整除的性质和特征
整除的性质和特征
整除的性质和特征整除是数论中的一个重要概念,它描述了一个整数能够被另一个整数整除,也就是除法运算的结果是整数。
整除有着许多重要的性质和特征,下面将详细介绍。
1.定义:整数a能够被整数b整除,即b是a的因数,记作b,a,当且仅当存在一个整数c,使得a=b·c。
其中,c称为a除以b的商,b称为a的约数,a称为b的倍数。
2.可加性:如果c是a的一个约数,那么c也是a的倍数。
换句话说,如果一个整数能够整除a,那么它也能够整除a的倍数。
3.可乘性:如果b,a且c,a,那么b·c也,a。
换句话说,如果一个整数能够整除a和b,那么它也能够整除a与b的乘积。
4.整除的传递性:如果b,a且c,b,那么c,a。
换句话说,如果一个整数能够整除a和b,那么它也能够整除a。
5.算术基本定理:任意一个大于1的整数,都可以表达为多个质数的积。
这意味着,如果一个整数可以整除另一个整数,那么它必然可以整除这个整数的所有质因数。
6. 两个非零整数的最大公约数和最小公倍数:两个非零整数a和b的最大公约数(记作gcd(a,b))是能够同时整除a和b的最大正整数。
两个非零整数a和b的最小公倍数(记作lcm(a,b))是能够同时被a和b整除的最小正整数。
于是有gcd(a,b)·lcm(a,b)=a·b。
7.唯一分解定理:任何一个整数都能够唯一地分解为几个质数的乘积。
这个定理也说明了一个数的因数有限,不会无限增多。
8. 整除与除法的关系:一个整数a能够被b整除,相当于a除以b 的余数为0。
对于任意的整数a和b,总能够找到唯一的两个整数商q和余数r,使得a=bq+r,其中r满足0≤r<,b。
9. 整除与模运算的关系:一个整数a能够被b整除,等价于a除以b的余数为0,即a mod b = 0。
在模运算中,a mod b表示a除以b的余数。
10. 除法的消去律:如果一个整数a能够被b整除,那么对于任意的整数c,ac也能够被bc整除。
数的整除
数的整除性质、特征【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。
(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。
(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。
(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。
反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。
整除特征:1、能被2整除的数:个位数能被2整除,则这个数就能被2整除。
如个位上是2、4、6、8、0的数都能被2整除。
2、每一位上数字之和能被3整除,那么这个数就能被3整除。
3、最后两位能被4整除的数,这个数就能被4整除。
4、个位上是0或5的数都能被5整除。
5、一个数只要能同时被2和3整除,那么这个数就能被6整除。
6、把个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
另外,把末三位数字截去,再从余下的数中减去截去的末三位数,如果差是7的倍数,则原数能被7整除。
7、最后三位能被8整除的数,这个数就能被8整除。
8、每一位上数字之和能被9整除,那么这个数就能被9整除。
9、若一个整数的末位是0,则这个数能被10整除。
10、若一个整数的奇位数字之和与偶位数字之和的差值能被11整除,则这个数能被11整除。
另外1,把个位数字截去,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。
另外2,把末三位数字截去,再从余下的数中减去截去的末三位数,如果差是11的倍数,则原数能被11整除.12、若一个整数能被3和4整除,则这个数能被12整除。
13、若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
另外,把末三位数字截去,再从余下的数中减去截去的末三位数,如果差是13的倍数,则原数能被13整除.14、若一个整数能被2和7整除,则这个数能被14整除。
整除规则(原理,性质)
整除规则(原理,性质)各种被整除的数的特征(放在这⾥以备以后查阅⽅便) (1)被2整除的数的特征:⼀个整数的末位是偶数(0、2、4、6、8)的数能被2整除。
(2)被3整除的数的特征:⼀个整数的数字和能被3整除,则这个数能被3整除。
(3)被4整除的数的特征:⼀个整数的末尾两位数能被4整除则这个数能被4整除。
可以这样快速判断:最后两位数,要是⼗位是单数,个位就是2或6,要是⼗位是双数,个位就是0、4、8。
(4)被5整除的数的特征:⼀个整数的末位是0或者5的数能被5整除。
(5)被6整除的数的特征:⼀个整数能被2和3整除,则这个数能被6整除。
(6)被7整除的数的特征:“割减法”。
若⼀个整数的个位数字截去,再从余下的数中,减去个位数的2倍,这样,⼀次次下去,直到能清楚判断为⽌,如果差是7的倍数(包括0),则这个数能被7整除。
过程为:截尾、倍⼤、相减、验差。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;⼜例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
(7)被8整除的数的特征:⼀个整数的未尾三位数能被8整除,则这个数能被8整除。
(8)被9整除的数的特征:⼀个整数的数字和能被9整除,则这个数能被9整除。
(9)被10整除的数的特征:⼀个整数的末位是0,则这个数能被10整除。
(10)被11整除的数的特征:“奇偶位差法”。
⼀个整数的奇位数字之和与偶位数字之和的差是11的倍数(包括0),则这个数能被11整除。
(隔位和相减) 例如,判断491678能不能被11整除的过程如下:奇位数字的和9+6+8=23,偶位数位的和4+1+7=12。
23-12=11。
因此491678能被11整除。
(11)被12整除的数的特征:⼀个整数能被3和4整除,则这个数能被12整除。
(12)被13整除的数的特征:若⼀个整数的个位数字截去,再从余下的数中,加上个位数的4倍,这样,⼀次次下去,直到能清楚判断为⽌,如果是13的倍数(包括0),则这个数能被13整除。
整除
整除整除(一)基础知识:1.整除的定义、性质.定义:如果a、b、c 是整数并且,a÷b=c。
则称a能被b整除或者b能整除a ,记做,否则称为a不能被b整除或者b不能整除a,记做.性质1:如果a、b都能被c整除,那么他们的和与差也能被c整除.性质2:如果b与c的乘积能够整除a,那么b、c都能整除a.性质3:如果b、c都能整除a,并且b、c互质,那么b、c的乘积也能够整除a.性质4:如果c能整除b,b能整除a,那么c能整除a.性质5:如果b和c的乘积能够被a整除,并且a,b互质,那么c能够被a整除.2.被2(5)整除特征:以2,4,6,8,0(5,0)结尾.3.被3,9整除特征:数字和被3,9整除.4.被4(25)整除的特征:后2位能被4(25)整除;被8(125)整除的特征:后3位能被8(125)整除.5.被11整除特征:奇数位数字和与偶数位数字和之差能被11整除. (“奇偶位差法”).6.被7、11、13整除特征:末三位与末三位之前的数之差能被7、11、113整除.7.整除性质、特征的综合应用,末尾0的个数问题的处理,运用设未知量求解整除问题.例题:例1、如果六位数能够被105整除,那么后两位数是多少?[答疑编号5721130101]【解答】设六位数为,105=3×5×7,依次考虑被3,5,7整除得到得到唯一解a=8,b=5.故后两位为85.例2、求所有的x,y ,使得 .[答疑编号5721130102]【解答】72=8×9,根据整除9性质易得x+y=8或17,根据整除4 的性质y=2或6,分别可以得到5位数32652、32256,检验可知只有32256满足题意.例3、一本陈年旧账上写的:购入143只羽毛球共花费元,其中处字迹已经模糊不清,请你补上中的数字并且算出每只羽毛球的单价.2[答疑编号5721130103]【解答】解得:a=7,b=1所以方框处的数字是7和1,单价5.37元.例4、要使六位数能够被63整除,那么商最小是多少?[答疑编号5721130104]【解答】63=7×9.再考虑该数能被9整除,有a+b+c=2或11或20. 由于要求最小的商也就是最小的被除数,先希望a=0. 此时,易验证b=0,b=1无解,而在b=2时,有解c=9,所以最小的被除数是100296,最小的商是1592.3例5、请用数字6、7、8各两次组成一个六位数使得这个六位数能够被168整除.[答疑编号5721130105]【解答】168=3×7×8,用6,7,8各两次,数字和42,是3的倍数.而用6、7、8组成的3位数是8的倍数的只有768,776 .当后三位是768,776时,前三位只有12种取法,经实验只有数768768符合题目要求。
第一节 整除意义、特征和性质
第一讲数的整除第一节整除的意义与特征、性质第1课时教学内容:整除的意义与常用数的整除特征。
教学目标:理解整除的意义,掌握常用数的整除特征,并能运用特征判断。
教学重难点:理解掌握常用数的整除的特征。
教学过程:一、整除的意义当两个整数a和b(b≠0),a除以b商为整数余数为零时,则称a能被b整除或b能整除a,也把a叫做b的倍数,b叫a的因数,记作b|a,如果a 除以b所得的余数不为零,则称a不能被b整除,或b不整除a,记作b|a.二、整除特征(1)1与0的特性:1是任何整数的因数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的个位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的各位数字和能被3整除,则这个整数能被3整除。
(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的个位是0或5,则这个数能被5整除。
(6)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(7)若一个整数的各位数字和能被9整除,则这个整数能被9整除。
(8)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
(9)如果一个数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)能被7(11、13)整除,这个数就能被7(11、13)整除。
三、例题讲解例1:(1)判断47382能否被3或9整除?(2)判断1548764能否被7整除?(3)判断42559,7295872能否被11整除?解:(1)4+7+3+8+2=24 3|24, 9|24∴3|47382, 9|47382(2)1548-764=784=7×112 7|784 ∴ 7|1548764(3)(4+5+9)―(2+5)=18―7=11∴11|42559(7+9+8+2)―(2+5+7)=26―14=12 11|12 ∴11|7295871小结:判断一个整数能否被另一个整数整除,充分考虑整除的特征,这样有利于我们去判断。
六年级数学数的整除分解质因数的特征及性质
六年级数学数的整除、分解质因数的特征及性质班级姓名座号成绩1、整除的概念:对于某个整数a和一个不为0的整数b,如果a除以b的商是整数且没有余数(即余数为0),我们就说a能被b整除,或者说b能整除a,记作b / a,显然,0是任何自然数的倍数,但不是任何自然数的约数,而1是任何整数的约数,即任何整数都是1的倍数。
2、整除的性质数的整除性有许多,常用的有以下四种:(1)如果数a和数b都能被数c整除,那么它们的和(a+b)及差(a-b)也能被c整除。
如:18能被3整除,12能被3整除,那么它们的和18+12=30及18-12=6也能被3整除。
(2)如果数a能被数b整除,数b又能被数c整除,则数a能被数c整除。
如果32能被8整除,8能被4整除,则32能被4整除。
(3)若干个数相乘,其中有一个因数a能被数b整除,则它们的积也能被数b整除。
如式子:11×12×13×14×15×16×17中的15能被5整除,则11×12×13×14×15×16×17的积也能被5整除。
(4)若一个数被两个互质数中的每一个数整除,则这个数能被这两个互质数的积整除。
如36能分别被互质数3和4整除,则36能被3和4的积12整除。
推论:若一个数能被两个互质数的积整除,则这个数能被这两个互质数整除。
如72能被互质数4和9的积36整除。
例1:六位数3ABABA是6的倍数,这们的六位数有多少个?解:因为六位数3ABABA是6的倍数,即能被6整除,而6=2×3,且2和3互质,所以六位数3ABABA能同时被2和3整除。
六位数3ABABA能被2整除,则可取A为0、2、4、6、8五个数。
又因六位数3ABABA能被3整除,而3+A+B+A+B+A=3A+3+2B,则B可取0、3、6、9四个数。
所以,符合条件的有4×5=20个。
五年级数的整除
数的整除一、整除的概念:a÷b=c,整数a除以整数b(b≠0),除得的商正好是整数而没有余数(或者余数为零)就叫做a能被b整除,或者说b能整除a,a是b的倍数,b是a的因数二、整除的性质(1)如果数a是b的倍数,c是整数,那么积ac也是b的倍数例:24是8的倍数,5是整数,5×24的积也是8的倍数(2)如果数a和b都是c的倍数,那么(a+b)与(a-b)也是c的倍数例:24和30都是6的倍数,那么(24+30)与(30—24)也是6的倍数(3)如果a是b的倍数,b又是c的倍数,那么a也是c的倍数例:24是12的倍数,12又是6的倍数,那么24也是6的倍数(4)如果a同时是b、c的倍数,而且b和c是互质数,那么a一定是bc的倍数例:24是2、3的倍数,2、3互质,24也是2×3的倍数(5)如果数b是a的因数,或者a含有因数b,那么a就是b的倍数例:60含有因数15,那么60就是15的倍数三、整除的特征(1)4或25的倍数的特征:如果一个自然数的末两位的数字所组成的数能被4、25整除,那么这个数就是4或25的倍数例:58372的末两位是72, 72是4的倍数,那么58372就是4的倍数57325的末两位是25,25是25的倍数,那么58325就是25的倍数(2)8或125的倍数特征:如果一个自然数的末三位的数字所组成的数能被8、125整除,那么这个数就是8或125的倍数例:58272的末三位是272, 272是8的倍数,那么58272就是8的倍数57375的末三位是375,375是125的倍数,那么58375就是125的倍数(3)7,11,13的倍数的特征:如果一个自然数的末三位上数字所组成的数与末三位以前的数字所组成的数之差(大减小)能被7,11,13整除,那么这个数就是7,11,13的倍数例:1059282是否是7的倍数:把1059282分成1059和282两个数,因为1059-282=777,又777能整除7,所以1059282是7的倍数若一个数奇数位上的数字和与偶数位上的数字和的差(大减小)能被11整除,那么这个数就是11,的倍数例:123456789的奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20,因为25—20=5,因为5不能被11整除,所以123456789不能被11整除1.判断3546725能否被13整除?2.一个四位数9()2()既有因数2,又是3的倍数,同时又能被5整除,这四个数最大是多少?3.378287、ABCABC这两个数能否被7,11,13整除?4.一个六位数()6879()首尾不祥,只知道这个六位数能被72整除,这个六位数是多少?5.一个整数能被13整除,这个数的最后三位数是339,那么这样的整数中最小的是多少?6.同时被3、4、5整除的最大四位数是多少?7.从1到9这九个数字中任选六个数字组成36的倍数,这样的六位数中最大的数是多少?最小的数是多少?8.已知A是一个自然数,并且它的各数位上的数字只有0和8两数,已知这个数是6 的倍数,A最小是多少?9.在257后面补上三个数字组成一个各数位上的数字都不相同的六位数,使它能被60整除,这样的六位数中最小的是多少?10.3()6()5是一个五位数,且是75的倍数,若想使3()6()5无重复数字,这个五位数是多少?答案:1.能 2.9720 3. 78287不能能 4.468729 5.1339 6.9960 7.987652 123768 8.8088 9.257160 10.30625 38675 39675。
整除
整除整除的两个基本性质:(1)如果甲、乙两个数都能被整数丙整除,那么甲、乙两数的和或差也能被丙整除;(2)几个整数相乘,如果其中有一个因数能被某个整数整除,那么它们的积能被这个数整除。
11的倍数特征:奇数位数字之和与偶数之和的差能被11整除,同样这个数被11除的余数也即差的余数。
7、13的倍数特征:这个末三位与末三位以前的数字组成的数的差能否被7、13整除。
例1、(1)判断47382能否被3或9整除?(2)判断42559,7295871能否被11整除?例2、求一个首位数字为5的最小六位数,使这和数能被9整除,且各位数字不相同。
例3、老师买了相同的书,当时没有记住每本书的价格,只用铅笔记下用掉的总钱数,回小后发现有两个数字已看不清,你能帮助补上这两个数字吗?(例499整除,这个六位数是多少?例5、有一个六位数,前四位数是2857,即11和13整除,请你算出后两位数。
例6、若四位数b a 89能被15整除,则a 代表的数字是多少?例7、已知四位数abcd 是11的倍数,且有a c b =+,bc 为完全平均数,求此四位数。
例8、在一个四位数的某位数字前添上一个小数点,再和原来的四位数相减,差是1803.6,则原来的四位数是多少?例9、三个连续的自然数介于100到200之间,其中最小的能被3整除,中间的能被5整除,最大的能被7整除。
是求出所有的这样的三个自然数。
练习:1、 已知45|y x 1993,求满足条件的六位数y x 1993。
2、 李老师为学校一共买了28支价格相同的钢笔,共付人民币9 字相同,请问每支钢笔多少元?3、 已知整数a a a a a 54321能被11整除,求所有满足这个条件的整数。
4、 六位数99整除,它的最后两位数是多少?5、 将1996加一个整数,使和能被23与19整除,加的整数要尽可能小,那么所加的整数是多少?6、 如果一个九位数B A 1999311能被72整除,试求A 、B 两位数的差(大减小)。
数的整除
典型题例
• 例2 、257a38 六位数能被3整除,数字a=?
解:2+5+7+a+3+8=25+a,要使25+a能被3整除,
•
数的整除具有如下性质:
性质1 :如果甲数能被乙数整除,乙数能被丙数整除,那么
甲数一定能被丙数整除。
性质2 :如果两个数都能被一个自然数整除,那么这两个数的 和与差也一定能被这个自然数整除。 性质3 :如果一个数能分别被两个互质的自然数整除,那么这 个数一定能被这两个互质的自然数的乘积整除。
• 一些整除的数字特征:
解:如果56□2能被9整除,那么 5+6+□+2=13+□应能被9整除,所以当十位数 是5,即四位数是5652时能被9整除; 如果56□2能被8整除,那么6□2应能被8整除,所以 当十位数是3或7,即四位数是5632或5672时能被8整除;
如果56□2能被4整除,那么□2应能被4整除,所以当 十位数是1,3,5,7,9,即四位数是5612,5632, 5652,5672,5692时能被4整除。
3.由2,3,4,5这四个数字写成的没有重 复数字的三位数中,有几个能被3整除?12
17 4.被3,5除余2且不等于2的最小整数是几?
练习
5.同时能被2,3,5整除的最小自然数是几?
30
6.同时能被2,3,5整除的最大三位数是几?
整除的数有哪些特征
整除的数有哪些特征?整除的性质:(1)如果a能被c整除,b也能被c整除,那么a+b和a-b也都能被c整除。
(2)如果a能被b整除,那么ac也能被bc所整除。
(3)如果a能被b整除,b能被c整除,那么a也能被c所整除。
(4)如果a能被b,c所整除,且(b,c)=1,那么a也能被b×c整除。
(5)如果a、b、c两两互质,且a、b、c都能整除m,那么abc能整除m。
能被1、2、3、4、5、6、7、8、9、10、11、13、14、15、16、17、18、19整除的数有哪些特征?1:所有整数2:所有偶数3:各个数位和为3的倍数4:偶数中4的倍数,后两位能被4整除5:个位为0或5的6:是3的倍数的偶数7:后三位与前几位的差能被7整除8:偶数中8的倍数,后三位能被8整除9:各个数位和为9的倍数10:末位为011:奇数位上的数字和与偶数位上的数字和的差为11的倍数13:末三位与前几位的差能被13整除14:7的倍数中的偶数15:3的倍数中末位为0或5的16:偶数中16的倍数,后四位能被16整除的17:末三位与前几位的差能被17整除18:9的倍数中的偶数19:19的倍数(7和13的可能不对,这都是小学的知识,现在都快忘了,除了那几个常用的,绝大部分应该都是正确的)11整除的特征:奇位数字的和与偶位数字的和之差可以被11整除。
举例132。
(1+2)-3=0=0*1113整除的特征:去掉个位数后的数加上个位数的4倍,能被13整除。
举例143。
14+3*4=26=13*2最佳答案能被7、11、13整除的特征是:如果一个数的末三位数字所表示的数与末三位前的数字相减(注意:大数减小数),能被7、11、13整除,这个数就是7、11、13的倍数。
若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数是17的倍数。
4的规律是:末两位的两位数能被4整除,则原数是4的倍数.125的规律:末三位的三位数能被125整除,则原数是125的倍数.整除的性质及应用整除有几个性质。
第三节 整除的特征和性质
第三节整除的特征和性质月日姓名:【知识要点】1.整除概念:一个整数除以另一个整数,得到的商也是一个整数,叫做整除。
2.较常见数的整除特征:(1)能被2、3、5整除的数的特征(见课本,大家回忆);(2)能被4、25整除:末两位数能被4、25整除;(3)能被8、125整除:末三位数能被8、125整除;(4)能被3、9整除:各个数字的数字相加得到的数的和能被3、9整除。
【典型例题】例1 谁能又快又好的写出下面的答案(千万不要落下一个噢!)能被2整除5整除2 能被3整除 6 能被9整除5 能被4整除能被4整除能被25整除能被8整除能被8整除能被125整除例2 四位数4:(1)能同时被5和9整除;(2)能被45整除呢?例这个四位数,同时能被2,3,4,5,9整除,求此四位数.例4 六位数能被4整除,且它的末两位数组成的两位数是6的倍数,?课堂练习姓名:成绩:1.(1)能被2整除的所有符合条件的数;(2)能被5整除的所有符合条件的数;(3)能被3整除的所有符合条件的数76;(4)能被9整除的所有符合条件的数9 391;2.(14整除的数4(2)能被25整除的数81 5(3)能被8整除的数52(4)能被125整除的数73 53. 761 能同时被2,3整除;4. 458 能被2,5整除;5. 四位数8 1 能同时被5,6整除,这个四位数是?课后练习姓名:成绩:1.(1)能被2整除的所有符合条件的数(2)能被5整除的所有符合条件的数;2.(1)能被3整除的所有符合条件的数;(2)能被9整除的所有符合条件的数3.(1)能被4整除的数8(2)能被25整除的数52 53 04.(1)能被8整除的数542 24(2)能被125整除的数746 74.从0、2、5、7四个数字中任选三个,组成能同时被2、5、3整除的数,并将这些数从小到大进行排列。
数的整除知识点总结
数的整除知识点总结一、整除的概念。
1. 定义。
- 在整数除法中,如果商是整数而没有余数,我们就说被除数能被除数整除,或者说除数能整除被除数。
例如,15÷3 = 5,我们就说15能被3整除,或者说3能整除15。
2. 整除的表示方法。
- 若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作ba。
二、数的整除特征。
1. 能被2整除的数的特征。
- 个位数字是0、2、4、6、8的整数能被2整除。
例如12、34、560等都能被2整除。
2. 能被3整除的数的特征。
- 一个数各位数字之和能被3整除,这个数就能被3整除。
例如123,各位数字之和为1 + 2+3 = 6,6能被3整除,所以123能被3整除。
3. 能被5整除的数的特征。
- 个位数字是0或5的整数能被5整除。
如10、15、205等都能被5整除。
4. 能被9整除的数的特征。
- 一个数各位数字之和能被9整除,这个数就能被9整除。
例如279,各位数字之和为2+7 + 9=18,18能被9整除,所以279能被9整除。
5. 能被11整除的数的特征。
- 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么原来这个数就一定能被11整除。
例如132,奇位数字之和为1+2 = 3,偶位数字是3,它们的差为0,0是11的倍数,所以132能被11整除。
三、整除的性质。
1. 传递性。
- 如果ab且bc,那么ac。
例如,如果3能整除6,6能整除18,那么3能整除18。
2. 可加性。
- 如果ab且ac,那么a(b + c)。
例如,5能整除10,5能整除15,那么5能整除10 + 15=25。
3. 可减性。
- 如果ab且ac,那么a(b - c)。
例如,7能整除21,7能整除14,那么7能整除21-14 = 7。
整除性质及应用
整除性质及应用整除性质及应用是数学中非常重要的概念,它们在数论、代数和几何中都有广泛的应用。
本文将从整除的定义开始,介绍整除性质,并探讨它们在数学问题中的应用。
一、整除的定义和性质整除是一个非常基本的概念,它是指一个数能够被另一个数整除,即被除数能够被除数整除。
我们用符号“|”表示整除,如果一个数a能够被另一个数b整除,就写作a|b。
例如,如果2能够整除6,即2|6。
整除具有以下性质:1. 任何数都能整除0,即对于任意的数a,都有a|0。
2. 任何数都能被1整除,即对于任意的数a,都有1|a。
3. 如果a能够整除b,而b能够整除c,那么a也能够整除c,即如果a|b且b|c,那么a|c。
4. 如果a能够整除b,那么a也能够整除a的倍数,即如果a|b,那么a|kb(其中k为整数)。
5. 如果a能够整除b,那么a也能够整除a与b的最大公因数,即如果a|b,那么a|(a,b)。
二、整除的应用整除性质在数学问题中有广泛的应用,下面我们将介绍其中的一些应用。
1. 最小公倍数最小公倍数是指能够同时被两个数整除的最小的正整数,常用符号为lcm(a,b)。
最小公倍数可以通过最大公因数求解,其中最小公倍数等于两个数的乘积除以最大公因数,即lcm(a,b)= a * b / (a,b)。
最小公倍数的求解方法在解决数学问题和约简分式中都有重要的应用。
2. 素数和因数分解素数是指除了1和本身之外没有其他正因数的数,例如2、3、5、7等。
素数在密码学中有广泛的应用,如RSA加密算法。
因数分解是将一个数表示为几个素数的乘积的形式,例如24=2^3 * 3。
因数分解在求解最大公因数、最小公倍数和求解方程等数学问题中起着重要作用。
3. 同余模运算同余模运算是指两个数在给定模数下具有相同余数的运算。
对于整数a、b和正整数m,如果a除以m与b除以m的余数相等,即a≡b (mod m),我们就说a与b在模m下相同余。
同余模运算在代数和密码学中都有广泛的应用。
小学5年级整除的性质
2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
a÷c b÷c (a±b) ÷c性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.但因为8375,所以829375。
⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
例如:判断123456789这九位数能否被11整除?解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11 123456789。
再例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。
整除的特征和性质一
第一讲整除的特征和性质㈠〈精讲〉【知识要点】数的整除的几个重要的性质性质1 如果数a、b都能被数c整除,那么(a+b)与(a-b)也能被c整除。
性质2 如果数a能被数b整除,c是整数,那么积ac也能被b整除。
性质3 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除。
性质4 如果数a能同时被数b、c整除,而且b、c互质,那么a一定能被积bc整除。
本讲我们重点掌握五组数的整除特征。
1. 如果一个自然数数的个位数字能被2或5整除,则这个数就能被2或5整除。
2. 如果一个自然数的末两位数能被4或25整除,那么这个自然数就能被4或25整除。
3. 如果一个自然数的末三位能被8(或125)整除,那么这个自然数就能被8(或125)整除。
4. 如果一个自然数的各个数位上的数字和能被3或9整除,那么这个数就能被3或9整除。
5. 如果一个自然数的奇数位上数字和与偶数位上数字和的差(大数减小数)能被11整除,那么这个数就能被11整除。
否则这个数便不能被11整除。
6. 学会把一个自然数分解为数码与1,10,100,1000,……乘积的形式。
如372=3×100+7×10+2×1【例1】一个五位数8□35□,既有约数2,又是3的倍数,同时又能被5整除,请你写出该五位数。
【例2】在□内填上适当的数,使六位数32787□能被4或25整除。
要点提示:任意一个多位数,ab…cde,可以写成ab…c×100+de,由于100能被4和25整除,所以只要这个数的末两位数de能被4或25整除,那么该数就能被4或25整除【例3】在□内填上适当的数,使五位数37□26能被3或9整除。
填完之后请你仔细观察能被9整除的数一定能被3整除吗,反之能被3整除的数一定能被9整除吗?请牢记这个规律!【例4】在568的后面补上三个数字,组成一个六位数,使它分别能被3,4,5整除。
符合这些条件的六位数中,最小的一个是多少?提示:要求能同时被两个或三个数整除时,应该逐个考虑被每个数整除的特征,但考虑时应注意顺序:一般是,首先考虑被2或5整除,因为只需考虑个位数字;其次考虑被4或25整除,因为此时只看末两位数字;再其次,考虑被8或125整除,因为此时只要看末三位数字;最后考虑被3或9整除,因为被3或9整除时要考虑各位数字之和,考虑的范围最广。
数的性质 整除性 数的整除特征
因为3|( × 999 + × 99 + × 9),
根据整除的Байду номын сангаас差性,
3能整除( × 1000 + × 100 + × 10 + )与( × 999 + × 99 + × 9)的差
( + + + )。
一、数的整除特征
5、能被11整除的数的特征:奇数位上的数之和与偶数位上的数之和的差(大减小)
如果11能够整除,由和差性,11|( + + − − )。
一、数的整除特征
6、能被7(11或13) 整除的数的特征:一个整数的末三位数与末三位以前的数字所组
成的数之差(大减小)能被7(11或13) 整除。
证明:在这里仅证明五位数的情况,其余情况类似证明。
一个五位整数 = × 1000 + = 1001 + −
数的整除特征
主要学习内容
01
数的整除特征
02
典型例题分析
一、数的整除特征
1、能被2(或5)整除的数的特征:末位数字能被2(或5)整除。
为了便于小学生理解,我们通常说成:如果一个整数的个位数字是0,2,4,6,8,
那么它能被2整除;如果一个整数的个位数字是0或5,那么它能被5整除。
2、能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
是11的倍数。
证明:在这里仅证明五位数的情况,其余情况类似证明。
一个五位整数 = 10000 + 000 + 100 + 10 +
= 9999 + + 1001 − + 99 + + 11 − +
整除数的性质和规律
整除数的性质和规律一、整除性质1:如果数a、b都能被c整除,则(a+b)与(a-b)也能被c整除;2:如果数a能被数b整除,c为整数,则积ac也能被数b整除;3:如果数a能被数b整除,b又能被c整除,则a也能被数c整除;4:如果数a能同时被数b、c整除,且b,c互质,则a一定能被b和c的积整除;5:如果数a能被c整除,b不能被c整除,则(a+b)与(a-b)不能被c整除。
二、整除规律⑴、能被1整除的数:任何数都能被1整除。
⑵、能被2整除的数:末位是0,2,4,6或8的数,都能被2整除。
⑶、能被5整除的数一个整数的末位是0或5,则这个整数能被5整除个位上是0的数,既能被2整除,又能被5整除,而且还能被10整除。
⑷、能被3或9整除的数:一个数只要各数位数字的和是3或9的倍数,就一定能被3或9整除。
例如:判断3576,2549能不能被3整除3576:∵3+5+7+6=21(21是3的倍数)∴3576能被3整除。
2549:∵2+5+4+9=20(20不是3的倍数)∴2549不能被3整除。
检验:2549÷3=849 (2)又如:判4212、5282能不能被9整除4212:∵4+2+1+2=9(9是9的倍数)∴4212能被9整除。
5282:∵5+2+8+2=17(17不是9的倍数)∴5282不能被9整除。
用上述方法不但能判断一个数能不能被3或9整除,而且还能判断不能整除时,余数是多少。
如:判断7485能不能被9整除7+4+8+5=24→2+4=6各位数字继续相加从结果看出:把7485的各位数字相加,最后所得的和是6不是9,所以7485这个数不能被9整除。
最后得出的6,就是7485除以9的余数。
即:7485÷9=831 (6)能被9整除的数,一定能被3整除。
能被3整除的数,却不一定能被9整除。
⑸、能被6整除的数既能被2整除,又能被3整除,也就是能被6整除的数。
①.首先看这个数是不是偶数,凡是偶数都能被2整除。
3.整除的特征和性质
§3.整除的特征和性质☆黄冈杨俊涛◆知识引领●整数a除以整数b(0除外),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a,a叫做b的倍数,b叫做a的因数。
如12÷3=4,就说12能被3整除,或者说3能整除12,12是3的倍数,3是12的因数。
●一个数的因数的个数是有限的,最小因数是1,最大因数是它本身;一个数的倍数的个数是无限的,最小倍数是它本身,没有最大倍数。
●能被2,3,5等整除的数的特征:2的倍数特征:个位上是0,2,4,6,8的数;5的倍数特征:个位上是0,5的数;3或9的倍数特征:各个数位上的数字之和能被3或9整除;4或25的倍数特征:末两位数能被4或25整除;8或125的倍数特征:末三位数能被8或125整除;11的倍数特征:奇数位上的数字和与偶数位上的数字和的差(或反过来)是11的倍数;7、11或13的倍数特征:末三位前的数与末三位数的差(或反过来)能被7、11或13整除。
●奇数与偶数:能被2整除的数叫偶数,不能被2整除的数叫奇数。
◆典型例题例1.下列哪些式子是整除式?(1)8.8÷1.1=8 (2)130÷10=13 (3)29÷7=4……1 (4)14÷5=2.4【解析】根据整除的定义,被除数和除数必须是整数,商是整数而没有余数才叫整除,因此只有(2)式才是整除式。
疯狂操练1下列式子哪些是除尽,哪些是整除?(1)7.5÷1.5=5 (2)32÷5=6.4 (3)8÷3=2……2 (4)15÷5=3例2.写出24的因数和倍数。
【解析】因为1×24=242×12=243×8=24 4×6=24所以24的因数有:1,2,3,4,6,8,12,24因为24×1=24,24×2=48,24×3=72,24×4=96……所以24的倍数有24,48,72,96……疯狂操练2写出36的因数和倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整除的性质和特征
整除问题是整数内容最基本的问题;理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感;
一、整除的概念:
如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b 整除或b能整除a,记作b/a,读作“b整除a”或“a能被b整除”;a叫做b的倍数,b叫做a 的约数或因数;整除属于除尽的一种特殊情况;
二、整除的五条基本性质:
1如果a与b都能被c整除,则a+b与a-b也能被c整除;
2如果a能被b整除,c是任意整数,则积ac也能被b整除;
3如果a能被b整除,b能被c整除,则积a也能被c整除;
4如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;
5任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数;
三、一些特殊数的整除特征:
根据整除的基本性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便;
1如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征;
①若一个整数的个位数字是2的倍数0、2、4、6或8或5的倍数0、5,则这个数能被2或5整除;
②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;
③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除;
推理过程:
2、5都是10的因数,根据整除的基本性质2,可知所有整十数都能被10、2、5整除;任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基本性质1,则这个数能被2或5整除;
又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基本性质2,可知任意整百数都能被4、25整除,任意整千数都能被8、125整除;同时,任意一个多位数都可以看作一个整百数和它末两位数的和或一个整千数和它的末三位数的和,根据整除的基本性质1,可以推导出上面第②条、第③条整除特征;
同理可证,若一个数的末四位数能被16或625整除,则这个数能被16或625整除,依此类推;
2若一个整数各位上数字和能被3或9整除,则这个数能被3或9整除;
推理过程:
因为10、100、1000……除以9都余1,所以几十、几百、几千……除以9就余几;因此,对于任意整数ABCDE…_______________都可以写成下面的形式n为任意整数:
9n+A+B+C+D+E+……
9n一定能被3或9整除,根据整除的基本性质1,只要这个数各位上的数字和A+B +C+D+E+……能被3或9整除,这个数就能被3或9整除;
3用“截尾法”判断整除性;
①截尾减2法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的2倍,差是7的倍数,则原数能被7整除;
②截尾减1法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的1倍,差是11的倍数,则原数能被11整除;
③截尾加4法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的4倍,差是13的倍数,则原数能被13整除;
④截尾减5法:若一个整数截去个位数字后,再从所得的数中,减去个位数字的5倍,差是17的倍数,则原数能被17整除;
⑤截尾加2法:若一个整数截去个位数字后,再从所得的数中,加上个位数字的2倍,差是19的倍数,则原数能被19整除;
根据整除的基本性质3,以上5条整除特征中,如果差太大,可以继续前面的“截尾翻倍相加”或“截尾翻倍相减”的过程,直到能直接判断为止;
推理过程:
设任意一个整数的个位数字为y,这个数可以表示成10x+y的形式,其中x为任意整数;
一个数截尾减2后,所得数为x-2y;因为截去这个数的个位数字后,所得数x减去个位数字y的2倍,实际上是在原数的十位数字上减去2个y,即减去了20个y,截尾一个y,总共减去了21个y,剩下了x-2y个10;如下式:10x-20y+y-y﹦x-2y×10﹦10x +y-21y;
根据整除的基本性质,如果x-2y能被7整除,则x-2y×10就能被7整除,即10x+y-21y能被7整除,21y是7的倍数,可以推出原数10x+y一定能被7整除;
“截尾加4”就是原数截去1个y、加上40个y,总共加了39y13的倍数,得到x+4y 个10,“截尾加4”所得x+4y如果能被13整除,原数必能被13整除;
同理,“截尾减1”就是原数减去了11个y11的倍数,原数剩下x-y个10,“截尾减1”所得x-y能被11整除,原数必能被11整除;
“截尾减5”就是原数减去了51个y17的倍数,原数剩下x-5y个10,“截尾减5”所得
x-5y能被17整除,原数必能被17整除;
“截尾加2”就是原数加了19y19的倍数,得到x+2y个10,“截尾加2” 所得x+2y如果能被19整除,原数必能被19整除;
依此类推,可以用“截尾加3”判断一个数能否被29整除,用“截尾减4”判断一个数能否被41整除等等;
4 “截尾法”的推广使用;
①若一个数的末三位数与末三位之前的数字组成的数相减之差大数减小数能被7、11或13整除,则这个数一定能被7、11或13整除;
②若一个整数的末四位与之前数字组成数的5倍相减之差能被23或29整除,则这个数能被23或29整除;比较适合对五位数进行判断
推理过程:
①设任意一个整数的末三位数为y,则这个数可以表示成1000x+y的形式,其中x 为任意整数;
当x大于y时,这个数末三位之前的数字组成的数减去末三位数得到x-y;这里x 减y实际上是在原数的千位上减去y,即减去了1000y,加上截去末三位数y,总共减去了1001y,原数剩下x-y个1000;如下式:
1000x-1000y+y-y﹦1000x-y﹦1000x+y-1001y
7×11×13﹦1001,7、11和13都是1001的因数;
综上所述,如果这个数末三位之前的数字组成的数减去末三位数得到x-y能被7、11或13整除,即1000x+y-1001y能被7、11或13整除,则原数必能被7、11或13整除;
当y大于x时,可得1000y-x﹦1001y-1000x+y,如果y-x能被7、11或13整除,则原数必能被7、11或13整除;
②设任意一个整数的末四位数为y,则这个数可以表示成10000x+y的形式,其中x 为任意整数;末四位与之前数字组成数的5倍相减之差即y-5x;
10000y-5x﹦1005y-510000x+y
因为1005是23和29的公倍数,如果一个数末四位与之前数字组成数的5倍相减之差即y-5x能被23或29整除,即10000y-5x能被23或29整除,则原数必能被23或29整除;
依此类推,如果一个数末两位数与之前数字相减之差能被101整除,则这个数必能被101整除等等;
5若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除;
推理过程:
一个整数偶数位上每个计数单位除以11都余1,如1、100、10000……等,除以11都余1,因此每个偶数位上数字是几,它所表示的数值除以11就余几,所有偶数位上数字之和除以11余几,所有偶数位数字所表示的数值除以11就余几;一个整数奇数位上每个
计数单位除以11都“缺1”余数为10,如10、1000、100000……等,除以11都“缺1”, 因此每个奇数位上数字是几,它所表示的数值要整除11就缺几,所有奇数位上数字之和除以11缺几,所有奇数位数字所表示的数值除以11就缺几;
“移多补少”,只有一个整数所有奇位数字之和与偶位数字之和相减之差能被11整除,原数才能被11整除;。