高中数学讲义-极坐标与参数方程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标与参数方程

一、教学目标

本次课是一堂新课,通过本次课的学习,让学生理解极坐标和参数方程的概念等基础知识,掌握极坐标与直角坐标的相互转化,掌握一般常见曲线和直线的极坐标方程和参数方程。深刻理解参数方程所代表的数学思想——换元思想。

二、考纲解读

极坐标和参数方程是新课标考纲里的选考内容之一,只有理科生选学。在每年的高考试卷中,极坐标和参数方程都是放在一道填空题中,与平面几何作为二选一的考题出现的。由于极坐标是新添的内容,考纲要求比较简单,所以在考试中一般以基础题出现,不会有很难的题目。

三、知识点回顾

(一)曲线的参数方程的定义:

在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即

⎧==)()

(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:

1.过定点(x 0,y 0),倾角为α的直线:

α

αsin cos 00t y y t x x +=+= (t 为参数)

其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.

根据t 的几何意义,有以下结论.

1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.

2.线段AB 的中点所对应的参数值等于2

B

A t t +. 2.中心在(x 0,y 0),半径等于r 的圆:

θ

θsin cos 00r y y r x x +=+= (θ为参数)

3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:

θθsin cos b y a x == (θ为参数) (或 θ

θ

sin cos a y b x ==)

中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程

为参数)ααα(.

sin ,

cos 00⎩⎨

⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:

θθtg sec b y a x == (θ为参数)

(或 θ

θ

ec a y b x s tg ==)

5.顶点在原点,焦点在x 轴正半轴上的抛物线:

pt

y pt x 222== (t 为参数,p >0)

直线的参数方程和参数的几何意义

过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨

⎧+=+=α

αsin cos 00t y y t x x (t 为参数). (三)极坐标系

1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点M 的极坐标。这样建立的坐标系叫做极坐标系。

2、极坐标有四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对

图1

应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等.

极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的.

3、直线相对于极坐标系的几种不同的位置方程的形式分别为: ⑴0ϕθ= ⑵θρcos a = ⑶θ

ρcos a

-= ⑷θρsin a =

⑸θ

ρsin a

-= ⑹)cos(ϕθρ-=a

4、圆相对于极坐标系的几种不同的位置方程的形式分别为)0(>a :

ϕ

θ=

θ

ρcos a =

θ

ρcos a -

=

θ

ρsin a

=

图4

θ

ρsin a -

=图5

)

cos(ϕθρ-=

a

⑴a =ρ ⑵θρcos 2a = ⑶θρcos 2a -= ⑷θρsin 2a = ⑸ θρsin 2a -= ⑹)cos(2ϕθρ-=a

5、极坐标与

直角坐标互化公式:

四、例题讲解

1、已知一条直线上两点()111,y x M 、()222,y x M ,以分点M (x ,y )分21M M 所成的比

x

(直极互化 图)θ

ρcos 2a =

图2

θ

ρsin 2a =图4

θ

ρsin 2

a -=图5θ

ρcos 2a -=a

=ρ图1

)

cos(2ϕθρ-=a 图6

相关文档
最新文档