脑血管病动物模型制作步骤及方法

合集下载

脑动静脉畸形动物模型制作及步骤

脑动静脉畸形动物模型制作及步骤

脑动静脉畸形动物模型制作及步骤以往的脑动静脉畸形动物模型为动静脉瘘,没有真正的畸形团结构。

Massoud等于1994年利用猪,通过外科血管吻合和血管内闭塞技术,次建立了含有畸形团结构的脑动静脉畸形动物模型。

(1)复制方法选用3~4月龄、体重为20~40kg的猪,雌雄不拘。

按100mg/kg体重的剂量肌内注射氯胺酮麻醉,经股动脉插管行血管造影。

右下颌骨向下做旁正中直切口约10cm,分离并暴露右侧颈总动脉和颈内或颈外静脉。

用9-0缝合线行右侧颈总动脉一颈内或颈外静脉端端吻合,将颈总动脉近心端和静脉远心端的残端结扎,并同时结扎右颈外动脉。

由此形成了以左咽升动脉为供血动脉,颅底微血管网为畸形团,右咽升动脉到右颈总动脉经吻合口至右颈外静脉共同构成引流静脉的具有畸形团的AVM模型。

随后立即行左侧颈总动脉和咽升动脉造影,以证实血液沿左咽升动脉、颅底微血管网,经右咽升动脉、右颈总动脉和颈动静脉吻合口向右颈内或颈外静脉分流,显示了符合AVM 的影像学特征。

(2)模型特点猪和一些偶蹄动物,如牛、羊等,在颅底有被海绵窦包裹的微血管网,猪颅底微血管网呈H形,大小约2cm×3.5cm×0.2cm,在血管造影片上酷似人的AVM的畸形团。

微血管网的血管平均直径为154μm,这些微小血管具有清晰的内弹性膜和明显的中间肌层(平均厚度为36μm),微血管间有的结缔组织。

猪的颅底微血管网是制作脑AVM 动物模型畸形团的较好的组织结构。

(3)比较医学正常猪的咽升动脉内的平均动脉压为77mmHg,建立AVM模型后,左咽升动脉(即AVM型供血动脉)内平均压与右咽升动脉(即模型引流静脉)内的平均压的压力梯度差相似于右颈总动脉(模型引流静脉的一部分)内的平均压。

当用微粒栓子,如人胶原颗粒经左咽动脉行栓塞时,其内压逐渐上升,符合人脑AVM栓塞过程中供血动脉内压力的变化。

模型对人脑AVM有较好的模拟性。

脑卒中动物模型实验原理

脑卒中动物模型实验原理

脑卒中动物模型实验原理
1.1 缺血性脑卒中
2.1.2 线栓法
实验动物:MCAO大鼠、MCAO小鼠
模型特点:利用线栓闭塞大脑动脉血管,无需开颅,缺血时间和部位易控制,并发症少,是目前使用最广泛的脑卒中模型。

获取方法:可直接购买商品化模型
2.1.2 光化学法
实验动物:大鼠、小鼠
模型特点:无需开颅,重复性较高,病灶部位可控,但缺乏缺血半暗带,无法模拟部分病例的生理变化,适用于慢性脑缺血研究。

获取方法:系统给与光敏剂后,利用高强度光源照射,以激活脑区的光敏剂,产生脑水肿和血小板微血栓,造成局部梗死。

2.1.3 开颅电凝法
实验动物:大鼠、小鼠
模型特点:缺血效果稳定,出血量少,是目前公认的标准大脑中动脉闭塞模型,但开颅存在一定风险。

获取方法:右侧颞下入路进行开颅,采用双极电凝将大脑中动脉闭塞后切断。

1.2 出血性脑卒中
2.2.1 自体注入法
实验动物:ICH大鼠
模型特点:采集自体股动脉血注射至大鼠右侧基底节制作ICH模型,操作简便,出血部位稳定,与人类脑出血病理过程相似。

2.2.2 自发脑出血
实验动物:大鼠
模型特点:将高血压与出血性脑卒中有机结合,适用于高血压引起的脑出血病理生理机制研究。

获取方法:对SHR(自发性高血压)大鼠进行大脑中动脉结扎处

2.2.3 胶原酶注入法
实验动物:大鼠、小鼠
模型特点:操作简便,重复性高,与临床脑出血病理生理相似性高,但实验影响因素较多,稳定性较差。

获取方法:将胶原酶通过微量注射器注射入动物尾壳核内。

大鼠大脑中动脉缺血模型

大鼠大脑中动脉缺血模型

大鼠大脑中动脉缺血模型
大鼠大脑中动脉缺血模型是一种用于研究脑血管疾病的实验动物模型。

该模型通过阻塞大鼠大脑中动脉,使特定区域的脑组织缺氧,从而模拟脑卒中等脑血管疾病的病理过程。

该模型的建立常用的方法有两种:颅骨开窗法和线栓法。

颅骨开窗法是通过手术在大鼠头部挖取窗口,暴露出脑表面的动脉,然后用丝线或微疏松的阻塞物将动脉堵塞,造成脑缺血。

线栓法则是将一根细线或者硬化的凝血物插入大鼠颈动脉,将其推进至前大脑动脉分支处,从而阻塞动脉血流。

这种模型可以模拟脑血管疾病引起的脑缺血损伤,包括缺血区域的神经元死亡、神经胶质细胞激活、炎症反应等。

研究人员可以通过该模型观察脑缺血后的病理变化和分子机制,评估各种药物或治疗方法对脑缺血的治疗效果。

需要注意的是,动物实验必须符合伦理规范和相关法律法规,研究人员应尽量减少动物的痛苦和不适。

同时,在进行实验前需要仔细设计实验方案,选择适当的动物模型和操作方法,以确保实验结果的可靠性和准确性。

血管性痴呆(VD)动物模型制作及方法

血管性痴呆(VD)动物模型制作及方法

血管性痴呆(VD)动物模型制作及方法一、双侧颈总动脉阻断模型(Model of occlusion of bilaterial carotis communis artery)(1)复制方法雄性大鼠,体重为250~300g。

以水合氯醛(按350~400mg/kg体重的剂量)经腹腔注射麻醉后仰卧位,剃除颈部毛发,手术区域皮肤消毒。

颈部正中切口,钝性分离双侧颈总动脉,用1号线将其行结扎。

缝合切口后再行局部消毒,小心放回笼内(每笼一只待其完全清醒)。

局部伤口缝合前,可用庆大霉素3~5滴滴入局部伤口内防止感染。

术后正常饲养12周,自第13周起可开始分组给药治疗。

行为学检验可采用穿梭箱法和Morris水迷宫分析系统,进行定位航行实验和空间探索试验。

(2)模型特点术后的1~3周,陆续有动物死亡发生,其死亡率在20%~40%,因此需根据实验情况增加手术动物的总数。

(3)比较医学该模型由于阻断了双侧颈总动脉,造成了脑部急性供血不足,随后可通过基底动脉和基底动脉环血流调节以及逐渐形成的侧支循环所改善,但海马区达不到正常脑供血水平,形成慢性大脑缺血,模拟了人类由于血管粥样硬化使头颈动脉逐渐狭窄所致的慢性大脑供血不。

水迷宫实验显示,动物的定位航行和空间探索能力均降低,痴呆率达80%左右。

该模型可用于研究痴呆脑组织的形态及病理生理变化机制,也可用于判定某些治疗手段和药物的效果。

二、双侧颈总动脉、椎动脉阻断模型(Model of occlusion of bilaterial carotis communis artery with vertebral artery)(1)复制方法雄性大鼠,体重为300~350g。

以水合氯醛(按350~400mg/kg体重的剂量)经腹腔注射麻醉后俯卧位固定于立体定位仪上,剃除颈部毛发,手术区域皮肤消毒。

行背侧颈部正中切口,逐层钝性分离暴露双侧第1颈椎横突小孔,用直径0.5mm的电凝针烧灼双侧翼小孔内的椎动脉,造成闭塞。

全脑缺血再灌注动物模型建立方法

全脑缺血再灌注动物模型建立方法

全脑缺血再灌注动物模型建立方法引言全脑缺血再灌注是一种临床上常见的危重症,常见于心脏骤停、溺水等情况下,出现全脑缺血缺氧,随后通过复苏措施进行再灌注。

建立全脑缺血再灌注动物模型对于深入研究相关疾病的发病机制,评估治疗方法具有重要意义。

本文将介绍一种常用的全脑缺血再灌注动物模型的建立方法。

动物模型选择建立全脑缺血再灌注模型时,主要选择小鼠或大鼠作为实验动物。

一般情况下,小鼠更为常用,因其易于操作、成本较低,且其脑血管结构与人类相似,因此具有较高的可比性。

对于大鼠,其相对较大的体积能够更好地模拟人体情况,但操作相对较为复杂。

手术操作准备在进行全脑缺血再灌注动物模型的建立前,需要进行手术操作的准备工作。

首先需要进行动物的麻醉和固定,确保手术操作的安全性。

其次需要准备全脑缺血再灌注模型所需的仪器和设备,包括导管、监测仪器等。

在手术操作前,还需要对实验动物进行术前处理,包括禁食、定时给予抗生素等。

手术操作步骤1. 麻醉和固定:将实验动物置于麻醉箱内,使用合适的麻醉药物使其达到麻醉状态。

随后将其固定在手术台上,以确保手术操作的稳定性。

2. 手术部位暴露:在麻醉状态下,对实验动物进行皮肤消毒,随后进行手术部位的切开,暴露出颅骨表面。

3. 血管结扎:通过显微外科手术操作,对实验动物的颅骨表面的动脉和静脉进行结扎,以模拟全脑缺血的状态。

4. 缺血时间控制:根据实验设计的需要,控制全脑缺血的时间,一般为15至20分钟。

5. 再灌注:在全脑缺血一定时间后,通过解开血管结扎,使血液重新灌注至大脑。

6. 术后处理:对实验动物进行术后处理,包括给予液体、保暖、饲养等。

检测指标和评价方法建立全脑缺血再灌注模型后,需要对实验动物进行一系列的检测和评价,以评估其神经功能恢复情况。

常用的评价指标包括神经行为学评分、脑组织病理学检测、神经元凋亡检测、脑组织炎症因子检测等。

通过对这些指标的检测和评价,可以全面地评估全脑缺血再灌注模型的建立效果,为后续的实验研究提供可靠的依据。

全脑缺血再灌注动物模型建立方法

全脑缺血再灌注动物模型建立方法

全脑缺血再灌注动物模型建立方法一、引言脑缺血再灌注模型是研究脑缺血再灌注损伤的重要手段,对于深入理解缺血性脑损伤的病理生理机制,探索新的治疗方法具有重要意义。

本文将详细介绍全脑缺血再灌注动物模型的建立方法。

二、准备工作1. 实验动物:选择健康成年小鼠、大鼠或兔,确保其无疾病、无遗传性疾病。

2. 设备:准备好手术器械、显微镜、止血钳、无创血压计、冰冻浴盆、恒温湿毛巾等。

3. 药物:准备适量麻醉剂、抗生素、输液用品等。

三、全脑缺血模型的建立1. 麻醉:使用麻醉剂对实验动物进行全身麻醉。

2. 暴露手术部位:对实验动物进行全身消毒,打开腹腔,暴露手术部位。

3. 制作全脑缺血:使用特制的夹子将实验动物的脑血管夹闭,制造全脑缺血。

具体夹闭部位和时间需要根据实验需求进行调整。

四、再灌注过程的控制1. 解除血管夹闭:缺血时间结束后,缓慢解除血管夹闭,恢复血流。

2. 观察再灌注情况:在再灌注过程中,密切观察实验动物的神态、行为变化,以及脑部颜色、肿胀等情况。

五、模型评估与结果记录1. 评估再灌注效果:再灌注过程结束后,评估实验动物的全脑缺血再灌注效果,记录相关数据。

2. 观察病理变化:对实验动物的大脑组织进行病理学检查,观察缺血再灌注损伤后的病理变化。

3. 结果记录与分析:将观察到的结果进行记录,并对结果进行分析,为后续研究提供基础数据。

六、注意事项1. 麻醉剂的使用要适量,避免对实验动物造成过大的伤害。

2. 手术过程中要保持无菌操作,避免感染。

3. 制作缺血模型时,要确保夹闭的血管部位准确,时间适当,避免影响实验结果。

4. 再灌注过程要缓慢,确保血流的恢复不会对实验动物造成过大的刺激。

5. 病理学检查要取样准确,切片处理要规范,确保检查结果的准确性。

七、总结本文详细介绍了全脑缺血再灌注动物模型的建立方法,包括准备工作、缺血模型的建立、再灌注过程的控制和结果记录等。

该模型可用于研究脑缺血再灌注损伤的病理生理机制和探索新的治疗方法。

大鼠MCAO模型的制作

大鼠MCAO模型的制作
操作者手术熟练 度要求较高
第14页/共17页
注意保温 动作轻柔熟练 麻醉药用量宁少勿多 控制进线深度 线拴法有一定的死亡率,淘汰率也比较高,
做好预试 模型不成功的大鼠要记录和总结
第15页/共17页
谢谢!
第16页/共17页
感谢您的观看。
第17页/共17页
首先分离颈总 动脉并穿单线 备用
沿颈总动脉向 远心端依次分 离出颈外动脉、 甲状腺上动脉、 第7页/共17页 枕下动脉以及
实验方法(4)
双线结扎颈外动脉和枕下 动脉后剪断血管,在颈外 动脉残端上用单线打一个 松结
动脉夹夹闭颈总动脉近心 端以及颈内动脉,颈外动 脉残端上45度剪一小口, 向颈内方向插入栓线,扎 紧固定线,松开动脉夹
第3页/共17页
实验前准备工作(2)
栓线选择:准备直径0.205mm、 0.235mm、0.26mm三种粗细的鱼 线,实验中根据大鼠体重以及大 鼠个体差异调整
栓线处理:取一段5cm长的鱼线, 在一端以及2cm、2.2cm处分别用 记号笔作一个标记,垂直在熔化 的石蜡中迅速浸入并提起,立即 凝固的一薄层石蜡可牢固地粘附 在鱼线一端的表面
第4页/共17页
实验方法(1)
动物麻醉后 仰卧位固定 在鼠板上, 剪毛后用 75%乙醇简 单消毒,颈 正中线开口第5页/共17页
实验方法(2)
沿正中钝性分离两侧鼓泡腺体,暴露颈前肌群 沿胸锁乳突肌内缘分离肌肉和筋膜,暴露颈总动
脉及分支 这两步均用弯头止血钳进行钝性分离
第6页/共17页
实验方法(3)
切片置1%TTC染液中,60℃烘箱中染色10min 用image pro-plus 6.0 软件计算梗塞面积
第13页/共17页
讨论

mcao造模流程

mcao造模流程

mcao造模流程脑卒中造模技术(Middle cerebral artery occlusion,MCAO)是一种常用的脑卒中模型制备方法,通过阻塞大脑中动脉的某一分支(通常选用大脑中动脉主干的一支——Middle cerebral artery),模拟缺血性脑卒中的发病机制,进而研究脑卒中的病理生理机制、药物治疗效果等。

下面将详细介绍MCAO造模流程。

一、选择动物模型1.1 实验动物选择常见的实验动物包括小鼠、大鼠和猪等,其中小鼠是最常用的实验动物,其体型小、价格低廉、易于饲养管理,同时其脑血管结构较为接近人类,是进行脑卒中研究的理想动物模型。

1.2 动物品系选择在进行动物实验前,需要选择适合的动物品系。

一般选择体重在20-30g之间的健康雄性小鼠,如C57BL/6、BALB/c等品系。

在选择动物时,需注意保证动物的健康状况,确保实验结果的可靠性。

二、MCAO造模手术准备2.1 手术器械准备准备各种手术器械,如手术刀、镊子、显微镊子、细胞吸管等。

保证手术操作的顺利进行。

2.2 麻醉和固定动物将实验动物置于麻醉机中,给予全身麻醉,使其处于深度麻醉状态。

然后将动物固定在手术台上,以确保手术操作的稳定性。

2.3 消毒处理在手术前,需对手术器械、手术区域进行消毒处理,以减少术后感染的风险。

一般使用碘酒或酒精等对皮肤和手术器械进行消毒。

2.4 体温调节在手术过程中,需要注意保持动物的体温稳定,可在手术台下方放置保温器,以保持动物的体温在恒定水平。

三、MCAO造模手术操作3.1 手术部位定位根据动物的头骨特征,在颅骨的边缘位置找到上颞嵴和眼轴之间的凹陷处,这个位置即为手术部位。

3.2 手术切口和暴露动脉在手术部位进行皮肤切口,暴露颅骨表面后,使用高速齿钻穿透颅骨,直至到达脑膜下,用细钳和显微镊子逐层剥离组织,直至暴露中动脉。

3.3 中动脉闭塞使用单根尼龙线或血栓栓钳,在中动脉主干或其分支处进行闭塞,通过牵拉线或闭钳将中动脉关闭,模拟缺血性脑卒中的病变过程。

全脑缺血动物模型制作步骤及方法

全脑缺血动物模型制作步骤及方法

全脑缺血动物模型制作步骤及方法1两动脉阻断法(occlusion of bilaterial carotis communis artery) (1)复制方法 SD大鼠,雌雄不拘,体重为250~300g。

经腹腔注射水合氯醛(350~400mg/kg体重的剂量)或戊丨巴丨比丨妥丨钠(50~60mg/kg体重的剂量)麻醉后,仰卧位固定,剃除颈部毛发,手术区域皮肤常规消毒。

颈前正中切口,分离双侧颈总动脉(carotis communis artery, OCA),夹闭双侧CCA,同时合并低血压以减少脑血流量,造成急性脑缺血。

由于啮齿动物(沙土鼠除外)脑血液循环有较人类丰富的侧支循环,仅结扎双侧CCA不足以明显降低脑血流量(CBF),因此结合降压药三丨甲噻吩、酚妥拉明或静脉放血等方法使动脉血压降低至50mmHg(6.7kPa),使CBF降低至正常的5%~15%。

放血方法:由颈静脉插管至右心房,供放血并连续记录EEG。

采用抽血的方法放血,失血达80mmHg(10.7kPa)时结扎双侧颈动脉,再继续抽血,使血压降至6.7kPa。

(2)模型特点此方法的优点是操作简便,用一次性手术即可完成,阻断可逆,可人为控制动物呼吸。

采用这种方法复制的模型,能进行缺血再灌流损伤的研究,模拟了临床上休克、心功能不全、脑血管严重狭窄或阻塞合并血液低灌流引起的脑循环障碍,造成不同程度的脑组织缺血损伤。

因而,对于探讨人类缺血性脑损伤的发病规律,评价抗脑缺血药物的疗效等有价值。

缺点是:①模型不能在清醒动物上复制,无法研究血管狭窄后行为学的变化。

②常因存在侧支循环而造成缺血不,部位不宜确定。

③脑缺血时限长,有时导致脑缺血后抽搐、癫癎等并发症的发生。

且由于低血压状态,可干扰其他器官、组织的供血和实验结果。

此方法除可用于大鼠外,也可用于兔、猫和猴的性脑缺血。

2四动脉阻断法(occlusion of four blood vessels)(1)复制方法 SD大鼠,雌雄不拘,体重为250~300g。

脑缺血模型的建立及预算

脑缺血模型的建立及预算

脑缺血模型实验的建立1.小鼠急性脑缺血模型的建立[1,2]1.1方法:昆明小鼠,60只,雌雄各半,分成6组每组10只。

分别为模型组,假手术组,阳性对照组,受试药高、中、低剂量组。

阳性对照组每天腹腔注射舒血宁注射液5.2ml/kg,假手术组及模型组腹腔注射等剂量的生理盐水,受试药高、中、低剂量组分别腹腔注射等量的相应药物,连续给药5d。

于末次给药30min后.各组小鼠用乙醚麻醉,暴露双侧颈总动脉及迷走神经,并用细手术线结扎该动脉及神经.缝合皮肤.假手术组除不结扎血管神经外均同于受试药组。

小鼠结扎10min后立即断头取脑(保留大脑及间脑),称重。

用4℃生理盐水冲洗.并用4℃生理盐水制成10%的脑组织匀浆(约取0.1或0.3g)。

此匀浆液4℃3000r/min离心10min,取其上清液。

1.2观察指标:(脑指数=脑湿重/体重×100%)、小鼠脑组织匀浆中LDH、SOD、MDA活性和Ca2=-ATPase、Na=-K=- ATPase的含量。

2.线栓法建立MCAO脑缺血模型的建立[3,4]2.1方法:SD大鼠120只,雄性,分成6组每组20只。

分别为模型组,假手术组,阳性对照组,受试药高、中、低剂量组。

阳性药物组及受试药物组每天腹腔注射(ip)给药1次.连续给药3d,术后持续给药3d后处死。

假手术组及模型组术前3d及术后3d给予腹腔注射生理盐水。

MCAO 脑缺血模型制备:各组大鼠用10%水合氯醛(0.4-0.5ml/100g)腹腔注射麻醉,大鼠固定于手术台上,颈部正中作2cm长切口,逐层暴露左侧颈总动脉(CCA)、颈内动脉(ICA)、颈外动脉(ECA)。

在ECA深面穿二条细线,近心端打一活结,并推向ECA根部,远心端结扎ECA及其分支,分离ICA主干至翼腭动脉(PPA),并在其根部小心结扎PPA,同时夹闭CCA,在ECA残端剪0.2mm小口,然后将用浓度为2.4×106/L肝素钠溶液浸泡好的栓线(4-0尼龙线)插入,轻推尼龙线尾端经CCA分叉部沿ICA入颅,至大脑前动脉(ACA)(约19~20mm),再往回拉约2mm 即至大脑中动脉口,以阻断大脑中动脉(MCA)及颅内反流来源的血流。

脑缺血模型的制作

脑缺血模型的制作

脑缺血模型的制作:1.动物模型制作原理制作脑缺血动物模型的方法很多,但常用方法主要有结扎法和栓塞法两种,结扎法是运用外科手段结扎脑的供血动脉,中止脑的血氧供应,它可以进一步分为颅内结扎和颅外结扎。

颅外结扎主要是用于制作全脑缺血模型,可进一步分为①4血管结扎,即结扎颈总动脉/颈内动脉和椎动脉;②2血管结扎,即结扎两侧颈总/颈内动脉,同时抽取动物一定量的血液,使血压降低到50mmHg以下,达到造成全脑缺血的目的。

这种方法因为需要监视和控制血压,实验条件要求严格,且因椎动脉未予结扎,往往造成的脑缺血是不完全的。

另一种两血管结扎法是用沙土鼠(Gerbil)进行,利用沙土鼠脑底Willis动脉环发育不全后交通动脉缺如的特点,结扎两侧的颈总或颈内动脉造成前脑缺血。

2. 实验动物实验动物的选择对脑缺血模型是非常重要的,理论上兔、猫、狗和灵长类都可被用来制作脑缺血模型,但更多的人倾向于选择使用鼠作实验。

这主要是基于如下认识:因为鼠是小动物,价格便宜,躯体小,消耗药品试剂较少;鼠的脑血管解剖和生理与高级动物无明显差异;一些在体的实验操作更容易进行,甚至在伦理学上更容易接受等等。

3. 仪器和设备制作脑缺血动物模型的仪器设备分为二类:一类是为动物手术服务,包括一套手术器械,手术显微镜,颅钻,脑立体定位仪,温度控制装置(控温仪、红外线灯和加热垫),呼吸机;另一类是用于监测和分析的仪器,包括脑电记录装置,血压记录装置,多谱勒血流记录仪,血气血糖分析仪。

4. 四血管结扎脑缺血模型的制作这是一个广泛应用的脑缺血模型。

最常用的为Pulsinelli的改良方法。

该模型选用Wistar大鼠,可以在清醒和自由运动状态下制作严重的脑缺血和恒定的病理学改变。

该模型分二个阶段制作,第一阶段:将动物麻醉,按置在脑立体定位仪上,调节耳杆和门齿高度使鼠头前倾约30度,同时用橡皮栓住鼠尾给以轻度的牵拉力,使颈椎伸直,翼孔呈水平位,便于观察。

枕骨下第一颈椎水平正中切口,仔细分离两侧第一颈椎横突,暴露第一颈椎横突上的翼孔,翼孔下有两则椎动脉通过,用小的单极或双极电凝器插入翼孔烧灼闭塞双侧椎动脉。

脑静脉窦栓塞动物模型﹙猪﹚的建立

脑静脉窦栓塞动物模型﹙猪﹚的建立
PIG8
PIG9
栓塞部位 栓塞材料
DSA表现
MRI表现
Rolandic 静脉 后1~2 cm
直窦
直窦和窦 汇
2个铂金弹簧+ 明胶海绵
2个铂金弹簧圈 +明胶海绵
2个铂金弹簧圈 +明胶海绵
两弹簧圈间及其后方SSS 和部分横窦不显影
直窦不显影
直窦不显影,窦汇部分显 示
T2WI右顶叶脑 回肿胀信号增 高,硬膜下出 血
材料与方法
实验动物
山东农科院 配育的健康 幼猪9头,23月龄,体重 30±2Kg , 雌雄不限
材料与方法
实验器材
• 器械:动脉穿刺针、 动脉防漏套鞘、短导 丝、4F多功能导管、 4 F导管鞘、0.038英 寸导丝、超滑导丝
• COOK铂金弹簧圈,明 胶海绵,自体血凝块
材料与方法
实验药物
•盐酸氯胺酮注射液 •3%戊巴比妥钠溶液 •硫酸阿托品注射液 •76%泛影葡胺 •2%利多卡因注射液
性及临床应用价值
讨论1.
动物的选择
鼠 猫 兔 猪
讨论2
猪入路血管及猪颅脑应用解剖
• 动脉入路 • 静脉入路 • 脑静脉窦
讨论2.
应用解剖
• 一侧隐动脉→一侧 股动脉→一侧髂外 动脉→腹主动脉→ 胸主动脉→升主动 脉→主动脉弓→臂 头动脉→一侧颈总 动脉→颈内动脉。
讨论2.
应用解剖
• 一侧股深静脉→一 侧髂外静脉→一侧 髂总静脉→后腔静 脉→右心房→前腔 静脉→一侧颈内静 脉
动脉插管
2
1:在隐动脉搏动处切开皮肤,逐层分离皮下组织、筋膜,暴露隐动脉鞘 膜。
2:分离出隐动脉,用血管钳轻轻挑起,结扎隐动脉远端。
材料与方法—实验步骤

脑缺血动物模型具体步骤及详细方法

脑缺血动物模型具体步骤及详细方法

脑缺血动物模型具体步骤及详细方法原型物种人来源脑缺血再灌注(MCAO线栓法)模式动物品系Balb/c 小鼠,SPF级,雄性,健康,体重25g~30g实验分组随机分组:对照组,模型组,阳性药物组和药物组,每组15只实验周期24 hours, 3 days or 7 days建模方法1. 3%戊巴比妥钠麻醉小鼠,颈部备皮,消毒,插入肛温探头,保持体温在37±0.5℃。

2. 颈部正中切口,暴露右侧颈总动脉,颈内动脉和颈外动脉。

使用7-0丝线在距离颈总动脉分叉2mm处结扎颈外动脉远心端,在颈外动脉穿入另一根7-0丝线,在靠近颈总动脉分叉处打一个活结。

3. 使用动脉夹夹闭颈总动脉。

在距离颈总动脉分叉处1.5mm处的颈外动脉上剪一个小口,将一根头端处理过的0.18mm直径的尼龙线从小口中插入,进入颈内动脉,并向内插入大脑中动脉,尼龙线的插入深度距离颈总动脉分叉处约9±1mm。

4. 缺血后60min拔掉线栓,用7-0丝线结扎外动脉近心端,用5-0丝线缝合颈部伤口,活力碘消毒伤口,将小鼠放在加热垫上,待清醒后放入恒温抚养箱饲养。

5. 术后24h,对小鼠进行神经功能评分,然后麻醉小鼠,取大脑进行TTC染色和病理染色。

应用疾病模型1.神经功能缺失体征评分参考Longa及Bederson的5分制法在动物麻醉清醒后24h进行评分,分值越高,说明动物行为障碍越严重。

0分:无神经损伤症状1分:不能完全伸展对侧前爪2分:向对侧转圈3分:向对侧倾倒4分:不能自发行走,意识丧失2.TTC染色麻醉小鼠后,取小鼠脑组织,放入-20℃冰箱冷冻30min。

用PBS配置1% TTC(W/V),37℃水浴至TTC溶解,将冻好的脑组织切片,置于10ml TTC 溶液中,37℃恒温孵育10min。

不时翻动脑片,使组织均匀染色。

正常脑组织染色后呈鲜红色,而梗死区呈苍白色。

取脑后用4%多聚甲醛溶液固定,蔗糖溶液脱水后,经OCT包埋做冰冻切片,切片10um,做尼氏染色,可做梗死面积的评价。

大鼠MCAO模型制作学习

大鼠MCAO模型制作学习

大鼠MCAO模型制作学习大鼠是常用的实验动物之一,在中风研究中,大鼠的MCAO(脑缺血再灌注)模型被广泛应用。

本文旨在介绍制作MCAO模型的步骤和必要的操作要点,以帮助读者更好地理解和应用该模型进行相关研究。

本文为第二版,相较于第一版,进行了更新和补充,以提供更详尽和准确的信息。

1.实验动物的选取在制作MCAO模型前,需要选择合适的实验动物。

一般情况下,成年雄性大鼠是最常用的模型动物。

选择同一品系和年龄相仿的大鼠,以减小实验结果的差异性。

2.麻醉和固定在操作前对大鼠进行全身麻醉,常用的麻醉药物有:45 mg/kg的氯丙嗪、35 mg/kg的阿托品和5 mg/kg的氯胺酮。

氯胺酮在操作过程中可以作为镇痛药物使用。

麻醉后,将大鼠固定在手术台上。

可以使用特制的外耳道委内瑞拉套和鼻鼻夹来固定大鼠的头部,以保证操作的准确性。

3.手术前准备首先,在头部的横纹上进行刮毛和消毒。

然后,注射青霉素(40,000 U)和伯氨喹(0.02 mg)以预防感染。

同时,使用外科剪刀剪开皮肤,将双眼收敛于外侧,暴露侧枕中动脉和颈内动脉。

4.暴露颈外动脉用外科剪刀剪开皮肤和筋膜,小心地将侧脖肌肉向后收拢,可以使用吸引器来辅助。

将剪开的筋膜用湿纱布或者胶布临时覆盖住。

5.分离颈外动脉和侧脑动脉用显微镊子小心地拉开组织,找到颈外动脉和侧脑动脉,将其两者之间的分支切断。

注意不要损伤到其他周围的组织。

6.模拟大脑缺血使用小血管夹或者线缚住颈外动脉,是的血流中断。

夹或者线的拇指静脉下方位置比较理想,但是要注意不要损伤到其他组织。

7.设定缺血时间一般情况下,将血流中断一小时可以模拟大脑缺血,如果需要模拟更严重的缺血,可以延长血流中断的时间。

8.再灌注当需要终止大脑缺血时,可以通过解开夹子或者拆除线来恢复大脑的血流。

再灌注后,动物会逐渐恢复意识并呈现异常的行为和生理反应,比如抽搐、四肢不协调等。

9.手术封口待实验结束后,用缝合线或者胶布将切口封闭。

多发性脑梗塞性大鼠模型制作及其意义(一)

多发性脑梗塞性大鼠模型制作及其意义(一)

多发性脑梗塞性大鼠模型制作及其意义(一)作者:车光升,周郦楠,张晖,张维,张晔我国是脑血管疾病发病率较高的国家,近年来,随着人民物质生活水平的不断提高,老龄化人口的增加,发病率呈迅速上升趋势。

脑血管疾病以高发病、高致残、高死亡而严重影响人类健康,而多发性脑梗塞(MultipleCerebralInfarction,MCI) 发病率占有相当大的比重。

迄今为止,MCI 的发病机制不完全清楚,尚无十分有效的治疗手段,因此,研究其发病机制、防治措施具有重要意义。

本实验建立的动物模型可为临床治疗该疾病提供实验室动物实验模型条件,为临床研究新药物提供实验室理论依据〔 1〕。

1材料与方法1 1 材料雄性 Wistar 大鼠 (中国医科大学动物室 );LUZEX-F显微图像分析仪 (日本松下公司 );日立 H-600 透射电镜;恒冷箱切片机。

雄性 Wistar大鼠 60 只,体重 260~300g,随机分成 3 组。

对照组 20 只(10 只用于电镜染色, 10 只用于电镜观察 );MCI 模型光镜组 20 只;MCI 模型电镜组20只。

1 2 方法1 2 1MCI 模型制备用 1%戊巴比妥钠 (40ml/kg)腹腔注射麻醉后,作颈部正中切口,暴露左侧的颈总动脉,分别先后寻找颈内动脉与颈外动脉分叉处,做翼腭动脉结扎,并对颈外动脉充分剥离。

在颈总动脉及颈内动脉远心端,分别用无损伤的显微外科血管动脉夹做可逆性夹闭。

同时剪开颈外动脉,插入套管针,拔出针芯,将其尖端插到距颈总动脉分叉约 2mm 处,放开颈内动脉的血管夹,注入肝素盐水0 2ml(含肝素 10U),2 5%同种属大鼠全血悬浊液 (将同种导体大鼠全血晾干研磨成细粉 200μm筛孔过筛备用,放置冰箱,应用时用 09%生理盐水配置 )0 5ml。

注射完毕,立即将颈外动脉结扎,与此同时,放开颈总动脉的血管夹、观察、逐层缝合。

1 2 2 光镜组动物模型取材对实验动物用 1%戊巴比妥钠 (40ml/kg)腹腔麻醉后开胸,经左心室70 滴/min 滴入1%肝素钠的生理盐水500ml,同时剪开右心耳。

脑缺血及脑缺血再灌注损伤动物模型制备方法及评价

脑缺血及脑缺血再灌注损伤动物模型制备方法及评价
第1 卷第 3 期
21 年 6 01 月
神 经药理学报
A caN e r p r a olg c t u o ham c o i a
V_I1N O 3 0. . Jn. u e 201 1
脑 缺 血 及 脑பைடு நூலகம்缺 血 再 灌 注 损 伤 动物 模 型 制 备 方 法 及 评 价
M eho nd Ev l to f n m a o l fCe e a s he i nd t dsa a ua i n o i lM deso r br lI c m a a A
Ce e r l s h mi p ru inI j r r b a e e aRe e f so n u y I
W A NG u. Sh ZHAN G Li
Deat n f hr c lg , b i r ies y Z agik u 0 5 0 , hn pr met amaoo y Hee Not Unvri ,h nj o ,70 0 C ia oP h t a
【 SR C AB T A T】 C rbo a c l i aei acii l o ee rv sua ds s s l c l c mmo ies n rq e t —c u— r e n ay ndsaea df u nl O c r e y
d r so u e fmod l , n ha a t rsi s o h o a e e r la d l c lc r b a s h mi n e e e s a d c r ce itc ft e gl b lc r b a n o a e e r lic e a a d c r —
Th mp o e mo i to t emo e f ee r l s h mi e e f so s r d c di ie ei r v dHi r meh d(h d l r b a c e arp ru inwa o u e m c o c i p n b mp r rl b tu t gb ltr l o yt e o ai o sr ci i ea mmo ao i re is a ds m ek yse sweeep cal y n a c nc r t atre ) n o e tp r s e il d y

脑血管病动物模型的具体方法及步骤

脑血管病动物模型的具体方法及步骤

脑血管病动物模型的具体方法及步骤1自发性脑梗死模型高血压动物可形成自发性脑梗死。

常用的有原发性高血压和继发性高血压两大类。

前者以日本种的自发性高血压大鼠(SHR)及其易卒中亚型(SHRsp)为常用,后者为各种肾性高血压动物。

这种脑梗死与人类的脑梗死发病情况为接近,是目前较为理想的动物模型之一,国内主要的实验动物研究机构都有供应。

2沙鼠大脑中动脉缺血模型【操作步骤】成年沙鼠,10%水合氯醛(4ml/kg)腹腔麻醉,沿腹部中线于颈部切开。

剥离出一侧颈动脉,用银制钳夹夹闭。

考虑实验需要可实行长期夹闭或可再灌注。

【结果分析】由于沙鼠后交通动脉缺失,Willis环前后不连续,故经颈部夹闭一侧总动脉可以方便地造成同侧半球缺血,可依据沙鼠表现的体征,结合眼底观察镜观察眼底缺血情况判别。

3急性大鼠大脑中动脉阻塞全脑缺血模型【操作步骤】成年SD或Wistar大鼠,10%水合氯醛(4ml/kg 体重)麻醉。

右侧卧位,在左眼外缘到左外耳道连线的中点,垂直于连线切开皮肤约2cm,沿颧弓和下颌骨,用文氏钳将手术面撑大,暴露鳞状骨的大部分,用牙科钻在颧骨前联合前内2cm处钻孔开颅。

在手术显微镜下切开硬脑膜,暴露出大脑中动脉,分离出中动脉周围的软脑膜和蛛网膜,使中动脉游离。

用双电极(电压12V)电灼损毁Willis环起始部至嗅沟段的大脑中动脉,使之阻塞。

为防止电极的电流对脑组织造成电损伤,在操作过程中不断向中动脉周围滴加生理盐水,并尽量缩短操作时间。

创面覆盖一小块明胶后,缝合肌肉和皮肤。

【结果分析】大脑中动脉从Willis环发出后向外跨过嗅束蜿蜒走行于大脑的外侧面,供应大部分的大脑半球,大脑中动脉在Willis环起始到嗅沟区发出许多的分支,供应豆壳复合体,所以电灼此段大脑中动脉的主干血流,复制中风模型的成功率较高。

用本实验手术方法复制的大鼠中风模型的成功率较高,死亡率低,较为理想,有面积不等的梗死区出现,行为障碍约占90%。

局灶性脑缺血动物模型制作步骤及方法

局灶性脑缺血动物模型制作步骤及方法

局灶性脑缺血动物模型制作步骤及方法大脑中动脉(Middle cerebral artery, MCA)是人类脑卒中的多发部位,大脑中动脉闭塞(Middle cerebral artery occlusion, MCAO)模型被普遍认为是局灶性脑缺血的标准动物模型,主要方法有线栓法、电凝法、光化学法和血栓栓塞法。

1线栓法(thread occlusion of the middle cerebral artery)(1)复制方法雄性SD大鼠,体重为250~300g。

经腹腔注射水合氯醛(350~400mg/kg体重的剂量)或戊丨巴丨比丨妥丨钠(50~60mg/kg体重的剂量)麻醉,仰卧位固定,剃除颈部毛发,手术区域皮肤常规消毒。

切开右侧颈部皮肤,钝性分离胸锁乳突肌和胸骨舌骨肌,显露右侧OCA及迷走神经。

结扎CCA、颈外动脉(exterial cerebral artery, ECA)及其分支动脉。

分离右侧颈内动脉(interial cerebral artery, ICA),至鼓泡处可见其颅外分支翼腭动脉,于根部结扎该分支。

在ICA 近端备线、远端放置动脉夹,在ECA结扎点(距颈内、颈外动脉分叉5mm处)剪一小口,将一直径为0.22~0.249mm(4-0号)的尼龙线经ECA上剪口插入。

插入前加热处理使插入端变钝(也可在尼龙线头端用L-多聚赖氨酸涂抹后置肝素中浸泡,使成功率增高,梗塞面积恒定),并做好进入线长度标记。

扎紧备线,松开动脉夹,将尼龙线经ECA、ICA分叉处送入ICA,向前进入17~19mm时会有阻挡感,说明栓线已穿过MCA,到达大脑前动脉的起始部,堵塞MCA开口,造成脑组织局部缺血。

1~3h后可缓慢退出尼龙线实施再灌注。

(2)模型特点线栓法的优点为:无须开颅,动物损伤小,MCA闭塞效果较为理想,目前该模型被认为是惟一能观察到再灌流的局灶性脑缺血模型,近年来较为常用。

注意点:线选择极为重要,较细时不容易穿到MCA,且缺血不明显;较粗时缺血重,容易造成实验动物的死亡。

小鼠MCAO模型实验造模方法

小鼠MCAO模型实验造模方法

小鼠MCAO模型实验造模方法MCAO模型MCAO即大脑中动脉闭塞,该模型阻断颈外动脉及其分支,且阻断翼腭动脉,以切断颅外来源的侧副循环血流。

从颈外动脉插入栓线,经颈内动脉到大脑前动脉,机械性阻断大脑中动脉发出处的血供来建立大脑中动脉缺血模型。

No.1小鼠麻醉剂量戊巴比妥现在买不到,氯胺酮可能引起血压升高,血管扩张,所以推荐使用水合氯醛麻醉或者异氟烷气体麻醉(需要仪器)。

No.2剔除颈部的背毛剃毛法:先用刷子蘸温肥皂水将需剃毛部位的被毛充分浸润透,然后用剃毛刀顺被毛方向进行剃毛。

若采用电动剃刀,则逆被毛方向剃毛。

脱毛剂法:此种方法常用于作大动物无菌手术,局部皮肤刺激性试验,观察动物局部血液循环或其他各种病理变化。

常用的脱毛化学药品有:硫化钠、硫化碱、硫化钙、硫化钡、三硫化二砷等。

No.3手术仰卧位固定,可在小鼠背后垫试管使头部后仰,60W白炙灯照射或者放置于保温垫上,使体温保持在37 ℃,温度对梗死大小影响非常显著(温度越低,梗死越小)。

颈正中线切口,分离肌肉和筋膜,钝性分离后用棉签搓粗血管,见到颈动脉鞘了则要注意细致分离迷走神经,若损伤则可能影响其呼吸而死亡。

分离左侧颈总动脉(CCA)、颈外动脉(ECA)和颈内动脉(ICA),在CCA远心端和近心端及ECA处挂线备用。

用微动脉夹暂时夹闭ICA,然后近心端结扎CCA、ECA。

然后在距CCA分叉部4mm处剪一小口(剪一个斜行的切口,眼科剪与血管约成45度),插入拴线,这时用绕在CCA远心端的细线轻轻系牢拴线。

(不可不扎,否则出血较多。

但不可过紧,否则插线困难),松开ICA上的动脉夹,用眼科镊轻推拴线一点一点推进去,直到遇到轻微阻力停止插线,紧紧系牢CCA远心端的细线(栓线不能在血管里反复进退,否则很容易造成蛛网膜下腔出血,误解为模型成功,因为这时的神经功能改变也很明显,但并不是由于栓塞引起的)。

血管外的栓线不要留得过长,避免小鼠醒来后会自己拔出。

缝合伤口,单笼饲养观察(单笼饲养可避免动物间相互踩踏,提高存活率)。

腔隙脑梗造模方法

腔隙脑梗造模方法

腔隙脑梗造模方法
腔隙脑梗造模方法是一种经典的中风模型制作技术,也被称为腔隙脑梗死模型制作方法。

该方法是通过在大鼠的脑血管内注射微小的血栓颗粒,从而模拟腔隙脑梗死的病理过程。

具体的制作步骤如下:
1. 准备实验动物:选择体型适中、健康的大鼠,按照实验室动物饲养标准进行饲养,保证其状态良好。

2. 制备血栓颗粒:将新鲜的人血凝块取出,用0.9%生理盐水冲洗,然后切成微小的血栓颗粒。

3. 注射血栓颗粒:将准备好的血栓颗粒悬浮于0.9%生理盐水中,通过微量注射器将其注入大鼠颈部内动脉。

4. 观察病理过程:观察大鼠的神经系统功能变化和脑组织的病理变化,比如神经功能损伤、脑梗死面积等。

5. 数据分析:根据实验结果分析腔隙脑梗死的病理过程及相关因素,如血栓颗粒的大小、数量等。

总体来说,腔隙脑梗造模方法是一种有效的中风模型制作技术,可用于研究腔隙脑梗死的病理机制及治疗方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脑血管病动物模型制作步骤及方法
1自发性脑梗死模型
高血压动物可形成自发性脑梗死。

常用的有原发性高血压和继发性高血压两大类。

前者以日本种的自发性高血压大鼠(SHR)及其易卒中亚型(SHRsp)为常用,后者为各种肾性高血压动物。

这种脑梗死与人类的脑梗死发病情况为接近,是目前较为理想的动物模型之一,国内主要的实验动物研究机构都有供应。

2沙鼠大脑中动脉缺血模型
【操作步骤】成年沙鼠,10%水合氯醛(4ml/kg)腹腔麻醉,沿腹部中线于颈部切开。

剥离出一侧颈动脉,用银制钳夹夹闭。

考虑实验需要可实行长期夹闭或可再灌注。

【结果分析】由于沙鼠后交通动脉缺失,Willis环前后不连续,故经颈部夹闭一侧总动脉可以方便地造成同侧半球缺血,可依据沙鼠表现的体征,结合眼底观察镜观察眼底缺血情况判别。

3急性大鼠大脑中动脉阻塞全脑缺血模型
【操作步骤】成年SD或Wistar大鼠,10%水合氯醛(4ml/kg体重)麻醉。

右侧卧位,在左眼外缘到左外耳道连线的中点,垂直于连线切开皮肤约2cm,沿颧弓和
下颌骨,用文氏钳将手术面撑大,暴露鳞状骨的大部分,用牙科钻在颧骨前联合前内2cm处钻孔开颅。

在手术显微镜下切开硬脑膜,暴露出大脑中动脉,分离出中动脉周围的软脑膜和蛛网膜,使中动脉游离。

用双电极(电压12V)电灼损毁Willis环起始部至嗅沟段的大脑中动脉,使之阻塞。

为防止电极的电流对脑组织造成电损伤,在操作过程中不断向中动脉周围滴加生理盐水,并尽量缩短操作时间。

创面覆盖一小块明胶后,缝合肌肉和皮肤。

【结果分析】大脑中动脉从Willis环发出后向外跨过嗅束蜿蜒走行于大脑的外侧面,供应大部分的大脑半球,大脑中动脉在Willis环起始到嗅沟区发出许多的分支,供应豆壳复合体,所以电灼此段大脑中动脉的主干血流,复制中风模型的成功率较高。

用本实验手术方法复制的大鼠中风模型的成功率较高,死亡率低,较为理想,有面积不等的梗死区出现,行为障碍约占90%。

由于手术部切断颧弓,术后基本不影响动物的采食行为,并可以进行长期的观察,有利于建立慢性中风动物模型。

4肾性高血压引起的SD大鼠脑血管病变模型
【操作步骤】成年SD大鼠,10%水合氯醛(4ml/kg)腹腔麻醉。

无菌条件下,在大鼠下腹腔沿腹中线偏左做2cm切口,沿腹壁向下摸索,暴露出双侧肾脏。

分别用不同内径的银制钳夹夹闭左右双肾或右肾动脉。

双肾结扎动脉夹的内径分别为0.2mm、0.3mm,单肾结扎内径为0.2~0.25mm。

【结果分析】在高血压形成后约3周,海马脚(CA)和脑内小动脉通透性开始增高,这种急性期是以后的慢性脑血管病的基础。

高血压持续4个月以上的肾性高血压(RHR),其脑表面大脑中动脉(MCA)与大脑前动脉(ACA)及大脑后动脉(PCA)之间的血管明显少于正常血压鼠。

在此情况下,一旦脑血管血流减少,灌注压减小,由于毛细血管和小动脉数量减少、分布稀疏、血管储备能力下降,脑缺血和脑梗死的几率就会增加。

相关文档
最新文档