB的函数解析式为y=kx+4,把(4,0)代入即可;(2)①先证出△BOD≌△COD,得出∠BOD=∠CDO,再根据∠CDO=∠ADP,即可得出∠BDE=∠ADP,②先连结PE,根据∠ADP=∠DEP+∠DPE,∠BDE=∠ABD+∠OAB,∠ADP=∠BDE,∠DEP=∠ABD,得出∠DPE=∠OAB,再证出∠DFE=∠DPE=45°,最后根据∠DEF=90°,得出△DEF是等腰直角三角形,从而求出DF=DE,即y=x;(3)当=2时,过点F作FH⊥OB于点H,则∠DBO=∠BFH,再证出△BOD∽△FHB,===2,得出FH=2,OD=2BH,再根据∠FHO=∠EOH=∠OEF=90°,得出四边形OEFH是矩形,OE=FH=2,EF=OH=4﹣OD,根据DE=EF,求出OD的长,从而得出直线CD的解析式为y=x+,最后根据求出点P的坐标即可;当=时,连结EB,先证出△DEF是等腰直角三角形,过点F作FG⊥OB于点G,同理可得△BOD∽△FGB,===,得出FG=8,OD=BG,再证出四边形OEFG是矩形,求出OD的值,再求出直线CD的解析式,最后根据即可求出点P的坐标.解答:解:(1)设直线AB的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=﹣1,则直线AB的函数解析式为y=﹣x+4;(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BOD≌△COD,∴∠BOD=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,∴DF=DE,即y=x;(3)当BD:BF=2:1时,过点F作FH⊥OB于点H,∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,∴∠DBO=∠BFH,又∵∠DOB=∠BHF=90°,∴△BOD∽△FHB,∴===2,∴FH=2,OD=2BH,∵∠FHO=∠EOH=∠OEF=90°,∴四边形OEFH是矩形,∴OE=FH=2,∴EF=OH=4﹣OD,∵DE=EF,∴2+OD=4﹣OD,解得:OD=,∴点D的坐标为(0,),∴直线CD的解析式为y=x+,由得:,则点P的坐标为(2,2);当=时,连结EB,同(2)①可得:∠ADB=∠EDP,而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,∵∠DEP=∠DPA,∴∠DBE=∠DAP=45°,∴△DEF是等腰直角三角形,过点F作FG⊥OB于点G,同理可得:△BOD∽△FGB,∴===,∴FG=8,OD=BG,∵∠FGO=∠GOE=∠OEF=90°,∴四边形OEFG是矩形,∴OE=FG=8,∴EF=OG=4+2OD,∵DE=EF,∴8﹣OD=4+2OD,OD=,∴点D的坐标为(0,﹣),直线CD的解析式为:y=﹣x﹣,由得:,∴点P的坐标为(8,﹣4),综上所述,点P的坐标为(2,2)或(8,﹣4).点评:此题考查了一次函数的综合,用到的知识点是一次函数、矩形的性质、圆的性质,关键是综合运用有关知识作出辅助线,列出方程组.。

相关文档
最新文档