重力沉降除尘设计计算
重力沉降室
重力沉降室
重力沉降室
重力沉降室是利用粉尘与气体密度不同,依靠自身
重力作用使尘粒从气流中自然沉降的除尘装置
工作原理
V:气流运动速度
Vc:沉降速度
沉降速度
假定尘粒为力:
由尘粒受力平衡式Fc=Fd可得出沉降速度Vs 沉降速度:
(如果粒径变小,Vs会急剧下降)
阻力系数
层流区:
尘粒直径:
重力沉降室的计算
尘粒降到底部 所用时间:
气流在沉降 室停留时间:
重力沉降室能100%捕集的最小捕集粒径
重力沉降室结构
特点
优点:结构简单,造价低,运行可靠,维护费用少,
不受温度和压力限制,无磨损问题,可用钢板制造, 也可砖砌,施工容易,管理方便
缺点:占地面积大,除尘效率低,一般只用
于捕集粗颗粒粉尘
谢谢!
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
大气污染第六章.完整版PPT资料
18Q pgW L
由 于 沉 降 室 内 的 气 流 扰 动 和 返 混 的 影 响 , 工 程 上 一 般 用 分 级 效 率 公 式 的 一 半 作 为 实 际 分 级 效 率
dmin
36Q pgW L
重力沉降室效率的影响因素
❖ 提高沉降室效率的主要途径
降低沉降室内气流速度 增加沉降室长度 降低沉降室高度
❖ 缺点
体积大 效率低 仅作为高效除尘器的预除尘装置,除去较大和较
惯性除尘器
❖ 机理
沉降室内设置各种形式的挡板,含尘气流冲击在挡 板上,气流方向发生急剧转变,借助尘粒本身的惯 性力作用,使其与气流分离
惯性除尘器
❖ 结构形式
冲击式-气流冲击挡板捕集较粗粒子 反转式-改变气流方向捕集较细粒子
冲击式惯性除尘装置 a单级型 b多级型
:局部阻力 系1 6数dAe2
A:旋风除尘器进口面积
旋风除尘器型式 XLT XLT⁄A XLP⁄A XLP⁄B
局部阻力系数ξ
5.3 6.5 8.0
5.8
旋风除尘器
❖ 旋风除尘器的压力损失
相对尺寸对压力损失影响较大,除尘器结构型式相 同时,几何相似放大或缩小,压力损失基本不变
含尘浓度增高,压力降明显下降 操作运行中可以接受的压力损失一般低于2kPa
反转式惯性除尘装置 a 弯管型 b 百叶窗型 c 多层隔板型
❖ 应用
惯性除尘器
一般净化密度和粒径较大的金属或矿物性粉尘 净化效率不高,一般只用于多级除尘中的一级除
尘,捕集10~20µm以上的粗颗粒 压力损失100~1000Pa 不适宜用于粘结性和纤维性粉尘。
旋风除尘器
❖ 利用旋转气流产生的离心力使尘粒从气流 中分离的装置
环境工程原理大型作业--重力沉降室的设计方案
《环境工程原理》大型作业题目:3000m3/h重力降尘室的设计学院:环境科学与工程学院专业名称:环境监测与治理技术学号:************学生姓名:指导教师:***2013年 12 月 15 日目录一、前言 (3)二、设计条件 (4)三、设计要求 (4)四、设计说明 (4)1、重力降尘室的工作原理 (4)2、重力降尘室的类型 (5)3、实际性能和测试 (5)五、工艺计算 (5)1、设计降尘室尺寸 (5)2、沉降时间和沉降速度 (5)3、颗粒回收百分率 (6)4、降尘室的隔板数 (7)六、总结 (7)七、参考文献 (7)一、前言大型作业是《环境工程原理》课程的一个总结性教案环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。
在整个教案计划中,它也起着培养学生独立工作能力的重要作用。
大型作业不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。
所以,大型作业是培养学生独立工作能力的有益实践。
通过大型作业,学生应该注重以下几个能力的训练和培养:1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力;2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力;3. 迅速准确的进行工程计算的能力;4. 用简洁的文字,清晰的图表来表达自己设计思想的能力。
二、设计条件1、含尘气体成分:炉气和矿石;2、气体密度:0.6kg/m³;3、矿石密度:4500kg/m³;4、黏度:3×10﹣5N·s/㎡;5、气体流量:3000m³/h三、设计要求1、设计方案确定(长宽高);2、矿尘颗粒沉降流型判断;3、理论上能完全捕集的最小颗粒直径;4、降尘室的隔板数;5、重力降尘室的工艺尺寸计算。
粮食工程技术《第四章第三节 重力沉降室和惯性除尘器》
第三节重力沉降室和惯性除尘器一、重力沉降室1重力沉降室的特点重力沉降室是一种原理、结构都简单的除尘器,它是依靠在特定环境中粉尘受到的地球引力作用即粉尘自身的重力作用从气流中别离粉尘的。
重力沉降室具有以下性能特点。
〔1〕适合于别离气流中粒径在50~100m以上的粉尘。
〔2〕能耗低,阻力一般在50~2021uf =g(ρs−ρa )d s218μu0u0t1=ℎu fu f——粉尘颗粒的沉降速度,m/ s②粉尘在沉降室内的停滞时间t2=Lu0〔4-13〕式中:t2——粉尘在沉降室内的停滞时间,s;L——沉降室长度,m;u0——粉尘颗粒的水平运动速度,m/ s③粉尘沉降下来不被气流带走的条件,即重力沉降室粉尘别离的条件t1≤t2〔4-14〕即:ℎu f ≤Lu0〔4-15〕式〔4-15〕说明,只有沉降时间不大于停滞时间,粉尘在沉降室内才可能沉降到沉降室底部,使得粉尘从气流中别离出来,这就是重力沉降室粉尘别离的原理。
3重力沉降室的设计:沉降室处理风量为Q,粉尘粒径为d,密度为ρ,温度为常温2021空气的动力黏性系数μ=×10uf u f u0L≥u0u fℎB=Oℎu0;h——沉降室高度,m;Q——沉降室处理风量,m³/s。
由此计算出了沉降室的最小尺寸〔长、宽、高〕,可根据实际条件和所处位置等因素确定重力沉降室的实际尺寸大小,即在计算的长、宽、高等尺寸上按实际空间大小进行调整。
重力沉降室图4-1 重力沉降室粉尘别离的原理图的灰斗、排灰装量、进出风管道等可根据实际要求设计制作。
在实际制作时,重力沉降室的灰斗、排灰装置必须密闭、不漏风。
将式〔4—11〕代入式〔4—16〕,可计算出现有的重力沉降室能够100%别离的最小粉尘粒径d。
smind smin≥√18μℎu0g(ρs−ρa)L〔4-16〕4.重力沉降室的应用〔1〕重力沉降室的结构重力沉降室的结构主要由进气口、室体、出风口、灰斗和出灰装置等局部组成。
重力沉降除尘设计计算
重力沉降除尘设计计算全文共四篇示例,供读者参考第一篇示例:重力降尘器是一种常用的除尘设备,其工作原理是利用重力将颗粒物质从气流中分离出来,从而实现气体的净化。
重力降尘器的设计和计算是重要的工作,它直接影响到设备的除尘效率和运行稳定性。
本文将介绍重力降尘除尘设计计算的相关内容,希望能为相关领域的工程师和研究人员提供参考。
一、重力降尘器的工作原理重力降尘器是一种基于惯性分离原理的除尘设备。
气流中的颗粒物质在经过设备内部的除尘室时,受到设备内壁和其他设备结构的影响而改变方向,从而使颗粒物质沉降到设备的底部。
在重力的作用下,颗粒物质最终被沉积在设备的集料器中,实现了气体的净化。
二、重力降尘器设计计算的基本步骤1. 确定设计参数:包括气流量、气体温度、颗粒物质的粒径和浓度等参数。
2. 确定除尘器的尺寸和结构:根据设计参数和除尘要求,确定除尘器的尺寸和结构,包括设备的高度、直径、进气口和出气口的尺寸等。
3. 计算除尘器的沉降速度:根据颗粒物质的密度和粒径等参数,计算颗粒物质在气流中的沉降速度,从而确定颗粒物质的沉降时间和沉降距离。
4. 确定集料器的尺寸:根据颗粒物质的沉降时间和沉降距离,确定集料器的尺寸,以保证颗粒物质完全沉积在集料器中。
5. 进行结构强度计算:根据除尘器的尺寸和结构,进行结构强度计算,以保证设备可以承受气流和颗粒物质的冲击和压力。
6. 设计入口和出口风道:根据设计参数和除尘要求,设计入口和出口风道,以保证气流在设备内部的流动顺畅。
7. 进行系统性能验证:对设计的除尘器进行性能验证,检测其除尘效率和运行稳定性,保证设备可以满足设计要求。
1. 设计时应考虑气体的流速和压力,避免气流过大或过小导致颗粒物质无法完全沉降。
2. 应根据颗粒物质的性质选择适当的集料器材料,以确保颗粒物质可以被有效地沉积和清理。
4. 设计时应考虑设备的维护和清洁,便于定期清理集料器中的颗粒物质,保证设备的正常运行。
5. 在设计过程中应根据实际工况和环境要求进行合理的参数选择和设计调整,以确保设备的最佳工作效果。
重力沉降室的技术
章目录
总目录
一.重力沉降室 1.重力沉降室的工作原理 利用尘粒与气体的密度不同,通过重力作用使尘粒 从气流中自然沉降分离
(a)单层重力沉降室
章目录 L
总目录
一.重力沉降室 1.重力沉降室的工作原理 利用尘粒与气体的密度不同,通过重力作用使尘粒 从气流中自然沉降分离 粉尘沉降必须满足的条件
粒径为50 m的沉降速度
g ( p g )d 2 9.8 2100 50 10 6 us 18 18 2.4 10 5 0.119 m / s
2
3
2016/11/20
章目录
总目录
一.重力沉降室 【例】设计锅炉烟气的重力沉降室。已知烟气量 Q=2800m3/h , 烟 气 温 度 t = 150℃ , 烟 尘 真 密 度 ρP = 2100kg/m3。要求能除掉粒径为50μm以上的烟尘。 取沉降室内us=0.5 m/s,H=1.5 m
最小捕集粒径
d min
18 uH 1 18 2.4 10 5 0.5 0.4 49.7 m ( P g ) gL 2100 9.8 1.7
符合设计要求
4
Q 沉降室处理气量,m 3 / s
18 uH ( p g ) gL
d min
章目录
总目录
一.重力沉降室 【例】设计锅炉烟气的重力沉降室。已知烟气量 Q=2800m3/h , 烟 气 温 度 t = 150℃ , 烟 尘 真 密 度 ρP = 2100kg/m3。要求能除掉粒径为50μm以上的烟尘。 解:烟气温度150℃时,黏度μ=2.4×10-5Pa·s (近似取空气的值)
d
环境工程原理-沉降(2)
浮力(向心力)Fb
Fb
1 6
d
P
3
r
2
惯性离心力Fc
r
Fc
mr 2
1 6
d
P
3
P
r
2
颗粒与流体之间产生相对运动,颗粒还会受到来自流体的
阻力(曳力)FD的作用。 ……CD与Re有关
FD
CD
4
dP2
u2
utlb
流体中直径为dc的颗粒完全去除的条件。
第二节 重力沉降
6.7 降尘室是从气体中除去固体颗粒的重力沉降设备,气体通过降 尘室具有一定的停留时间,若在这个时间内颗粒沉到室底,就可以
从气体中去除,如图所示。现在用降尘室分离气体中的粉尘(密度 为4500kg/m3),操作条件是:气体流量为6m3/s,密度为0.6kg/m3, 粘度为3.0×10-5Pa·s,降尘室高2m,宽2m,长5m。求能被完全去除 的最小尘粒的直径。
第二节 重力沉降
(2)粒径为40μm的颗粒回收百分率 由以上计算知,直径为40 μ m的颗粒的沉降必定在滞 流区,其沉降速度可用斯托克斯公式计算。 假设颗粒在降尘室入口处的炉气中是均匀分布的,则 颗粒在降尘室内的沉降高度与降尘室高度之比约等于 该尺寸颗粒被分离下来的百分率。 由于各种尺寸颗粒在降尘室内的停留时间均相同, 故40μm颗粒的回收率也可用其沉降速度u't与69.1μm颗 粒的沉降速度ut之比来确定,在斯托克斯定律区则为
分为两大类
旋流器:设备静止,流体在设备 中旋转运行而产生离心作用, 可用于气体和液体非均相混 合物的分离。
旋风分 离器
旋流分 离器
离心沉降机:通常用于液体非均 相混合物的分离,其特点是 装有液体混合物的设备本身 高速旋转并带动液体一起旋 转,从而产生离心作用。
旋风除尘器设计
. . .. . .设计工程:旋风除尘器的设计设计者:班级:座号:一、设计题目*工厂一台锅炉,风量10000立方米∕小时,烟气温度573℃,粉尘密度4.5克∕立方米,烟尘密度2000千克∕立方米,573K时空气粘度u=2.9*10-5pa经测试,粉尘粒径分布如表1所示。
要求经除尘装置后粉尘排放浓度为0.8克∕立方米,压力损失ΔP不大于2000Pa,v=23m/s。
烟尘粒度分布根据以上数据设计一旋风除尘器.. .专二、选取旋风除尘器理由及选择的型号1.其他除尘器的特点〔1〕重力沉降室是使含尘气流中的尘粒借助重力作用自然沉降来到达净化气体的目的的装置。
这种装置具有构造简单、造价低、施工容易〔可以用砖砌或用钢板焊制〕、维护管理方便、阻力小〔一般50-150Pa〕等优点,但由于它体积大,除尘效率低〔一般只有40%-50%〕,适于捕集大于μ粉尘粒子,故一般只用于多级除尘系统中的第一级除尘。
50m〔2〕惯性除尘器是利用尘粒在运动中惯性力大于气体惯性力的作用,将尘粒从含尘气体中别离出来的设备。
这种除尘器构造简单、阻力较小、但除尘效率较低,一般常用于一级除尘。
惯性除尘器用于净化密度和粒μ以上的粗尘粒〕的金属或矿物性粉尘,具有较高径较大〔捕集10-20m的除尘效率。
对于黏结性和纤维性粉尘,因其易堵塞,故不宜采用。
〔3〕电除尘器是含尘气体在通过高压电场进展电离的过程中,是尘粒荷电,并在电场力的作用下使尘粒趁机在集尘板上,将尘粒从含尘气体中别离出来的一种除尘设备。
其与其他除尘器的根本区别在于,别离力直接作用在粒子上,因此具有耗能小、气流阻力小的特点。
其主要优点有压力损失小、处理烟气量大、耗能低、对粉尘具有很高的捕集效率和可在高温或强腐蚀性气体下操作。
但其缺点为一次性投资大、安装精度要求高和需要调节比电阻。
〔4〕湿式除尘器是使含尘气体与液体密切接触,利用水滴和颗粒的惯性碰撞及其他作用捕集颗粒或使粒径增大的装置。
它具有构造简单、造价低、占地面积小、操作及维修方便和净化效率高等优点,能处理高温、高湿的气流,将着火、爆炸的可能减至最低。
概述、重力沉降
d2
m2
讨 论 在 重 力 作 用 下 颗在 粒静 止 流 体 中 的 沉 降 : du 当F g Fb FD 0时, 颗 粒 呈 加 速 降 落 ,其 加 速 度 为 , d 根据牛顿第二定律有 :
6 4 2 p du 3 ( )g u 2 d p 4d p p
在流体与颗粒组成的非均相物系中,考察流体(连续 相)与颗粒间(分散相)的相对运动。三种情况:颗粒静 止,流体对其绕流;流体静止,颗粒作沉降运动;两者 都动但具有一定的相对速度。 可假设颗粒静止,流体以一定的速度对之作绕流; 或流体静止,颗粒在流体中运动,分析流体对颗粒的作 用力。
二、 流体与颗粒间的相对运动
(
d p ut
)
颗粒在力场中的运动过程可分为几个阶段?
分为两个阶段:加速段和恒速段。 随着颗粒运动速度的增大,颗粒所受的曳力也 不断增大,必存在某一时刻使颗粒所受的诸力之和 为零,从此时起,颗粒将在流体中作匀速运动,这 时颗粒的运动速度称为终端速度。
(1)层流区 — Stokes 区
壁效应和端效应
当颗粒直径与容器直径D相比不算太小时,容器壁面会对颗粒的 沉降产生影响,使其受到较大的曳力。一般dp/D >0.01时,就显出 器壁的影响,使沉降速度减小。
流体分子运动的影响
当颗粒直径小到可与流体分子的平均自由程相比拟时(如2~3μm 以下),颗粒作不定向和随机性运动,它们可穿过流体分子的间隙, 使沉降速度大于斯托克斯定律计算的数值。另一方面,细颗粒的沉 降将受流体分子碰撞的影响,当颗粒直径小于0.1μm时,布朗运动 的影响起主要作用,难以用重力沉降法除去流体中的颗粒。
化工原理-沉降
例3.2
1)理论最小沉降颗粒直径(临界粒径)
18
(斯托克斯区)
d pc
多级降尘室的dpc更小 多级降尘室的水平隔板数 = N-1
qv NWLut
三、离心沉降
惯性离心力实现的沉降过程
离心沉降速度
切向速 度=rw
4d p ( p ) ui 2 ur 3 r
4d p ( p ) g 3
一、球形颗粒的自由沉降 ----重力沉降
沉降颗粒的受力情况: 重力
Fg
曳力Fd
浮力
曳力
Fb
6
6
d p pg
3
d p 3 g
Fd Ap
曳力 系数
u
2
2
牛顿第二定律
du d p ( p )g d p ( ) ma p d 6 dt 6 4 2 加速段 u 曳力
重力沉降速度的计算
假设沉降 试差法: 属于某一 流型
先假设处于 斯托克斯区 Re<2 Re > 2
计算沉 降速度
核算 Re
dut Re
d 2 s ut g 18
ut 为所求 假设处于 阿伦区
例题: 3-1 再计算 p94 和判断
其它方法简介: 无因次判据法: 计算判据K 的值 由K值确 定沉降所 属区域
标准旋风 分离器: h=D/2, b=D/4, n=5, ξ=8
相关应用:
临界粒径、压强降的计算p100例 3-3
24 Re
10 Re
0.44
已知:
ut
4 gd p ( p ) 3
代入上式:
除尘器计算公式
除尘器计算公式好的,以下是为您生成的关于“除尘器计算公式”的文章:在工业生产和环境保护的领域中,除尘器可是个大功臣。
要让除尘器高效地工作,准确的计算公式那是必不可少的。
咱们先来说说最常见的重力除尘器。
它的分离效率计算公式就像是一个小秘密,藏在复杂的公式背后。
分离效率 = (颗粒沉降速度 ×设备停留时间)/ 设备高度。
这当中,颗粒沉降速度又跟颗粒的大小、形状、密度,还有气体的流速、粘度等等因素有关系。
比如说,有一次我在工厂里观察重力除尘器的运行,发现那些较大较重的颗粒就像着急回家的孩子,迅速地沉降下去;而那些细小轻盈的颗粒则像是调皮的小精灵,在空中逗留许久。
再来讲讲旋风除尘器。
旋风除尘器的处理风量计算公式是:Q = A ×V 。
这里的 Q 表示处理风量,A 是进口截面积,V 是进口风速。
有一回,我在一家工厂看到技术人员正在调试旋风除尘器,他们仔细地测量着进口的尺寸,然后根据计算出来的风速来调整设备,那专注的神情仿佛在对待一件珍贵的艺术品。
还有电除尘器,它的除尘效率计算公式稍微复杂一点:η = (1 - exp(-Aω / Q))× 100% 。
这里的η 是除尘效率,A 是集尘极面积,ω 是驱进速度,Q 是处理风量。
我曾经在一个大型电厂看到电除尘器在轰鸣运转,那闪烁的电火花就像夜空中的繁星,而这个复杂的公式则像是掌控这一切的神秘密码。
袋式除尘器的过滤风速计算公式是:V = Q / (60 × A)。
其中 V 是过滤风速,Q 是处理风量,A 是过滤面积。
记得有一次,我在一个水泥厂,看到工人们正在更换袋式除尘器的滤袋,他们一边忙碌,一边嘴里念叨着这个公式,以确保新换上的滤袋能够达到最佳的过滤效果。
总之,这些除尘器的计算公式就像是一把把神奇的钥匙,能够帮助我们打开高效除尘的大门。
只有准确地运用这些公式,我们才能让除尘器发挥出最大的作用,让我们的环境更加清洁,让蓝天白云常伴我们左右。
重力沉降室的技术
最小捕集粒径
d min
18 uH 1 18 2.4 10 5 0.5 0.4 49.7 m ( P g ) gL 2100 9.8 1.
uH 0.5 1.5 6.3 m us 0.119
采用2层隔板
在假设条件下,沉降室过长,必须调整
取每层高0.4m , 总高Hs=0.4×3=1.2m
沉降室长度 L
uH 0.5 0.4 1.68 m us 0.119
章目录
总目录
一.重力沉降室 【例】设计锅炉烟气的重力沉降室。已知烟气量 Q=2800m3/h , 烟 气 温 度 t = 150℃ , 烟 尘 真 密 度 ρP = 2100kg/m3。要求能除掉粒径为50μm以上的烟尘。 Q 2800 沉降室宽度 B 1.3 m ( n 1)uH 1 3600 (2 1) 0.5 0.4 沉降室尺寸为L×B×H=1.7m×1.3m×1.2m
g ( p g )d 2 us 18
斯托克斯公式
3 p 尘粒的密度, kg /d m 的最小粒径 min
min 气体的黏度, Pa · s ( p g ) gL g 重力加速度, 9.81m / s 2
g 气体的密度,18 kg /uH m3
us L uH
2
2016/11/20
章目录
总目录
一.重力沉降室 2.重力沉降室的设计计算 ①按去除粒径要求求us ②选择沉降室内u ③设沉降室H(或B)
g ( p g )d 2 us 18
0.2~2m/s
L uH Q ,B us uH
④求沉降室L和B(或H)
⑤用最小粒径dmin 校验
旋风除尘器原理介绍及计算
V进=Q/3600F进=1250/3600×0.0306≈11.3米/秒, 阻力应为: H=ζ×H动=5.7×0.061V进2
=5.7×0.061×11.32=44.5千克/米2。
旋风除尘器并联使用时,其所能处理的风量为各个旋风除尘 器风量之和,而阻力则为单个旋风除尘器在处理它所承担的那 部分风量时的阻力。
(1210) 1950
(1740)
A/1.75 1.75A
4.9b 0.58D 1.6D 1.3D 0.145D 440(490) 670(770) 990(1110)
旋风除尘器的设计原则
①为防止粒子短路漏到出口管,h≤s,其中s为排 气管插人深度;
②为避免过高的压力损失,b≤(D-de)/2;
③为保持涡流的终端在锥体内部,(H+L)≥3D;
因为旋风除尘器是离心力愈大,除尘效果愈好。
(2)同一台除尘器,处理风量愈大,除尘效果就愈好。 但是,入口风速愈高,必然造成旋风除尘器的空气阻力
增大。所以选择适当的规格是保证除尘效率和适当的空气阻力 是极为重要的。
例:为处理含尘空气为1250米3/时的烟气选 择一合理的旋风除尘器。
1、从附录中查找可采用直径为450毫米的旋风除尘 器一个。
4、确定各部分几何尺寸
尺寸名称
入口宽度,b 入口高度,h 筒体直径,D
排出筒直径,de 筒体长度,L
锥体长度,H
灰口直径,d1
进口
速度
12m/s
为右
值时
15m/s
的压
力损 失
18m/s
XLP/A
XLP/B
XLT/A
空气中颗粒物沉降估算法
s ,则 ut
其它条件相同时,密度大的颗粒先沉降。
◆ 沉降速度计算
① 层流区
Rep
1,
24 Rep
斯托 (S克 to )公 k斯 e式 utsds 2 : ( 1 s 8 )g
② 过渡区
1Rep100, 01Re08..p56
阿(A 伦 l)l公 en:u 式 t 0.27ds(s )ge 0 R .6 p
沉降速度:
ur
d
2 c
su
2
18rm
沉降时间:
r
B ur
18rmB dc2su2
设:气体旋转圈数 N,则气流运行距离 2rmN
气体停留时间: 2rmN
u
颗粒分离条件: r
临界粒d径 c :N 9Bus
对常用形式的 器旋 : u1风 0~2分 5m/离 s,N3~5
将上式代入Rep中,得到:
Repdtu118ds3g(2s)
1
令: kds( s 2 )g 3
则:Rep
1k 18
令 Rep 1 则 k 2.62
层流区:k 2.62 采用斯托克斯公式 过渡区2 : .62k60.1 采用阿伦公
湍流区6: 0 .1k2364采用牛顿
(3) 离心沉降机 ▲ 分离液-固非均相混合物 ▲ 特点:转速可以根据需要调整, 适用于分离困难的体系, ▲ 常用的离心沉降机:转鼓式离心机、蝶片式离心机等。
转鼓式离心沉降机:
1-固体 2-液体
蝶片式离心机:
用 途:分离乳浊液和从液体中分离少量极细的固体颗粒, 广泛用于润滑油脱水、牛乳脱脂、饮料澄清等。
离心沉降速度ur:随颗粒旋转半径 r 变化 。
第四章--除尘装置1
2.旋风除尘器的压力损失
旋风除尘器的压力损失ΔP一般与气体入口速度的平
方成正比,即
p
1 2
v12
ρ——气体的密度,kg/m3;v1—气体入口速度,m/s; ξ——局部阻力系数。
旋风除尘器型式 ξ
表 4-1 局部阻力系数值
XLT
XLT/A
XLP/A
5.3
6.5
8.0
XLP/B 5.8
36
在缺少实验数据时,可用下式估算
第四章 除尘装置
➢ 从气体中去除或捕集固态或液态微粒的设备称为除尘装 置。根据主要除尘机理,目前常用的除尘器可分为:
(1)机械式除尘器; (2)电除尘器; (3)袋式除尘器; (4)湿式除尘器等。
1
§4-1 机械式除尘器
机械式除尘器通常指利用质量力(重力、 惯性力和离心力等)的作用使颗粒物与气 流分离的装置,包括重力沉降室、惯性除 尘器和旋风除尘器等。
41
解:假设接近圆筒壁处的气流切向速度近似等于气流的入口 速度,即vl=13m/s,
取内、外涡旋交界圆柱的直径d0=0.7de n 1[1 0.67(D)0.14 ]( T )0.3 283
1[1 0.67(0.9)0.14 ][423]0.3 283
0.62
由式 vT Rn 常得数气流在交界面上的切向速度
其中
k ( p )gWL 18 Q
对于特定的沉降室及含尘气体的性质和流量,k为常数, 此时ηi与dp2成正比。但在沉降室结构尺寸、处理含尘气体 性质和流量一定时,则该沉降室可完全沉降的最小粒径是 有一定限度的。
8
当粒子的沉降运动处于stokes区域时,则重力沉降室能 100%捕集的最小粒子直径为
vT0可根据式
重力沉落室的设计[新版]
重力沉降室的设计假设通过重力沉降室断面的水平气流的速度V分布式均匀的,呈层流状态;入口断面上粉尘分布均匀(即每个颗粒以自己的沉降末端速度沉降,互不影响);在气流流动方向上尘粒和气流速度相等,就可得到除尘设计的简单模式。
(一)沉降时间和(最小粒径时的)沉降速度尘粒的沉降速度为Vt,沉降室的长、宽、高分别为L、W、H,要使沉降速度为Vt的尘粒在沉降室内全部去除,气流在沉降室内的停留时间t()应大于或等于尘粒从顶部沉降到灰斗的时间(),即:将代入上式,可求出沉降室能100%捕集的最小粒径dmin上式是在理想状况下得到的,实际中常出现反混现象,工程上常用36代替式中的18,这样理论和实践更接近。
室内的气流速度u应根据尘粒的密度和粒径确定。
常取0.3—0.5m/s,一般取0.2—2m/s。
沉降室的设计:概括1.沉降时间,2.沉降速度(按要求沉降的最小颗粒)(二)沉降室尺寸先按算出捕集尘粒的沉降速度us,在假设沉降室内的气流速度V和沉降室高度H(或宽度W),而后求沉降室的长度和宽度(或高度)。
Q=WHV=WLVt沉降室长度:沉降室宽度:Q为处理气流量,m3/s三、沉降室的结构重力除尘一般是让气流慢慢地通过结构简单而体积较大的除尘室,这样可为颗粒提供落入底部灰斗的机会。
颗粒需要降落的距离可通过在除尘室中放置一些水平隔板而缩短。
类型:重力沉降室可放置导流板,以改变气流的方向,以产生惯性作用,也可利用鱼鳞板、百叶窗以产生惯性作用。
有单层沉降室,有多层沉降式(平行的放置一些隔板)。
折流板式沉降室(垂直的折流板安装在沉降室的顶部,惯性作用力会增强颗粒的重力作用。
当气流被绕过折流板底部的时候,由于气流路径上这段弯曲部分的惯性作用,颗粒被分离下来。
四、实际性能和测试沉降式的实际性能几乎从不进行实验测量或测试,在最好的情况下,这种装置也只能作为气体的初级净化,除去最大和最重的颗粒。
沉降室的除尘效率约为40—70%,仅用于分离dp>50μm的尘粒。
烟气中颗粒沉降计算公式
重力沉降公式一、颗粒运动状态μρu d p p =Re (1-1)式中:p Re -----雷诺数p d -----颗粒直径 mρ--------空气密度 3/m kgu--------颗粒运动速度 m/sμ-------空气粘度 P a ·s在293K 和101325 P a 下,干空气粘度1.81×10-5 P a ·s干空气密度1.2053/m kg1、层流区:p Re ≤1。
2、滑动区:p Re ≤1,颗粒尺寸很小,与气体分子平均自由程差不多。
3、过渡区:1<p Re <500。
4、湍流区:500<p Re <2×105。
二、颗粒沉降速度1、层流区g d u p p s μρ182= (1-2)式中:s u -----颗粒重力沉降末端速度 m/sp d -----颗粒直径 mp ρ--------颗粒密度 3/m kgg--------重力加速度 m/s 2μ-------空气粘度 P a ·s公式(1-2)对粒径为 1.5~75m μ的单位密度(p ρ=10003/m kg )的颗粒,计算精度在±10%以内。
2、滑动区gC d u pps μρ182= (1-3)⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-++=n n K K C 10.1exp 400.0257.11 (1-4)pn d K λ2= (1-5)v ρμλ499.0= (1-6)M RTv π8= (1-7)式中:s u -----颗粒重力沉降末端速度 m/sp d -----颗粒直径 mp ρ--------颗粒密度 3/m kgg--------重力加速度 m/s 2μ-------空气粘度 P a ·sC-----坎宁汉修正系数Kn -----努深数λ--------气体分子平均自由程 mρ--------空气密度 3/m kgv -------气体分子的算术平均速度 m/sR-----通用气体常数,8.31411--••K mol JT--------气体温度, KM--------气体摩尔质量 mol kg /粗略估计,坎宁汉修正系数在293K 和101325 P a 下,C=1+0.165/p d (1-8)式中:C-----坎宁汉修正系数p d -----颗粒直径 m μ公式(1-3)对粒径p d ≥0.001m μ的微粒,计算是精确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力沉降除尘设计计算
1. 确定颗粒物的特性,包括颗粒物的密度、粒径分布、形状等。
这些参数将直接影响重力沉降的效率和设备的尺寸。
2. 确定气体流速,气体流速将影响颗粒物在气流中的运动情况,从而影响重力沉降的效率。
通常需要根据实际情况测定气体流速。
3. 设备尺寸计算,根据颗粒物的特性和气体流速,可以利用Stokes定律等相关公式计算出重力沉降设备的尺寸,包括沉降室的
高度、横截面积等参数。
4. 设备布局设计,根据实际场地情况和处理空气的量,设计合
理的设备布局,确保空气能够充分接触到沉降设备,达到最佳除尘
效果。
5. 安全考虑,在设计过程中需要考虑设备的安全性,避免因为
设计不当而导致设备运行时的安全隐患。
总的来说,重力沉降除尘设计计算需要综合考虑颗粒物特性、
气体流速、设备尺寸计算、设备布局设计以及安全考虑等多个方面,
确保设计的合理性和可行性。
同时,根据具体情况可能还需要考虑其他因素,如设备材质选择、清灰系统设计等。
这些都需要在设计计算过程中全面考虑,以确保重力沉降除尘设备的高效运行和长期稳定性。