离散数学的定义精简版
离散数学1
离散数学离散数学是数学的一个分支,它研究离散结构和离散对象。
与连续数学不同,离散数学的对象是不连续的,例如整数、图、组合和逻辑等。
离散数学在计算机科学、信息理论、密码学等领域有着广泛的应用。
本文将对离散数学的基本概念和应用领域进行简要介绍。
基本概念集合论集合论是离散数学的基础,它研究集合的性质和运算。
集合是由一些确定的、不同的元素所构成的整体。
集合论中的基本概念包括集合、元素、子集、并集、交集、差集和补集等。
数理逻辑数理逻辑是研究命题、谓词、推理和证明的形式化方法。
它主要包括命题逻辑和谓词逻辑。
命题逻辑研究命题之间的逻辑关系,而谓词逻辑则进一步研究谓词和个体之间的关系。
代数结构代数结构是离散数学的一个重要组成部分,它研究集合上的元素之间的运算关系。
常见的代数结构有群、环、域等。
图论图论研究图的性质和应用。
图是由顶点和边组成的,它可以表示各种网络结构。
图论中的基本概念包括路径、回路、连通性等。
组合数学组合数学研究有限或可数无限集合的组合性质。
它主要包括排列、组合、二项式系数、生成函数等内容。
应用领域计算机科学离散数学在计算机科学领域有着广泛的应用,如数据结构、算法分析、计算机网络等。
例如,图论可以用于解决网络路由问题,组合数学可以用于计算排列组合等。
信息理论离散数学在信息理论中也有重要应用,如编码理论、信息熵等。
编码理论是研究如何将信息有效地传输和存储的理论,信息熵则是衡量信息量的一种方法。
密码学离散数学在密码学中也有着重要的应用,如公钥密码体制、数字签名等。
公钥密码体制是一种非对称加密技术,它使用一对密钥进行加密和解密操作。
数字签名则是一种验证消息完整性和发送者身份的技术。
总结:离散数学是一门研究离散结构和离散对象的数学分支,它在计算机科学、信息理论和密码学等领域有着广泛的应用。
通过学习离散数学,我们可以更好地理解和应用这些领域的知识和技术。
离散的数学定义
离散的数学定义
离散数学是数学的一个分支,主要研究离散对象和离散结构之间的关系,重点关注离散的整数值、集合和图论等。
以下是离散数学的一些主要概念和定义:
1. 集合论:
- 集合是离散数学中最基本的概念之一,表示一组独立对象的总体。
集合论研究集合之间的关系、运算和性质。
2. 逻辑:
- 逻辑是研究命题和推理的学科,离散数学中的逻辑主要包括命题逻辑和谓词逻辑,用于研究命题的真假和推理规则。
3. 图论:
- 图论是离散数学的一个重要分支,研究图(vertices 和edges组成的结构)之间的关系和性质,包括图的遍历、连通性、最短路径等问题。
4. 离散结构:
- 离散结构指的是离散对象之间的关系和结构,如排列组合、树、图等。
离散数学研究这些结构的性质和应用。
5. 组合数学:
- 组合数学是离散数学的一个重要分支,研究离散对象的排列组合方式,包括排列、组合、二项式定理等。
6. 概率论:
- 离散概率论研究离散随机变量的概率分布和性质,包
括概率空间、随机变量、概率分布等。
7. 离散数学的应用:
- 离散数学在计算机科学、信息技术、密码学、通信等领域有着广泛的应用,如算法设计、数据结构、网络设计等。
总的来说,离散数学是研究离散对象和结构的数学分支,涉及集合论、逻辑、图论、组合数学等内容,在计算机科学和信息技术等领域具有重要的理论和实际应用。
离散数学部分概念和公式总结(精简版)
第一章命题逻辑一、等价公式(真值表)1)常用联结词:┐否定∨析取∧合取→:条件∆:双条件当且仅当Q 取值为F 时P →Q 为F ,否则为T ★等价公式表(等值公式表)常用的其它真值表┐┐P<=>P 双重否定P ∨P<=>P P ∧P<=>P幂等律(P ∧Q)∧R<=>P ∧(Q ∧R)(P ∨Q)∨R<=>P ∨(Q ∨R)结合律P ∧Q<=>Q ∧P P ∨Q<=>Q ∨P交换律P ∧(Q ∨R)<=>(P ∧Q)∨(P ∧R)P ∨(Q ∧R)<=>(P ∨Q)∧(P ∨R)分配律P ∨(P ∧Q)<=>P P ∧(P ∨Q)<=>P 吸收┐(P ∧Q)<=>┐P ∨┐Q ┐(P ∨Q)<=>┐P ∧┐Q 德摩根P ∨F<=>P P ∧T<=>P 同一律P ∨T<=>T P ∧F<=>F 零律P ∨┐P<=>T P ∧┐P<=>F否定律常用的其它真值表P ┐P T F FTP Q P ∨Q T T T T F T F T T FFFP Q P ∧Q T T T T F F F T F F FFP Q P →Q (┐P ∨Q)T T T T F F F T T FFTP→Q<=>┐P ∨Q P ∆Q<=>(P→Q)∧(Q→P)P ∆Q<=>Q ∆PP ∆Q<=>(P ∧Q)∨(┐P ∧┐Q)┐(P ∆Q)<=>P ∆┐Q R ∨(P ∨┐P)<=>T R ∧(P ∧┐P)<=>F P→Q<=>┐Q→┐P ┐(P→Q)<=>P ∧┐Q (P→Q)∧(P→┐Q)<=>┐P P→(Q→R)<=>(P ∧Q)→R (P ∆Q)∆R<=>P ∆(Q ∆R)命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
离散数学基本概念
离散数学基本概念离散数学是数学中的一门分支,它研究离散对象与结构以及它们之间的关系。
它的应用非常广泛,包括计算机科学、信息科学、电子工程等领域。
本文将介绍离散数学的一些基本概念。
集合与元素在离散数学中,集合是最基本的概念之一。
集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
例如,{1, 2, 3}就是一个由元素1、2、3组成的集合。
集合中的元素可以是任何对象,可以是数字、字母、名词等等。
集合的关系集合之间的关系是离散数学中的重要内容。
包括集合的相等、包含和交集等关系。
集合的相等:两个集合相等指的是它们具有相同的元素。
例如,{1, 2, 3}和{3, 2, 1}是相等的集合。
集合的包含:一个集合A包含另一个集合B,当且仅当A中的元素都属于B。
表达为A ⊆ B。
例如,{1, 2, 3}包含{1, 2}。
集合的交集:两个集合A和B的交集,是由同时属于A和B的元素所构成的集合。
表示为A ∩ B。
例如,{1, 2, 3}和{2, 3, 4}的交集是{2, 3}。
集合运算离散数学中还有一些常用的集合运算,包括并集、补集和幂集。
集合的并集:两个集合A和B的并集,是由属于A或属于B的元素所构成的集合。
表示为A ∪ B。
例如,{1, 2, 3}和{2, 3, 4}的并集是{1, 2, 3, 4}。
集合的补集:对于给定的集合A,A相对于某个全集U的补集,是由不属于A的元素所构成的集合。
表示为A'。
例如,全集U为{1, 2, 3, 4},集合A为{1, 2},则A的补集为{3, 4}。
集合的幂集:给定一个集合A,A的幂集是由A的所有子集所构成的集合。
例如,集合{1, 2}的幂集为{{}, {1}, {2}, {1, 2}}。
关系与函数除了集合,关系和函数也是离散数学中的重要概念。
关系:关系描述了一种事物与另一种事物之间的联系。
它可以是集合A与集合B之间的关系,也可以是集合A中元素之间的关系。
例如,两个人之间的亲属关系,可以用一个关系集合来描述。
离散数学 数学学科
离散数学数学学科
摘要:
一、离散数学的定义
二、离散数学与数学学科的关系
三、离散数学的主要内容
四、离散数学的应用领域
五、离散数学的重要性
正文:
离散数学是数学学科的一个重要分支,主要研究离散对象的数学理论和方法。
与连续数学相比,离散数学关注的是离散结构,如集合、图论、组合数学等。
离散数学在计算机科学、信息理论、优化理论等领域具有广泛的应用。
离散数学与数学学科的关系密切,为其他数学分支提供了理论基础。
例如,图论是离散数学的一个核心领域,为网络科学、运筹学等学科提供了理论支撑。
集合论则为数学的逻辑基础奠定了基石。
离散数学的主要内容包括集合论、图论、组合数学、逻辑与布尔代数等。
集合论研究集合的基本概念和性质,如集合的表示、运算和关系等。
图论则是研究图的性质及其应用,涉及图的基本概念、生成函数和最短路径等问题。
组合数学研究离散结构的组合与排列问题,如计数原理、抽屉原理等。
逻辑与布尔代数则研究逻辑运算和电路设计等问题。
离散数学的应用领域广泛,与计算机科学、信息理论、优化理论等学科密切相关。
例如,在计算机科学中,离散数学被用于研究算法、数据结构、计算
机网络等问题。
在信息理论中,离散数学有助于分析信号处理、数据压缩和通信系统等问题。
在优化理论中,离散数学为解决最优化问题提供了方法。
离散数学的重要性在于为解决实际问题提供了理论工具。
随着计算机科学、信息技术的飞速发展,离散数学在各个领域中的应用日益广泛。
大学数学离散数学
大学数学离散数学离散数学是一门研究离散对象及其结构、性质和关系的数学学科。
离散数学在计算机科学、信息科学、工程学以及许多其他领域中具有重要的应用价值。
本文将介绍离散数学的基本概念、主要内容和应用领域。
一、概述离散数学是数学中的一个分支,研究的对象是离散的、离散化的数学结构。
它关注的是非连续、离散的数学概念和算法,与连续数学不同,离散数学是离散化的、离散性质的研究。
离散数学的主要内容包括集合论、逻辑、关系、图论、代数结构和组合数学等。
二、集合论集合论是离散数学中的基石,它研究的是集合这一基本概念及其性质。
集合是指具有确定特征的对象的整体,集合论主要研究集合的运算、集合的关系、集合的划分等基本问题。
集合论的基本公理包括空集公理、对偶公理、包含公理等。
三、逻辑逻辑是研究正确推理和证明的数学学科,也是离散数学的重要组成部分。
逻辑分为命题逻辑、谓词逻辑和模态逻辑等不同的分支。
离散数学中的逻辑包括命题逻辑和谓词逻辑,它们用于描述命题的真值和命题之间的关系。
四、关系关系是数学中的一种基本概念,描述了事物之间的联系和相互作用。
离散数学中的关系论主要研究二元关系和等价关系。
二元关系是指一个集合上的二元对组成的集合,它描述了两个元素之间的某种联系。
等价关系是一种满足自反性、对称性和传递性的二元关系,它将集合划分为不同的等价类。
五、图论图论是离散数学中的一门重要学科,研究图及其性质和应用。
图是由顶点和边组成的数学对象,它是描述许多实际问题的有效工具。
图论主要研究图的连通性、图的着色、最短路径、最小生成树等基本问题,并在网络、电路设计、运筹学等领域有广泛的应用。
六、代数结构代数结构是离散数学中的一个重要分支,研究的是集合上的运算和结构。
常见的代数结构包括群、环、域等,它们用于描述抽象代数系统的性质。
代数结构在计算机科学中有广泛的应用,例如密码学中的置换群、编码理论中的线性空间等。
七、组合数学组合数学是离散数学中的一门重要学科,研究离散对象的组合与排列问题。
大学离散数学的基本概念
大学离散数学的基本概念离散数学是一门研究离散对象及其关系的数学学科,与连续数学相对应。
它是现代计算机科学的基础和核心学科,对于计算机算法、数据库、网络通信等领域都有着重要影响。
本文将介绍大学离散数学的基本概念。
一、集合论集合论是离散数学的基础,它研究的是对象的集合及其间的关系。
在离散数学中,我们用符号表示集合,用各种运算法则来描述集合的性质和运算。
比如,我们可以用交集、并集、差集、补集等运算来对集合进行操作。
集合论是离散数学中的一项重要工具,它用于描述离散对象的属性和关系。
在计算机科学中,集合论被广泛应用于数据结构和数据库的设计与实现。
二、逻辑学逻辑学是研究推理和论证的规律的学科,它研究的是命题逻辑、谓词逻辑和命题演算等。
离散数学中的逻辑学帮助我们建立正确的思维模型,能够精确地描述数学命题的真假和推理的过程。
在计算机科学中,逻辑学是构建算法和验证程序正确性的基础。
通过使用逻辑学中的命题演算和谓词逻辑,我们可以对计算机程序进行形式化的推理,从而提高程序的可靠性。
三、图论图论是研究图和图的性质的数学分支,它研究的是由一些点和连接这些点的边构成的图形。
在离散数学中,图论用来描述对象之间的关系和相互作用,是离散数学中的一个重要分支。
图论在计算机科学中有广泛的应用。
比如,在网络通信中,我们可以用图模型来描述计算机网络的拓扑结构和通信路由;在社交网络中,我们可以用图模型来表示人与人之间的关系;在电路设计中,我们可以用图模型来描述电路的连接和功能。
四、排列与组合排列与组合是研究事物排列和选择方式的数学分支,它研究的是如何选取和安排对象,以及如何计算对象的数目。
在离散数学中,排列与组合用来计算离散对象的排列方式和组合数目,具有广泛的应用场景。
在计算机科学中,排列与组合被广泛应用于密码学、编码理论和算法设计等领域。
比如,在密码学中,排列与组合用来设计和分析密码算法的安全性;在编码理论中,排列与组合用来设计和分析数据的压缩和纠错算法。
离散数学 概念
离散数学概念离散数学是一门研究离散结构的学科,其中的离散结构可以表示为离散对象或离散事件。
它是计算机科学的基础学科之一,在算法设计和系统分析中有着广泛的应用和深远的影响。
离散数学中的概念包括集合、关系、函数、图论、计数等。
1.集合集合是离散数学中最基础、最重要的概念之一。
集合是指具有某种共同特征的事物的总体,用括号{}括起来表示。
例如,一个集合A包含了元素a、b、c,则A={a,b,c}。
集合的基本运算包括:并集、交集、补集和差集。
并集指的是包含两个集合中所有元素的一个新集合,交集指的是两个集合中共有的元素构成的一个集合,补集则是指一个集合相对于另一个集合的所有不包含的元素构成的集合,差集则是指一个集合中除去另一个集合中共有的元素后所剩余的元素所构成的集合。
2.关系关系是指任意两个元素之间的一种有序的二元关系,用箭头表示,例如(x,y)表示x与y之间有一种特定关系。
关系可以是等于(=)、大于(>)、小于(<)等。
根据关系的定义,关系可以分为反对称、对称、传递等几种类型。
其中反对称关系是指如果(x,y) 且(y,x),则x=y;对称关系是指如果(x,y) ,则(y,x);而传递关系则是指如果(x,y)且(y,z),则(x,z)。
3.函数函数是指一个集合中的每一个元素都对应于另一个集合中的唯一元素的一种映射关系。
函数通常用f(x)来表示,其中f为函数名称,x为变量名称。
例如,用f(x)=x^2表示一个函数,当x为2时,f(x)的值为4。
函数的性质包括:单调性、奇偶性、周期性等。
其中单调性是指函数在定义域内的增减情况;奇偶性则是指函数与自身的中心对称关系;周期性则是指函数图像的重复性。
4.图论图论是离散数学中最为重要和实用的一部分,它用数学语言对各种问题进行分析和解决,例如网络连接问题、旅行商问题等。
图由点和边组成,点表示对象,边表示对象之间的关系。
常用的图有有向图和无向图,有向图是指图中的边有一个方向,无向图则是指图中的边没有方向。
离散数学-详解
离散数学-详解离散数学(Discrete Mathematics)目录• 1 什么是离散数学• 2 离散数学的发展• 3 离散数学与现代信息技术• 4 参考文献什么是离散数学离散数学是研究离散量的结构及其相互关系的数学学科,离散数学是数学几个分支的总称,研究基于离散空间而不是连续的数学结构。
更一般地,离散数学被视为处理可数集合(与整数子集基数相同的集合,包括有理数集但不包括整数集)的数学分支。
与光滑变化的实数不同,离散数学的研究对象———例如整数、图和数学逻辑中的命题———不是光滑变化的,而是拥有不等、分立的值。
离散数学中的对象集合可以是有限或者是无限的。
特别是,有限数学一词通常指代离散数学处理有限集合的那些部分,特别是在与商业相关的领域。
包括基本的概率论、线性规划、矩阵和行列式的理论。
离散数学的应用遍及现代科学技术的诸多领域,它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学等必不可少的科研基础。
离散数学的发展历史上,离散数学涉及各个领域的一系列挑战性问题。
在图论中,大量研究的动机是企图证明四色定理。
这些研究虽然从1852年开始,但是直至1976年四色理论才得到证明,是由肯尼斯·阿佩尔和沃尔夫冈·哈肯大量使用计算机辅助来完成的。
在逻辑领域,大卫·希尔伯特于1900年提出的公开问题清单的第二个问题是要证明算术公理是一致的。
1931年,库尔特·哥德尔的第二不完备定理证明这是不可能的———至少算术本身不可能。
大卫·希尔伯特的第十个问题是要确定某一整系数多项式丢番图方程是否有一个整数解。
1970年,尤里·马季亚谢维奇证明这不可能做到。
第二次世界大战时盟军基于破解纳粹德军密码的需要,带动了密码学和理论计算机科学的发展。
英国的布莱切利园因而发明出第一部数字电子计算器———巨像计算机。
离散数学课本定义和定理
离散数学课本定义和定理第1章集合1.1 集合的基本概念1. 集合、元(元素)、有限集、⽆限集、空集2. 表⽰集合的⽅法:列举法、描述法3. 定义1.1.1(⼦集):给定集合A和B,如果集合A的任何⼀个元都是集合B中的元,则称集合A包含于B或B包含A,记为或,并称A为B的⼀个⼦集。
如果集合A和B满⾜,但B中有元不属于A,则称集合A真包含于B,记为,并且称A为B的⼀个真⼦集。
4. 定义1.1.2(幂集):给定集合A,以A的所有⼦集为元构成的⼀个集合,这个集合称为A 的幂集,记为或1.2 集合的运算定义1.2.1(并集):设A和B是两个集合,则包含A和B的所有元,但不包含其他元的集合,称为A和B的并集,记为.定义1.2.2(交集):A和B是两个集合,包含A和B的所有公共元,但不包含其他元的集合,称为A和B的交集,记为.定义1.2.3(不相交):A和B是两个集合,如果它们满⾜,则称集合A和B是不相交的。
定义1.2.4(差集):A和B是两个集合,属于A⽽不属于B的所有元构成集合,称为A和B 的差集,记为.定义1.2.5(补集):若A是空间E的集合,则E中所有不属于A的元构成的集合称为A的补集,记为.定义1.2.6(对称差):A和B是两个集合,则定义A和B的对称差为1.3 包含排斥原理定理1.3.1设为有限集,其元素个数分别为,则定理 1.3.2设为有限集,其元素个数分别为,则定理1.3.3设为有限集,则重要例题P11 例1.3.1第2章⼆元关系2.1 关系定义2.1.1(序偶):若和是两个元,将它们按前后顺序排列,记为,则成为⼀个序偶。
※对于序偶和,当且仅当并且时,才称和相等,记为定义2.1.2(有序元组):若是个元,将它们按前后顺序排列,记为,则成为⼀个有序元组(简称元组)。
定义2.1.3(直接积):和是两个集合,则所有序偶的集合,称为和的直接积(或笛卡尔积),记为. 定义2.1.4(直接积):设是个集合,,则所有元组的集合,称为的笛卡尔积(或直接积),记为.定义2.1.5(⼆元关系)若和是两个集合,则的任何⼦集都定义了⼀个⼆元关系,称为上的⼆元关系。
离散数学——精选推荐
离散数学第一章命题逻辑定义1。
设P为一命题,P的否定是一个新的命题,记作¬P。
若P为T,¬P为F;若P为F,¬P为T。
联结词“¬”表示命题的否定。
否定联结词有时亦可记作“¯”。
(P3)定义2。
两个命题P和Q的合取是一个复合命题,记作P∧Q。
当且仅当P,Q同时为T时,P∧Q为T,在其他情况下,P∧Q的真值都是F。
(P4)定义3。
两个命题P和Q的析取是一个复合命题,记作P∨Q。
当且仅当P,Q同时为F时,P∨Q的真值为F,否则P∨Q的真值为T。
(P5)定义4。
给定两个命题P和Q,其条件命题是一个复合命题,记作P→Q,读作“如果P,那么Q”或者“若P则Q”。
当且仅当P的真值为T,Q的真值为F时,P→Q的真值为F,否则P→Q的真值为T。
我们称P为前件,Q为后件。
(P6)定义5。
给定两个命题P和Q,其复合命题P⇆Q的真值为F。
(P7)定义6。
命题演算的合式公式(wff),规定为:(1)单个命题变元本身是一个合式公式。
(2)如果A是合式公式,那么¬A是合式公式。
(3)如果A和B是合式公式,那么(A∧B),(A∨B),(A→B)和(A⇆B)都是合式公式。
(4)当且仅当能够有限次地应用(1),(2),(3)所得到的包含命题变元,联结词和括号的符号串是合式公式。
(P9)定义7。
在命题公式中,对于分量指派真值得各种可能组合,就确定了这个命题公式的各种真值情况,把它汇列成表,就是命题公式的真值表。
(P12)定义8。
给定两个命题公式A和B,设P1,P2,…,P n为所有出现于A和B中的原子变元,若给P1,P2,…,P n任一组真值指派,A和B的真值都相同,则称A和B是等价的或逻辑相等。
记作A⇔B。
(P15)定义9。
如果X是合式公式的A的一部分,且X本身也是一个合式公式,则称X为公式A 的字公式。
(P16)定理1。
设X是合式公式A的字公式,若X⇔Y,如果将A中的X用Y来置换,所得到公式B 与公式A等价,即A⇔B。
离散数学知识点整理
离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等众多领域都有着广泛的应用。
下面就为大家整理一下离散数学的主要知识点。
一、集合论集合是离散数学中最基本的概念之一。
集合是由一些确定的、互不相同的对象组成的整体。
集合的表示方法有列举法、描述法等。
集合的运算包括并集、交集、差集和补集。
并集是将两个集合中的所有元素合并在一起组成的新集合;交集是两个集合中共同拥有的元素组成的集合;差集是从一个集合中去掉另一个集合中的元素所剩下的元素组成的集合;补集是在给定的全集内,某个集合的补集是由全集中不属于该集合的元素组成的集合。
集合之间的关系有包含、相等、真包含等。
包含关系是指一个集合中的所有元素都属于另一个集合;相等关系是指两个集合中的元素完全相同;真包含关系是指一个集合包含另一个集合,且两个集合不相等。
二、关系关系是集合中元素之间的某种联系。
关系可以用集合的形式来表示。
关系的性质包括自反性、对称性、反对称性和传递性。
自反性是指集合中的每个元素都与自身有关系;对称性是指如果元素 a 与元素 b 有关系,那么 b 与 a 也有关系;反对称性是指如果元素 a 与元素 b 有关系,且 b 与 a 也有关系,那么 a 等于 b;传递性是指如果元素 a 与元素 b 有关系,b 与元素 c 有关系,那么 a 与 c 也有关系。
关系的运算有合成运算、逆关系等。
合成运算可以得到新的关系,逆关系是将原关系中的元素顺序颠倒得到的关系。
三、函数函数是一种特殊的关系,对于定义域中的每个元素,在值域中都有唯一的元素与之对应。
函数的性质包括单射、满射和双射。
单射是指定义域中的不同元素在值域中的对应元素也不同;满射是指值域中的每个元素都有定义域中的元素与之对应;双射是指函数既是单射又是满射。
四、图论图由顶点和边组成。
边可以是有向的或无向的。
图的类型有很多,如简单图、多重图、连通图等。
简单图是指没有自环和多重边的图;多重图允许存在自环和多重边;连通图是指图中任意两个顶点之间都存在路径。
离散数学的概念
康 在 托 尔 用 表 示 自 然 数 这 个 良 序 集 的 自 然 顺 序 , 而 把 写 w w
这 种 自 信 与 质 然 当 ” 。
它 德 金 表 示
在 1877 年
事
在 彻 当 时 , 他 的 理 论 , 尤 其 是 上 面 说 到 的 “实 无 穷 理 论 ” , 头
学
w
康托尔(Cantor)
在一大群数学家的不懈努力下,消除悖论的努力成为了集合论发展的巨大 推动力,比如说外延公理、空集公理、分离公理、幂集公理、并集公理、 选择公理和无穷公理共七个公理的集合论体系,这个就是策墨罗所提出的 ZF系统的理论基础。 但是我们也应该清楚,其实严格来讲,罗素悖论不是被剔除了,只不过是 被避开了。虽然集合论公理化运动是假定了数学运用的逻辑本身不成问题 ,但数学家们对于这一前提陆续提出了不同的观点,并形成了关于数学基 础的三大学派,即:以罗素为代表的逻辑主义,以布劳威尔为代表的直觉 主义和以希尔伯特为代表的形式主义。 在集合论上出现的歧见也懂很多个侧面推动了数理逻辑的发展,现代数理 逻辑的四大分支——公理化集合论,证明论,模型论,递归论的提出,也 都源于20世纪早期关于离散数学基础问题的探讨。 在这些坚实的基础上,集合论,甚至推广到整个离散数学,都在发现悖论跟 解决悖论中曲折前进。 END MADE BY 王渝鑫 2008.10.09
果然出事了
1902年,罗素提出了著名的“理发师悖论”: 一位乡村理发师,宣称他不给村子里任何自己刮脸的人刮脸,但给所有 不自己刮脸的人刮脸。人们问:“那您自己给不给自己刮脸?”理发师 无言以对。的确如果理发师自己刮脸,那么违背了他自己原则的前半部 分,但如果他不自己刮脸,那么按照原则的后一部分,他又必须给自己 刮脸,理发师则陷入深深地矛盾中不能自圆其说。
离散数学的定义精简版
图1.每个无向图所有结点度总和等于边数的2倍.2每个无向图中,奇数度的结点必为偶数个.3G=<V ,E>是有向图, 则G 的所有结点的出度之和等于入度之和.4无向完全图Kn, 有边数 5有n 个结点的有向简单完全图有边数为n(n-1).6有n 个结点的有向完全图, 有边数 n2.12 两个图同构的必要条件:1.结点个数相等. 2.边数相等.3.度数相同的结点数相等. 4. 对应的结点的度数相等.17 在一个有n 个结点的图中,如果从结点vi 到vj 存在一条路,则从vi 到vj 必存在一条长度不多于n-1的路.19 连通分支:令G=<V ,E>是无向图, R 是V 上连通关系, 设R 对V 的商集中有等价类V1,V2,V3,…, Vn ,这n 个等价类构成的n 个子图分别记作G(V1),G(V2),G(V3),…, G(Vn),并称它们为G 的连通分支. 并用W(G)表示G 中连通分支数.28 如果从u 到v 不可达,则d<u,v>=∞29 图的直径: G 是个有向图, 定义D=max{d<u,v>} u,v ∈V 为图G 的直径.30强连通、单侧连通和弱连通:在简单有向图G 中,如果任何两个结点间相互可达, 则称G 是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G 是单侧连通. 如果将G 看成无向图后(即把有向边看成无向边)是连通的,则称G 是弱连通.31一个有向图G 是强连通的,当且仅当G 中有一个回路, 此回路至少包含每个结点一次. 32一. 邻接矩阵这是以结点与结点之间的邻接关系确定的矩阵.1.定义:设G=<V ,E>是个简单图,V={v1,v2,v3,…,vn }, 一个n ×n 阶矩阵A=(aij)称为G 的邻接矩阵. 其中:aij ={ 1 vi 与vj 邻接, 即(vi,vj)∈E 或 < vi,vj >∈E0 否则33从邻接矩阵看图的性质:无向图:每行1的个数=每列1的个数=对应结点的度有向图:每行1的个数=对应结点的出度每列1的个数=对应结点的入度34在(A(G1))2 中a342 =2 表示从v3到v4有长度为2的路有2条:在(A(G1))3中a233 =6 表示从v2到v3有长度为3的路有6条:设G=<V ,E>是简单图,令V={v1,v2,v3,…,vn}, G 的邻接矩阵(A(G))k 中的第 i 行第j 列元素aijk=m, 表示在图G 中从vi 到vj 长度为k 的路有m 条.35二.可达性矩阵1.定义:设G=<V ,E>是个简单图,V={v1,v2,v3,…,vn }, 一个n ×n 阶矩阵P=(pij)称为G 的可达性矩阵. 其中: pij ={1 vi 到vj 可达, (至少有一条路)0 否则)1(21 n n37三.完全关联矩阵此矩阵是按照结点与边之间的关联关系确定的矩阵.1.无向图的完全关联矩阵1).定义:设G=<V,E>是个无向图,V={v1,v2,v3,…,vm },E={e1,e2,e3,…,en },一个m×n阶矩阵M=(mij)称为G的完全关联矩阵. 其中:mij ={ 1 vi与ej关;0 否则2).从关联矩阵看图的性质:a)每列只有二个1.(因为每条边只关联两个结点)b)每行中1的个数为对应结点的度数.c)如果两列相同,则说明对应的两条边是平行边.2.有向图的完全关联矩阵1).定义:设G=<V,E>是个简单有向图,V={v1,v2,v3,…,vm },E={e1,e2,e3,…,en },一个m×n阶矩阵M=(mij)称为G的完全关联矩阵. 其中: mij ={1 vi是ej的起点;-1 vi是ej的终点;0 vi与ej不关联2).从关联矩阵看图的性质:a)每列只有一个1和一个-1.(每条边有一个起点一个终点)b)每行中1的个数为对应结点的出度.-1个数是结点入度38关键路径:就是各个结点的缓冲时间均为0的路径.39 欧拉路:在无孤立结点的图G中,如果存在一条路,它经过图中每条边一次且仅一次, 称此路为欧拉路.40 欧拉回路:在无孤立结点的图G中,若存在一条回路,它经过图中每条边一次且仅一次,称此回路为欧拉回路.41有欧拉路与有欧拉回路的判定:无向图G具有欧拉路,当且仅当G是连通的,且有零个或两个奇数度的结点.42无向图G具有欧拉回路,当且仅当G是连通的,且所有结点的度都是偶数.43汉密尔顿图:定义:设G=<V,E>是个无向有限图,汉密尔顿路:通过G中每个结点恰好一次的路.汉密尔顿回路(H回路):通过G中每个结点恰好一次的回路.汉密尔顿图(H图):具有汉密尔顿回路(H回路)的图.44汉密尔顿图的判定:到目前为止并没有判定H图的充分和必要条件.(充分条件):G是完全图,则G是H图.(充分条件)设G是有n个结点的简单图,若G中每对结点度数之和大于等于n-1(n),则G 有一条H路(H回路)注意:上述条件只是充分条件,而不是必要条件,即不满足这个条件的, 也可能有H路.45 (必要条件) 若图G=<V,E>有H回路,则对V的任何非空子有限集S, 均有W(G-S)≤|S|, 其中W(G-S)是从G中删去S中所有结点及与这些结点关联的边所得到的子图的连通分支数. 48完全二部图:令G=<V,E>是以V1,V2为互补的结点子集的二部图,如果V1中的每个结点都与V2中每个结点相邻接,则称G是完全二部图. 如果|V1|=m, |V2|=n 则G记作Km,n 49.二部图的判定: 定理G=<V,E>是二部图当且仅当它的所有回路的长度都是偶数.52两个重要的非平面图:K5和K3,353 欧拉公式G是个连通的平面图, 设v、e、r分别表示G中结点数、边数、面数, 则有v-e+r=2. 称此式为欧拉公式.54 平面图的判定(必要条件) 设G是有v 个结点、e条边的连通简单平面图, 若v≥3, 则e ≤3v-6.55一个图是平面图的充分且必要条件是它不含有任何与K5、K3,3在2度结点内同构的子图.56如果G1和G2是同构的,或者通过反复插入或删去度数为2的结点, 使得它们变成同构的图, 称G1和G2 是在2度结点内同构.树1度数为1的结点,称为叶结点. 分支结点(内结点):度数大于1的结点.2无回路且e=v-1 其中e是T的边数,v是T的结点数.3如果图G的生成子图是树,则称此树为G的生成树.4图G中,不在其生成树里的边,称作弦. 所有弦的集合,称为该生成树的补.5连通图至少有一棵生成树. 寻找生成树的方法:深度优先;广度优先.6一棵生成树中的所有边的权之和称为该生成树的权. 具有最小权的生成树,称为最小生成树.7根树:如果一棵有向树,恰有一个结点的入度为0,其余所有结点的入度均为1,则称此树为根树. 1.树根:入度为0的结点. 2.叶:出度为0的结点. 3.分支结点(内结点):出度不为0的结点. 8在有向树中,如果规定了每一层上的结点的次序,称之为有序树.9 1.m叉树:在根树中,如果每个结点的出度最大是m, 则称此树是m叉树.2.完全m叉树:在根树中,如果每个结点的出度都是m或者等于0, 则称此树是完全m叉树.3. 正则m叉树:在完全m叉树中,如果所有树叶的层次相同, 则称之为正则m叉树.10 T是棵完全m叉树, 有t个叶结点, i个分支结点,则(m-1)i=t -1 .11 m叉有序树转化成二叉树:方法是:1.每个结点保留左儿子结点, 剪掉右边其它分支. 被剪掉的结点如下处理.2.同一个层次的结点, 从左到右依次画出.12 1.先序遍历⑴访问根结点.⑵先序遍历左子树⑶先序遍历右子树2.中序遍历⑴中序遍历左子树⑵访问根结点.⑶中序遍历右子树3.后序遍历⑴后序遍历左子树⑵后序遍历右子树⑶访问根结点.代数系统20 <X,★>和<X,★, ο>是代数系统, ★,ο是二元运算:1.封闭性:∀x,y∈X, 有x★y∈X。
离散数学的基本概念和运算
离散数学的基本概念和运算离散数学是数学的一个重要分支,它研究离散结构和离散对象之间的关系。
与连续数学不同,离散数学关注的是离散的、离散的事物,如整数、图形、逻辑、集合等。
在计算机科学、信息技术以及其他许多领域中,离散数学都担当着重要的角色。
本文将介绍离散数学的一些基本概念和运算,以帮助读者更好地理解和应用离散数学。
一、集合论集合论是离散数学的基石之一,它研究集合以及集合之间的关系和运算。
集合是指一组元素的事物的整体,元素可以是任何事物,比如数字、字母、人或其他对象。
常见的集合运算有并集、交集、差集和补集等。
并集表示两个或多个集合中的所有元素的集合,交集表示同时属于两个或多个集合的元素的集合,差集表示从一个集合中减去另一个集合的元素的集合,补集表示在给定参考集合中不属于某个特定集合的元素的集合。
二、逻辑逻辑是离散数学的另一个重要内容,它研究命题、逻辑运算和推理。
在离散数学中,命题是指能够判断真假的陈述句。
逻辑运算包括与、或、非、异或等。
与运算表示两个命题同时为真时结果为真,或运算表示两个命题中至少有一个为真时结果为真,非运算表示对命题的否定,异或运算表示两个命题中仅有一个为真时结果为真。
推理是利用逻辑规则从已知命题中得出新的结论的过程,常见的推理方法有直接证明、反证法和归纳法。
三、图论图论是离散数学中的一个重要分支,它研究由节点和边组成的图形结构。
图形是由节点(或顶点)和边组成的抽象化模型,节点表示某个对象,边表示节点之间的关系。
图论研究图形的性质、特征和算法。
常见的图形类型有无向图和有向图,无向图的边没有方向,有向图的边有方向。
图形的表示方法有邻接矩阵和邻接表等。
在计算机科学中,图论广泛应用于网络、路径规划、数据结构等领域。
四、代数系统代数系统是离散数学中的另一个重要概念,它研究运算规则和运算对象之间的关系。
代数系统包括集合、运算和运算规则。
常见的代数系统有代数结构、半群、群、环、域等。
代数结构是指由一组元素和一组运算构成的系统,运算可以是加法、乘法或其他操作。
离散数学定义(必须背)
命题逻辑▪(论域)定义:论域是一个数学系统,记为D。
它由三部分组成:•(1)一个非空对象集合S,每个对象也称为个体;•(2) 一个关于D的函数集合F;•(3)一个关于D的关系集合R。
▪(逻辑连接词)定义•设n>0,称为{0,1}n到{0,1}的函数为n元函数,真值函数也称为联结词。
•若n =0,则称为0元函数。
▪(命题合式公式)定义:•(1).常元0和1是合式公式;•(2).命题变元是合式公式;•(3).若Q,R是合式公式,则(⌝Q)、(Q∧R) 、(Q∨R) 、(Q→R) 、(Q↔R) 、(Q⊕R)是合式公式;•(4).只有有限次应用(1)—(3)构成的公式是合式公式。
▪(生成公式)定义1.5 设S是联结词的集合。
由S生成的公式定义如下:•⑴若c是S中的0元联结词,则c是由S生成的公式。
•⑵原子公式是由S生成的公式。
•⑶若n≥1,F是S中的n元联结词,A1,…,A n是由S生成的公式,则FA1…A n 是由S生成的公式。
▪(复杂度)公式A的复杂度表示为FC(A)•常元复杂度为0。
•命题变元复杂度为0,如果P是命题变元,则FC (P)=0。
•如果公式A=⌝B,则FC (A)=FC(B)+1。
•如果公式A=B1∧ B2,或A=B1∨ B2,或A=B1→B2,或A=B1↔ B2,或A=B1⊕ B2,或则FC (A)=max{FC(B1), FC(B2)}+1。
▪命题合式公式语义•论域:研究对象的集合。
•解释:用论域的对象对应变元。
•结构:论域和解释称为结构。
•语义:符号指称的对象。
公式所指称对象。
合式公式的语义是其对应的逻辑真值。
▪(合式公式语义)设S是联结词的集合是{⌝,∧,∨,⊕,→,↔}。
由S生成的合式公式Q在真值赋值v下的真值指派v(Q)定义如下:•⑴v(0)=0, v(1)=1。
•⑵若Q是命题变元p,则v(A)= pv。
•⑶若Q1,Q2是合式公式▪若Q= ⌝Q1,则v(Q)= ⌝v(Q1)▪若Q=Q1 ∧ Q2,则v(Q)=v(Q1)∧ v(Q2)▪若Q=Q1∨Q2,则v(Q)=v(Q1)∨v(Q2)▪若Q=Q1→ Q2,则v(Q)=v(Q1)→ v(Q2)▪若Q=Q1 ↔ Q2,则v(Q)=v(Q1)↔ v(Q2)▪若Q=Q1⊕ Q2,则v(Q)=v(Q1)⊕ v(Q2)▪(真值赋值)由S生成的公式Q在真值赋值v下的真值v(Q)定义如下:•⑴若Q是S中的0元联结词c,则v(Q)=c。
离散数学的基本概念与应用
离散数学的基本概念与应用离散数学是数学的一个分支,它研究离散的数值和结构,与连续数学相对。
离散数学的基本概念和应用广泛存在于计算机科学、信息技术、密码学等领域。
本文将介绍离散数学的基本概念和其在现实世界中的应用。
一、集合论集合论是离散数学的基础,它研究的是元素的集合和集合之间的关系。
在集合论中,基本的概念有元素、集合、子集、交集、并集等。
例如,一个班级中的学生可以看作是一个集合,每个学生是一个元素。
而男生和女生可以分别看作是学生集合的子集。
集合论在编程、数据库设计等领域有广泛的应用。
二、逻辑与命题逻辑是研究推理和证明的学科。
在离散数学中,逻辑的应用非常重要。
其中,命题是逻辑中的基本概念,它是可以判断真假的陈述。
命题可以通过与、或、非等逻辑运算符进行组合,形成复合命题。
逻辑在电路设计、软件开发等领域起着重要的作用。
三、图论图论研究的是由节点和边构成的图形结构。
图形中的节点可以是任意对象,边表示节点之间的关系。
图论的基本概念包括图、路径、连通性等。
例如,在社交网络中,每个人可以看作是一个节点,人与人之间的关系可以用边表示。
图论在网络分析、交通规划等方面有着广泛的应用。
四、组合数学组合数学研究的是离散对象的排列和组合。
它涉及到的概念有排列、组合、二项式系数等。
在密码学中,组合数学被广泛应用于生成密钥、实现加密算法等方面。
此外,组合数学还在网络优化、统计学等领域中有重要的应用。
五、概率论与统计学概率论与统计学是离散数学中的另一个重要分支,它研究的是事件发生的可能性和事件之间的关系。
概率论是计算和描述随机事件的学科,统计学是通过样本数据对总体进行推断和决策的学科。
概率论和统计学在金融风险评估、医学研究等领域发挥着关键作用。
六、离散数学的应用举例离散数学在现实世界中有广泛的应用。
以计算机科学为例,离散数学的概念和方法被应用于算法设计、数据库管理、图像处理、人工智能等方面。
另外,在通信和网络领域,离散数学被用于设计和分析网络协议、编码和解码等。
数学的离散数学分支
数学的离散数学分支数学作为一门学科,包含了许多不同的分支,其中离散数学是一种重要的分支。
离散数学主要研究非连续、离散的数学结构和对象。
在现代计算机科学、密码学、网络通信等领域,离散数学扮演着重要的角色。
本文将介绍离散数学的定义、内容及其在实际应用中的重要性。
一、离散数学的定义离散数学是数学的一个分支,它研究离散的对象,如整数、有限集合以及离散的数学结构,而不是连续的对象。
离散数学注重于离散问题的求解和分析,以及逻辑推理和集合论等数学工具的应用。
二、离散数学的内容离散数学包含了多个重要的内容,下面将介绍其中的几个主要方面:1. 集合论:离散数学中的一个重要组成部分是集合论。
集合论是研究集合、元素和包含关系的学科,它为离散数学提供了基础。
2. 逻辑和证明:逻辑是离散数学中另一个重要的内容。
逻辑关注于正确推理和证明的方法,它为解决离散问题提供了基础。
3. 图论:图论是离散数学中研究图和网络的学科。
图是由节点和边组成的离散结构,图论主要研究图的性质、算法和应用。
4. 组合数学:组合数学是研究离散结构中的组合和排列的学科。
它涉及排列组合、图论、概率论等内容,是离散数学的一个重要分支。
5. 离散数学的应用:离散数学的应用非常广泛,特别是在计算机科学和信息技术领域。
它在网络通信、密码学、算法设计等方面发挥着重要的作用。
三、离散数学在实际应用中的重要性离散数学在多个领域中发挥着重要的作用,下面将介绍其中的几个方面:1. 计算机科学:离散数学是计算机科学的基础,它提供了计算机算法、数据结构和计算模型的理论基础。
离散数学的概念和方法在计算机科学中被广泛应用,帮助解决了很多复杂的计算问题。
2. 密码学:密码学是研究保护信息安全的学科,离散数学在密码学中起着重要的作用。
离散数学的知识可以帮助我们理解和设计密码系统,保护敏感信息的安全。
3. 网络通信:在网络通信中,离散数学的概念和方法可以帮助我们理解和分析网络的拓扑结构、通信协议和网络安全等问题。
离散数学的基本概念有哪些
离散数学的基本概念有哪些离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
那么,离散数学中有哪些基本概念呢?让我们一起来了解一下。
首先,集合是离散数学中最基础的概念之一。
集合就是一些具有特定性质的对象的总体。
比如说,一个班级里所有同学就可以构成一个集合。
集合中的元素具有确定性、互异性和无序性。
确定性指的是对于一个对象,能明确它是否属于这个集合;互异性意味着集合中的元素不能重复;无序性则表示集合中元素的排列顺序是无关紧要的。
我们可以用列举法或者描述法来表示一个集合。
列举法就是把集合中的元素一一列举出来,比如{1, 2, 3, 4, 5};描述法则是通过描述元素的共同特征来定义集合,比如{x | x 是小于 10 的正整数}。
关系也是离散数学中的重要概念。
关系可以理解为两个集合元素之间的某种联系。
比如说,在一个班级中,“同学关系”就是一种关系。
从数学角度来看,关系可以用矩阵或者关系图来表示。
关系有自反性、对称性、反对称性和传递性等性质。
自反性指的是每个元素都与自身有关系;对称性是说如果 a 与 b 有关系,那么 b 与 a 也有关系;反对称性则是如果 a 与 b 有关系且 b 与 a 有关系,那么 a 等于 b;传递性是若 a 与 b 有关系,b 与 c 有关系,则 a 与 c 有关系。
函数是一种特殊的关系。
简单来说,函数就是对于集合 A 中的每个元素,在集合 B 中都有唯一的元素与之对应。
比如,我们常见的数学函数 y = f(x) 就是这样的例子。
函数具有单射、满射和双射等性质。
单射意味着不同的输入对应不同的输出;满射是指集合 B 中的每个元素都有集合 A 中的元素与之对应;双射则是既单射又满射。
接着,我们来谈谈图论。
图由顶点和边组成,可以用来描述很多实际问题,比如交通网络、社交网络等。
图有有向图和无向图之分。
在有向图中,边是有方向的;而在无向图中,边没有方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1.每个无向图所有结点度总和等于边数的2倍.2每个无向图中,奇数度的结点必为偶数个.3G=<V ,E>是有向图, 则G 的所有结点的出度之和等于入度之和.4无向完全图Kn, 有边数 5有n 个结点的有向简单完全图有边数为n(n-1).6有n 个结点的有向完全图, 有边数 n2.12 两个图同构的必要条件:1.结点个数相等. 2.边数相等.3.度数相同的结点数相等. 4. 对应的结点的度数相等.17 在一个有n 个结点的图中,如果从结点vi 到vj 存在一条路,则从vi 到vj 必存在一条长度不多于n-1的路.19 连通分支:令G=<V ,E>是无向图, R 是V 上连通关系, 设R 对V 的商集中有等价类V1,V2,V3,…, Vn ,这n 个等价类构成的n 个子图分别记作G(V1),G(V2),G(V3),…, G(Vn),并称它们为G 的连通分支. 并用W(G)表示G 中连通分支数.28 如果从u 到v 不可达,则d<u,v>=∞29 图的直径: G 是个有向图, 定义D=max{d<u,v>} u,v ∈V 为图G 的直径.30强连通、单侧连通和弱连通:在简单有向图G 中,如果任何两个结点间相互可达, 则称G 是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G 是单侧连通. 如果将G 看成无向图后(即把有向边看成无向边)是连通的,则称G 是弱连通.31一个有向图G 是强连通的,当且仅当G 中有一个回路, 此回路至少包含每个结点一次. 32一. 邻接矩阵这是以结点与结点之间的邻接关系确定的矩阵.1.定义:设G=<V ,E>是个简单图,V={v1,v2,v3,…,vn }, 一个n ×n 阶矩阵A=(aij)称为G 的邻接矩阵. 其中:aij ={ 1 vi 与vj 邻接, 即(vi,vj)∈E 或 < vi,vj >∈E0 否则33从邻接矩阵看图的性质:无向图:每行1的个数=每列1的个数=对应结点的度有向图:每行1的个数=对应结点的出度每列1的个数=对应结点的入度34在(A(G1))2 中a342 =2 表示从v3到v4有长度为2的路有2条:在(A(G1))3中a233 =6 表示从v2到v3有长度为3的路有6条:设G=<V ,E>是简单图,令V={v1,v2,v3,…,vn}, G 的邻接矩阵(A(G))k 中的第 i 行第j 列元素aijk=m, 表示在图G 中从vi 到vj 长度为k 的路有m 条.35二.可达性矩阵1.定义:设G=<V ,E>是个简单图,V={v1,v2,v3,…,vn }, 一个n ×n 阶矩阵P=(pij)称为G 的可达性矩阵. 其中: pij ={1 vi 到vj 可达, (至少有一条路)0 否则)1(21 n n37三.完全关联矩阵此矩阵是按照结点与边之间的关联关系确定的矩阵.1.无向图的完全关联矩阵1).定义:设G=<V,E>是个无向图,V={v1,v2,v3,…,vm },E={e1,e2,e3,…,en },一个m×n阶矩阵M=(mij)称为G的完全关联矩阵. 其中:mij ={ 1 vi与ej关;0 否则2).从关联矩阵看图的性质:a)每列只有二个1.(因为每条边只关联两个结点)b)每行中1的个数为对应结点的度数.c)如果两列相同,则说明对应的两条边是平行边.2.有向图的完全关联矩阵1).定义:设G=<V,E>是个简单有向图,V={v1,v2,v3,…,vm },E={e1,e2,e3,…,en },一个m×n阶矩阵M=(mij)称为G的完全关联矩阵. 其中: mij ={1 vi是ej的起点;-1 vi是ej的终点;0 vi与ej不关联2).从关联矩阵看图的性质:a)每列只有一个1和一个-1.(每条边有一个起点一个终点)b)每行中1的个数为对应结点的出度.-1个数是结点入度38关键路径:就是各个结点的缓冲时间均为0的路径.39 欧拉路:在无孤立结点的图G中,如果存在一条路,它经过图中每条边一次且仅一次, 称此路为欧拉路.40 欧拉回路:在无孤立结点的图G中,若存在一条回路,它经过图中每条边一次且仅一次,称此回路为欧拉回路.41有欧拉路与有欧拉回路的判定:无向图G具有欧拉路,当且仅当G是连通的,且有零个或两个奇数度的结点.42无向图G具有欧拉回路,当且仅当G是连通的,且所有结点的度都是偶数.43汉密尔顿图:定义:设G=<V,E>是个无向有限图,汉密尔顿路:通过G中每个结点恰好一次的路.汉密尔顿回路(H回路):通过G中每个结点恰好一次的回路.汉密尔顿图(H图):具有汉密尔顿回路(H回路)的图.44汉密尔顿图的判定:到目前为止并没有判定H图的充分和必要条件.(充分条件):G是完全图,则G是H图.(充分条件)设G是有n个结点的简单图,若G中每对结点度数之和大于等于n-1(n),则G 有一条H路(H回路)注意:上述条件只是充分条件,而不是必要条件,即不满足这个条件的, 也可能有H路.45 (必要条件) 若图G=<V,E>有H回路,则对V的任何非空子有限集S, 均有W(G-S)≤|S|, 其中W(G-S)是从G中删去S中所有结点及与这些结点关联的边所得到的子图的连通分支数. 48完全二部图:令G=<V,E>是以V1,V2为互补的结点子集的二部图,如果V1中的每个结点都与V2中每个结点相邻接,则称G是完全二部图. 如果|V1|=m, |V2|=n 则G记作Km,n 49.二部图的判定: 定理G=<V,E>是二部图当且仅当它的所有回路的长度都是偶数.52两个重要的非平面图:K5和K3,353 欧拉公式G是个连通的平面图, 设v、e、r分别表示G中结点数、边数、面数, 则有v-e+r=2. 称此式为欧拉公式.54 平面图的判定(必要条件) 设G是有v 个结点、e条边的连通简单平面图, 若v≥3, 则e ≤3v-6.55一个图是平面图的充分且必要条件是它不含有任何与K5、K3,3在2度结点内同构的子图.56如果G1和G2是同构的,或者通过反复插入或删去度数为2的结点, 使得它们变成同构的图, 称G1和G2 是在2度结点内同构.树1度数为1的结点,称为叶结点. 分支结点(内结点):度数大于1的结点.2无回路且e=v-1 其中e是T的边数,v是T的结点数.3如果图G的生成子图是树,则称此树为G的生成树.4图G中,不在其生成树里的边,称作弦. 所有弦的集合,称为该生成树的补.5连通图至少有一棵生成树. 寻找生成树的方法:深度优先;广度优先.6一棵生成树中的所有边的权之和称为该生成树的权. 具有最小权的生成树,称为最小生成树.7根树:如果一棵有向树,恰有一个结点的入度为0,其余所有结点的入度均为1,则称此树为根树. 1.树根:入度为0的结点. 2.叶:出度为0的结点. 3.分支结点(内结点):出度不为0的结点. 8在有向树中,如果规定了每一层上的结点的次序,称之为有序树.9 1.m叉树:在根树中,如果每个结点的出度最大是m, 则称此树是m叉树.2.完全m叉树:在根树中,如果每个结点的出度都是m或者等于0, 则称此树是完全m叉树.3. 正则m叉树:在完全m叉树中,如果所有树叶的层次相同, 则称之为正则m叉树.10 T是棵完全m叉树, 有t个叶结点, i个分支结点,则(m-1)i=t -1 .11 m叉有序树转化成二叉树:方法是:1.每个结点保留左儿子结点, 剪掉右边其它分支. 被剪掉的结点如下处理.2.同一个层次的结点, 从左到右依次画出.12 1.先序遍历⑴访问根结点.⑵先序遍历左子树⑶先序遍历右子树2.中序遍历⑴中序遍历左子树⑵访问根结点.⑶中序遍历右子树3.后序遍历⑴后序遍历左子树⑵后序遍历右子树⑶访问根结点.代数系统20 <X,★>和<X,★, ο>是代数系统, ★,ο是二元运算:1.封闭性:∀x,y∈X, 有x★y∈X。
2.可交换性:∀x,y∈X, 有x★y=y★ x。
3.幂等性:∀x∈X, 有x★x=x。
4. 有幺元:e∈X, ∀x∈X,有e★x=x★e=x.5.有零元: θ∈x,∀x∈X,有θ★x=x★θ=θ.6.可结合性:∀x,y,z∈X, 有(x★y)★z =x★(y★z)。
7.有逆元:x∈X, 有x-1∈X,使得x-1★x=x★x-1=e8.可消去性:a∈X,∀x, y∈X,有(a★x=a★y)∨(x★a=y★a) ⇒ x=y.9.分配律:★对ο可分配:∀x,y,z∈X,有x★(yοz)=(x★y)ο(x★z) 或(xοy)★z =(x★z)ο(y★z)10.吸收律:∀x,y∈X,有x★(xοy)=x 和xο(x★y)=x代数系统3从运算表看交换性:是个以主对角线为对称的表。
4三.幂等元、幂等性:设★是X上的二元运算,如果有a∈X,a★a=a, 则称a是幂等元,如果对任何x∈X,都有x★x=x,则称★有幂等性。
5从运算表看幂等元、幂等性:看主对角线的元素与上表头(或左表头)元素相同。
6幺元(单位元、恒等元):设★是X上的二元运算,如果有eL∈X,使得对任何x∈X,有eL★x=x,则称eL是相对★的左幺元。
如果有eR∈X,使得对任何x∈X,有x★eR=x ,则称eR是相对★的右幺元。
如果eL= eR =e,对任何x∈X,有e★x=x★e=x, 称e是相对★的幺元。
对加法+,幺元是0,对乘法×,幺元是1,对并运算∪,幺元是Φ,对交运算∩,幺元是全集E,7 从运算表找左幺元eL :eL所在行的各元素均与上表头元素相同。
如S行,所以S是eL 。
8 从运算表找右幺元eR :eR所在列的各元素均与左表头元素相同。
如S列,所以S是eR9 零元:设★是X上的二元运算,如果有θL∈X,使得对任何x∈X,有θL★x=θL,则称θL 是相对★的左零元。
如果有θR∈X,使得对任何x∈X,有x★θR=θR ,则称θR是相对★的右零元。
如果θL=θR=θ,对任何x∈X,有θ★x=x★θ=θ, 称θ是相对★的零元。
例如:对乘法×,零元是0,对并运算∪,零元是全集E ,对交运算∩,零元是Φ10从运算表找左零元θL :θL所在行的各元素均与左表头元素相同。
如Φ行,所以Φ是θL 。
11从运算表找右零元θR:θR所在列的各元素均与上表头元素相同。
如Φ列,所以Φ是θR 。
所以θ=Φ12可结合性:设★是X上的二元运算,如果对任何x,y,z∈X,有(x★y)★z =x★(y★z),则称★是可结合的。