金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

小编备注:结合国内目前MIM现状补充了一些资料。转载请注明文章来源:金属注射成型网https://www.360docs.net/doc/3e19233640.html, 1 MIM是一种近净成形金属加工成型工艺

MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选金属粉末与粘结剂进行混炼,然后将混合料进行制粒再注射成形所需要的形状胚料,然后通过高温烧结,得到具有强度的金属零件。

2 MIM工艺流程步骤

MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进一步的机械加工或进行表面处理.

混合

精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。

CNPIM备注:混炼是MIM工艺中非常重要的一道工序。目前混炼有几种体系,不同的添加剂,后面对应需要不同的脱脂方法将添加剂去除。最常用的蜡基和塑基,分别对应热脱脂和催化脱脂。

成型

注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送入机器加热并在高压下注入模腔。这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知的。

脱脂

脱脂是将成型部件中粘结剂去除的过程。这个过程通常分几个步骤完成。绝大部分的粘结剂是在烧结前去除的,残留的部分能够支撑部件进入烧结炉。

脱脂可以通过多种方法完成,最常用的是溶剂萃取法。脱脂后的部件具有半渗透性,残留的粘结剂在烧结时很容易被挥发。

CNPIM备注:目前最常用的脱脂方法是BASF推出的Catamold催化脱脂方法,需要用到专用的催化脱脂炉(欲了解详情,请关注本公众号,回复数字19,了解催化脱脂工艺,回复数字20,了解催化脱脂炉的结构和工作原理)

烧结

经过脱脂的部件被放进高温、高压控制的熔炉中。该部件在气体的保护下被缓慢加热,以去除残留的的粘合剂。粘结剂被完全清除后,该部件就会被加热到很高的温度,颗粒之间的空隙由于颗粒的融合而消失。该部件定向收缩到其设计尺寸并转变为一个致密的固体。对于大多数的材料,典型的烧结密度理论上大于97%。高烧结密度使得产品性能与锻造材料相似。

CNPIM备注:对于常见的金属注射成型材料,目前常用的是真空烧结炉。关注本公众号回复数字21,可查看真空烧结炉的工作原理介绍。

机械加工

CNPIM备注:这一段是小编补充加入进来的。对于外观件或表面要求高、精度要求高的产品,或有些结构没有办法在注塑模具上一次成型的特征,会需要进行二次加工。最常见的是CNC加工,钻孔攻牙。这在手机数码产品零件上体现的比较明显。有兴趣的了解一下苹果手机里面的金属部件的加工工艺。

表面处理

根据具体需求,有些部件烧结后可能需要进行表面处理。热处理可以提高金属物理性能。电镀、涂装可以应用于高密度材料。提供焊接或冷却处理技术。

CNPIM备注:还是补充说外观件。绝缘性能,不同的颜色,不同的质感,防指纹……等等,通过表面处理工艺,产品更加多姿多彩~~~~~对于外观件,PVD最常见,有兴趣可回复数字07了解PVD相关工艺简介。

3 MIM产品通常具有以下特性

复杂性

MIM和注塑成型一样,形状设计没有限制。由于MIM是一个成型过程,附加的产品特性不会增加成本,这使得MIM成为将独立零件组合成多功能的产品的理想途径。MIM设计规则同注塑成型非常接近,从而适用于几乎所有产品。

精密性

MIM净成型精度的参考设计通常是尺寸的±0.5%。某些特性净成型能达到±0.3%。如同其它技术一样,精度要求越高成本越高,因此在质量允许情况下鼓励适度放宽公差要求。MIM一次成型无法达到的公差可以借助表面处理实现。

重量和尺寸

MIM特别适合重量小于100克的零部件,少于50克是最经济的。然而,重量达250克的零部件也可以处理。MIM工艺的主要成本是原材料,因此MIM通过新技术来尽可能减少零部件的重量。同塑料产品一样,可以在不影响产品完整性的条件下,通过内核和支架来减少零部件的重量。MIM在极小和微型零部件方面表现突出,重量小于0.1克也是可行的。重量不是限制因素,长度超过250mm的产品也能被处理。

薄型化

小于6毫米的壁厚对于MIM是最适合的。较厚的外壁也可以,但是成本会由于处理时间长和增加额外材料而增加。另外,低于0.5 mm 的极薄壁对MIM也是能实现,但对设计有很高的要求

产量

MIM是弹性较大的工艺,年需求量几千到几百万的产量能够非常经济地实现。和铸造件、注塑件一样,MIM需要客户投资模具和工具费用,所以对小批量的产品而言,通常会影响到成本估算。

原料

MIM能处理很多材料,包括铁合金、超级合金、钛合金、铜合金、耐火金属、硬质合金、陶瓷和金属基复合材料。虽然有色合金铝和铜在技术上是可行的,但是通常由其他更经济的方式进行处理,如压铸或机加工。

4 MIM设计指导

MIM被广泛运用到各个汽车、医疗、电子、工业、消费等各行业,产品涉及包括汽车配件、航空航天器材、移动电话、牙科仪器、电子散热器和密封包装、电子连接器硬件、工业工具、光纤连接器、喷雾系统、盘驱动器、医疗设备、手持电动工具、手术器械和运动器材等。

内容来源:材料馆整理,https://www.360docs.net/doc/3e19233640.html,补充。更多MIM技术资料,请访问https://www.360docs.net/doc/3e19233640.html,

金属粉末注射成型技术MIM

金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。其基本工艺过程 是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向MIM技术 金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉 末冶金工艺制品、材质不均匀、机械性能低、不易成型薄壁、复杂结构的缺点,特别适合 于大批量生产小型、复杂以及具有特殊要求的金属零件。工艺流程粘结剂→混炼→注射成形→脱脂→烧结→后处理 粉末金属粉末 MIM工艺所用金属粉末颗粒尺寸一般在0.5~20μm;从理论上讲,颗粒越细,比表面积也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm的较粗的粉末。有 机胶粘剂 有机胶粘剂作用是粘接金属粉末颗粒,使混合料在注射机料筒中加热具有流变性和润滑性,也就是说带动粉末流动的载体。因此,粘接剂的选择是整个粉末的载体。因此,粘拉选择是整个粉末注射成型的关键。对有机粘接剂要求: 1.用量少,用较少的粘接剂能使混合料产生较好的流变性; 2.不反应,在去除粘接剂的过程中与金属粉末不起任何化学反应;

mim工艺技术要求

mim工艺技术要求 MIM工艺技术要求 MIM(金属注射成型)是一种先进的金属粉末成型工艺,通过将金属粉末与高质量的有机粘结剂混合后,注射进模具进行成型,再通过去除有机粘结剂和烧结工艺,最终得到具有高精度和复杂形状的金属件。MIM工艺技术在制造业领域有着广泛的应用,对于产品质量和工艺性能有着重要的要求。 首先,MIM工艺技术要求材料的选择必须合理。在MIM工艺中,金属粉末的选择对产品的性能有着重要影响。金属粉末应具有良好的流动性和分散性,以确保注射成型过程中的材料均匀性。此外,金属粉末的颗粒大小、形状和化学成分也是选择合适材料的重要因素。 其次,MIM工艺技术要求模具设计精确。模具是MIM成型过程中的核心设备,模具的设计直接关系到产品的精度和质量。模具应根据产品的形状和尺寸要求进行设计,确保制造出符合设计要求的产品。此外,模具的制造材料也要具有高强度和抗腐蚀性,以保证模具的使用寿命。 另外,MIM工艺技术要求注射成型过程控制准确。在注射成型过程中,需要调整注射机的参数,如注射压力、温度和速度等,以确保材料充满模具腔体并获得良好的成型效果。此外,在注射成型过程中还需要控制注射剂量和注射时间,以确保产品的尺寸精度和表面质量。

同时,MIM工艺技术要求烧结工艺稳定。烧结是将注射成型后的产品进行高温处理,使金属粉末颗粒熔结在一起,形成致密的金属结构。烧结工艺要求温度和时间的控制精确,以确保产品的均匀性和强度。此外,还需要进行适当的气氛保护,以避免产品氧化和表面缺陷的产生。 此外,MIM工艺技术要求生产环境的洁净。由于MIM工艺对产品的尺寸和表面质量要求较高,生产过程中要避免杂质和污染物的进入。因此,生产车间应保持洁净,减少粉尘和异物的产生和积累,以确保产品的质量。 综上所述,MIM工艺技术要求涉及材料选择、模具设计、注射成型过程控制、烧结工艺稳定和生产环境的洁净。通过合理选择材料、精确设计模具、准确控制成型过程和烧结工艺,以及保持洁净的生产环境,可以生产出具有高精度和复杂形状的金属件,满足市场对产品质量和工艺性能的要求。

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍

金属成型新工艺:MIM(金属粉末注射成型)工艺详细介绍 小编备注:结合国内目前MIM现状补充了一些资料。转载请注明文章来源:金属注射成型网https://www.360docs.net/doc/3e19233640.html, 1 MIM是一种近净成形金属加工成型工艺 MIM (Metal injection Molding )是金属注射成形的简称。是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选金属粉末与粘结剂进行混炼,然后将混合料进行制粒再注射成形所需要的形状胚料,然后通过高温烧结,得到具有强度的金属零件。 2 MIM工艺流程步骤 MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进一步的机械加工或进行表面处理. 混合

精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。 CNPIM备注:混炼是MIM工艺中非常重要的一道工序。目前混炼有几种体系,不同的添加剂,后面对应需要不同的脱脂方法将添加剂去除。最常用的蜡基和塑基,分别对应热脱脂和催化脱脂。 成型 注射成型的设备和技术与注塑成型是相似的。颗粒状的原料被送入机器加热并在高压下注入模腔。这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。每种材料的收缩变化是精确的、已知的。 脱脂

MIM(金属粉末注塑成型)技术介绍

MIM(金属粉末注塑成型)技术介绍 MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件 近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。 MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下 采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具 型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。 MIM产品的特点: 1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的 金属零部件 ; 2、 MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra 0.80 ~ 1.6 μm ,重量范围在 0.1 ~200g。尺寸精度高(± 0.1% ~±0.3% ),一般无需后续加工 ; 3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产 ; 4、产品质量稳定、性能可靠,制品的相对密度可达95% ~ 99% ,可进行渗碳、淬火、回火等热处理。产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。 MIM技术优势

参数MIM传统 PM机械加工精密铸造相对密度98%98%100%98%拉伸强度高低高高 延伸率高低高高 硬度高低高高 复杂程度高低高中 表面粗糙度高中高中 量产可行性高高低中 材料范围高高高中- 高成本中低高中

MIM与传统粉末冶金相对比 MIM可以制造复杂形状的产品,避免更多的二次机加工。 MIM产品密度高、耐蚀性好、强度高、延展性好。 MIM 可以将 2 个或更多 PM 产品组合成一个MIM产品,节省材料和工序。MIM与机械加工相对比 MIM设计可以节省材料、降低重量。 MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。MIM通过模具一次成形复杂产品,避免多道加工工序。 MIM可以制造难以机械加工材料的复杂形状零件。 MIM与精密铸造相对比 MIM 可以制造薄壁产品,最薄可以做到0.2mm 。 MIM产品表面粗糙度更好。 MIM更适宜制细盲孔和通孔。 MIM大大减少了二次机加工的工作量。 MIM可以快速的大批量、低成本制造小型零件。 MIM材料范围 常用 MIM材料应用领域: 材料体系合金牌号、成分应用领域 低合金钢Fe-2Ni, Fe-8Ni汽车、机械等行业的各种结构件不锈钢316L ,17-4PH医疗器械、钟表零件 硬质合金WC-Co各种刀具、钟表、手表钨合金W-Ni-Fe, W-Ni-Cu, W-Cu军工业、通讯、日用品钛合金Ti,Ti-6Al-4V医疗、军工结构件 磁性材料Fe,Fe14 Nd2 B,SmCo5各种磁性能部件

金属粉末注射成型技术.

金属粉末注射成型(Metal Powder Injection Molding,简称MIM技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 MIM技术由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。MIM技术已成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。

MIM工艺

1、MIM 技术概述 金属(陶瓷)粉末注射成型技术(Metal Injection Molding ,简称MIM 技术)是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科相互渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确的将设计思想物化为具有一定结构、功能特性的制品并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品密度低、材质不均匀、机械性能低、不易成型薄壁、复杂结构的缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。 2 、MIM 工艺过程 2.1工艺流程 2.2 过程简介 2.2.1金属粉末 MIM 工艺所用金属粉末颗粒尺寸一般在0.5~20μm;从理论上讲,颗粒越细,比表面积也越大,易于成型和烧结。而传统的粉末冶金工艺则采用大于40μm 的较粗的粉末。 2.2.2有机胶粘剂 有机粘接剂作用是粘接金属粉末颗粒,使混合料在注射机料筒中加热具有流变性和润滑性,也就是说带动粉末流动的载体。因此,粘接剂的选择是整个粉末注射成型的关键。对有机粘接剂要求:①用量少,即用较少的粘接剂能使混合料产生较好的流变性;②不反应,在去除粘接剂的过程中与金属粉末不起任何化学反应;③易去除,在制品内不残留碳。

2.2.3混练与制粒 混练时把金属粉末与有机粘接剂均匀掺混在一起,将其流变性调整到适于注射成形状态的作用。混合料的均匀程度直接影响其流动性,因而影响注射成型工艺参数乃至最终材料的密度及其它性能。注射成形过程中产生的下角料、废品都可重新破碎、制粒,回收再用。 2.2.4注射成形 本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。在注射成型过程中,混合料在注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型出毛坯。注射成型的毛坯的密度在微观上应均匀一致,从而使制品在烧结过程中均匀收缩。控制注射温度、模具温度、注射压力、保压时间等成形参数对获得稳定的生坯重量至关重要。要防止注射料中各组分的分离和偏析,否则将导致尺寸失控和畸变而报废。 2.2.5脱粘 成型毛坯在烧结前必须去除毛坯内所含有的有机粘接剂,该过程称为脱粘。脱粘工艺必须保证粘接剂从毛坯的不同部位沿着颗粒之间的微小通道逐渐地排出,而不降低毛坯的强度。溶剂萃取部分粘接剂后,还要经过热脱粘除去剩余的粘接剂。脱粘时要控制坯件中的碳含量和减少氧含量。 2.2.6烧结 烧结是在通有可控气氛的烧结炉中进行的。MIM零件的高密度化是通过高的烧结温度和长的烧结时间来达到的,从而大大提高和改善零件材料的力学性能。 2.2.7后处理 对于尺寸要求较为精密的零件,需要进行必要的后处理。本工序与常规金属制品的热处理工序相同。 3、MIM工艺特点 3.1MIM工艺与其它加工工艺的对比 3.1.1 MIM与传统的粉末冶金(PM)的比较

金属注射粉末成型工艺介绍

金属注射粉末成型工艺介绍 金属粉末注射成型(Metal Injection Molding,简称MIM)是一种新的零部件制备技术,它是将塑料注射成型技术引入到粉末冶金领域而形成的一种全新的零部件加工技术。众所周知,塑料注射成形技术能生产出各种形状复杂且价格低廉的塑料制品,但塑料制品强度不高,为了改善其性能,在塑料中添加金属粉末以得到强度较高、耐磨性好的制品。现在,这一想法已发展为最大限度地提高固体粒子含量,并在随后的脱脂烧结过程中完全去除粘结剂,从而使成形坯致密化。这种新的粉末冶金成型方法被称为金属粉末注射成型。 金属注塑成型(MIM)工艺特点 1、金属注塑成型技术可以概括为:现代塑料注塑成型技术+粉末冶金技术。 2、MIM工艺流程为: 状态下(~150℃)用注射成型机注入模腔内固化成形;然后用化学或热分解的方法将成形坯中的粘结剂脱除;最后经烧结致密化得到最终产品。有的烧结产品还可进行进一步致密化处理、热处理或机加工。 4、MIM技术特点: ---- 可以直接制备出具有最终形状和尺寸的复杂零部件。例如:非对称零件,带沟槽、横孔、盲孔的零件,壁厚变化比较大的零件,表面带花纹和文字的零件等。产品性能优越由于MIM产品微观组织均匀,没有铸造工艺中出现的粗大结晶组织和成分偏析,产品密度高,产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀,要明显优于精密铸造材料和传统粉末冶金材料。 ---- 可以实现零部件一体化。由于加工技术或材料性能的原因,有些部件采用传统技术制造时,需要加工成几个零件来组装,有时几个零件的材料还不一样。采用MIM技术则可以直接制成一个整体的复合部件。 ---- 材料适应性广。可以说:能制成合适粉末的任何材料都可以用MIM技术制造零部件。 ---- 生产成本低。主要表现在:可以减少甚至消除机加工,劳动强度低,大幅度的提高生产效率;原材料利用率高,避免切削加工中的浪费;生产线高度自动化,工序简单,可连续大批量生产。 5、MIM主要参数:MIM尺寸精度可达±0.3%;密度控制在 93~98%实体密度以上;最大尺寸<100mm,推荐长径比<20,厚度范围0.2~8mm之间,重量范围在0.05~200g之间, 重量<50g 对MIM来说更经济;表面粗糙度0.4~1.6微米;机械性能可与精细材料相比拟;复杂性,几何形状可以和塑料注塑相比拟;可以

金属粉末注射成型

金属粉末注射成型 简要: 金属粉末注射成型(MetalPowderInjectionMolding,简称MIM)技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。金属注射成型是传统的粉末冶金工艺与塑料成型工艺相结合的新工艺,是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉的产物,是粉末冶金和精密陶瓷成型加工领域中的新技术,利用模具可注射成型,快速制造高密度、高精度、复杂形状的结构零件,能够快速准确地将设计思想转变为为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革[1]。 关键词:金属粉末注射成型的发展现状及现状工艺流程工艺特点粘接剂流 动分析研究展望 正文: 一、金属粉末注射成型的发展现状及现状 1.国外概况[2][3][5] 金属粉末注射成型工艺技术的开拓者是美国的Parmatech公司。该公司的航天燃料专家Wiech博士于1973年发明了MIM技术。以Riverst和Wiech于70 年代发明的专利为起点,开始了金属粉末注射成形技术。Parmatech于70年代末注射成型铌火箭喷嘴获得MPIF奖。但由于该技术的独特优点和先进性,被美国列为不对外扩散技术加以保密,直到1985年才向全世界公布这一技术,而在这期间美国国内的MIM技术得以成熟并迅速发展形成产业化。该项技术向世界披露后得到世界各国政府、学术界、企业界的广泛重视,并投入了大量人力物力和财力予以开发研究。其中日本在研究上十分积极而且表现突出,许多大型株式会社参与了MIM技术的工业化推展。目前日本有四十余家企业从事MIM制品的生产,每家公司的利润都十分可观。2000年世界粉末冶金会议在日本召开,并专门设立了MIM技术论坛。继日本快速发展之后,台湾、韩国、新加坡、欧洲和南美的MIM产业也雨后春笋般的发展起来,其中德国的BASF公司以其独特的黏结剂配方成立了专门的MIM产品喂料生产线,在全世界范围内进行技术辅导和喂料的销售,获得了较大的商业利润。 德国BASF公司的Bloemacher于90年代初开发的MIM工艺成为MIM实现产业化的一个重大突破。它采用聚醛树脂作为粘结剂,并在酸性气氛中快速催化脱脂,不仅大大缩短了脱脂时间,而且这种催化脱脂能在低于粘结剂的软化温度下进行,避免了液相的生成,有利于控制生坯的变形,保证了烧结后的尺寸精度。同时,由于利用了聚醛树脂极性连接金属粉末,故适合于多种粉末的注射。这种工艺不仅大大降低了生产成本,提高了生产率,并且可生产尺寸较大的零件和制品,扩大了MIM的应用范围,从而使MIM真正成为一种具有竞争力的PM近净成型技术。 作为该项技术的发明国美国。MIM技术已经广泛的应用于航天、摩托车、汽车、医疗器械、食品机械、计算机、通信设备、五金工具、仪器仪表、钟表等各

金属粉末注射成型技术

金属粉末注射成型技术 金属粉末注射成型(Metal Powder Injection Molding,简称MIM) 技术是一种通过将金属粉末与热塑性聚合物射出成型技术相结合,制造复 杂形状的金属制品。MIM技术结合了传统的注射成型和金属粉末冶金技术 的优点,能够高效、精确地制造出形状复杂的金属部件。下面将从工艺原理、材料特点、工艺流程以及应用领域等方面详细介绍MIM技术。 一、工艺原理 MIM技术主要包括四个步骤,即粉末混合、注射成型、烧结和后处理。首先,将金属粉末与增塑剂、溶剂等辅助剂混合均匀,形成可塑性的混合料。然后,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中,得到近成型的部件。接下来,通过烧结工艺,将成型的部件进行加热,使金属粉末颗粒之间相互扩散,实现部件的致密化和结合。最后,进行去 脱模、表面处理等后处理工艺,使得最终制品达到所需的精度和表面质量。 二、材料特点 MIM技术可以制造多种金属的制品,包括不锈钢、钛合金、铜合金、 铁合金等。这些材料具有良好的机械性能、耐磨、耐腐蚀等特点,可以满 足各种应用领域的需求。金属粉末的粒度一般在5-20μm之间,可以根据 制品要求进行选择。此外,MIM制品可以采用多种表面处理工艺,如抛光、电镀、喷涂等,进一步提高产品的表面质量和装饰效果。 三、工艺流程 MIM技术的工艺流程相对复杂,包括原料准备、混合、注射、烧结和 后处理等环节。首先,需要根据制品要求选择合适的金属粉末和添加剂, 并对其进行筛选和处理。然后,将金属粉末与增塑剂、溶剂等辅助剂进行

混合,形成可塑性的混合料。接下来,将混合料装入注射机中,通过高压 力将混合料注射至模具腔穴中。然后,将近成型的部件进行烧结,使其实 现致密化和结合。最后,通过去脱模、除渣、表面处理等后处理工艺,得 到最终的金属部件。 四、应用领域 MIM技术的应用领域非常广泛,包括电子通讯、汽车工业、医疗器械、军工等领域。在电子通讯领域,MIM技术可以制造小型高精度的连接器、 插件等零部件,满足电子设备不断减小体积和提高性能的需求。在汽车工 业领域,MIM技术可以制造发动机零部件、制动系统零部件、传感器等关 键零部件,提高零部件的精度和强度。在医疗器械领域,MIM技术可以制 造人工关节、手术器械等复杂形状的金属部件,满足医疗器械对精度和生 物相容性的要求。在军工领域,MIM技术可以制造高强度、高精度的武器 部件,提高武器系统的性能和可靠性。 综上所述,金属粉末注射成型技术是一种高效、精确制造复杂形状金 属部件的先进技术。它结合了注射成型和金属粉末冶金技术的优点,可以 满足各种领域对金属部件的高精度、高性能要求。随着科技的发展,MIM 技术在各个领域中的应用将会进一步拓展。

mim粉末冶金工艺

mim粉末冶金工艺 粉末冶金是一种以粉末为原料、经过成型和烧结等工艺制成各种 金属、合金、陶瓷等复合材料的技术。而其中的一种主要工艺就是mim 粉末冶金工艺。 mim粉末冶金工艺主要分为以下几个步骤: 第一步:粉末混合 首先需要将各种金属、合金和其他添加剂的粉末进行混合。这个 步骤可以通过机械混合、球磨、干式混合等多种方式进行。一般情况下,粉末必须充分混合,以保证最终成品的均匀性和一致性。 第二步:制备原料 混合后的粉末需要先制备成可注射的原料。为此,需要使用注射 成型机进行原料的制备。注射成型机是一种专门制备粉末冶金材料的 机器,可以将混合后的粉末与注射剂进行混合,并将其注入金属型中。 第三步:注射成型 将制备好的原料注射到金属型中,这个过程成为注射成型。注射 成型需要严格控制粉末的注射量和速度,同时还需要保证注射成型时 的压力和温度以及内部气压和环境温度的一致性。 第四步:脱模 经过注射成型后,金属型中的原料需要进行脱模。这个过程是指 将原料从金属型上取出,并在低温下干燥。这个过程需要控制温度和 湿度等因素,以确保产品的稳定性和一致性。 第五步:烧结 脱模后的产品需要进一步进行烧结处理。这个过程是指将脱模后 的产品放入烧结炉中,烧结炉中的温度会逐渐升高,直至产品达到烧 结温度。烧结温度可能会因产品材料、形状和尺寸等因素的不同而有 所不同。 以上就是mim粉末冶金工艺的主要步骤。相比常规的制造工艺, 粉末冶金具有许多优点,如多样化的成型方式、广泛适用于各种金属

和非金属制品、高度的复杂性和准确性、卓越的性能和性价比等等。在未来的发展中,相信这种由粉末制备而来的产品将有越来越广泛的应用。

mim工艺技术

mim工艺技术 MIM(Metal Injection Molding)是一种综合了传统粉末冶金技术和塑料注塑成型技术的金属成形工艺。它利用聚合物为载体,在高压注射成型时将金属粉末喷射入模具中,然后通过高温和高压烧结成型。MIM工艺技术已经广泛应用于各个领域,如 电子、汽车、医疗、化工等。 MIM工艺技术的优势之一是可以制造复杂形状的零部件。相 比传统的金属加工工艺,MIM工艺可以制造具有内孔、薄壁、复杂曲线等特殊结构的零部件,而且生产效率高。MIM工艺 的制造工艺是分为四个主要步骤:压注成型、脱模、脱脂和底漆。通过调整模具的形状和复杂度,可以生产出各种各样的金属零件。 MIM工艺技术的另一个优势是材料的选择性。根据不同的应 用需求,可以选择不同的金属粉末制作零部件。常用的MIM 材料包括不锈钢、合金钢、硬质合金、钴合金等。这些材料具有高强度、耐磨、耐腐蚀等特点,能够更好地满足各种应用的需求。 MIM工艺技术还具有材料利用率高、成本低等优点。相较于 传统的CNC加工工艺,MIM工艺可以最大限度地减少材料浪费,提高成品率和利用率。同时,MIM工艺采用批量生产的 方式,可以实现大规模生产,降低生产成本。因此,MIM工 艺技术已成为制造业中非常重要的一种生产工艺。 然而,MIM工艺技术也存在一些挑战和限制。首先,对于一

些特殊形状的零件,模具的设计和制造可能会较为困难,需要更高的精确度和工艺控制。其次,对于一些特殊材料,如高温合金等,MIM工艺可能无法满足其特殊的热处理要求。此外,MIM工艺在生产过程中也需要严格控制温度、压力等参数, 以保证产品质量。 总之,MIM工艺技术通过结合粉末冶金和塑料注塑成型技术,实现了金属零件的高效制造。其可以制造复杂形状的零部件,材料选择性高,且材料利用率高、成本低。虽然存在一些挑战和限制,但这种工艺技术在制造业中具有广泛的应用前景。随着技术的进一步发展,MIM工艺技术将不断改进和完善,为 各行各业提供更好的解决方案。

MIM技术介绍

MIM技术介绍 MIM技术,即金属注射成型技术(Metal Injection Molding),是一种将金属粉末与高聚合物粉末相混合,通过注射成型后烧结制成零件的先进制造技术。该技术的特点是将金属粉末颗粒与粘结剂混合,并在注射成型后通过烧结过程将粉末颗粒结合在一起形成致密的金属零件。 MIM技术是目前最流行的三维成型技术之一,它兼具了传统 压力成型和金属烧结的优点。在MIM技术中,首先将金属粉 末与粘结剂按一定比例混合,形成MIM料浆。然后,通过注 射机将MIM料浆注射到金属模具中进行成型。成型后的零件 经过脱模,形成近净成型的未烧结零件。最后,通过烧结过程,将未烧结零件在惰性气氛下加热至金属粉末的熔点以上进行烧结,粘结剂将烧结后残留物挥发,金属粉末颗粒结合在一起,形成致密的金属零件。 MIM技术的优点主要表现在以下几个方面。首先,MIM技术 可以制造形状复杂、精度高的零件,相比传统的金属加工方法更加灵活。其次,MIM技术能够生产大批量的零件,并且具 有高度的一致性,适用于需求量大的产品制造。此外,MIM 技术还可以制造超细或微型零件,满足现代微电子、医疗器械等领域对高精度零件的需求。 尽管MIM技术在低成本、高效率和高精度等方面具有明显优势,但也存在一些挑战。首先,MIM技术对原料的要求较高,金属粉末的粒度和形状对成型效果有较大影响。其次,粘结剂的选择和控制也是一项关键任务。此外,由于烧结过程中需要

控制温度和气氛等因素,烧结工艺相对复杂。因此,MIM技 术的成功应用需要综合考虑材料、工艺和设备等多个因素。 总的来说,MIM技术是一种高度灵活、高效率、高精度的金 属成型方法,已在汽车、航空航天、电子、医疗器械等领域得到广泛应用。随着材料科学和制造技术的不断发展,MIM技 术将进一步完善和推广,为各个行业提供更多高质量的金属零件。MIM技术作为一种金属粉末成型技术,具有独特的优势 和特点,逐渐成为制造业中不可忽视的一种先进工艺。它能够生产出高质量、复杂形状的金属零件,减少加工工序和成本,提高生产效率。本文将从MIM技术的原理、优势、应用领域 和发展前景等方面进行详细介绍,以期深入了解这一技术的价值和潜力。 首先,MIM技术的核心原理是将金属粉末与粘结剂混合,然 后在高压下注射到模具中进行成型,最后通过烧结过程将粘结剂挥发,金属粉末颗粒结合成致密的零件。MIM技术与传统 的金属加工方法相比具有以下几个显著优势: 1. 复杂形状成型:MIM技术可以制造出复杂形状的零件,包 括细长孔道、内腔、倒钩、螺纹等。相比传统的金属成型方法,无论是铸造、锻造还是机械加工,MIM技术的灵活性更高, 能够满足更多特殊形状的设计需求。 2. 高精度:MIM技术可以实现亚毫米级的高精度成型。通过 模具和注射系统的优化,可以控制零件的尺寸精度和表面质量,提高产品的一致性和可靠性。

mim工艺流程

mim工艺流程 MIM(Metal Injection Molding)是一种集传统金属注射成型技术和粉末冶金技术于一体的新型制造工艺。它可以制造形状复杂、尺寸精确的金属零部件,广泛应用于汽车、航空航天、电子等领域。 MIM工艺流程一般包括粉末制备、混合、注射成型、脱蜡、 烧结等步骤。 首先是粉末制备阶段。根据不同的材料要求,通过粉末冶金技术将金属粉末制备成所需的粒径和化学成分。通常使用的金属粉末有不锈钢粉末、钴铬粉末、镍粉末等,粉末的制备质量对后续工艺步骤的影响很大。 接下来是混合阶段。将制备好的金属粉末与所需的增粘剂和注模剂混合均匀,以便于后续的注射成型。混合过程需要保证材料的均匀性和稳定性,通常通过机械搅拌或者其他方法来实现。 第三个阶段是注射成型。将混合好的金属粉末放入注射机中,通过高压注射将粉末充填到模具中。模具的设计需要考虑产品的形状和尺寸要求,同时要保证注射过程中材料的流动性和充填性。 然后是脱蜡阶段。将注射成型的样品放入烘箱中,通过加热使增粘剂熔化和挥发,使得材料中的空隙得以形成。这个过程需要控制温度和时间,以避免过度烧结和材料的破坏。

最后是烧结阶段。将脱蜡后的样品放入高温炉中进行烧结。在高温下,金属粉末颗粒之间发生结合,在保持样品尺寸的同时,增强材料的力学性能和密度。烧结温度和时间根据材料要求来确定,通常需要在惰性气氛中进行。 整个MIM工艺流程的控制和优化需要考虑多个因素,如注射 成型参数、烧结温度和时间、材料配比等。在实际操作中,还需要进行质量检验和品质控制,以保证最终产品的质量和性能。 总之,MIM工艺是一种高效、精确的金属零部件制造方法, 通过合理的流程控制和工艺优化,可以制造出形状复杂、尺寸精确的金属零部件,满足各种工业领域的需求。在未来的发展中,MIM工艺有望实现更高效、更灵活的生产,为工业制造 带来更多的创新和发展。

mim_成型工艺英文简介_概述及解释说明

mim 成型工艺英文简介概述及解释说明 1. 引言 1.1 概述 在现代制造领域中,Mim(金属注射成型)工艺是一种创新的成型技术,它结合了传统注射成型和粉末冶金的特点。通过将金属粉末与高聚物混合,并经过多道工序进行成型和后续处理,Mim工艺可以生产出具有复杂形状和优异性能的金属零件。该工艺已广泛应用于航空航天、汽车、医疗设备等行业。 1.2 文章结构 本文主要分为引言、正文、主要工艺步骤、成型参数与控制技术以及结论与展望五个部分。其中引言部分将对Mim成型工艺进行概述,并介绍文章的结构和目的。正文部分将详细介绍Mim成型工艺的定义、发展历程、优点和应用领域。在主要工艺步骤部分,我们将阐述Mim成型过程中的模具制备阶段、原料预处理阶段以及物理加工阶段。而在成型参数与控制技术部分,我们将讨论成型温度与压力控制、成型时间与速度控制,以及表面处理与后续加工技术。最后,在结论与展望部分,我们将对Mim成型工艺进行总结评价,并展望其未来发展前景并提出相应建议。 1.3 目的 本文旨在向读者全面介绍Mim成型工艺的基本概念、发展历程、优点

和应用领域,以及相关的主要工艺步骤和成型参数与控制技术。通过本文的阐述,读者能够对Mim成型工艺有一个清晰的理解,并了解该工艺在各个领域中的广泛应用。此外,通过对Mim成型工艺的总结评价和展望以及对未来发展前景建议,本文也旨在为该领域的研究者和从业人员提供一定的参考和指导。 2. 正文: 2.1 Mim成型工艺的定义 Mim成型工艺,全称为金属注射成型(Metal Injection Molding),是一种结合传统塑料注射成型和粉末冶金技术的先进制造技术。它利用金属粉末与有机聚合物混合物,在高温下将其注入到模具中,经过固化和烧结等步骤,最终得到具有高精度、复杂形状的金属零件。 2.2 Mim成型工艺的发展历程 Mim成型工艺起源于20世纪60年代初,由美国约翰逊从事耐火材料研究与开发的科学家提出。在不断的技术探索和改进中,Mim成型工艺逐渐发展壮大,并于20世纪80年代初在商业生产中得以应用。随着材料科学和制造技术的不断进步,Mim成型工艺在近几十年中取得了显著的发展,并在航空航天、电子电气、汽车及医疗器械等领域得到广泛应用。 2.3 Mim成型工艺的优点和应用领域 Mim成型工艺具有以下几个优点:首先,它可以制造复杂形状的零件,包括细

【精品】金属注射成形介绍

金属注射成形介绍 金属注射成形(MetalInjection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制品,但塑料制品强度不高,为了改善其性能,可以在塑料中添加金属或陶瓷粉末以得到强度较高、耐磨性好的制品。近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。这种新的粉末冶金成形方法称为金属注射成形。金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。 1.MIM粉末及制粉技术 MIM对原料粉末要求较高,粉末的选择要有利于混炼、注射成形、脱脂和烧结,而这往往是相互矛盾的,对MIM原料粉末的研究包括:粉末形状、粒度和粒度组成、比表面等,表1中列出了最适合于MIM用的原料粉末的性质。 由于MIM原料粉末要求很细,MIM原料粉末价格一般较高,有的甚至达到传统PM 粉末价格的10倍,这是目前限制MIM技术广泛应用的一个关键因素,目前生产MIM用原料粉末的方法主要有羰基法、超高压水雾化法、高压气体雾化法等. 1.1羰基法

MIM最早使用的粉末是羰基法生产的,美国GAF化学公司采用较粗的海绵铁粉作原料,制粒后在350度氢气中退火活化,然后置于反应器中,铁粒暴露在循环的CO中,气体压力为6OPMa,温度160度,铁与CO发生反应,得到气态的Fe(CO)5,并加以冷凝收集,接下来,使Fe(CO)5蒸发通过一个垂直的反应塔,反应塔加热到300度,在催化剂NH3作用下,Fe(CO)5在塔顶部分解为Fe和CO气体,将沉积的铁粉聚集体球磨,得到符合要求的成品铁粉,粉中一般含0。8%C,0.7%N和0.3%O(质量分数). 羰基法是一种较为成熟的制备MIM用粉末的方法,所制得的粉末呈秋形,粒度小,但是羰基法只能生产有限的几种粉末(如铁粉、镍粉),不易生产包含2种以上元素的合金粉,而且羰基法生产过程毒性大,在MIM生产过程中还存在碳含量控制的问题。 1.2超高压水雾化法 日本的PAMCO,KawasakiSteel,Kawasaki Steel几家公司发展了一种超高压水雾化,该法能够较为经济地大量生产MIM用金属和合金粉末。其中以PAMCO公司产量最大,工艺也最有代表性.该公司年产MIM用粉末300t采用150MPa高压水雾化,其主要产品为各种不锈钢粉和低合金钢粉,PAMCO从20世纪80年代中期开始商业生产MIM粉,针对水雾化粉摇实密度低,导致注射成形时填充密度低而需要较多的粘结剂的缺点,在增加粉末的球化率,提高其摇实密度方面作了许多改进,改进后的PAMCO新型MIM粉的摇实密度比常规MIM水雾化粉的摇实密度提

相关主题
相关文档
最新文档