(六年级)小学数学奥数基础教程30讲全

合集下载

小学数学奥数基础教程(六年级)--19

小学数学奥数基础教程(六年级)--19

小学数学奥数基础教程(六年级)本教程共30讲近似值与估算在计数、度量和计算过程中,得到和实际情况丝毫不差的数值叫做准确数。

但在大多数情况下,得到的是与实际情况相近的、有一定误差的数,这类近似地表示一个量的准确值的数叫做这个量的近似数或近似值。

例如,测量身高或体重,得到的就是近似数。

又如,统计全国的人口数,由于地域广人口多,统计的时间长及统计期间人口的出生与死亡,得到的也是近似数。

用位数较少的近似值代替位数较多的数时,要有一定的取舍法则。

要保留的数位右边的所有数叫做尾数,取舍尾数的主要方法有:(1)四舍五入法。

四舍,就是当尾数最高位上的数字是不大于4的数时,就把尾数舍去;五入,就是当尾数最高位上的数字是不小于5的数时,把尾数舍去后,在它的前一位加1。

例如:7.3964…,截取到千分位的近似值是7.396,截取到百分位的近似值是7.40。

(2)去尾法。

把尾数全部舍去。

例如:7.3964…,截取到千分位的近似值是7.396,截取到百分位的近似值是7.39。

(3)收尾法(进一法)。

把尾数舍去后,在它的前一位加上1。

例如:7.3964…,截取到千分位的近似值是7.397,截取到百分位的近似值是7.40。

表示近似值近似的程度,叫做近似数的精确度。

在上面的三种方法中,最常用的是四舍五入法。

一般地,用四舍五入法截得的近似数,截到哪一位,就说精确到哪一位。

例1有13个自然数,它们的平均值精确到小数点后一位数是26.9。

那么,精确到小数点后两位数是多少?分析与解:13个自然数之和必然是整数,因为此和不是13的整数倍,所以平均值是小数。

由题意知,26.85≤平均值<26.95,所以13个数之和必然不小于26.85的13倍,而小于26.95的13倍。

26.85×13=349.05,26.95×13=350.35。

因为在349.05与350.35之间只有一个整数350,所以13个数之和是350。

350÷13=26.923…当精确到小数点后两位数时,是26.92。

最新小学数学奥数基础教程(六年级)目30讲全[1]

最新小学数学奥数基础教程(六年级)目30讲全[1]

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学六年级奥数教程题目

小学六年级奥数教程题目

奥数教程(六年级)第一讲 分数的计算例1 计算:4.3695.3)5.3694.3(2009-⨯+⨯⨯ (提示:转化成分母相同) 例2 计算:1341321318428.44.22.113913313118628.106.32.1⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ (提示:找分子分母共同点,变形)例3 计算:10241195121172561151281136411132191617815413211+++++++++(提示:先合并再相加) 例4 计算:)1099()988()877()766()655()544()433()322()211(-⨯-⨯-⨯-⨯-⨯-⨯-⨯-⨯-(提示:先求差)例5 计算:23191713111917132223171311132613117455⨯⨯+⨯⨯+⨯⨯+⨯⨯(分子分解质因数,约分) 例6 计算:()123...891098...32199...531)100...642(22222222++++++++++++++++-++++第二讲 分数的大小比较例1 分数75、1715、94、12440、309103中,哪一个最大?(提示:化简,统一分子)例2 在□内填上相同的自然数,使不等式3619613111>++++ 成立,此时□内的数的最大值是几?例3 若A=12009200912+-, B=2220082009200820091+⨯-,比较A 与B 的大小。

(提示:比较分母)例4 不求和,比较200520022004200420032005+与200520022003200420032006+的大小。

例5 在下列□内填两个相邻的整数,使不等式成立。

□<10191817161514131211+++++++++<□ 例6 已知A=21771 (21611216011)+++,求A 的整数部分是多少?第三讲 巧算分数的和例1 计算:50491...431321211⨯++⨯+⨯+⨯ 例2 计算:100981...861641421⨯++⨯+⨯+⨯ 例3 计算:10099981...43213211⨯⨯++⨯⨯+⨯⨯ 例4 计算:10099...3211...4321132112111++++++++++++++++例5 计算:2019...4321...54321432132121++++++++++++++++ 例6 计算:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++9911...311211991 (41131121141)3112113121121 第四讲 繁分数例1 计算:20072008200820091200920092009122⨯+-+-÷ 例2 计算:41322111+++例3 规定□表示选择两数中较大的数的运算,△表示选择两数中较小的数的运算。

10《小学奥数六年级竞赛必考章节精讲共36讲·小升初必备》-第10讲数论综合(一)

10《小学奥数六年级竞赛必考章节精讲共36讲·小升初必备》-第10讲数论综合(一)

第10讲数论综合(一)涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?【分析与解】我们知道如果有5个连续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

所以n小于5.:当n为4时,如果其内含有5的倍数(个位数字为O或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.至于n取1显然不满足了.所以满足条件的n是4.2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,(1)a+b的最小可能值是多少?(2)a+b的最大可能值是多少?【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,67,71,73,79,83,89,97.可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.所以满足条件的a+b最小可能值为30,最大可能值为168.3.如果某整数同时具备如下3条性质:①这个数与1的差是质数;②这个数除以2所得的商也是质数;③这个数除以9所得的余数是5.那么我们称这个整数为幸运数.求出所有的两位幸运数.【分析与解】条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件.其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.所以两位幸运数只有14.4.在555555的约数中,最大的三位数是多少?【分析与解】555555=5×111×1001=3×5×7×11×13×37显然其最大的三位数约数为777.5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?【分析与解】从长2002毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是2002除以847所得的商.而余数恰好是剩下的长方形的宽,于是有:2002÷847=2……308,847÷308=2……231,308÷231=1……77.231÷77=3.不难得知,最后剪去的正方形边长为77毫米.6.已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质.请写出所有可能的答案.【分析与解】设这三个数为a、b、c,且a<b<c,因为两两不互质,所以它们均是合数.小于20的合数有4,6,8,9,10,12,14,15,16,18.其中只含1种因数的合数不满足,所以只剩下6,10,12,14,15,18这6个数,但是14=2×7,其中质因数7只有14含有,无法找到两个不与14互质的数.所以只剩下6,10,12,15,18这5个数存在可能的排列.所以,所有可能的答案为(6,10,15);(10,12,15);(10,15,18).7.把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组?【分析与解】26=2×13,33=3×11,34=2×17,35=5×7,63=23×7,85=5×17,91=7×13,143=11×13.由于质因数13出现在26、91、143三个数中,故至少要分成三组,可以分成如下3组:将26、33、35分为一组,91、34、33分为一组,而143、63、85分为一组.所以,至少要分成3组.8.图10-1中两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?【分析与解】圆内的任意两点,以直径两端点得距离最远.如果沿小圆爬行的甲虫爬到A点,沿大圆爬行的甲虫恰好爬到B点,两甲虫的距离便最远.小圆周长为π×30=307r,大圆周长为48π,一半便是24π,30与24的最小公倍数时120.120÷30=4.120÷24=5.所以小圆上甲虫爬了4圈时,大圆上甲虫爬了5个12圆周长,即爬到了过A的直径另一点B.这时两只甲虫相距最远.9.设a与b是两个不相等的非零自然数.(1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值?(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值?【分析与解】 (1)a与b的最小公倍数72=2×2×2×3×3,有12个约数:1,2,3,4,6,8,9,12,18,24,36,72.不妨设a>b.:当a=72时,b可取小于72的11种约数,a+b≥72+1=73;:当a=36时,b必须取8或24,a+b的值为44或60,均不同第一种情况中的值;:当a=24时,b必须取9或18,a+b的值为33或42,均不同第一、二种情况中的值;当a=18时,b必须取8,a+b=26,不同于第一、二、三种情况的值;:当a=12时,b无解;:当a=9时,b必须取8,a+b=17,不同于第一、二、三、四情况中的值.总之,a+b可以有ll+2+2+1+1=17种不同的值.(2)60=2×2×3×5,有12个约数:1,2,3,4,5,6,10,12,15,20,30,60.a、b为60的约数,不妨设a>b.:当a=60时,b可取60外的任何一个数,即可取11个值,于是a-b可取11种不同的值:59,58,57,56,55,54,50,48,45,40,30;.当a=30时,b可取4,12,20,于是a-b可取26,18,10;:当a=20时,b可取3,6,12,15,所以a-b可取17,14,8,5;当a=15时,b可取4,12,所以a-b可取11,3;: 当a=12时,b可取5,10,所以a-b可取7,2.总之,a-b可以有11+3+4+2+2=22种不同的值.10.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳142米,黄鼠狼每次跳324米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔3128米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?【分析与解】由于3128÷142=114,3128÷324=92.所以狐狸跳4个3128米的距离时将掉进陷阱,黄鼠狼跳2个3128米的距离时,将掉进陷阱.又由于它们都是一秒钟跳一次,因此当狐狸掉进陷阱时跳了11秒,黄鼠狼掉进陷阱时跳了9秒,因此黄鼠狼先掉进陷阱,此时狐狸跳了9秒.距离为9×142=40.5(米).11.在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【分析与解】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.12.甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?【分析与解】由题意知4倍393除以A的余数,等于2倍939除以A的余数,等于甲603除以A的余数.即603÷A=a……k;(2×939)÷A=b……k;(4×393)÷A=c……k.于是有(1878-603)÷A=b-a;(1878-1572)÷A=b-c;(1572-603)÷A=c-a.所以A为1275,306,969的约数,(1275,306,969)=17×3=51.于是,A可能是51,17(不可能是3,因为不满足余数是另一余数的4倍).当A为51时,有603÷51=11……42;939÷51=18……21;393÷51=7……36.不满足;当A为17时,有603÷17=35……8;939÷17=55……4;393÷17=23……2;满足.所以,除数4为17.13.证明:形如11,111,1111,11111,…的数中没有完全平方数.【分析与解】我们知道奇数的完全平方数是奇数,偶数的完全平方数为偶数,而奇数的完全平方数除以4余1,偶数的完全平方数能被4整除.现在这些数都是奇数,它们除以4的余数都是3,所以不可能为完全平方数.评注:设奇数为2n+1,则它的平方为24n+4n+1,显然除以4余1.14.有8个盒子,各盒内分别装有奶糖9,17,24,28,30,31,33,44块.甲先取走一盒,其余各盒被乙、丙、丁3人所取走.已知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?【分析与解】我们知道乙、丙、丁三人取走的七盒中,糖的块数是丁所取糖块数的5倍.八盒糖总块数为9+17+24+28+30+31+33+44=216.从216减去5的倍数,所得差的个位数字只能是1或6.观察各盒糖的块数发现,没有个位数字是6的,只有一个个位数字是1的数31.因此甲取走的一盒中有3l块奶糖.15.在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;第二种将木棍分成12等份;第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,那么木棍总共被锯成多少段?【分析与解】 10,12,15的最小公倍数[10,12,15]=60,把这根木棍的160作为一个长度单位,这样,木棍10等份的每一等份长6个单位;12等份的每等份长5个单位;15等份的每等份长4单位.不计木棍的两个端点,木棍的内部等分点数分别是9,11,14(相应于10,12,15等份),共计34个.由于5,6的最小公倍数为30,所以10与12等份的等分点在30单位处相重,必须从34中减1.又由于4,5的最小公倍数为20,所以12与15等份的等分点在20单位和40单位两处相重,必须再减去2.同样,6,4的最小公倍数为12,所以15与10等份的等分点在12,24,36,48单位处相重,必须再减去4.由于这些相重点各不相同,所以从34个内分点中减去1,再减去2,再减去4,得27个刻度点.沿这些刻度点把木棍锯成28段.。

小学六年级奥数第30讲 抽屉原理(二)(含答案分析)

小学六年级奥数第30讲 抽屉原理(二)(含答案分析)

第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

二、精讲精练【例题1】幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。

则364=120×3+4,4<120。

根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。

练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。

这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【例题2】布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。

根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。

即2×4+1=9(个)球。

列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。

小学数学人教新版六年级上册奥数系列讲座:简便运算(含答案解析)

小学数学人教新版六年级上册奥数系列讲座:简便运算(含答案解析)

小学数学人教新版六年级上册实用资料简便运算(一)一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c = a-(b+c),使运算过程简便。

所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。

1.6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便。

所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法,仔细观察数的特征后可知:36= 1.2×30。

这样一转化,就可以运用乘法分配律了。

小学数学奥数基础教程(六年级)目30讲全[1]

小学数学奥数基础教程(六年级)目30讲全[1]

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学数学奥数基础教程

小学数学奥数基础教程

第1讲加减法的巧算在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。

加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。

这种“化零为整”的思想是加减法巧算的基础。

先讲加法的巧算。

加法具有以下两个运算律:加法交换律:两个数相加,交换加数的位置,它们的和不变。

即a+b=b+a,其中a,b各表示任意一数。

例如,5+6=6+5。

一般地,多个数相加,任意改变相加的次序,其和不变。

例如,a+b+c+d=d+b+a+c=…其中a,b,c,d各表示任意一数。

加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。

即a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。

例如,4+9+7=(4+9)+7=4+(9+7)。

一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。

把加法交换律与加法结合律综合起来应用,就得到加法的一些巧算方法。

1.凑整法先把加在一起为整十、整百、整千……的加数加起来,然后再与其它的数相加。

例1计算:(1)23+54+18+47+82;(2)(1350+49+68)+(51+32+1650)。

解:(1)23+54+18+47+82=(23+47)+(18+82)+54=70+100+54=224;(2)(1350+49+68)+(51+32+1650)=1350+49+68+51+32+1650=(1350+1650)+(49+51)+(68+32)=3000+100+100=3200。

2.借数凑整法有些题目直观上凑整不明显,这时可“借数”凑整。

例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。

例2计算:(1)57+64+238+46;(2)4993+3996+5997+848。

小学数学奥数基础教程(六年级)趣题巧解

小学数学奥数基础教程(六年级)趣题巧解

小学数学奥数基础教程(六年级)趣题巧解生活中的许多事都蕴含着数学思想,我们先看一个猜数游戏。

甲心中想一个32以内的数,乙只许问“比某数大吗?”甲只回答“是”或“不”,那么乙最多5次必可猜中。

比如甲想的是23,下面是5次提问与回答:(1)“比16大吗?”,“是”;(2)“比24大吗?”,“不”;(3)“比20大吗?”,“是”;(4)“比22大吗?”,“是”;(5)“比23大吗?”,“不”。

于是乙猜中甲想的23。

这里乙用的是对分法。

32的一半是16,第1次问话后,乙知道甲想的数在17~32之间; 17~32中间的数是24,第二次问话后,乙知道甲想的数在17~24之间。

依此类推,因为32=25,经5次对分,必猜中。

对分法适用于一次试验仅有两种不同结果的情形。

例1有1000箱外形完全相同的产品,其中999箱重量相同,有1箱次品重量较轻。

现有一个称(一次可称量500箱),怎样才能尽快找出这箱次品?分析与解:因为称量一次只有两种结果:等于规定重量或轻于规定重量,所以可用对分法。

先取500箱称,若等于规定重量,则次品在另500箱中;若轻于规定重量,则次品在这500箱中。

然后对有次品的500箱再对分,取其中的250箱称……因为1000<1024=210,所以经过10次称必可查出次品。

若一次试验可以有三种不同的结果,则可用三分法。

例2 现有80粒重量、外形完全相同的珍珠和1粒外形相同、但重量较轻的假珍珠,怎样才能用一台天平尽快地将这粒假珍珠挑出来?分析与解:因为天平称重有三种结果;①两边一样重,②左边重,③右边重,所以可以用三分法。

先将81粒珍珠三等分,在天平两边各放27粒珍珠,天平下还有27粒。

若两边一样重,则假珍珠在天平下的27粒中;若左边重,则假珍珠在天平右边的27粒中;若右边重,则假珍珠在天平左边的27粒中。

然后再将有假珍珠的一堆三等份,继续上面的做法。

因为81=34,所以只需要称4次就可将假珍珠挑出来。

苏教版小学数学奥数基础教程(六年级)

苏教版小学数学奥数基础教程(六年级)

一、拓展提优试题1.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.2.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?3.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.4.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).5.若三个不同的质数的和是53,则这样的三个质数有组.6.被11除余7,被7除余5,并且不大于200的所有自然数的和是.7.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)8.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)9.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.10.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.11.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.15.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.16.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.17.若(n是大于0的自然数),则满足题意的n的值最小是.18.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.19.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.20.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.21.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.22.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.23.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.24.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.25.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.26.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.27.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.28.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.29.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?30.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.31.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.32.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.33.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.34.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.35.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.36.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.37.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.38.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)39.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.40.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.【参考答案】一、拓展提优试题1.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.2.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.3.解:==,答:这三个分数中最大的一个是.故答案为:.4.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.5.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;若三个不同的质数的和是53,可以有以下几组:(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;(11)13,17,23;所以这样的三个质数有11组.故答案为:11.6.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.7.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.8.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.9.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.10.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.11.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30015.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.16.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.17.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:318.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.19.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.20.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.21.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.22.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.23.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.24.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.25.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.26.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.27.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.28.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.29.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.30.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.31.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.32.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.33.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.34.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.35.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.36.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.37.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.38.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.39.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.40.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.。

小学数学6年级培优奥数讲义第30讲解不定方程(学生版)

小学数学6年级培优奥数讲义第30讲解不定方程(学生版)

⼩学数学6年级培优奥数讲义第30讲解不定⽅程(学⽣版)第30讲解不定⽅程学习⽬标①熟练掌握不定⽅程的解题技巧;②能够根据题意找到等量关系设未知数解⽅程;③学会解不定⽅程的经典例题。

知识梳理历史概述不定⽅程是数论中最古⽼的分⽀之⼀.古希腊的丢番图早在公元3世纪就开始研究不定⽅程,因此常称不定⽅程为丢番图⽅程.中国是研究不定⽅程最早的国家,公元初的五家共井问题就是⼀个不定⽅程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定⽅程理论有了系统研究.宋代数学家秦九韶的⼤衍求⼀术将不定⽅程与同余理论联系起来.考点说明在各类竞赛考试中,不定⽅程经常以应⽤题的形式出现,除此以外,不定⽅程还经常作为解题的重要⽅法贯穿在⾏程问题、数论问题等压轴⼤题之中.在以后初⾼中数学的进⼀步学习中,不定⽅程也同样有着重要的地位,所以本讲的着重⽬的是让学⽣学会利⽤不定⽅程这个⼯具,并能够在以后的学习中使⽤这个⼯具解题。

运⽤不定⽅程解应⽤题步骤1、根据题⽬叙述找到等量关系列出⽅程2、根据解不定⽅程⽅法解⽅程3、找到符合条件的解典例分析考点⼀:不定⽅程与数论例1、把2001拆成两个正整数的和,⼀个是11的倍数(要尽量⼩),⼀个是13的倍数(要尽量⼤),求这两个数.考点⼆:不定⽅程与应⽤题例1、有两种不同规格的油桶若⼲个,⼤的能装8千克油,⼩的能装5千克油,44千克油恰好装满这些油桶.问:⼤、⼩油桶各⼏个?例2、某次聚餐,每⼀位男宾付130元,每⼀位⼥宾付100元,每带⼀个孩⼦付60元,现在有13的成⼈各带⼀个孩⼦,总共收了2160元,问:这个活动共有多少⼈参加(成⼈和孩⼦)?例3、甲、⼄两⼈⽣产⼀种产品,这种产品由⼀个A配件与⼀个B配件组成.甲每天⽣产300个A配件,或⽣产150个B配件;⼄每天⽣产120个A配件,或⽣产48个B配件.为了在10天内⽣产出更多的产品,⼆⼈决定合作⽣产,这样他们最多能⽣产出多少套产品?例4、有⼀项⼯程,甲单独做需要36天完成,⼄单独做需要30天完成,丙单独做需要48天完成,现在由甲、⼄、丙三⼈同时做,在⼯作期间,丙休息了整数天,⽽甲和⼄⼀直⼯作⾄完成,最后完成这项⼯程也⽤了整数天,那么丙休息了天.例5、实验⼩学的五年级学⽣租车去野外开展“⾛向⼤⾃然,热爱⼤⾃然”活动,所有的学⽣和⽼师共306⼈恰好坐满了5辆⼤巴车和3辆中巴车,已知每辆中巴车的载客⼈数在20⼈到25⼈之间,求每辆⼤巴车的载客⼈数.例6、公鸡1只值钱5,母鸡⼀只值钱3,⼩鸡三只值钱1,今有钱100,买鸡100只,问公鸡、母鸡、⼩鸡各买⼏只?考点三:不定⽅程与⽣活中的应⽤题例1、某地⽤电收费的标准是:若每⽉⽤电不超过50度,则每度收5⾓;若超过50度,则超出部分按每度8⾓收费.某⽉甲⽤户⽐⼄⽤户多交3元3⾓电费,这个⽉甲、⼄各⽤了多少度电?例2、马⼩富在甲公司打⼯,⼏个⽉后⼜在⼄公司兼职,甲公司每⽉付给他薪⾦470元,⼄公司每⽉付给他薪⾦350元.年终,马⼩富从两家公司共获薪⾦7620元.他在甲公司打⼯个⽉,在⼄公司兼职个⽉.例3、⼩明、⼩红和⼩军三⼈参加⼀次数学竞赛,⼀共有100道题,每个⼈各解出其中的60道题,有些题三⼈都解出来了,我们称之为“容易题”;有些题只有两⼈解出来,我们称之为“中等题”;有些题只有⼀⼈解出来,我们称之为“难题”.已知每个题都⾄少被他们中的⼀⼈解出,则难题⽐容易题多道.例4、某男孩在2003年2⽉16⽇说:“我活过的⽉数以及我活过的年数之差,到今天为⽌正好就是111.”请问:他是在哪⼀天出⽣的?课堂狙击1、甲、⼄⼆⼈搬砖,甲搬的砖数是18的倍数,⼄搬的砖数是23的倍数,两⼈共搬了300块砖.问:甲、⼄⼆⼈谁搬的砖多?多⼏块?2、单位的职⼯到郊外植树,其中有男职⼯,也有⼥职⼯,并且有13的职⼯各带⼀个孩⼦参加.男职⼯每⼈种13棵树,⼥职⼯每⼈种10棵树,每个孩⼦都种6棵树,他们⼀共种了216棵树,那么其中有多少名男职⼯?3、14个⼤、中、⼩号钢珠共重100克,⼤号钢珠每个重12克,中号钢珠每个重8克,⼩号钢珠每个重5克.问:⼤、中、⼩号钢珠各有多少个?实战演练4、某服装⼚有甲、⼄两个⽣产车间,甲车间每天能⽣产上⾐16件或裤⼦20件;⼄车间每天能⽣产上⾐18件或裤⼦24件.现在要上⾐和裤⼦配套,两车间合作21天,最多能⽣产多少套⾐服?5、每辆⼤汽车能容纳54⼈,每辆⼩汽车能容纳36⼈.现有378⼈,要使每个⼈都上车且每辆车都装满,需要⼤、⼩汽车各⼏辆?6、某区对⽤电的收费标准规定如下:每⽉每户⽤电不超过10度的部分,按每度0.45元收费;超过10度⽽不超过20度的部分,按每度0.80元收费;超过20度的部分按每度1.50元收费.某⽉甲⽤户⽐⼄⽤户多交电费7.10元,⼄⽤户⽐丙⽤户多交3.75元,那么甲、⼄、丙三⽤户共交电费多少元?(⽤电都按整度数收费)7、甲、⼄、丙、丁、戊五⼈接受了满分为10分(成绩都是整数)的测验.已知:甲得了4分,⼄得了最⾼分,丙的成绩与甲、丁的平均分相等,丁的成绩刚好等于五⼈的平均分,戊⽐丙多2分.求⼄、丙、丁、戊的成绩.课后反击1、某⼈打靶,8发共打了53环,全部命中在10环、7环和5环上.问:他命中10环、7环和5环各⼏发?2、⼩花狗和波斯猫是⼀对好朋友,它们在早晚见⾯时总要叫上⼏声表⽰问候.若是早晨见⾯,⼩花狗叫两声,波斯猫叫⼀声;若是晚上见⾯,⼩花狗叫两声,波斯猫叫三声.细⼼的⼩娟对它们的叫声统计了15天,发现它们并不是每天早晚都见⾯.在这15天内它们共叫了61声.问:波斯猫⾄少叫了多少声?3、⼩伟听说⼩峰养了⼀些兔和鸡,就问⼩峰:“你养了⼏只兔和鸡?”⼩峰说:“我养的兔⽐鸡多,鸡兔共24条腿.”那么⼩峰养了多少兔和鸡?4、有两⼩堆砖头,如果从第⼀堆中取出100块放到第⼆堆中去,那么第⼆堆将⽐第⼀堆多⼀倍.如果相反,从第⼆堆中取出若⼲块放到第⼀堆中去,那么第⼀堆将是第⼆堆的6倍.问:第⼀堆中的砖头最少有多少块?5、某次数学竞赛准备了35⽀铅笔作为奖品发给⼀、⼆、三等奖的学⽣,原计划⼀等奖每⼈发给6⽀,⼆等奖每⼈发给3⽀,三等奖每⼈发给2⽀,后来改为⼀等奖每⼈发13⽀,⼆等奖每⼈发4⽀,三等奖每⼈发1⽀.那么获⼆等奖的有⼈.6、蓝天⼩学举⾏“迎春”环保知识⼤赛,⼀共有100名男、⼥选⼿参加初赛,经过初赛、复赛,最后确定了参加决赛的⼈选.已知参加决赛的男选⼿的⼈数,占初赛的男选⼿⼈数的20%;参加决赛的⼥选⼿的⼈数,占初赛的⼥选⼿⼈数的12.5%,⽽且⽐参加初赛的男选⼿的⼈数多.参加决赛的男、⼥选⼿各有多少⼈?7、甲、⼄两⼈各有⼀袋糖,每袋糖都不到20粒.如果甲给⼄⼀定数量的糖后,甲的糖就是⼄的2倍;如果⼄给甲同样数量的糖后,甲的糖就是⼄的3倍.甲、⼄两⼈共有多少粒糖?1、(资优博雅杯)⽤⼗进制表⽰的某些⾃然数,恰等于它的各位数字之和的16倍,则满⾜条件的所有⾃然数之和为___________________.2、(我爱数学夏令营)将⼀群⼈分为甲⼄丙三组,每⼈都必在且仅在⼀组.已知甲⼄丙的平均年龄分为37,23,41.甲⼄两组⼈合起来的平均年龄为29;⼄丙两组⼈合起来的平均年龄为33.则这⼀群⼈的平均年龄为 .3、(迎春杯复赛)在新年联欢会上,某班组织了⼀场飞镖⽐赛.如右图,飞镖的靶⼦分为三块区域,分别对应17分、11分和4分.每⼈可以扔若⼲次飞镖,脱靶不得分,投中靶⼦就可以得到相应的分数.若恰好投在两块(或三块)区域的交界线上,则得两块(或三块)区域中分数最⾼区域的分数.如果⽐赛规定恰好投中120分才能获奖,要想获奖⾄少需要投中次飞镖.考点⼀:不定⽅程与数论重点回顾直击赛场考点⼆:不定⽅程与应⽤题考点三:不定⽅程与⽣活中的应⽤题不定⽅程的试值技巧1、奇偶性2、整除的特点(能被2、3、5等数字整除的特性)3、余数性质的应⽤(和、差、积的性质及同余的性质) ?本节课我学到我需要努⼒的地⽅是名师点拨学霸经验。

小学数学奥数基础教程(打印版)

小学数学奥数基础教程(打印版)

- 1 -小学奥数基础教程第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。

这种方法适用于加数较多,而且所有的加数相差不大的情况。

作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。

由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。

在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。

同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。

16年龄问题小学六年级数学奥数讲座共30讲含答案_(16)

16年龄问题小学六年级数学奥数讲座共30讲含答案_(16)

小学数学奥数基础教程(六年级)本教程共30讲第16讲年龄问题年龄问题是一些关于年龄的数学问题,是和差问题、倍数问题结合在一起的综合问题。

解答这类问题时,要抓住这类问题的特点:两人的年龄差始终是不变的。

例如:爸爸比儿子大25岁,若干年后(或若干年前),两人仍然是相差25岁。

例1、哥哥、弟弟两人的年龄和是40岁,4年后,哥哥比弟弟大4岁。

问甲、乙两人各是多少岁?分析:由“4年后,哥哥比弟弟大4岁”可知,哥哥、弟弟两人的年龄差是4岁,两人的年龄差是不变的。

假如我们给弟弟的年龄加上4岁,哥哥的岁数不变,那么两人的年龄和就变成40+4=44(岁)。

这时,44岁也就相当于两个哥哥的年龄,除以2就可求出哥哥的年龄。

解:(40+4)÷2=22(岁)22-4=18(岁)答:哥哥22岁,弟弟18岁。

例2、父亲比儿子大30岁,明年父亲的年龄是儿子的4倍,那么,今年儿子多少岁?分析:由题意可知,父亲比儿子大30岁,这个年龄差是不变的。

所以当明年父亲的年龄是儿子的4倍时,这个年龄差仍然是30岁。

由相差30岁,是儿子的4倍,可以看出30岁与(4-1)倍是对应的,其中的一份就是明年儿子的岁数。

解:①明年儿子的年龄:30÷(4-1)=10(岁)②今年儿子的年龄:10-1=9(岁)答:今年儿子9岁。

例3、妈妈今年35岁,恰好是女儿年龄的7倍。

多少年后,妈妈的年龄恰好是女儿的3倍?分析:根据“妈妈今年35岁,恰好是女儿的7倍”,可以求出今年女儿的年龄35÷7=5(岁)。

两人的年龄差是35-5=30岁。

若干年后,两人的年龄差30岁,妈妈的年龄是女儿的3倍,也就是30岁与(3-1)倍相对应,这样就可以求出若干年后女儿的年龄。

进而求出多少年后妈妈的年龄是女儿的3倍。

解:①今年女儿的年龄:35÷7=5(岁)②两人的年龄差:35-5=30岁③若干年后女儿的年龄:30÷(3-1)=15(岁)④多少年后妈妈的年龄是女儿的3倍:15-5=10(岁)综合算式:(35-35÷7)÷(3-1)-35÷7=10(岁)答:10年后妈妈的年龄是女儿的3倍。

人教版六年级上册数学小学奥数分数求和课件(共19张PPT)

人教版六年级上册数学小学奥数分数求和课件(共19张PPT)

根据题目中数字的特点以及排列规律,选择合适的方法进行计算。中,比较常
用的方法有:公式法、裂项法、错位相减法、代数法,等等。
【例题1】
【例题2】
【例题3】
【例题4】
【例题5】
宝剑锋从磨砺出,
梅花香自苦寒来!
感 谢 观 看!
【例5】
【分析与解答】
这道题可以巧妙运用乘法分配律和
减法的性质简化计算。
特别注意:运用减法的性质拆括号
时,一定要注意改变括号内原来的
运算符号。
小结与提示



解题时,我们运用运算定律,还可以化繁为简,把 + + + 用字母A代替,



用代数法快速解答。




+ +


用字母B代替,
实践与应用
试将分母变形,寻找拆分复杂分数的关键点。
我来解答:
小结与提示
应对复杂的分数求和计算时,我们可以先观察算式本身的特点,看是否能够运用一些公式简化
运算,再称其中的一些分数进行适当的拆解,裂项相消,简化计算。
实践与应用
【练习4】
P5
计算

+
+

++
+

+++
+ ⋯+

+++⋯+
=−

+
=

× +
【例1】
【分析与解答】
1
通过观察不难发现,题中相邻的两个加数之间都相差 ,成等差数列。
20
等差数列求和公式要牢记:总和=(首项+末项)×项数÷2。

(完整版)小学数学奥数基础教程(六年级)目30讲全

(完整版)小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学数学人教新版六年级上册奥数系列讲座:设数法解题(含答案解析)

小学数学人教新版六年级上册奥数系列讲座:设数法解题(含答案解析)

小学数学人教新版六年级上册实用资料设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。

解:由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。

说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。

练习1:1.已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。

2.五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3.甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。

为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+1/5)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。

即:15-15×(1+1/5)÷2=6(元)答:每张票降价6元。

说明:如果设原来有a名观众,则每张票降价:15-15a×(1+1/5)÷2a=6(元)练习2:1.某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2.游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?3.五年级三个班的人数相等。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数基础教程(六年级)第1讲比较分数的大小……………………………………2-3 第2讲巧求分数……………………………………4-7第3讲分数运算的技巧……………………………………第4讲循环小数与分数……………………………………第5讲工程问题(一)……………………………………第6讲工程问题(二)……………………………………第7讲巧用单位“1”……………………………………第8讲比和比例……………………………………第9讲百分数……………………………………第10讲商业中的数学……………………………………第11讲圆与扇形……………………………………第12讲圆柱与圆锥……………………………………第13讲立体图形(一)……………………………………第14讲立体图形(二)……………………………………第15讲棋盘的覆盖……………………………………第16讲找规律……………………………………第17讲操作问题……………………………………第18讲取整计算……………………………………第19讲近似值与估算……………………………………第20讲数值代入法……………………………………第21讲枚举法……………………………………第22讲列表法……………………………………第23讲图解法……………………………………第24讲时钟问题……………………………………第25讲时间问题……………………………………第26讲牛吃草问题……………………………………第27讲运筹学初步(一)……………………………………第28讲运筹学初步(二)……………………………………第29讲运筹学初步(三)……………………………………第30讲趣题巧解……………………………………第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

也就是说,6.借助第三个数进行比较。

有以下几种情况:(1)对于分数m和n,若m>k,k>n,则m>n。

(2)对于分数m和n,若m-k>n-k,则m>n。

前一个差比较小,所以m<n。

(3)对于分数m和n,若k-m<k-n,则m>n。

注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两个分数m和n。

(4)把两个已知分数的分母、分子分别相加,得到一个新分数。

新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。

利用这一点,当两个已知分数不容易比较大小,新分数与其中一个已知分数容易比较大小时,就可以借助于这个新分数。

比较分数大小的方法还有很多,同学们可以在学习中不断发现总结,但无论哪种方法,均来源于:“分母相同,分子大的分数大;分子相同,分母小的分数大”这一基本方法。

练习1 1.比较下列各组分数的大小:答案与提示练习1第二讲巧求分数我们经常会遇到一些分数的分子、分母发生变化的题目,例如分子或分母加、减某数,或分子与分母同时加、减某数,或分子、分母分别加、减不同的数,得到一个新分数,求加、减的数,或求原来的分数。

这类题目变化很多,因此解法也不尽相同。

数。

分析:若把这个分数的分子、分母调换位置,原题中的分母加、减1就变成分子加、减1,这样就可以用例1求平均数的方法求出分子、分母调换位置后的分数,再求倒数即可。

个分数。

分析与解:因为加上和减去的数不同,所以不能用求平均数的方法求解。

,这个分数是多少?分析与解:如果把这个分数的分子与分母调换位置,问题就变为:这个分数是多少?于是与例3类似,可以求出在例1~例4中,两次改变的都是分子,或都是分母,如果分子、分母同时变化,那么会怎样呢?数a。

分析与解:分子减去a,分母加上a,(约分前)分子与分母之和不变,等于29+43=72。

约分后的分子与分母之和变为3+5=8,所以分子、分母约掉45-43=2。

求这个自然数。

同一个自然数,得到的新分数如果不约分,那么差还是45,新分数约分后变例7 一个分数的分子与分母之和是23,分母增加19后得到一个新分数,分子与分母的和是1+5=6,是由新分数的分子、分母同时除以42÷6=7得到分析与解:分子加10,等于分子增加了10÷5=2(倍),为保持分数的大小不变,分母也应增加相同的倍数,所以分母应加8×2=16。

在例8中,分母应加的数是在例9中,分子应加的数是由此,我们得到解答例8、例9这类分数问题的公式:分子应加(减)的数=分母所加(减)的数×原分数;分母应加(减)的数=分子所加(减)的数÷原分数。

分析与解:这道题的分子、分母分别加、减不同的数,可以说是这类题中最难的,我们用设未知数列方程的方法解答。

(2x+2)×3=(x+5)×4,6x+6=4x+20,2x=14,x=7。

练习2是多少?答案与提示练习25.5。

解:(53+79)÷(4+7)=12, a=53-4×12=5。

6.13。

解:(67-22)÷(16-7)=5,7×5-22=13。

解:设分子为x,根据分母可列方程第三讲分数运算的技巧对于分数的混合运算,除了掌握常规的四则运算法则外,还应该掌握一些特殊的运算技巧,才能提高运算速度,解答较难的问题。

1.凑整法与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……从而使运算得到简化。

2.约分法3.裂项法若能将每个分数都分解成两个分数之差,并且使中间的分数相互抵消,则能大大简化运算。

例7在自然数1~100中找出10个不同的数,使这10个数的倒数的和等于1。

分析与解:这道题看上去比较复杂,要求10个分子为1,而分母不同的就非常简单了。

括号。

此题要求的是10个数的倒数和为1,于是做成:所求的10个数是2,6,12,20,30,42,56,72,90,10。

的10和30,仍是符合题意的解。

4.代数法5.分组法分析与解:利用加法交换律和结合律,先将同分母的分数相加。

分母为n的分数之和为原式中分母为2~20的分数之和依次为练习38.在自然数1~60中找出8个不同的数,使这8个数的倒数之和等于1。

答案与提示练习31.3。

8.2,6, 8, 12, 20, 30, 42, 56。

9.5680。

解:从前向后,分子与分母之和等于2的有1个,等于3的有2个,等于4的有3个人……一般地,分子与分母之和等于n的有(n-1)个。

分子与分母之和小于9+99=108的有1+2+3+…+106=5671(个)5671+9=5680(个)。

第四讲循环小数与分数任何分数化为小数只有两种结果,或者是有限小数,或者是循环小数,而循环小数又分为纯循环小数和混循环小数两类。

那么,什么样的分数能化成有限小数?什么样的分数能化成纯循环小数、混循环小数呢?我们先看下面的分数。

(1)中的分数都化成了有限小数,其分数的分母只有质因数2和5,化因为40=23×5,含有3个2,1个5,所以化成的小数有三位。

(2)中的分数都化成了纯循环小数,其分数的分母没有质因数2和5。

(3)中的分数都化成了混循环小数,其分数的分母中既含有质因数2或5,又含有2和5以外的质因数,化成的混循环小数中的不循环部分的位数与5,所以化成混循环小数中的不循环部分有两位。

于是我们得到结论:一个最简分数化为小数有三种情况:(1)如果分母只含有质因数2和5,那么这个分数一定能化成有限小数,并且小数部分的位数等于分母中质因数2与5中个数较多的那个数的个数;(2)如果分母中只含有2与5以外的质因数,那么这个分数一定能化成纯循环小数;(3)如果分母中既含有质因数2或5,又含有2与5以外的质因数,那么这个分数一定能化成混循环小数,并且不循环部分的位数等于分母中质因数2与5中个数较多的那个数的个数。

例1判断下列分数中,哪些能化成有限小数、纯循环小数、混循环小数?能化成有限小数的,小数部分有几位?能化成混循环小数的,不循环部分有几位?分析与解:上述分数都是最简分数,并且32=25,21=3×7,250=2×53,78=2×3×13,117=33×13,850=2×52×17,根据上面的结论,得到:不循环部分有两位。

将分数化为小数是非常简单的。

反过来,将小数化为分数,同学们可能比较熟悉将有限小数化成分数的方法,而对将循环小数化成分数的方法就不一定清楚了。

我们分纯循环小数和混循环小数两种情况,讲解将循环小数化成分数的方法。

1.将纯循环小数化成分数。

将上两式相减,得将上两式相减,得从例2、例3可以总结出将纯循环小数化成分数的方法。

纯循环小数化成分数的方法:分数的分子是一个循环节的数字组成的数,分母的各位数都是9,9的个数与循环节的位数相同。

2.将混循环小数化成分数。

将上两式相减,得将上两式相减,得从例4、例5可以总结出将混循环小数化成分数的方法。

混循环小数化成分数的方法:分数的分子是小数点后面第一个数字到第一个循环节的末位数字所组成的数,减去不循环数字所组成的数所得的差;分母的头几位数字是9,末几位数字都是0,其中9的个数与循环节的位数相同,0的个数与不循环部分的位数相同。

掌握了将循环小数化成分数的方法后,就可以正确地进行循环小数的运算了。

例6计算下列各式:练习41.下列各式中哪些不正确?为什么?2.划去小数0.27483619后面的若干位,再添上表示循环节的两个圆点,得到一个循环小数,例如0.274836。

相关文档
最新文档