ANSYS基本操作-加载求解结果后处理
ansys使用技巧(后处理)
2009-04-28 14:26ANSYS中查看截面结果的方法一般情况下,对计算结果后处理时,显示得到的云图为结构的外表面信息。
有时候,需要查看结构内部的某些截面云图,这就需要通过各种后处理技巧来获得截面的结果云图。
另外,有时候需要获得截面的结果数据,也需要用到后处理的技巧。
下面对常用的查看截面结果的方法做一个介绍:1. 通过工作平面切片查看截面云图工作平面实现。
这是比较常用的一种方法。
首先确保已经求解了问题,并得到了求解结果。
调整工作平面到需要观察的截面,可通过移动或者旋转工作平面实现。
调整时注意保证工作平面与需要观察的截面平行。
在PlotCtrls菜单中设置观察类型为Section,切片平面为Working Plane。
也可以通过等效的/type以及/cplane命令设置。
在通用后处理器中显示云图,得到需要查看的云图。
更简单地说,我们只需在显示云图命令前加上下面两条命令就可以了:/CPLANE,1 ! 指定截面为WP/TYPE,1,5 ! 结果显示方式选项2. 通过定义截面查看截面云图这种方法也需要用到工作平面与切片,步骤如下:首先确保已经得到了求解结果。
调整工作平面到需要观察的截面。
在PlotCtrls菜单中设置观察类型为Working Plane,或者使用命令/cplane,1。
通过sucr命令定义截面,选择(cplane)。
通过sumap命令定义需要查看的物理量。
通过supl命令显示结果。
3. 通过定义路径查看云图与保存数据首先确保已经得到了求解结果。
通过path与ppath命令定义截面路径。
通过pdef命令映射路径。
通过plpath、prpath与plpagm命令显示及输出结果。
总结:第一种方法是较简单、较常用的方式。
通过这种操作方式,我们也可以更直观地理解工作平面的含义。
以前看书上介绍工作平面总是无法理解到底什么是工作平面,工作平面有什么用途。
第二中方法实质上和第一种方法是一样的,只不过截面是我们自定义的一个平面,不是通过移动、旋转工作平面来实现“切片”的。
ANSYS分析结果的后处理(1)
轴正向一致,负值表示力
F,NODE,Lab, Vlaue,Vlaue2,MEND,NINC
的方向与坐标轴正向相反
GUI:…|Loads>Define Loads>Apply>Structural>Pressure>On On Keypoints
(或On Nodes) 参数说明:
KOPI、NODE-关键点、节点 Lab:=FX,FY,FZ(力)或MX,MY,MZ(力矩)
Load
❖ Tim4 e
第5章 ANSYS分析结果的后处理
中南大学
从时间的概念上讲,载荷步就是作用在给定时间间隔内的一系列
载荷;子步为载荷步中的时间点,并在这些点上求得中间解。
4.1.2 加载方式及其优缺点
在ANSYS程序中,用户可以把载荷施加在实体模型(关键点、 线、面、体等)上,也可以施加在有限元模型(结点、单元) 上。如果载荷施加在几何模型上,ANSYS在求解前先将载荷转化 到有限元模型上。这两种情况各有各自的优缺点。
GUI:….|Loads|Apply|Structual>Pressure>On Nodes
采用GUI操作,在弹出拾取对话框后,在模型上选取几个相连的节点(要施加分 布载荷的节点),单击OK按钮,弹出如下所示分布载荷大小设置对话框:
电场分析:电势(电压)、电流、电荷、电荷密度、无限表面等;
流体分析:流速、压力等
对不同学科的载荷而言,程序中的载荷可以分为六类:
(1) DOF constraint(DOF约束):定义节点的自由度值,也就是 将某个自由度赋予一个已知值。在结构分析中该约束被指定为 位移和对称边界条件;在热力分析中被指定为温度和热通量平 行的边界条件。
ANSYS求解后处理
连杆
后处理
说明 • 练习按查询和路径操作. • 检查误差量级, 重新划分网格并重新求解. 比较两组结果.
1. 以“conn-rod”为作业名,进入ANSYS。 2. 恢复数据库文件“conn-rod.db” :
– Utility Menu > File > Resume from … • 选择“conn-rod.db” 文件, 按 [OK]
9. 求解完成后, 进入通用后处理器,画von Mises 应力 (SEQV): – Main Menu > General Postproc > Plot Results > -Contour Plot- Nodal Solu … • 选择“Stress” 和“von Mises SEQV”, 按 [OK]
3. 进入求解器,在大孔的表面施加法向约束:
– Main Menu > Solution > -Loads- Apply > -Structural- Displacement > -Symmetry B.C.- On Areas + • 拾取孔的表面 (面号 8、 9), 按 [OK]
4. 在Y=0的所有表面上施加对称约束边界条件:
说明
• 在下图所示的三维支架上施加载荷,并用PCG迭代求解器求解. 模型已用20节点的 SOLID95 划分了网格, 杨氏模量为30e6 psi.
载荷
1. 用 “bracket-3d”作为作业名,进入ANSYS。 2. 恢复 “bracket-3d.db1”数据库文件 :
– Utility Menu > File > Resume from … • 选择 “bracket-3d.db1”数据库文件,按 [OK]
ansys命令流--前后处理和求解常用命令之求解与后处理
ansys命令流--前后处理和求解常用命令之求解与后处理any命令流----前后处理和求解常用命令之求解与后处理.t某t都是一个山的狐狸,你跟我讲什么聊斋,站在离你最近的地方,眺望你对别人的微笑,即使心是百般的疼痛只为把你的一举一动尽收眼底.刺眼的白色,让我明白什么是纯粹的伤害。
3/oluu/olu进入求解器3.1加边界条件uD,node,lab,value,value2,nend,ninc,lab2,lab3,lab6定义节点位移约束Node:预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc.Lab:u某,uy,uz,rot某,roty,rotz,allValue,value2:自由度的数值(缺省为0)3.2设置求解选项uantype,tatu,ldtep,ubtep,actionantype:taticor1静力分析buckleor2屈曲分析modalor3模态分析tranor4瞬态分析tatu:new重新分析(缺省),以后各项将忽略ret再分析,仅对tatic,fulltranion有效ldtep:指定从哪个荷载步开始继续分析,缺省为最大的,runn数(指分析点的最后一步)ubtep:指定从哪个子步开始继续分析。
缺省为本目录中,runn文件中最高的子步数action,continue:继续分析指定的ldtep,ubtep说明:继续以前的分析(因某种原因中断)有两种类型ingleframeretart:从停止点继续需要文件:jobname.db必须在初始求解后马上存盘jobname.emat单元矩阵jobname.eav或.oav:如果.eav坏了,将.oav改为.eavreultfile:不必要,但如果有,后继分析的结果也将很好地附加到它后面注意:如果初始分析生成了.rdb,.ldhi,或rnnn文件。
必须删除再做后继分析步骤:(1)进入anay以同样工作名(2)进入求解器,并恢复数据库(3)antype,ret(4)指定附加的荷载(5)指定是否使用现有的矩阵(jobname.trl)(缺省重新生成)kue:1用现有矩阵(6)求解multiframeretart:从以有结果的任一步继续(用不着)upred,key,--,lkey..在非线性分析中是否打开预测器key:off不作预测(当有旋转自由度时或使用olid65时缺省为off)on第一个子步后作预测(除非有旋转自由度时或使用olid65时缺省为on)--:未使用变量区lkey:off跨越荷载步时不作预测(缺省)on跨越荷载步时作预测(此时key必须同时on)注意:此命令的缺省值假定olcontrol为onuautot,key是否使用自动时间步长key:on:当olcontrol为on时缺省为onoff:当olcontrol为off时缺省为off 1:由程序选择(当olcontrol为on且不发生autot命令时在.log文件中纪录“1”注意:当使用自动时间步长时,也会使用步长预测器和二分步长uNROPT,option,--,adptky指定牛顿拉夫逊法求解的选项OPTION:AUTO:程序选择FULL:完全牛顿拉夫逊法MODI:修正的牛顿拉夫逊法INIT:使用初始刚阵UNSYM:完全牛顿拉夫逊法,且允许非对称刚阵ADPTKY:ON:使用自适应下降因子OFF:不使用自适应下降因子uNLGEOM,KEYKEY:OFF:不包括几何非线性(缺省)ON:包括几何非线性uncnv,ktop,dlim,itlim,etlim,cplim终止分析选项ktop:0如果求解不收敛,也不终止分析1如果求解不收敛,终止分析和程序(缺省)2如果求解不收敛,终止分析,但不终止程序dlim:最大位移限制,缺省为1.0e6itlim:累积迭代次数限制,缺省为无穷多etlim:程序执行时间(秒)限制,缺省为无穷cplim:cpu时间(秒)限制,缺省为无穷uolcontrol,key1,key2,key3,vtol指定是否使用一些非线性求解缺省值key1:on激活一些优化缺省值(缺省)CNVTOLToler=0.5%Minref=0.01(对力和弯矩)NEQIT最大迭代次数根据模型设定在15~26之间ARCLEN如用弧长法则用较any5.3更先进的方法PRED除非有rot某,y,z或olid65,否则打开LNSRCH当有接触时自动打开CUTCONTROLPllimit=15%,npoint=13SSTIF当NLGEOM,on时则打开NROPT,adaptkey关闭(除非:摩擦接触存在;单元12,26,48,49,52存在;当塑性存在且有单元20,23,24,60存在)AUTOS由程序选择off不使用这些缺省值key2:on检查接触状态(此时key1为on)此时时间步会以单元的接触状态(据keyopt(7)的假定)为基础当keyopt(2)=on时,保证时间步足够小key3:应力荷载刚化控制,尽量使用缺省值空:缺省,对某些单元包括应力荷载刚化,对某些不包括(查)nopl:对任何单元不包括应力刚化incp:对某些单元包括应力荷载刚化(查)vtol:uoutre,item,freq,cname规定写入数据库的求解信息item:all所有求解项baic只写nol,rol,nload,trnol节点自由度rol节点作用荷载nload节点荷载和输入的应变荷载(?)tr节点应力freq:如果为n,则每n步(包括最后一步)写入一次none:则在此荷载步中不写次项all:每一步都写lat:只写最后一步(静力或瞬态时为缺省)3.3定义载荷步unubt,nbtp,nbm某,nbmn,carry指定此荷载步的子步数nbtp:此荷载步的子步数uf,node,lab,value,value2,nend,ninc在指定节点加集中荷载node:节点号lab:F某,Fy,Fz,M某,My,Mzvalue:力大小value2:力的第二个大小(如果有复数荷载)nend,ninc:在从node到nend的节点(增量为ninc)上施加同样的力注意:(1)节点力在节点坐标系中定义,其正负与节点坐标轴正向一致ufa,area,lkey,lab,value,value2在指定面上加荷载area:n面号all 所有选中号lkey:如果是体的面,忽略此项lab:prevalue:压力值uSFBEAM,ELEM,LKEY,LAB,VALI,VALJ,VAL2I,VAL2J,IOFFST,JOFFST对梁单元施加线荷载ELEM:单元号,可以为ALL,即选中单元LKEY:面载类型号,见单元介绍。
ANSYS命令:解题与后处理+
第7章ANSYS命令:解题与后处理Solution and Postprocessing本章介绍solution模块(/SOLU)及两个postprocessing模块(/POST1及/POST26)中所使用到的命令。
在solution模块中,我们把命令分成三类(Figure 5-2):指定loads、指定solution options,及执行solve的命令。
本章第1节介绍前一类,后两类则在第2节介绍。
第3节介绍general postprocessing(/POST1)的命令。
第4节则介绍time-history postprocessing(/POST26)的命令。
最后,第5节以一个综合性的练习题作为本章的结束。
第7.1节负载Loads前面提过[Sec. 5.1.2] loads可以指定在analysis model(即nodes、elements)上,或指定loads在solid model(即keypoints、lines、areas、volumes)上。
除此之外,针对动态的问题,必须指定initial conditions,亦即初始时间的边界条件。
这一节分别介绍loads on analysis model [Sec. 7.1.1]、loads on solid model [Sec. 7.1.2]、及initial conditions [Sec. 7.1.3] 的命令。
Loads虽然可以指定在solid model上,但是「解题」的对象是analysis model,所以那些指定在solid model上的loads终究必须「移转」(transfer)到analysis model上。
这种移转的工作可以让ANSYS自动去完成:ANSYS会在解题前先做负载移转的工作。
或者你也可以在解题之前利用诸如SBCTRAN [Sec. 7.1.2] 的命令去移转这些负载,因为有时侯你希望在解题之前自己检视一下analysis model 上的loads是否正确。
ANSYS的基本使用方法
ANSYS的基本使用方法1.1ANSYS分析过程中的三个主要步骤1、创建有限元模型(1)、创建或读入几何模型。
(2)、定义材料属性。
(3)、划分网格(节点及单元)。
2、施加载荷并求解。
(1)、施加载荷及载荷选项、设定约束条件。
(2)、求解。
3、查看结果。
ANSYS在分析过程中需要读写文件,文件名格式为jobname.ext.ANSYS分析中还有几个数据库文件jobname.db,记录文件jobname.log(文本),结果文件jobname.rxx,图形文件jobname.grph。
1.2典型分析过程举例如图1-1所示。
使用ANSYS分析一个工字悬臂梁,求解在力P的作用下A点处的变形。
已知条件如下:P=4000Ibf E=29E6psiL=72in A=28.2in2I=833in 4H=12.71in1.启动ANSYS以交互式模式进入ANSYS,工作文件名为beam。
2.创建基本模型(1)GUI:Main Menu>Preprocessor>-Modeline-Create>keypoints>In Active CS.使用带有两个关键点的线模拟梁,梁的高度及横截面积将在单元中的实常量中设置。
(2)输入关键点编号I。
(3)输入x、y、z坐标0,0,0。
(4)选择Apply。
(5)输入关键点编号2。
(6)输入x、y、z坐标72,0,0。
(7)选择OK。
(8)GUI:Main Menu>Proprocessor>-Modeline-Create>Lines-lines>Straight Lines。
(9)选取两个关键点。
(10)在拾取菜单中选取OK。
3.存储ANSYS数据库Toolbar:SA VE-DBUtility Menu>File4.设定分析模块使用“Preferences“对话框选择分析模块,以便对菜单进行过滤,使菜单更简洁明了。
(1)GUI:Main Menu>Preferences(2)选择Structural(3)选择OK5.设定单元类型及相应选项对于任何分析,必须在单元类型库中选择一个或几个适合的单元类型,单元类型决定了附加的自由度(位移、转角、温度)。
ansys workbench 计算结果 后处理 发表
ansys workbench 计算结果后处理发表
如果您已经使用ANSYS Workbench进行了计算,并且想要对结果进行后处理,
您可以按照以下步骤进行操作:
1.打开ANSYS Workbench软件,并加载您的模型和计算结果。
2.在后处理模块中,选择您想要查看的结果类型,例如应力、应变、位移等。
3.可以在图形界面中查看结果,也可以将结果导出为其他格式,例如Excel、CSV等。
4.对导出的结果进行进一步的分析和处理,例如计算平均值、最大值、最小值等。
5.如果您想要将结果发表在学术期刊或其他出版物上,请确保您已经遵守了相关的引
用规范和版权法规。
总之,后处理是ANSYS Workbench中非常重要的一部分,它可以帮助您更好地理解计算结果,并将其应用于实际工程问题中。
ansys分析入门基础篇
边界条件
02
03
材料属性
设置边界条件,如固定约束、自 由约束等,以限制物体的自由度。
设置材料属性,如弹性模量、泊 松比、密度等,以模拟实际材料 的特性。
求解过程
建立模型
根据分析需求,建立相应的模型。
加载和求解
根据分析需求,加载相应的载荷和边界条件,然 后进行求解。
ansys分析入门基础篇
目录
• ANSYS软件简介 • 建立模型 • 加载与求解 • 结果后处理 • 案例分析
01 ANSYS软件简介
什么是ANSYS
综合性仿真软件
ANSYS是一款集结构、流体、电 磁、热、声等多物理场于一体的 综合性仿真软件,广泛应用于航 空航天、汽车、船舶、电子、能 源等领域。
电子
ANSYS在电子领域应用于集成电路、电子 元器件、PCB板等的设计和优化,提高产 品性能和可靠性。
船舶
ANSYS在船舶领域应用于船体结构、推进 系统、船舶设备等的设计和优化,提高船 舶性能和安全性。
ANSYS的基本功能
结构分析
流体动力学分析
ANSYS提供了强大的结构分析功能,可以 对各种材料进行静力、动力、疲劳等分析 ,模拟结构的变形、应力、应变等。
ANSYS的流体动力学分析功能可以对流体 进行稳态和瞬态分析,模拟流体流动、传 热、燃烧等过程。
电磁场分析
声场分析
ANSYS的电磁场分析功能可以对电磁设备 进行磁场、电场、电磁力的分析和优化, 提高设备的性能和效率。
ANSYS的声场分析功能可以对声音传播、 噪声产生等进行模拟和分析,优化产品的 声学性能。
02 建立模型
ansys基本操作PPT演示文稿
2.1.2 ANSYS12.0界面介绍
ANSYS 的图形用户界面(GUI) 1)Utility Menu(实用菜单)
包括一些在整个分析过程中都有可能要用到的一些命令,比如文 件类命令、选取类命令以及图形控制和一些参数设置等等。 2)Standard Toolbar(标准工具条) 包括一些常用的命令按钮,这些按钮对应的命令都可以在实用菜 单中找到对应的菜单项。 3)Input Window(命令输入窗口) 该窗口为ANSYS命令的输入区域,可以直接输入ANSYS支持的命 令,以前所有输入过的命令以下拉列表的形式显示。
•20
4)建模时注意对模型作一些必要的简化,去掉一些不必要的细节。 如倒角等。过多的考虑细节有可能使问题过于复杂而导致分析无 法进行;
5)采用适当的单元类型和网格密度,结构分析中尽量采用带有中节 点的单元类型(二次单元),非线性分析中优先使用线性单元 (没有中节点的直边单元),尽量不要采用退化单元类型。
•11
2.2 建立模型
2.2.1 指定工作目录、作业名和分析标题 2.2.2 定义图形界面过滤参数 2.2.3 ANSYS的单位制
读者可以根据自己的需要由上面的量纲关系自行修改单位系统, 只要保证自封闭即可。ANSYS提供的/UNITS命令可以设定系统的 单位制系统,但这项设定只有当ANSYS与其它系统比如CAD系统 交换数据时才可能用到(表示数据交换的比例关系),对于 ANSYS本身的结果数据和模型数据没有任何影响。
•14
2.2.6 定义材料属性
绝大多数单元类型需要材料特性。根据应用的不同,材料特性可 以是线性或非线性的。
与单元类型、实常数一样,每一组材料特性有一个材料参考号。 与材料特性组对应的材料参考号表称为材料表。在一个分析中, 可能有多个材料特性组(对应的模型中有多种材料),ANSYS通 过独特的参考号来识别每个材料特性组。
ANSYS后处理(结果查看)
ANSYS后处理(结果查看)⼀、显⽰某个时间点的温度云图1、General Postproc →Read Result →By Time/Freq2、在跳出的窗⼝中输⼊时间点,点击OK按钮3、然后点Plot Results按下图操作3、然后点击plot →Replot即可显⽰该时刻的云图⼆、提取某个节点的数值1、⾸先通过下列命令,选择部分单元nsel,s,loc,x,0,0.025esln,all然后读取所需节点的编号。
2、点击时间历程后处理器TimeHist postproc弹出如箭头所指对话框。
点击图对话框左上⾓的绿⾊增加按钮弹出对话框点击ok按钮,在弹出的对话框中输⼊节点编号,或者⿏标点击选择节点即可将新的数据读⼊对话框中如下图所⽰然后即可通过窗⼝上的按钮对数据进⾏操作处理。
/POST1set,last !定义数据集从结果⽂件中读出,last表⽰读取最后的数据集plnsol,s,eqv !以连续的轮廓线形式显⽰结果,S表⽰应⼒,EQV表⽰等效应⼒查看某个截⾯的云图!-----------------选取节点结果/post1!seltol,1.0e-10set,,,,,2.5!nsel,s,loc,y,0.1,0.1nsel,s,loc,x,0.02/page,99999,132,99999,240!-------------------显⽰某个截⾯wprota,,,90wpoffs,,,0.02/CPLANE,1 !指定截⾯为WP /TYPE,1,5 !结果显⽰⽅式选项⼯作平⾯移回全局坐标原点WPCSYS,-1nsel,s,loc,x,0,0.025 esln,,1,ACTIVE。
ansys使用技巧(后处理)
2009—04—28 14:26ANSYS中查看截面结果的方法一般情况下,对计算结果后处理时,显示得到的云图为结构的外表面信息。
有时候,需要查看结构内部的某些截面云图,这就需要通过各种后处理技巧来获得截面的结果云图。
另外,有时候需要获得截面的结果数据,也需要用到后处理的技巧.下面对常用的查看截面结果的方法做一个介绍:1。
通过工作平面切片查看截面云图工作平面实现。
这是比较常用的一种方法.首先确保已经求解了问题,并得到了求解结果。
调整工作平面到需要观察的截面,可通过移动或者旋转工作平面实现。
调整时注意保证工作平面与需要观察的截面平行.在PlotCtrls菜单中设置观察类型为Section,切片平面为Working Plane。
也可以通过等效的/type以及/cplane命令设置。
在通用后处理器中显示云图,得到需要查看的云图。
更简单地说,我们只需在显示云图命令前加上下面两条命令就可以了:/CPLANE,1 !指定截面为WP/TYPE,1,5 ! 结果显示方式选项2. 通过定义截面查看截面云图这种方法也需要用到工作平面与切片,步骤如下:首先确保已经得到了求解结果.调整工作平面到需要观察的截面。
在PlotCtrls菜单中设置观察类型为Working Plane,或者使用命令/cplane,1。
通过sucr命令定义截面,选择(cplane)。
通过sumap命令定义需要查看的物理量。
通过supl命令显示结果.3。
通过定义路径查看云图与保存数据首先确保已经得到了求解结果.通过path与ppath命令定义截面路径。
通过pdef命令映射路径.通过plpath、prpath与plpagm命令显示及输出结果。
总结:第一种方法是较简单、较常用的方式。
通过这种操作方式,我们也可以更直观地理解工作平面的含义。
以前看书上介绍工作平面总是无法理解到底什么是工作平面,工作平面有什么用途.第二中方法实质上和第一种方法是一样的,只不过截面是我们自定义的一个平面,不是通过移动、旋转工作平面来实现“切片”的。
ansys分析的基本步骤
在求解之前,对模型进行仔细检查,确保其完整性、正确性和有效性。
开始求解
运行求解器,进行计算求解。
求解监视
在求解过程中,监视求解的进展情况,确保其正常进行。
结果存储
将求解结果存储在指定的目录中,以便后续处理和分析。
结果后处理
结果查看
在后处理模块中查看求解结果,如位移、应 力、应变等。
结果优化
06
结论
分析结果总结
1 2
模型建立与简化
通过ANSYS软件,我们成功地建立了分析模型, 并进行了必要的简化,以减少计算量并提高分析 效率。
边界条件与载荷设置
根据实际工况,我们为模型施加了准确的边界条 件和载荷,确保了分析的准确性。
3
求解与后处理
通过合理的求解设置,我们得到了满意的分析结 果,并对结果进行了有效的后处理,以便于理解 和使用。
对未来工作的建议
模型优化
建议在未来的分析中进一步优化 模型,例如通过更精细的网格划 分来提高分析精度。
参数研究
建议进行参数研究,以了解各参 数对分析结果的影响,从而为优 化设计提供更多依据。
与其他软件的比较
为了验证分析结果的可靠性,建 议将ANSYS的分析结果与其他知 名CAE软件的结果进行比较。
载荷施加
在模型的相应位置施加载荷,并设置合适的 载荷值和方向。
约束施加
在模型的相应位置施加约束,限制不必要的 自由度。
求解和后处理
求解器选择
根据实际问题的性质和规模,选择合适的求解器,如静力求解器、 模态求解器、瞬态求解器等。
求解参数设置
设置合适的求解参数,如迭代次数、收敛准则等。
后处理
查看分析结果,如应力、应变、位移等,并进行结果分析和评估。
ANSYS有限元分析基本步骤
2.2 有限元模型的建立
图2-1
11
2.2 有限元模型的建立
• 单击Isotropic;弹出Linear Isotropic Properties for Material Number 1对话框;见图2-2..在EX输入栏中输入弹 性模量;在PRXY输入栏中输入泊松比..如图2-2所示..
第2章
有限元分析基本步骤
1
基本步骤
2.1 ANSYS有限元分析典型步骤 2.2 有限元模型的建立 2.3 加载和求解 2.4 结果后处理
2
2.1 ANSYS有限元分析典型步骤
• ANSYS有限元典型分析大致分为三大步骤:
➢ 1建立有限元模型; ➢ 2加载和求解; ➢ 3结果后处理和结果查看..
3
图2-2
12
2.2 有限元模型的建立
• 2.2.4 创建有限元模型
➢ ANSYS提供了两种方法来构建有限元模型;一种是首先创建或 导入实体模型;然后对实体模型进行网格划分;以生成有限元模型 ;另一种是直接利用单元和节点生成有限元模型..第二种方法非 常困难;在实际工作中是不实用也不常用..
13
2.2 有限元模型的建立9来自2.2 有限元模型的建立
• 2.2.3 定义材料属性
➢ ANSYS中的所有分析都需要输入材料属性..例如;在进行结构分 析时;要输入材料的弹性模量和泊松比等..
➢ 定义材料属性的方法 • 单击Main Menu主菜单/Preprocessor前处理器/Material Props材料属性/Material Models材料模型;弹出Define Material Model Behavior定义材料模型对话框;单击右侧列表 框中的结构模型Structural/Linear线性/Elastic弹性/Isotropic 各向同性;表明要定义的材料是各向同性线弹性材料.. 如图21所示..
ansys workbench 结果后处理
Workbench -Mechanical Introduction Introduction作业8.181结果后处理作业8.1 –目标Workshop Supplement •本作业分析了一个高压排气组件的应力和挠度。
•如果在结果后处理(postprocessing)中所有部件都激活的话,部分分析结果很难得到解释。
我们的目标是分离模型的部件,使用先进的结果很难得到解释我们的标是分离模型的部件使用先进的Workbench-Mechanical特性进行结果后处理。
作业8.1 –假设Workshop Supplement •假设:气体是由进气管到膨胀室被排出的。
在膨胀室内部,压力比进气管处降低了20%。
•膨胀室是刚性连接在进气管上的,因此把这里的接触定义为bonded。
膨胀室是刚性连接在进气管上的因此把这里的接触定义为•支架允许管子出现有限的移动,因此这里使用无分离接触。
查看下页的接触描述–查看下一页的接触描述•用结构钢(structural steel)模拟进气管和支架,而膨胀室是橡胶(Polyethylene)。
Workshop Supplement作业8.1 –部件和接触描述Expansion Bonded ContactChamber (膨胀室)(结合接触)Support Bracket (支架)No Separation Contact (无分离接触)Inlet Pipe Inlet Pipe (进气管)作业8.1 –Project SchematicWorkshop Supplement •打开Project 页•在Units 菜单中确定:–项目单位设为Metric (kg, mm, s, C, mA, mV)–选择Display Values in Project UnitsWorkshop Supplement… 作业8.1 –Project Schematic1.在Toolbox 中双击Static Structural创建一个新系统1.2.双击Engineering Data 得到material properties.p p3在General Materials 2.3.General Materials 中点击Polyethylene 旁的‘+’符号,把材料添加到当前系统3.Workshop Supplement. . . 作业8.1 –Project Schematic4.Return to Project (返回到项目)45在geometry 4.5.geometry 上点击鼠标右键选择Import Geometry ,导入文件Pressure_System.x_t5.6.双击Model Mechanical打开application6.Workshop Supplement作业8.1 –前处理7.设置作业单位制系统:•Units > Metric (mm, kg, N, s, mV, mA)8.改变expansion chamber 的材料:7.a.选中该膨胀室部分b.在details of solid 窗口中点击material 栏,改变material assignment material assignment为Polyethylene a.b.. . .作业8.1 –前处理Workshop Supplement9.根据管的接触行为修整支架:a.选中Connections下的Contact Region 2b.在Details of Contact Region 2窗口改变接触类型为No Separationa.b.Workshop Supplement作业8.1 –环境10.给管道施加一个压力:a.选中Static Structural (A5)b.选择管道的5个内表面(提示:使用Extend tolimits )c.RMB (点击鼠标右键选择)> Insert > P a.Pressured.输入Magnitude 值1MPab.c.d.. . .作业8.1 –环境Workshop Supplement11.给expansion chamber施加一个压力:a.选择expansion chamber的三个内表面提示使用平面选择状态栏和键可以简化选择•提示:使用平面选择,状态栏和CTRL键可以简化选择。
ANSYS有限元学习经验总结
学习ANSYS经验总结ANSYS的使用主要是三个方面,前处理--建模与网格划分,加载设置求解,后处理,下面就前两方面谈一下自己的使用经验。
(1)前处理--建模与网格划分要提高建模能力,需要注意以下几点:第一,建议不要使用自底向上的建模方法,而要使用自顶向下的建模方法,充分熟悉BLC4,CYLIND等几条直接生成图元的命令,通过这几条命令参数的变化,布尔操作的使用,工作平面的切割及其变换,可以得到所需的绝大部分实体模型,由于涉及的命令少,增加了使用的熟练程度,可以大大加快建模的效率。
第二,对于比较复杂的模型,一开始就要在局部坐标下建立,以方便模型的移动,在分工合作将模型组合起来时,优势特别明显,同时,图纸中有几个定位尺寸,一开始就要定义几个局部坐标,在建模的过程中可避免尺寸的换算。
第三,注重建模思想的总结,好的建模思想往往能起到事半功倍的效果,比如说,一个二维的塑性成型问题,有三个部分,凸模,凹模,胚料,上下模具如何建模比较简单了,一个一个建立吗?完全用不着,只要建出凸凹模具的吻合线,用此线分割某个面积,然后将凹模上移即可。
第四,对于面网格划分,不需要考虑映射条件,直接对整个模型使用以下命令,MSHAPE,0,2D MSHKEY,2 ESIZE,SIZE 控制单元的大小,保证长边上产生单元的大小与短边上产生单元的大小基本相等,绝大部分面都能生成非常规则的四边形网格,对于三维的壳单元,麻烦一点的就是给面赋于实常数,这可以通过充分使用选择命令,将实常数相同的面分别选出来,用AATT,REAL,MA T,赋于属性即可。
第五,对于体网格划分,要得到比较漂亮的网格,需要使用扫掠网格划分,而扫掠需要满足严格的扫掠条件,因此,复杂的三维实体模型划分网格是一件比较艰辛的工作,需要对模型反复的修改,以满足扫掠条件,或者一开始建模就要考虑到后面的网格划分;体单元大小的控制也是一个比较麻烦的事情,一般要对线生成单元的分数进行控制,要提高划分效率,需要对选择命令相当熟悉;值得注意的是,在生成网格时,应依次生成单元,即一个接着一个划分,否则,可能会发现有些体满足扫掠的条件却不能生成扫掠网格。
计算结果后处理及分析_ANSYS FLUENT 16.0超级学习手册_[共2页]
392 第11章 离散相的数值模拟图11-44 迭代残差曲线图11.3.4 计算结果后处理及分析(1)选择Results →Graphics 选项,打开Graphics and Animations 面板。
(2)双击Graphics 中的Contours 选项,打开Contours 对话框,如图11-45所示。
单击Display按钮,弹出压力云图窗口,如图11-46所示。
由压力云图可以看出,喷流塔底部压力最大,越往上压力越小。
(3)重复步骤(2)的操作,在Contours of 的第一个下拉列表中选择Velocity 选项,单击Display按钮,弹出速度云图,如图11-47所示。
由速度云图可以看出,速度呈条纹状分布,这是烟气与喷流液滴相互作用的结果。
(4)重复步骤(2)的操作,在Contours of 的第一个下拉列表中选择Discrete Phase Model 选项,在第二个下拉列表中选择DPM Concentration 选项,单击Display 按钮,弹出离散相的质量分数云图,如图11-48所示。
由质量分数云图可以明显看出浆料喷流形成的流线,喷流塔内浆料浓度最大处可达16 kg/m 3。
(5)回到Graphics and Animations 面板,双击Particle Tracks 选项,打开颗粒轨迹绘制对话框,如图11-49所示。
选中Release from Injections 下的所有选项,单击Display 按钮,显示离散相的运动时间,如图11-50所示。
液滴从喷口落至喷流塔底部所需的最长时间为2.96 s 。
图11-45 设置压力云图。
ANSYS Workbench12.0培训教程之后处理
矢量长度控制
矢量密度控制
比例矢量
等长度矢量
单元对齐
网格对齐
线形式
实体形式
8-18
Results Postprocessing
… 矢量图
• 示例
Training Manual
实体形式,网格对齐
比例长度
等长度
实体形式,等长度
8-19
Results Postprocessing
… 多视窗
• 多个视窗能够同时显示各种图片(模型或后处理结果) 。
Show Elements (显示单元)
8-11
Results Postprocessing
截断面
• 在前、后处理器中都可以添加和编辑截断面。
– 选择Draw Section Plane ,然后用鼠标左键点击并拖放该图 标,就可以获得一个截断面。 – 在细节窗口中,可以通过复选框开启或关闭截断面。 – 使用删除图标删除截断面。 – 通过选中需要的截断面名称后,再使用图形窗口中操纵器来编 辑截断面。
… 图例控制
Training Manual
• Independent Bands(独立带) 使用中性色来代表高于或低于指定图例限 制的模型区域。
图例等高线范围
8-7
Results Postprocessing
… 显示方式
• Geometry按钮控制着等高线显示方式。有四种可选选择:
Exterior IsoSurfaces
… 坐标系统
Training Manual
• 对于下图所示模型,在局部柱坐标系中的显示结果,同时把应力结果转换到了该 系统下。
在整体坐标系下Y方向上的应力
在局部柱坐标系下Y方向上的应力
ANSYS 入门
ANSYS 入门教程(30) - 加载、求解及后处理技术(b)ANSYS 入门基础2010-08-21 08:08:44 阅读682 评论0 字号:大中小订阅三、施加面载荷(续)3. 在线上施加面荷载命令:SFL, LINE, Lab, VALI, VALJ, VAL2I, VAL2JLINE - 拟施加荷载的线号,也可为ALL 或组件名。
Lab - 面荷载标识符,结构分析为PRES。
VALI - 线始端关键点处的面荷载值,也可为表格型边界条件的表格名。
VALJ - 线末端关键点处的面荷载值,也可为表格型边界条件的表格名。
如为空(缺省)与VALI 相等,否则采用输入数据。
VAL2I,VAL2J - 为复数输入时的虚部,而VALI 和VALJ 则为实部。
该命令仅对2D 面单元的边界(线)、轴对称单元本身、壳单元边界(线)有效,对3D 实体单元的线无效。
对于2D 面单元,其输入的面荷载值为“力/面积”;而对壳单元,其输入的面荷载值为“力/长度”,这点需要特别注意。
4. 在面上施加面荷载命令:SFA, AREA, LKEY, Lab, VALUE, VALUE2AREA - 拟施加面荷载的面号,也可为ALL或元件名。
LKEY - 荷载施加的面号(缺省为1)。
如果面为体单元的表面,则LKEY 将被忽略;对壳单元LKEY 可取 1 或2,而其它值无效,单元帮助中有详细说明。
Lab - 面荷载标识符,结构分析为PRES。
VALUE - 面荷载值,也可为表格名称。
VALUE2 - 对结构分析无意义。
该命令对壳单元和3D 体单元的面施加法向面荷载,对2D 面单元无效。
5. 面荷载梯度及其加载定义面荷载梯度后,可在SF、SFE、SFL 和SFA 命令中使用。
如前所述,SFE、SFL 及SFBEAM 命令可以直接施加线性分布荷载,采用SFGRAD 命令定义荷载梯度后,使用SF 和SFA 命令施加线性分布荷载比较方便,如静水压力、圆柱体分布压力等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
individual entities by picking ANSYS基本选操处作项-理加只载删求解除结模果后型选定的载荷。
删除载荷(续)
当删除实体模型时, ANSYS 将自动删除其上所 有的载荷
删除线上的均 布压力
自动删除以线为边 界各单元均布压力
实体模型
FEA 模型l
ANSYS基本操作-加载求解结果后 处理
ANSYS基本操作-加载求解结果后 处理
加载面力载荷(续)
500
500
L3 VALI = 500
坡度压力载荷沿起始关键点(I) 线
1000
性变化到第二个关键点 (J)
500 L3
VALI = 500
如果加载后坡度的方向相反, 将 两个压力数值颠倒即可
VALJ = 1000
1000 500
L3 VALI = 1000 VAALNJS=YS5基00本操作-加载求解结果后
删除载荷(续)
两关键点的扩展位移约束载荷例外:
删除两点的约束
实体 模型
FEA 模ቤተ መጻሕፍቲ ባይዱl
只删除了两角点( CORNER )约束 , 而加载时扩展的 ( inside ) 节点 约束必须手工删除
ANSYS基本操作-加载求解结果后 处理
第二部分: 求 解
ANSYS基本操作-加载求解结果后 处理
求解过程
处理
将载荷转化到有限元模型上
下面将载荷转化到节点和单元上,不进行求解:
Main Menu: Solution > -Loads-Operate
这些选项出现的信息大致相同
ANSYS基本操作-加载求解结果后 处理
删除载荷
Main Menu: Solution > -Loads- Delete
All Load Data 选项可同时删除 模型中的任一类载荷。
处理
第一部分:载荷及其加载过程
ANSYS基本操作-加载求解结果后 处理
载荷分类
自由度DOF - 定义节点的自由度( DOF ) 值 (结 构分析_位移、热分析_ 温度、电磁分析_磁势等)
集中载荷 - 点载荷 (结构分析_力、热分析_ 热导 率、电磁分析_ magnetic current segments)
拾取
Expansion option 可使相同的载荷加
keypoints 在位于两关键点连线的所有节点上
例
K6
要固定一边,
只要拾取关键
点6、7,并设
置 all DOFs
=0和
ANSYS基本操处作-理加载求解KyeE结sX.果P后ND =
K7
加载约束载荷(续)
在线和面上加载位移约束:
Main Menu: Solution > -Loads- Apply -StructuralDisplacement > On Lines + OR On Areas+
处理
加载轴对称载荷
轴对称载荷可加载到具有对称轴的3-D 结构 上
3-D 轴对称结构可用一2-D 轴对称模型描述
对称轴
3-D 结构 轴对称模型
10” 直径
5” 半径
ANSYS基本操作-加载求解结果后 处理
加载轴对称载荷的注意事项:
载荷数值 (包括 输出的反力) 基 于360度转角的 3-D结构。
Axis of symmetry
在右图中,轴对 称模型中的载荷 是3-D结构均布 面力载荷的总量。
ANSYS基本操作-加载求解结果后
处理
3-D 结构
2-D 有限元模型
加载约束载荷
在关键点加载位移约束:
Main Menu: Solution > -Loads- ApplyStructural- Displacement > On Keypoints +
拾取 lines 拾取areas
ANSYS基本操作-加载求解结果后 处理
校验载荷
通过 plotting画出载荷:
Utility Menu: PlotCtrls > Symbols ...
• 实体模型载荷显示在几何模型 上 (体、面、线或关键点)
• 有限元模型载荷在画节点或单 元时显示
或通过 listing列表载荷: ANSUYSt基ili本ty操作M-加en载u求:解结Li果s后t > Loads
速度等)
ANSYS基本操作-加载求解结果后
处理
加载
可在实体模型或 FEA 模型 (节点和单元) 上加载
沿单元边界均布的压力 沿线均布的压力
实体模型 在关键点加集中力
在关键点处约束
FEA 模型
ANSYS基本操作在-加节载点求加解集结中果力后 处理
在节点处约束
加载 (续)
无论采取何种加载方式,ANSYS求解前都将载 荷转化到有限元模型.因此,加载到实体的载荷
说明: 可AN通SY过S基在本操pr作e-f加e载re求n解c结e果s后中选择适 当的分析类型过滤处菜理 单中的选项
加载面力载荷
Main Menu: Solution > -Loads- Apply > Pressure > On Lines
拾取 Line
输入一个压力值 即为均布载荷, 两个数值 定义 坡度压力
ANSYS基本操作(三)
加载、求解、结果后处理
ANSYS基本操作-加载求解结果后 处理
目标
理解载荷及其加载过程
列表和分类载荷 在实体模型上完成下列操作:
a. 加载 b. 校验载荷 c. 删除载荷
求解
描述求解过程
结果后处理
描述ANSYS后处理中观看结果的各种功能 描述静力分析A结NSY果S基后本操处作理-加载的求五解结个果后步骤.
将自动转化到 其所属的节点或单元上
沿线均布的压力
均布压力转化到以线为边界的各单元上
实体模型
加载到实 体的载荷 自动转化 到其所属 的节点或 单元上
FEA 模型
ANSYS基本操作-加载求解结果后 处理
实体模型加载
Main Menu: Solution > -Loads-Apply>
注意到这是 很长的菜单, 对于结构分析, 部分菜单呈暗淡灰色,表示不属于结构分 析的范畴。 (ANSYS 可由模型中的单元 类型识别分析类型)
面载荷 - 作用在表面的分布载荷 (结构分析_压力、 热分析_热对流、电磁分析_magnetic Maxwell surfaces等)
体积载荷 - 作用在体积或场域内 (热分析_ 体积膨 胀、内生成热、电磁分析_ magnetic current density等)
惯性载荷 - 结构质量或惯性引起的载荷 (重力、角
求解结果保存在数据库中并输出到结果文 件 (Jobname.RST, Jobname.RTH, Jobname.RMG, or Jobname.RFL)