变频器主回路结构图及故障经验
变频器基本结构与故障处理
变频器基本结构与故障处理各生产厂家生产的通用变频器,其主电路结构和控制电路并不完全相同,但基本的构造原理和主电路连接方式以及控制电路的基本功能都大同小异。
主要包括三个部分:一是主电路接线端,包括接工频电网的输入端(R、S、T),接电动机的频率、电压连续可调的输出端(U、V、W);二是控制端子,包括外部信号控制端子、变频器工作状态指示端子、变频器与微机或其他变频器的通信接口;三是操作面板,包括液晶显示屏和键盘。
变频器外观结构图举例:ABB公司ACS600变频器结构图通用变频器由主电路和控制电路组成,其基本构成如下图所示。
其中,给异步电动机提供调压调频电源的电力变换部分称为主电路,主电路包括整流器、中间直流环节(又称平波回路)和逆变器等。
通用变频器的基本构成1)整流器:电网侧的变流器为整流器,它的作用是把工频电源变换成直流电源。
三相交流电源一般需经过压敏电阻网络引入到整流桥的输入端。
压敏电阻网络的作用是吸收交流电网浪涌过电压,从而避免浪涌侵入,导致过电压而损坏变频器。
整流电路按其控制方式可以是直流电压源,也可以是直流电流源。
电压型变频器的整流电路属于不可控整流桥直流电压源,当电源线电压为380V时,整流器件的最大反向电压一般为1000V,最大整流电流为通用变频器额定电流的2倍。
智能功率模块的安装与应用:当将IPM模块安装到散热器上时,操作时应避免安装受力不均匀。
推荐使用平面度在150цm或更小的散热器,并避免单边应力过紧,要严格遵照如下图所示的推荐的螺钉安装拧转顺序操作,如果模块受力不均,会导致模块陶瓷绝缘破裂,致使模块损坏或留下潜在的故障隐患。
不要将端子和螺钉拧得过紧,在模块产品数据手册中一般会提供最大转矩值,在安装过程中为了符合指定力矩值,必须使用力矩扳手。
力最大限度地使基板与散热器接触以利于传热,散热器表面必须具有句皿或更小的表面光洁度,并应在传热界面使用导热硅胶。
选择使用的硅胶应能在工作温度内性能稳定,并且保证在装置寿命期内性能不发生变化。
三菱变频器结构,控制调节,故障维修,工作过程
第一章三菱变频器结构1.1 基本配置及相关结构变频器的使用需要以下的设备。
选择正确的外部设备,正确的连接以确保正确的操作。
不正确的系统配置和连接会导致变频器不能正常运行,显著地降低变频器的寿命,甚至会损坏变频器。
三菱变频器的外部基本配置如图1.1.1图1.1.1 三菱变频器的外部基本设备三菱变频器各部分说明如图1.1.2图 1.1.2 三菱变频器各部分三菱变频器的三菱变频器外观和结构及操作面板(FR-PA02-02)表面盖板展开图见图1.1.3和图1.1.4图1.1.3 三菱变频器外观和结构图1.1.4 操作面板(FR-PA02-02)表面盖板展开图1.2 三菱变频器端子接线图三菱变频器各端子的接线如图1.2.1图1.2.1 端子接线图*用操作面板(FR-DU04)或参数单元(FR-PU04)时没必要校正。
仅当频率计不在附近又需要用频率计校正时使用。
但是连接刻度校正阻抗后,频率计的指针有可能达不到满量程。
这时请和操作面板或参数单元校正共同使用。
1.2.1 主回路端子说明表1.1 主回路端子说明端子记号端子名称说明R、S、T 交流电源输入连接工频电源。
当使用高功率因数转换器时,确保这些端子不连接(FR-HC)U、 V、 W 变频器输出接三相鼠笼电机R1、 S1 控制回路电源与交流电源端子R,S连接。
在保持异常显示和异常输出时或当使用高功率因数转换器时(FR-HC)时,请拆下R-R1和S-S1之间的短路片,并提供外部电源到此端子。
P、PR 连接控制电阻器拆开端子PR-PX之间的短路片,在P-PR之间连接选件制动电阻器(FR-ABR)。
P、 N 连接制动单元连接选件FR-BU型制动单元或电源再生单元(FR-RC)或高功率因数转换器(FR-HC)。
P、 P1 连接改善功率因数DC电抗器拆开端子P-P1间的短路片,连接选件改善功能因数用电抗器(FR-BEL).PR、 PX 连接内部制动回路用短路片将PX-PR间短路时(出厂设定)内部制动回路便生效(7.5K以下装有)。
变频器电路设计、计算及一些经验
5
输入侧必须设计浪涌吸收电路, 吸收元件一般采用压敏电阻、 气体放电管或安规电容等, 整流桥的输出就近安装一只高频无感电容(MKP或CBB81) 。见图1中的Yd和Cr,压敏电阻 的耐压值一般选为820V,整流桥的输出吸收电容Cr与变频器功率有关,一般容值为0.22~ 2uF,耐压为1600V。 增加快熔。快熔的熔断时间可达3~5mS比较适合整流桥的保护,并能防止故障的扩大及 非常严重的后果(如烧毁变频器等) 。例:通讯电源、UPS、富士G11变频器。对于是否增加 快熔不同厂商有不同看法,本公司的未加。
电流额定值选择: 1、确定过载能力: k 2 IO IC 式中,k为电流过载倍数,IO为变频器额定输出电流, IC为模块标称电流值(连续DC)。 2、确定抗电流冲击能力: m 2 IO IC (1ms ) 式中,m为硬件电流保护倍数,IO为变频器额定输出电流, IC (1ms )为模块1mS标称电流
1 主回路设计、计算
图 1.1 变频器主回路 变频器主回路如图 1.1 所示,主要包括交流电抗器、输入压敏电阻、整流桥、直流电抗 器、直流充电电阻、直流电抗器、充电接触器、直流母线电容、电容均压电阻、逆变桥、 母线浪涌吸收电容,此外还可以安装制动单元和制动电阻。
1.1 主回路参数计算
变频器输出容量:
Po 3UoIo
式中 Uo 是输出电压,Io 是输出电流。 直流环节电压平均值:
UD
3 2
UAC 1.35UAC
式中,UAC 为三相输入线电压的有效值。由于母线电容的存在,直流电压一般认为等于输入 线电压的幅值,即:
UD 2UAC 1.414UAC
直流环节电流:
ID
6
变频器主电路的维修PPT课件
第3章 变频器主电路的维修 • 3.3 逆变电路的维修 • 3.3.1 维修目的 • 1. 维修原因:变频器输出出现了缺相、过流、电动机 异常报警跳闸,变频器不能正常工作等。 • 2. 故障原因:电动机有问题,造成过流;变频器逆变 电路有问题,造成缺相、输出电压不平衡等。
第3章 变频器主电路的维修 • 3. 维修方法:首先进行R、S、T电压、直流母线电压测 量,用以鉴别问题是出在外电路还是变频器。 • 4. 测量顺序:先测量RST三相电压(测接线桩),如正 常(三相都为380V,不缺相、不欠压),再测量直流 母线电压(测接线桩),分负载测量和空载测量。
第21页/共48页
第25页/共48页
第3章 变频器主电路的维修 • ②红表笔接R、S、T,黑表笔接N, 测量下桥臂。表针 摆动到刻度的3/5,正常,不摆动,断路;摆动到0Ω, 管子短路(该现象很少见,因短路电流很大,管子必然 烧断) • 由此可确定出VD4~VD6哪个管子损坏。
第26页/共48页
第3章 变频器主电路的维修 • 2)测量限流电阻的好坏 • 当继电器SL损坏,较长时间不能闭合,会造成直流母线 电压低,变频器报欠压;限流电阻损坏; • 制动电阻的制动选件短路损坏,造成启动时制动电阻并 联在直流母线上,将限流电阻烧坏。 • 限流电阻根据变频器型号不同,有的安装在上母线,有 的安装在下母线。
• 直流母线就是整流后得到的正负电压的两条电源线,正 电的一端叫正母线,负电的一端叫负母线。该母线有相 应的外接端子,连接制动电路,在故障测量时有着重要 的作用。
第8页/共48页
第3章 变频器主电路的维修
• 6.其他个别主电路
第9页/共48页
第3章 变频器主电路的维修
变频器常见故障及处理方法
变频器常见故障及处理方法公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]变频器常见故障及处理方法1 引言IGBT变频调速器,自研制开发投入市场以来,以其优越的调速性能,可观的节能量已为广大的电机用户所接受,正以每年大规模的销售量走向社会,为电力、建材、石油、化工、煤矿等各行业的发展提供了优质的服务,其用户群已遍布生产的各行各业,成为广大用户所喜爱的产品。
这里笔者结合自己在长期的售后服务工作中经历的一些常见故障及处理方法,提出来与广大的用户及维修工作者进行探讨,以期把该产品使用得更好,更切实的为顾客服务。
2 变频器运行中有故障代码显示的故障在变频器的使用说明书中,有一栏具体阐述了变频器有故障代码显示的故障,具体如表1所示。
注:表1中Io、Vo分别是输出额定电流、输入额定电压;Vin是输入电压。
现就这几种情况作一下分析。
表1 故障代码显示的故障短路保护若变频器运行当中出现短路保护,停机后显示“0”,说明是变频器内部或外部出现了短路因素。
这有以下几方面的原因:(1) 负载出现短路这种情况下如果把负载甩开,即将变频器与负载断开,空开变频器,变频器应工作正常。
这时我们用兆欧表(或称摇表)测量一下电机绝缘,电机绕组将对地短路,或电机线及接线端子板绝缘变差,此时应检查电机及附属设施。
(2) 变频器内部问题如果上述检测后负载无问题,变频器空开仍出现短路保护,这是变频器内部出现问题,应予以排除。
如图1所示。
图1 变频器主电路示意图在逆变桥的模块当中,若IGBT的某一个结击穿,都会形成短路保护,严重的可使桥臂击穿,甚至于送不上电,前面的断路器将跳闸。
这种情况一般只允许再送一次电,以免故障扩大,造成更大的损失,应联系厂家进行维修。
(3) 变频器内部干扰或检测电路有问题有些机子内部干扰也易造成此类问题,此时变频器并无太大的问题,只是不间断的、无规律的出现短路保护,即所谓的误保护,这就是干扰造成的。
干货!九例变频器主电路故障检修(带图)
干货!九例变频器主电路故障检修(带图)故障实例1[故障表现和诊断]一台正弦SINE303型7.5kW变频器,现场启动运行中,频率上升到7Hz左右,跳欠电压故障代码而停机。
故障复位后再行起动,电机才动一下,面板不显示了,机器像没通电一样,模变频器外壳,感觉很热。
测量R和+之间的正向电阻值,正常时应等于整流二极管的正向电阻(或正向导通电压值),现在测量值为无穷大,初步判断充电电阻断路。
[电路构成] 正弦SINE303型7.5kW变频器的主电路,如图1所示(将逆变功率电路省略未画),整流和储通电容之间,接有R92限流充电电阻和充电继电器REYAY1。
在三相电源输入端子之间,并联有压敏电阻元件和电容,以吸收电网侧的电压尖峰。
[故障分析和检修]拆机检查,充电电阻R92已烧断。
另行提供DC24V电源,单独给充电继电器REYAY1上电,细听其触点动作声音,由此判断REYAY1的工作状态。
在触点闭合状态,由电阻挡测量触点的接触电阻,未见异常,本着“眼见为实”的原则,拆光继电器外壳,观测触点状态,发现触点有烧灼现象,换新继电器和充电电阻后,故障排除。
图1 正弦SINE303型7.5kW变频器的整流、充电和储能电路故障实例2[故障表现和诊断] 台达DVP-1 22kW变频器,上电无反应,操作面板无显示,测量控制端子的24V电压为0。
判断为开关电源或开关电源的供电回路故障。
[电路构成]台达DVP-1 22kW变频器的主电路,由晶闸管半控桥,储能电路和逆变电路构成。
晶闸管3相半控桥的工作原理简述如下:变频器上电初始时期,VT1~VT3等3只晶闸管器件因无触发信号送入,处于截止状态。
R相输入交流电压(与S、T相构成通路)经D1半波整流、R1/R4限流、直流电抗器L为直流回路的储能电容充电,使主电路的P、N端子间的直流电压逐渐上升至一定值时,开关电源电路起振工作,主板MCU器件检测到直流回路的电压值上升至某一阈值后,从DJP1的23端子输出低电平的“晶闸管开通信号”,光耦合器DPH7由此产生输入侧电流,输出侧内部光敏晶体管导通,将振荡器DU2由3脚输出的脉冲信号输入晶体管DQ14的基极,经复合放大器DQ14、DQ15进行功率放大,由二极管DD16、DD30、DD31将触发脉冲信号分为3路,输入至晶闸管VT1~VT3等3只晶闸管的栅阴结,使VT1~VT3等3只晶闸管同时开通,由3只晶闸管和3只整流二极管构成的半控桥电路“变身为”3相桥式整流电路。
一张图看懂变频器内部结构,绝对不吹牛
一张图看懂变频器内部结构,绝对不吹牛
低压变频器一般都是如下图的结构,只是有些品牌是选配的、有些是标配的。
进线端子、整流桥、储能电容、预充电回路、逆变器、电流互感器、出线端子是必配的,必配的东东也是各有各招,但是原理是基本一样的。
然后要实现变频,还需要控制电源、主控制板;一般有控制电源模块或电路,大多数控制电源取自直流母线上,这样做有个好处就是
外网掉电后--还有直流电供电--保存故障记录等参数,同时也可以完成电压检测的作用了,这样失压过压保护也有了。
当然电子元件的发热,特别是主回路的是很严重的,所以散热板、散热风扇也是必须的,所以就有散热风扇控制器--有直接取交流的,也有取直流的,直流的比较多。
既然会发热,测温元件也是有的。
变频器电路全图及说明
《康沃CVF-G-5.5kW变频器》主电路图《康沃CVF-G-5.5kW变频器》主电路图说这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。
除了模块和电容,没有其它东西了。
在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。
小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。
此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。
内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。
而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。
要高了价,用户不修了,要低的价,有一定的修理风险。
如同鸡肋,食之无味,弃之可惜。
修理风险也大。
大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。
而大功率变频器的维修收费上,相应空间也大呀。
修一台大功率机器,比修小的三台,都合算啊。
因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。
其实这种强Y充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。
故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。
变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。
充电电阻起了一个缓冲作用,实施了一个安全充电的过程。
当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。
BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。
虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。
变频器主回路简图详解
变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。
交-直部分整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。
对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。
(二)变频器元件作用电容C1:是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波,变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。
压敏电阻:有三个作用,一过电压保护,二耐雷击要求,三安规测试需要.热敏电阻:过热保护霍尔:安装在UVW的其中二相,用于检测输出电流值。
选用时额定电流约为电机额定电流的2倍左右。
充电电阻:作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。
如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。
一般而言变频器的功率越大,充电电阻越小。
充电电阻的选择范围一般为:10-300Ω。
储能电容:又叫电解电容,在充电电路中主要作用为储能和滤波。
PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。
容量选择≥60uf/A均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。
C2电容;吸收电容,主要作用为吸收IGBT的过流与过压能量。
(2)直-交部分VT1-VT6逆变管(IGBT绝缘栅双极型功率管):构成逆变电路的主要器件,也是变频器的核心元件。
变频器工作原理图(维修用)
变频器维修工作原理要想做好变频器维修,了解变频器基础知识当然是相当重要的,但是对于变频器维修,仅了解以上基本电路还远远不够的,还须深刻了解主回路电路,主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。
下图是它的结构图。
图1.1变频器基本电路图分析目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。
图1.21)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。
同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。
为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。
另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。
因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。
变频器主电路图
变频器主电路图Prepared on 21 November 2021在分析变频器的故障时,有时如果知道变频器的电路原理,可以能更好地分析故障发生的原因。
主电路如图1所示:一、交-直变换部分1、VD1~VD6组成三相整流桥,将交流变换为直流。
如三相线电压为UL,则整流后的直流电压UD为:UD=2、滤波电容器CF作用:(1)滤除全波整流后的电压纹波;(2)当负载变化时,使直流电压保持平衡。
因为受电容量和耐压的限制,滤波电路通常由若干个电容器并联成一组,又由两个电容器组串联而成。
如图中的CF1和CF2。
由于两组电容特性不可能完全相同,在每组电容组上并联一个阻值相等的分压电阻RC1和RC2。
3、限流电阻RL和开关SLRL作用:变频器刚合上闸瞬间冲击电流比较大,其作用就是在合上闸后的一段时间内,电流流经RL,限制冲击电流,将电容CF的充电电流限制在一定范围内。
SL作用:当CF充电到一定电压,SL闭合,将RL短路。
一些变频器使用晶闸管代替(如虚线所示)。
4、电源指示HL作用:除作为变频器通电指示外,还作为变频器断电后,变频器是否有电的指示(灯灭后才能进行拆线等操作)。
二、能耗电路部分1、制动电阻RB 变频器在频率下降的过程中,将处于再生制动状态,回馈的电能将存贮在电容CF中,使直流电压不断上升,甚至达到十分危险的程度。
RB的作用就是将这部分回馈能量消耗掉。
一些变频器此电阻是外接的,都有外接端子(如DB+,DB-)。
2、制动单元VB 由GTR或IGBT及其驱动电路构成。
其作用是为放电电流IB 流经RB提供通路。
三、直-交变换部分1、逆变管V1~V6组成逆变桥,把VD1~VD6整流的直流电逆变为交流电。
这是变频器的核心部分。
常用的逆变管见:《》。
2、续流二极管VD7~VD12作用:(1)电机是感性负载,其电流中有无功分量,为无功电流返回直流电源提供“通道”;(2)频率下降,电机处于再生制动状态时,再生电流通过VD7~VD12整流后返回给直流电路;(3)V1~V6逆变过程中,同一桥臂的两个逆变管不停地处于导通和截止状态。
变频器主回路结构图及故障经验18页word
变频器主回路结构图及故障经验2011-04-27 18:54:59| 分类:默认分类阅读6 评论0 字号:大中小订阅本文引用自fx1s《变频器主回路结构图及故障经验》下面先来说说变频器硬件故障如何判断技术人员凭借数字式万用表根据上图可简单判断主回路器件是否损坏。
(主要是整流桥,IGBT,IPM)为了人身安全,必须确保机器断电,并拆除输入电源线R 、S、T和输出线U、V、W后放可操作!首先把万用表打到“二级管”档,然后通过万用表的红色表笔和黑色表笔按以下步骤检测:1、黑色表笔接触直流母线的负极P(+),红色表笔依次接触R、S、T,记录万用表上的显示值;然后再把红色表笔接触N(-),黑色表笔依次接触R、S、T,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器二极管整流或软启电阻无问题,反之相应位置的整流模块或软启电阻损坏,现象:无显示。
2、红色表笔接触直流母线的负极P(+),黑色表笔依次接触U、V、W,记录万用表上的显示值;然后再把黑色表笔接触N(-),红色表笔依次接触U、V、W,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器IGBT逆变模块无问题,反之相应位置的IGBT逆变模块损坏,现象:无输出或报故障。
故障经验一。
变频器老是跳硬件保护“OCU1”故障,赶到现场后我静态测试机器无问题,主线路、控制线路也完好。
我用万用表量零线和地线是通的,问电工才知道他们工厂的零地是共用的。
一般变频器接地时,如果该工厂零线与地线是共用的话,最好另处取地线,把地线取下后故障解除。
故障分析:因为该厂的零线与地线是共用的,变频器接地线也等于接了零线,零线一般会传播干扰信号。
而我们的变频器报“OCU1”故障有如下几种情况:1。
变频器三相输出侧有短路现象;2。
逆变模块损坏;3。
外部干扰信号进入变频器。
由于第一与第二种原因正常排除,就只有第三种外部干扰信号,干扰信号是从地线进入的,所以把地线拆除,就切断了干扰源。
变频器维修图解
要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。
下面我们就来分享一下变频器维修基础知识。
大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动!变频器维修入门--电路分析图对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。
主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。
图2.1是它的结构图。
变频器基本电路图分析目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。
1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。
同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。
为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。
另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。
因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
安川变频器主电路图及图说
D9
R29 2.2k R30 2k D13 R43 3k C1 0.33 R41 3.3k C18 R42 3k D14
R44 1.2k
U4 TLP250 1 Nc 2 IN+ Vcc 8 Nc 7 OUT 6 GND 5
R31 75R Vcc GF/OC Vss
Q8 C3694 R40 5R3W Q9 A1444 2CN
《616G3-55kW 安川变频器》主电路图说
所有变频器主电路的结构都是相似的,乃至于是相同的。而安川变频器的主 电路和台湾东元变频器的主电路更是如出一辙。稍后我观察到两机的控制面板是 一样的,控制面板和参数的设置也是相似的。发现两种从硬件到软件都相似甚至 于是相同的机器,给安装调试与维修,都会带来很多的方便。只要手头有一种技 术资料参考,就可以调试和维修二种设备了。 打开这两种大功率变频器的外壳,检查主电路时,安装于逆变模块上方(与 模块并联的)的六只长方形盒体状的大东西,首先会引起我们的兴趣——与每相 上臂 IGBT 管子并联的是型号为 MS1250D225P,与下臂 IGBT 管子并联的型号为 MS1250D225N。用句网络上的话说:这究竟是个什么东东?安装于此处意欲何为 呢? 大凡并联在 IGBT 管子上的东西,或电容或阻容网络,均是为保护 IGBT 管子 而设置的。即当该管子截止时,快速消耗掉反向电压所形成的能量,提供一个反 向电流的通路,以保护 IGBT 管子不承受(实质上是使其承受得少一点罢了)反压 的冲击。众所周知,无论是双极型或是场效应器件,在承受正向电压上往往有一 定的富裕量, 但对于反向电压的耐受能力却是极其脆弱的。 所以在 IGBT 管子上并 联的一嘟喽一嘟喽的东西,可以说都是完成此一消耗反压任务的。 需要说明的是:MS1250D225P 和 MS1250D225N 的内部电路,笔者并未打开实 物进行验证,模块损坏后,这两种器件往往都是完好的,所以也不便将其破坏后 拆解。上图的内部电路是据测量揣摩画出的,仅为读者朋友提供一个参考。我查 找了大量资料和在网络上进行了搜寻,均未找到此元件的资料。从揣测电路的基 础上进行原理上的分析,显然容易产生误导。故暂时省略对其原理的解析。 但在模块上并联了此类元件后,将在检修上给我们带来新的体验。见下述。 按照常规的检修方法,我们在更换损坏的模块后,进行通电试验前,须将上
三电平变频器主回路及故障分析PPT学习教案
会计学
1
目录
ASCS三电平变频器主回路讲解 ASCS-6调试步骤及注意事项 变频器常见故障分析
第1页/共22页
双三电平变频器主回路
二极管箝位型背靠背双三电平主回路结构示意图:
第2页/共22页
双三电平变频器主回路
整流单元 (1)提供稳定的可控直流母线电压; (2)有源前端整流电路,方便电能的双向流动; (3)控制网侧功率因数为1。
第10页/共22页
ASCS-6转子双馈调试步骤
A相电压 A相电流 B相电压 B相电流
第11页/共22页
ASCS-6转子双馈调试步骤
(2)相序正确以后,点动可控整流; 瞬间开通并关断整流,观察母线电压、Id、Iq等波形,如果波形
有震荡、发散、波动等情况,根据实际情况调整PI参数,直到波 形稳定平滑,如下页图示:
逆变脉冲触发板 DSP、CPLD、A/D、D/A等等 SVPWM运算,通过光纤触发逆变单元,实现逆变的功能。
第7页/共22页
ASCS-6转子双馈调试步骤
转子双馈系统示意图
第8页/共22页
ASCS-6转子双馈调试步骤
安装注意事项 (1)动力线相序问题 高压柜、变压器、电抗器、电机定子、电机转子等从进线到出线都要保持相序的一致性, 如进线为黄绿红,出线也要为黄绿红。 (2)电机轴编码器问题 同轴性:尽量保持转子轴和编码器轴在同一水平线上; 稳定性:编码器安装要稳固; 屏蔽性:编码器信号线屏蔽层在电机侧接地,并且该信号电缆 尽量远离其他电缆,尤其是动力电缆。 (3)接地问题 所有柜体与槽钢点焊,通过接地母排接地; 接地极最好重新做,挖的要深,钢板面积要大,并埋盐浇水。
第12页/共22页
ASCS-6转子双馈调试步骤
变频器工作原理图解
变频器工作原理图解1 变频器的工作原理变频器分为 1 交---交型 输入是交流,输出也是交流将工频交流电直接转换成频率、电压均可控制的交流,又称 直接式变频器2 交—直---交型 输入是交流,变成直流 再变成交流输出将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电又称为间接变频器。
多数情况都是交直交型的变频器。
2 变频器的组成由主电路和控制电路组成主电路 由整流器 中间直流环节 逆变器 组成先看主电路原理图三相工频交流电 经过VD1 ~ VD6 整流后, 正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。
经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。
由于一个电容的耐压有限,所以把两个电容串起来用。
耐压就提高了一倍。
又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。
继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。
接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。
我们知道,由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。
当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。
当电机较大时,还可并联外接电阻。
一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下面先来说说变频器硬件故障如何判断技术人员凭借数字式万用表根据上图可简单判断主回路器件是否损坏。
(主要是整流桥,IGBT,IPM)为了人身安全,必须确保机器断电,并拆除输入电源线R 、S、T和输出线U、V、W后放可操作!首先把万用表打到“二级管”档,然后通过万用表的红色表笔和黑色表笔按以下步骤检测:1、黑色表笔接触直流母线的负极P(+),红色表笔依次接触R、S、T,记录万用表上的显示值;然后再把红色表笔接触N(-),黑色表笔依次接触R、S、T,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器二极管整流或软启电阻无问题,反之相应位置的整流模块或软启电阻损坏,现象:无显示。
2、红色表笔接触直流母线的负极P(+),黑色表笔依次接触U、V、W,记录万用表上的显示值;然后再把黑色表笔接触N(-),红色表笔依次接触U、V、W,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器IGBT逆变模块无问题,反之相应位置的IGBT逆变模块损坏,现象:无输出或报故障。
故障经验一。
变频器老是跳硬件保护“OCU1”故障,赶到现场后我静态测试机器无问题,主线路、控制线路也完好。
我用万用表量零线和地线是通的,问电工才知道他们工厂的零地是共用的。
一般变频器接地时,如果该工厂零线与地线是共用的话,最好另处取地线,把地线取下后故障解除。
故障分析:因为该厂的零线与地线是共用的,变频器接地线也等于接了零线,零线一般会传播干扰信号。
而我们的变频器报“OCU1”故障有如下几种情况:1。
变频器三相输出侧有短路现象;2。
逆变模块损坏;3。
外部干扰信号进入变频器。
由于第一与第二种原因正常排除,就只有第三种外部干扰信号,干扰信号是从地线进入的,所以把地线拆除,就切断了干扰源。
这时运行变频器恢复正常。
二。
调试一台锅炉引风机55KW的是“OCU1”,通常我们这种“OCU1”故障是:外部干扰,三相输出有短路现象,机器内部故障问题。
原因是机器一启动到运行到10HZ左右就报,(变频器是用的自由停车,风机惯性也比较大)用户要经常启停变频器。
这说明机器问题不太,是干扰问题,(因为电机线放了几十M长,而且控制线和主电源线是混合在一起的)停下变频器半个小时后,观查引风机还在自转。
我就把变频器参数变为“先制动,再启动”(F0-011=1 当然还有一些参数要改,大家可以进我们网站下载技术手册。
)然后再启动变频器,故障还有是没有解除,用了几种方案后,最后我们把启动频率提高到3HZ (F0-012=3)问题就解决了。
真是什么问题都有呀!三,上位机控制,上位机给启动指令时能启动,但给停止指令时就不能停机。
具体如下,40台11-22KW的风机节能改造,每台变频器都用一个上位机DDC模块控制(加拿大生产)。
上位机主要是监测变频器的故障报警、过滤网报警、频率、启停、温度等。
其它都正常,就是启停时有麻烦。
后来到现场检测,故障真是这样,然后查看上位机DDC模块的说明书,最后发现是DDC模块的干接点不接受直流24V,只接受交流24V或者是无源信号都行,所以才会四。
也是一台变频器与上位机联机控制的变频器,故障是上位机给运行信号,变频器不接收,其它都正常,而变频器本身就能运行起来,只要一联上位机就不行。
我要用户技术员,把控制线路再好好的检查一下,那技术员硬说很好,检查了好几篇都发现什么问题。
要求我们公司派技术支持. 后来我们技术员赶到现场处理,检查控制线路,就发现一条控制线与另外一条控制线调换了。
难怪不接收指令.其实只有有耐心,什么问题都能查出来.干扰问题:也找不到好的处理方法.也没有专业的技术员.只好要求我们技术员赶到现场处理,我们检测了变频器,PLC,电源,设备均正常.初步认定是干扰引起.在PLC的电源模块及输入/输出的电源线上接入滤波器,问题还是得不到明显的改善,后来把变频器和PLC的电源线,控制线分开走线,这时故障才解除..2、,由三台变频器组成的调速系统(装在同一个变频柜里),出现如下情况:用外接的电位器调频率时,发现异常,变频器转速产生波动.频率波动也比较大.然后就会报故障. 我们到现场后检查了也是查外围电源,负载,电位器,控制线路都正常.后上电运行变频器,在调试变频器时,当一台单独运行时,工作正常不报故障,当三台同时运行时就会出现异常.这就是干扰引起啊! 对策:将三台变频器移出变频柜,分别装在一个单独的变频柜里,电位器也分开,然后改用屏蔽线。
最后干扰清除,三台都能同时运行.3、多段速运行。
(3。
7KW)变频器单独运行印刷机很正常,当与印刷机的送纸机同步运行时,报软件过流故障。
代理商技术员调了一天,没有调好,就认定是我们的机器有问题,不能用要退货。
后来到现场维护处理,检测了线路,变频器都无问题。
看了一下设备,印刷机里有两台电机,一台主电机,(就是改造的3。
7KW的),还有一台是给送纸机用的,起上下降作用。
变频器单独运行印刷机正常,就是与送纸接地也就是接在印刷机设备上,所以根本没有接地,认定是干扰故障。
处理对策:A,把所有控制线更换成屏蔽线,加磁环;b,把电源线加磁环;c,把设备和变频器分别接地,最后故障解除。
线路故障1。
伦茨5.5KW的变频器老跳故障。
机器发出去检修了两次都没有问题,拿回来用就是不行,维修人员到现在也没看出什么问题,刚好碰上了客户跟我一讲,引用了我的兴趣想过去看看。
到现在观看了一下现场,这台机器是接上位机控制的变频器;控制线路多;现场环境温度也很高,站一会就冒汗;机器用了好几年了。
跟据这几点,我怀疑是线路有短路。
我把所有的控制线路去掉,不带负载;空载运行半小时正常,接上负载后也正常,后接上控制线就报故障了。
这让我心里有点低了,把所有控制线拆下测量,最后发现有两根线老化短路,其它的线也有不同的老化,只是没有这么严重。
把所有控制线换掉,运行变频器一切都很正常。
2,110KW变频器用在空压机上,用PID控制。
最近上电就没有显示,没有24V,其它都正常。
代理商的技术员到现场更换了电路板还是不行,变频器改造时又没有改旁路,客户急得很,打了好几个电话到公司。
赶到现场后检测变频器正常,把控制线去掉后,单独运行变频器完好。
不过24V电路被烧坏,这肯定也是短路造成的。
用户控制线走线不是靠墙走,而是从地上走线,也很随便,地上也较乱。
这是一个低极错误。
把控制线拉去来测量,发现有多处损坏而短路,而且都是被硬物压坏的。
3.变频器接地和接零不正常(变频器是带工频转换的,所以要接零线),现在农村电网的零线与地是共一的,而变频器接了零线,就不应该接地了。
由于雷雨天气比较多,变频坏的那天刚好有下雨打雷。
问题就可能出在这里了,解决方案,把地线去掉不接,只接零线,原因已经解释了,建议用户外加了一个防雷单元,根用户交待一些变频器使用事项。
4。
空开跳闸,有时是某一台变频起动就跳闸,有时是两台起动跳闸。
检查所有接线、变频参数设定及硬件都没用问题,到厂家总空开处看发现他们的空开是临时借用的,地线和中线短接且有漏电保护作用,只有30mA。
而技术使用手册上标明每台变频都会有不大于30mA的漏电流。
将对地漏电保护线拆除就好了。
5,,过载时保护,空载运行就没有问题,量三相也平衡。
检查了外部线路,操作台都正常,变频器三相也感器阻值是正常的,可能就是霍尔线不良了,取下来用万用表测量,发现还真是有一根信号线断了,用电烙铁焊好后运行变频器就正常了。
此变频器就安装在电机旁边,可能是振动引起的吧!当然变频器安装在电机旁边本来就是不合理的,希望大家注意了。
跟据这个现场经验,建议我们的用户在安装变频器时,对线路走线,安装都要考虑是否符合安全规范,有条件最好套PV管或铜、铝、铁管,这样即可保护好线路又可以屏蔽,如有条件建议安装旁路,这样就避免不少麻烦。
电保护器更换为变频器专用漏电保护器,市面上有卖变频器专用漏电保护器的。
方法三:增大设备负载,也就是马达负载,变频器在启动时漏电流就不会很大了。
方法四:把漏电保护器短接掉。
7,过流“OC”保护故障,“OC”故障有几下几种情况:1。
机器负载输出侧有短路;2。
负载太重,加速时间太短;3。
变频器模块损坏;4。
外部干扰信号等。
这几个现象用户说有考虑到,负载工频用没有关系,加速时间已设定到60S,变频器也加装了电抗器,最重要的一点就是变频器不带负载运行正常。
听到这些我郁闷半天,最后我就问用户自己有没有维修过变频器,或者说运行过变频器没有。
过了一会儿用户回电给我说,这台变频器被电工换过主控板,由于这种75KW的变频器显示不正常,电工就从一台备用机37KW 变频器机器上拆下来的更换上去的。
由于我们公司变频器37KW和75KW的主控板是一样的,只是参数设定不一样,电工就很自信的更换上去,37KW的变频器参数与37KW电机参数相符合,与75KW电机参数肯定不相符如(电流、功率、极对数、转数、电流采样等)。
所以用在75KW上肯定会报“OC”故障。
8,110KW的变频器,温度过高引起变频器炸,电解电容炸爆,现在是夏天来了,好多地方高温不断,我们应该多注意呀!如果自己的变频器是用在温度过高的地方,想法改善一下要作环境为上策。
9。
3。
7KW的变频器用在4KW的钟织纺织机上,运行几个小时后,电机不转;但变频器还有频率显示,而且还不报故障,就是电机不转。
以为是变频器有问题,后又更换了一台新的,故障依然如此。
以前是装的‘XX’品牌的变频器损坏了,现改装我们的变频器遇到这种情况,真是难见的问题呀!后来发现按正转按钮变频器运行时,正转和反转指示灯都亮;这就奇怪了,难道又是干扰引起,我们换成屏蔽线后,一切正常。
10,零线和地线区别?1.零线和地线这两个是不同的概念,不是一回事。
2.地线的对地电位为零。
使用的电器的最近点接地。
3.零线的对地电位不一定为零。
零线的最近接地点是在变电所或者供电的变压器处。
4.零线有时候会电人,在什么时候呢?当你的电炉子不发热了,千万不要以为没电了,不会电人,那就错啦!5.地线不会电人,除非很糟的情况,设计者不懂,或者胡乱搞的产品!6.在你的电路中有零线和地线的话,你会发现有一个高耐压电容在他们中间。
11,变频器报"OCU"过压故障,这可能是变频器里面最常见的故障了。
1.首先要排除由于参数问题而导致的故障(例如限电流参数,加速时间过短都有可能导致过电流的产生);2.然后我们就判断是否电流检测电路出问题了(如霍尔传感器,霍尔线故障。
变频器输出侧是否短路)。
3.电网电压是否太高;4.外部有干扰信号进入。
对于PLC干扰问题提出几点处理方法:1)良好的接地。
电机等强电控制系统的接地线必须通过接地汇流排可靠接地,微机控制板的屏蔽地,应单独接地。
对于某些干扰严重的场合,建议将传感器、I/0接口屏蔽层与控制板的控制地相连。