圆知识点总结及归纳

合集下载

圆的性质知识点总结

圆的性质知识点总结

圆的性质知识点总结圆是数学中一个非常重要的几何图形,它具有许多独特而有趣的性质。

下面我们就来详细总结一下圆的性质知识点。

一、圆的定义在平面内,到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

二、圆的相关元素1、圆心圆心是圆的中心,用字母“O”表示。

2、半径连接圆心和圆上任意一点的线段叫做半径,用字母“r”表示。

在同一个圆中,半径都相等。

3、直径通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

直径是圆中最长的弦,且直径等于半径的 2 倍,即 d = 2r 。

4、弦连接圆上任意两点的线段叫做弦。

5、弧圆上任意两点间的部分叫做弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

6、圆心角顶点在圆心的角叫做圆心角。

7、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。

三、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

推论:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论:(1)同弧或等弧所对的圆周角相等;(2)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

5、圆内接四边形的性质圆内接四边形的对角互补。

四、圆的周长和面积1、圆的周长圆的周长 C =2πr 或 C =πd ,其中π是圆周率,约等于 314 。

圆的图形知识点总结

圆的图形知识点总结

圆的图形知识点总结一、圆的定义圆是平面上的一种特殊图形,它的定义如下:在平面上取定一个点O,再取定一个与点O不重合的点A,作以OA为半径、O为圆心的圆,得到的图形就是一个圆。

圆可以用数学符号表示为圆O(A),其中O表示圆心,A表示半径。

圆的定义也可以从点和圆心的距离来定义:平面上的一个点到另一点的距离等于圆心到该点的距离,则这个点在圆上。

二、圆的性质1. 圆的圆心和半径圆的圆心是圆的中心点,用O表示。

圆的半径是从圆心到圆上任意一点的距离,用r表示。

圆的半径长度相等。

2. 圆的直径圆的直径是通过圆心的直线段,它的长度是圆的两个边缘之间的最长距离。

圆的直径等于两个半径之和,即d=2r。

3. 圆的周长圆的周长是圆上所有点到圆心的距离之和。

圆的周长公式为C=2πr,其中π为圆周率,r为半径。

4. 圆的面积圆的面积是指圆内部的空间大小。

圆的面积公式为A=πr^2,其中π为圆周率,r为半径。

5. 圆的切线与圆相切的直线称为圆的切线。

圆的切线与半径的夹角是90度。

6. 圆的弦连接圆上两点的线段称为圆的弦。

圆的直径是圆的一个特殊弦,它同时也是圆的最长弦。

7. 圆的圆心角以圆心为顶点的角称为圆心角,圆心角的度数等于其所对的圆周弧所对的的圆心角度数。

8. 圆的内切圆和外切圆圆内切与给定的另一个圆,是指一个圆正好与另一个圆相切的情形;圆外切于给定的另一个圆,是指一个圆与另一个圆相切,并且只有一个公共切点的情形。

9. 圆的相似两个圆的半径比相等,而它们的圆心之间的距离比也相等,这两个圆就是相似的。

10. 圆的交线若两个圆的半径之和大于它们两圆心的距离,则两个圆相交,它们相交的部分称为交线。

11. 圆的点、弦、弧的关系圆的角度、弦长、圆周弧长、圆切线的长度等之间有一系列重要的关系。

三、圆的公式和定理1. 泰勒级数由圆上各个点的横纵坐标与半径的均方差为一,可得泰勒级数: x^2+y^2=r^2。

2. 勾股定理圆上的三角形,其勾股定理:若ΔABC为三角形,其中点A处于圆上,点B处于圆心,点O处于圆心,则有AC^2=BC^2+AB^2。

圆的知识点总结

圆的知识点总结

圆的相关知识点1、圆心:圆中心一点叫做圆心。

用字母“O"来表示。

半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r"来表示.画圆时,圆规两脚间的距离就是半径.直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

直径是圆中最长的线段。

2.圆心确定圆的位置,半径确定圆的大小。

圆是轴对称图形,直径所在的直线是圆的对称轴。

3.在同一个圆内,所有的半径都相等,所有的直径都相等。

在同一个圆内,有无数条半径,有无数条直径。

在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =d÷24、正方形中画最大的圆:先画正方形的两条对角线,交点就是圆心,再以边长的一半作半径画圆.边长也就是圆的直径。

5、圆中画最大的正方形:先画两条互相垂直的直径,直径和圆相交的四个点连接起来就成了一个圆。

在长方形中画最大的圆,宽就是圆的直径。

6、扇形:由两条半径和一段弧围成的图形就是扇形.顶点在圆心的角是圆心角。

圆上两点间的一段叫弧。

7、在同一个圆中,扇形的大小与圆心角的大小有关.在不同的圆中,扇形的大小与圆心角的大小和半径的长短有关。

8.圆的周长:围成圆的曲线的长度叫做圆的周长。

圆的周长总是直径的3倍多一些,这个比值是一个固定的数.我们把圆的周长和直径的比值叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数.在计算时,π取3。

14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之.周长是直径的π倍,是半径的2π倍。

6.圆的周长公式:C=πd 或C=2πr 周长等于直径乘π,等于半径乘2π。

直径等于周长除以π,或等于半径乘2,半径等于周长除以π再除以2,或等于直径除以2。

圆的直径、半径扩大或缩小几倍,周长也扩大或缩小相同的倍数,周长、直径、半径间的变化相同。

两个圆的直径、半径和周长之间的倍数关系完全相同。

7、圆的面积:圆所占平面的大小叫圆的面积.8.把一个圆割拼成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= πr×r=πr²,要求圆的面积必须知道圆的半径(或知道半径的平方)。

(完整版)九年级数学圆的知识点总结大全

(完整版)九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长:C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;A2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;图4图5(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

圆形的知识点归纳总结

圆形的知识点归纳总结

圆形的知识点归纳总结圆形是平面几何中的重要概念之一,它具有丰富的性质和应用。

本文将对圆形的相关知识进行归纳总结,包括圆的定义、性质、相关定理和应用等方面的内容。

一、圆的基本概念和定义1. 圆的定义圆是平面上到定点距离等于定长的所有点的集合。

这个定点叫做圆心,定长叫做半径。

2. 圆的符号表示通常用符号“O”来表示圆心,小写字母“r”表示半径,大写字母“C”表示圆。

3. 圆的元素圆的元素包括圆心、半径、直径、弧、圆周、扇形等。

4. 圆心角和圆周角圆的圆心角是以圆心为顶点的角,圆周角是以圆周上两点为顶点的角。

5. 圆的相关概念圆的相关概念包括圆内切多边形、圆内接多边形、圆外接多边形、圆外切多边形等。

二、圆的性质1. 圆的性质圆的性质包括圆的对称性、圆的等分性、圆上点的性质等。

2. 圆的对称性圆具有无数个对称轴,其中包括直径、半径、切线等。

3. 圆的等分性圆的周长是半径的倍数,圆的面积是半径的平方倍数。

4. 圆上点的性质圆上的任意一点到圆心的距离等于半径,圆上的弦长等于半径的两倍。

5. 圆与线的位置关系直径与圆的位置关系、弦与圆的位置关系、切线与圆的位置关系等。

三、圆的相关定理1. 圆的基本定理圆的基本定理包括:相交弦定理、切线定理、弧长定理、圆心角定理、圆周角定理等。

2. 圆的周长和面积定理圆的周长和面积定理包括:周长公式、面积公式、扇形面积公式、弓形面积公式等。

3. 圆的切线定理圆的切线定理包括:切线与半径垂直定理、切线的切点定理、切线的两条切点定理等。

4. 圆心角定理圆心角定理包括:圆心角的对应弧相等定理、圆心角的补角定理、圆心角的平分弧定理等。

四、圆的应用1. 圆的应用领域圆的应用广泛,包括建筑工程、数学研究、工程设计、地理测量、日常生活等领域。

2. 圆的应用案例圆的应用案例包括建筑中的圆形结构、数学研究中的圆的性质和定理、工程设计中的圆形零件、地理测量中的圆的测量方法等。

3. 圆的应用技术圆的应用技术包括圆周率的计算、圆形结构的设计、圆的测量方法等。

圆有关的知识点总结公式

圆有关的知识点总结公式

圆有关的知识点总结公式一、圆的定义圆的定义是平面上到一个定点距离恒定的点的集合。

这个定点称为圆心,到圆心的距离称为半径。

圆的边界称为圆周。

圆可以用圆心和半径来描述,也可以用圆周上的点的坐标来描述。

圆的定义在数学中是基础性的概念之一。

二、圆的性质1. 圆的直径是圆周上任意两点之间的最长线段,它恰好等于圆周的两倍。

圆的半径是圆心到圆周上任意一点的距离。

2. 圆的周长公式为:C=2πr,其中C表示圆的周长,r表示圆的半径,π是一个数学常数,约等于3.14159。

3. 圆的面积公式为:A=πr²,其中A表示圆的面积。

4. 圆的内切和外切问题:一个图形是否能内切于圆,或外切于一个圆,是几何中一个重要的问题。

5. 圆的相关角度问题:圆周角、圆心角等概念与性质。

三、圆的公式1. 圆的周长公式:C=2πr这个公式表示了圆的周长与半径之间的关系,即周长等于半径的两倍乘以π。

2. 圆的面积公式:A=πr²这个公式表示了圆的面积与半径之间的关系,即面积等于半径的平方乘以π。

3. 圆的弧长公式:L=θr这个公式表示了圆的弧长与圆心角的大小以及半径的关系,即弧长等于圆心角的大小乘以半径。

4. 圆的扇形面积公式:A=1/2θr²这个公式表示了圆的扇形面积与圆心角的大小以及半径的关系,即扇形面积等于圆心角的大小乘以半径的平方再除以2。

5. 圆的相似性公式:S₁/S₂=r₁/r₂这个公式表示了两个相似圆的面积与半径的关系,即两个相似圆的面积之比等于它们半径的平方之比。

四、圆的应用圆在生活和工作中有许多应用,其中包括但不限于以下几个方面:1. 圆的几何学应用:圆的几何性质是几何学中的重要内容,它们在建筑、绘图、地理等领域都有广泛的应用。

2. 圆的工程应用:在工程中,圆形轮胎、圆形齿轮、圆形管道等都是圆的应用场景。

3. 圆的数学模型应用:在数学建模中,圆常常被用来描述一些现实中的问题,如行星轨道、电子轨道等。

数学圆知识点总结

数学圆知识点总结

数学圆知识点总结在学习中,大家对知识点应该都不陌生吧?知识点也可以通俗的理解为重要的内容。

掌握知识点有助于大家更好的学习。

下面是小编整理的数学圆知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

数学圆知识点总结11、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一直线上的三点确定一个圆。

10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16、定理:一条弧所对的圆周角等于它所对的圆心角的一半17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径19、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r22、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理:圆的切线垂直于经过切点的半径24、推论:经过圆心且垂直于切线的直线必经过切点25、推论:经过切点且垂直于切线的直线必经过圆心26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角27、圆的外切四边形的两组对边的和相等28、弦切角定理:弦切角等于它所夹的弧对的圆周角29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34、如果两个圆相切,那么切点一定在连心线上35、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)36、定理:相交两圆的连心线垂直平分两圆的公共弦37、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39、正n边形的每个内角都等于(n-2)×180°/n40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距42、正三角形面积√3a2/4a表示边长43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k(n-2)180°/n=360°化为(n-2)(k-2)=444、弧长计算公式:L=n兀R/18045、扇形面积公式:S扇形=n兀R2/360=LR/2外公切线长=d-(R+r)数学学习中常见问题分析大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。

圆的知识点总结

圆的知识点总结

圆的知识点总结(一)圆的有关性质[知识归纳]1.圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆; 圆心角、圆周角、圆内接四边形的外角。

2.圆的对称性圆是轴对称图形,经过圆心的每一条直线都長它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有族转不变性。

3.圆的确定不在同一条直线上的三点确定一个圆。

4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不長直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不長直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2圆的两条平行弦所夹的弧相等。

5.圆心角、弧、弦.弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

圆心角的度数等于它所对的弧的度数。

6.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90。

的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

圆的知识点总结

圆的知识点总结

圆的知识点总结圆是数学中一个非常重要的图形,在我们的日常生活和学习中都有着广泛的应用。

下面就让我们来系统地总结一下关于圆的知识点。

一、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为圆的半径。

二、圆的基本元素1、圆心:决定圆的位置。

2、半径:决定圆的大小。

用字母 r 表示。

3、直径:通过圆心并且两端都在圆上的线段叫做直径。

用字母 d表示,且 d = 2r 。

三、圆的周长圆的周长是指绕圆一周的长度。

圆的周长公式:C =2πr 或 C =πd (其中 C 表示周长,π 是圆周率,通常取值 314 )例如,如果一个圆的半径是 5 厘米,那么它的周长就是 2×314×5 =314 厘米。

四、圆的面积圆的面积是指圆所占平面的大小。

圆的面积公式:S =πr²比如,半径为 4 厘米的圆,面积就是 314×4²= 5024 平方厘米。

五、弧圆上任意两点之间的部分叫做弧。

1、优弧:大于半圆的弧。

2、劣弧:小于半圆的弧。

六、圆心角顶点在圆心的角叫做圆心角。

圆心角的度数等于它所对的弧的度数。

七、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。

1、一条弧所对的圆周角等于它所对的圆心角的一半。

2、同弧或等弧所对的圆周角相等。

八、圆的内接多边形和外切多边形1、如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。

2、如果一个多边形的各条边都与同一个圆相切,这个多边形叫做圆外切多边形,这个圆叫做这个多边形的内切圆。

九、圆与直线的位置关系1、相离:直线与圆没有公共点。

2、相切:直线与圆有且只有一个公共点,此时圆心到直线的距离等于半径。

3、相交:直线与圆有两个公共点,此时圆心到直线的距离小于半径。

十、圆的切线1、切线的判定:经过半径的外端并且垂直于这条半径的直线是圆的切线。

2、切线的性质:圆的切线垂直于经过切点的半径。

圆的综合知识点总结(初中数学)

圆的综合知识点总结(初中数学)

圆的基本概念和性质要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.垂径定理知识点一、垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即⎩⎨⎧⇒⎭⎬⎫平分弦所对的弧平分弦垂直于弦直径(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)弧、弦、圆心角、圆周角要点一、弧、弦、圆心角的关系1.圆心角定义:如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

(完整版)初三数学圆知识点复习专题经典

(完整版)初三数学圆知识点复习专题经典
∴ PA2 PC PB
A
D
E
O
C
B
线长是这点到割
( 4 )割线定理 :从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长的积相等
(如上图) 。
即:在⊙ O 中,∵ PB 、 PE 是割线
∴PC PB PD PE
例 1. 如图 1,正方形 ABCD的边长为 1,以 BC为直径。在正方形内作半圆 于 E,求 DE: AE的值。
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称 1
推 3 定理,即上述四个结论中, 只要知道其中的 1 个相等,则可以推出其它的 3 个结论,
即:① AOB DOE ;② AB DE ; ③ OC OF ;④ 弧 BA 弧 BD
O A
C
E F D
∴C D
推论 2 :半圆或直径所对的圆周角是直角;圆周角是直角所对的弧
C
是半圆,所对的弦是直径。
即:在⊙ O 中,∵ AB 是直径
或∵ C 90
B
A
O
∴ C 90
∴AB 是直径
推论 3 :若三角形一边上的中线等于这边的一半,那么这个三角形是
C
直角三角形。
即:在△ ABC 中,∵ OC OA OB
B
A
推论 1:( 1 )平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2 )弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3 )平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结

圆的认识知识点总结

圆的认识知识点总结

圆的认识知识点总结圆是数学中一个非常重要的图形,在我们的日常生活和学习中都有着广泛的应用。

下面就来对圆的认识相关知识点进行一个全面的总结。

一、圆的定义1、平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

2、以点 O 为圆心的圆记作“⊙O”,读作“圆O”。

二、圆的相关元素1、圆心圆心是圆的中心,决定了圆的位置。

2、半径连接圆心和圆上任意一点的线段叫做半径。

半径决定了圆的大小。

在同一个圆中,半径都相等。

3、直径通过圆心并且两端都在圆上的线段叫做直径。

直径是圆内最长的线段。

在同一个圆中,直径等于半径的 2 倍,用字母表示为 d = 2r 。

4、弦连接圆上任意两点的线段叫做弦。

直径是圆中最长的弦。

5、弧圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

6、圆心角顶点在圆心的角叫做圆心角。

7、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。

三、圆的性质1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

2、圆是中心对称图形,其对称中心是圆心。

3、垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

四、圆的周长和面积1、圆的周长圆的周长 C =2πr 或 C =πd ,其中π是圆周率,约等于 314 ,r 是半径,d 是直径。

2、圆的面积圆的面积 S =πr² 。

五、弧长和扇形面积1、弧长公式n°圆心角所对的弧长 l =(nπr)/180 ,其中 n 是圆心角度数,r 是半径。

2、扇形面积公式(1)S =(nπr²)/360 ,其中 n 是圆心角度数,r 是半径。

(2)S = 1/2 lr ,其中 l 是弧长,r 是半径。

六、圆与其他图形的关系1、圆与直线的位置关系(1)相离:直线与圆没有公共点。

(2)相切:直线与圆有且只有一个公共点,此时圆心到直线的距离等于半径。

高中数学圆知识点总结

高中数学圆知识点总结

高中数学圆知识点总结一、圆的基本概念1. 圆的定义:圆是由平面上到一个定点的距离等于常数的所有点的集合所组成的图形。

这个定点叫做圆心,这个常数叫做圆的半径。

2. 圆的符号表示:我们通常用一个大写字母表示圆心,用小写字母 r 表示半径,从而表示某个圆为原点 O ,半径为 r 的圆为∠O(r) 。

3. 圆的元素:圆由圆心、半径以及圆上的所有点组成,这些点到圆心的距离都等于半径的长度。

二、圆的基本性质1. 圆的直径:圆上任意两点间的最长距离叫做圆的直径,圆的直径等于圆的半径的二倍。

2. 圆周率:圆周率是一个无理数,通常用符号π 来表示,它的近似值是3.14159 ,是圆周长和直径之比的数学常数。

3. 圆的周长:圆的周长等于圆的直径乘以π ,也可以用公式表示为:C=2πr 。

4. 圆的面积:圆的面积等于π 乘以圆的半径的平方,也可以用公式表示为:S=πr^2 。

5. 弧长和扇形面积:圆的一部分叫做圆弧,圆弧的长度叫做弧长,弧长和圆的周长的比值等于弧所对的圆心角的比值;圆的一部分叫做扇形,扇形的面积等于扇形所对的圆心角的比值。

三、圆的相关定理1. 圆心角的性质:圆心角是圆上的一个角,它的顶点在圆心上,它的两条边都是圆的弧。

圆心角的大小可以用角度或弧度表示,弧度是圆的一种度量单位,弧长等于半径乘以圆心角的弧度。

弧长和弧所对的圆心角的关系,用公式表示为:L=rθ 。

2. 弦的性质:弦是圆上的一段线段,它的两端都在圆上,弦也可以看做是圆上的一个弧。

弦的性质包括:两条相等的弧所对的弦也是相等的;圆的直径是圆的最长弦,且它恰好把圆分成两个相等的半圆。

3. 切线的性质:切线是指平面上的一条直线,它只与圆相交于一点,这个点叫做切点。

切线和半径的垂直平分线相交于圆上的切点处成直角,切线和圆心之间的连线是切线的切线长。

4. 正弦定理和余弦定理:这两个定理属于三角形和圆的结合性质,它们可以用来求解三角形和圆的面积。

四、圆的相关应用1. 圆和直线的位置关系:圆和直线的位置关系有着许多重要的定理和知识点,这些知识点在几何、代数和三角等领域都有着广泛的应用,学习和掌握它们对我们解题和理解圆的相关性质是非常重要的。

圆的认识知识点总结

圆的认识知识点总结

圆的认识知识点总结圆是数学中一个非常重要的图形,在日常生活和学习中都有着广泛的应用。

下面我们来对圆的相关知识点进行一个全面的总结。

一、圆的定义圆是平面内到定点(圆心)的距离等于定长(半径)的所有点组成的图形。

这个定义明确了圆的两个关键要素:圆心和半径。

二、圆的各部分名称1、圆心:圆的中心,用字母“O”表示。

圆心决定了圆的位置。

2、半径:连接圆心和圆上任意一点的线段,用字母“r”表示。

半径决定了圆的大小。

3、直径:通过圆心并且两端都在圆上的线段,用字母“d”表示。

直径是半径的两倍,即 d = 2r 。

4、圆周:圆的边缘,也就是圆一周的长度。

三、圆的性质1、在同一个圆中,有无数条半径,并且所有的半径都相等;有无数条直径,并且所有的直径都相等。

2、圆是轴对称图形,它的对称轴是直径所在的直线,有无数条对称轴。

3、圆也是中心对称图形,其对称中心是圆心。

四、圆的周长1、圆的周长的定义:围成圆的曲线的长度叫做圆的周长。

2、圆的周长计算公式:C =2πr 或 C =πd (其中 C 表示圆的周长,π是圆周率,通常取值 314,r 是半径,d 是直径)。

五、圆的面积1、圆的面积的定义:圆所占平面的大小叫做圆的面积。

2、圆的面积计算公式:S =πr² (其中 S 表示圆的面积)六、圆环1、圆环的定义:两个半径不相等的同心圆之间的部分叫做圆环。

2、圆环的面积计算公式:S 环=π(R² r²) (其中 R 是外圆半径,r 是内圆半径)七、扇形1、扇形的定义:由圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。

2、扇形的面积计算公式:S 扇=nπr²/360 (其中 n 是圆心角度数,r 是扇形所在圆的半径)八、与圆相关的应用1、车轮:车轮做成圆形是因为圆心到圆上任意一点的距离都相等,这样车子行驶起来才会平稳。

2、井盖:井盖做成圆形是因为圆形的井盖无论怎么放置都不会掉到井里,而方形或其他形状的井盖就有可能掉下去。

圆的知识点总结

圆的知识点总结

圆的知识点总结圆是数学中一个非常重要的图形,在我们的日常生活和学习中都有着广泛的应用。

下面就来对圆的相关知识点进行一个全面的总结。

一、圆的定义平面上到定点的距离等于定长的所有点组成的图形叫做圆。

其中,定点称为圆心,定长称为半径。

二、圆的基本元素1、圆心:圆的中心,用字母 O 表示。

2、半径:连接圆心和圆上任意一点的线段,用字母 r 表示。

3、直径:通过圆心并且两端都在圆上的线段,用字母 d 表示。

直径是半径的两倍,即 d = 2r 。

三、圆的周长圆的周长是指绕圆一周的长度。

圆的周长公式为 C =2πr 或 C =πd ,其中π(圆周率)是一个常数,约等于 314 。

四、圆的面积圆的面积是指圆所占平面的大小。

圆的面积公式为 S =πr² 。

五、弧长和扇形面积1、弧长:圆上任意两点之间的部分叫做弧。

弧长公式为 L =nπr / 180 (其中 n 是圆心角度数,r 是半径)。

2、扇形:由一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

3、扇形面积:扇形面积公式为 S =nπr² / 360 或 S = 1/2 Lr (其中 L 是弧长)。

六、圆的对称性1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

2、圆也是中心对称图形,其对称中心是圆心。

七、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

八、圆心角、弧、弦的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

九、圆周角定理1、一条弧所对的圆周角等于它所对的圆心角的一半。

2、同弧或等弧所对的圆周角相等。

3、半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

十、圆内接四边形如果一个四边形的四个顶点都在同一个圆上,那么这个四边形叫做圆内接四边形,这个圆叫做四边形的外接圆。

圆内接四边形的对角互补。

十一、点与圆的位置关系设圆的半径为 r ,点到圆心的距离为 d 。

1、点在圆外:d > r 。

五年级下册数学圆的知识

五年级下册数学圆的知识

五年级下册数学圆的知识点总结归纳一、圆的基本概念圆的定义:平面上所有到定点(圆心)的距离等于定长(半径)的点的集合叫做圆。

这个定点叫做圆的圆心,定长叫做圆的半径。

例子:以点O为圆心,3厘米为半径画一个圆。

这个圆就是所有到点O的距离为3厘米的点的集合。

圆的各部分名称:圆心(O)、半径(r)、直径(d)、弦(连接圆上任意两点的线段)、弧(圆上任意两点间的部分)、圆周(圆的边界)。

例子:在圆上取两个点A和B,连接AB,则AB是圆的一条弦;如果AB经过圆心O,则AB是圆的一条直径;圆上A到B的部分叫做弧AB。

二、圆的性质圆的对称性:圆是中心对称图形,也是轴对称图形,其对称中心是圆心,对称轴是任何经过圆心的直线。

例子:无论我们如何旋转一个圆,或者沿任何经过圆心的直线折叠,它都能完全重合,这体现了圆的对称性。

半径、直径与弦的关系:在同一个圆或等圆中,所有的半径都相等,所有的直径也都相等,直径是半径的两倍(d = 2r)。

例子:如果我们有一个半径为5厘米的圆,那么它的直径就是10厘米。

圆周率π:圆的周长与直径的比值是一个固定的数,这个数叫做圆周率,通常用希腊字母π表示。

例子:虽然我们不能精确计算π的值,但我们可以用近似值3.14来计算圆的周长和面积。

三、圆的周长和面积圆的周长公式:C = 2πr 或 C = πd,其中r是圆的半径,d是圆的直径。

例子:一个半径为5厘米的圆,其周长C = 2π× 5 ≈31.4厘米。

圆的面积公式:S = πr²,其中r是圆的半径。

例子:一个半径为5厘米的圆,其面积S = π×5²≈78.5平方厘米。

四、圆的实际应用车轮的设计:车轮是圆的,这是因为圆的滚动特性可以使车辆平稳前进。

如果车轮不是圆的,那么车辆在行驶过程中会上下颠簸。

例子:自行车的车轮、汽车的轮胎都是圆形的,它们能够平稳地在地面上滚动,使车辆能够平稳地前进。

圆形的建筑:在建筑设计中,圆形元素常常被使用,因为它具有美感和稳定性。

六年级上册圆的知识点归纳总结

六年级上册圆的知识点归纳总结

圆的知识点归纳总结1. 圆的基本概念圆是平面上到一个定点距离等于定长的点的全体构成的图形。

定点叫圆心,定长叫半径。

2. 圆的性质- 圆上任意一点到圆心的距离都是半径;- 圆心到圆上任意一点的距离都是半径;- 直径是通过圆心的两个互为相反的弧的长度。

直径是圆的最大的弦; - 圆的周长是圆周的长度,用C表示;- 圆的面积用S表示。

3. 圆的周长和面积计算公式- 圆的周长C=2πr,其中r为半径;- 圆的面积S=πr²。

4. 圆的相关定理- 弧长定理:圆的周长是2πr,那么一个圆的弧对应的圆心角是θ(弧度制)的弧长为πrθ,其中θ/2π=弧/周;- 圆内接四边形的性质:把一个四边形内接在一个圆上,然后四边形的两个对角线相互垂直,且相互平分;- 切线定理:相切的线与圆心连线是垂直的,且切点处的切线与半径的夹角是90°;- 切线定理的逆定理:若一条直线与圆上的一点相交,且与通过该点的切线垂线相交,那它就是切线。

5. 圆的相关应用- 圆的问题在生活中随处可见,例如轮胎、盘子、饼干等的形状都是圆形的,因此对圆的理解和应用非常重要;- 圆的相关计算也应用在工程学、建筑学、物理等领域中。

总结:通过对圆的基本概念、性质、周长和面积计算公式、相关定理以及应用的学习和理解,我们可以更好地应用圆的知识解决实际问题,培养自身数学素养。

圆是几何中的重要概念,对于进一步学习几何和数学都具有重要意义。

希望同学们能够认真学习圆的知识,提高自身的数学素养和解决实际问题的能力。

圆是几何中非常重要的一个概念,它的性质和定理在数学的学习中具有重要意义。

我们需要了解圆的基本概念和性质,这对于理解圆的相关定理和应用是非常重要的。

在圆的基本概念中,我们知道圆是平面上到一个定点距离等于定长的点的全体构成的图形,其中定点叫圆心,定长叫半径。

这个概念简单明了,但是我们需要深入理解其中的含义。

圆的性质包括了任意一点到圆心的距离都是半径,以及圆心到圆上任意一点的距离都是半径。

圆的知识点公式总结

圆的知识点公式总结

圆的知识点公式总结一、圆的定义和性质圆是平面上到一个固定点距离等于一个常数的所有点的集合。

这个固定点叫做圆心,这个常数叫做圆的半径。

圆的定义非常简单,但却涵盖了许多有趣的性质。

1. 圆心和半径:圆心是圆的中心点,通常表示为O。

圆的半径是指从圆心到圆上任意一点的距离,通常表示为r。

2. 直径:圆上任意两点连线的长度叫做直径,通常表示为d,直径的长度等于半径的两倍,即d=2r。

3. 弧长和圆心角:圆上的一段弧对应于圆心的一个角度,称为圆心角。

圆心角的度数等于弧长所占据的圆周角的度数。

圆周角是360度。

4. 切线和切点:与圆相切的直线称为切线,切点是切线和圆相交的点。

切线与半径的夹角等于90度。

5. 正割线、割线和弦:穿过圆的直线称为割线。

穿过圆的直线的延长线称为正割线。

圆上两点之间的线段称为弦。

6. 垂径定理:如果一个弦上的两个垂直平分线相交于圆心,则这两条垂直平分线互相垂直。

7. 直径定理:如果一个四边形的一条对角线是这个四边形所在的圆的直径,则这个四边形是一个直角四边形。

以上是圆的基本定义和性质,通过这些性质,我们可以推导出一些有用的定理和公式。

二、圆的相关定理1. 圆的面积公式:圆的面积等于π乘以半径的平方,即A=πr²。

2. 圆的周长公式:圆的周长等于直径乘以π,即C=πd=2πr。

3. 圆心角定理:同一个圆内的圆心角所对的弧长是相等的。

4. 正切定理:相切直线与同一条过圆心的直径相交的角相等。

5. 圆的切线定理:切线和半径的夹角是直角,切线的长度等于切点到圆心的距离。

6. 垂径定理:如果两条垂直平分线相交于圆心O,则这两条平行线的公共部分即为弦AB的中点。

这些定理和公式为解决圆相关问题提供了重要的依据和方法。

三、圆的参数方程圆的参数方程通常用来描述一个圆的轨迹。

当圆的圆心在坐标轴上时,圆的参数方程可以表示为:x = r·cosθy = r·sinθ其中r表示圆的半径,(x,y)表示圆上任意一点的坐标,θ表示这个点所在的角度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 圆的方程一、知识清单(一)圆的定义及方程定义标准 方程一般方程平面内与定点的距离等于定长的点的会合 (轨迹 )(x - a)2 +(y -b)2= r 2(r>0)圆心: (a , b),半径: rx 2+ y 2+ Dx + Ey +F = 0圆心: - D ,- E,2 2 (D 2+E 2- 4F>0)半径: 1 D 2+ E 2- 4F21、圆的标准方程与一般方程的互化( 1)将圆的标准方程 (x -a)2+( y -b)2= r 2 睁开并整理得 x 2+ y 2- 2ax - 2by + a 2+ b 2- r 2= 0,取 D =- 2a ,E =- 2b , F = a 2+ b 2- r 2,得 x 2+ y 2+ Dx + Ey + F = 0.( 2)将圆的一般方程 x 2+ y 2+ Dx +Ey + F = 0 经过配方后获得的方程为:(x + D 2+ (y + E 2 D 2 +E 2- 4F2 ) 2 ) = 4①当 D 2+E 2- 4F>0 时,该方程表示以 (-D ,- E)为圆心, 1 D 2+ E 2 - 4F 为半径的圆;2 2 2②当 D 2+ E 2- 4F = 0x =- D , y =- E (- D 时,方程只有实数解2 2,即只表示一个点 2 ,-E);③当 D 2+ E 2- 4F<0 时,方程没有实数解,因此它不表示任何图形.22、圆的一般方程的特点是 : x 2 和 y 2 项的系数都为 1 ,没有 xy 的二次项 .3、圆的一般方程中有三个待定的系数 D 、 E 、 F ,所以只需求出这三个系数,圆的方程就确立了.(二)点与圆的地点关系点 M(x 0, y 0)与圆 (x -a)2+(y - b)2 =r 2 的地点关系:( 1)若 M(x 0, y 0)在圆外,则 (x 0- a)2+ (y 0- b) 2>r 2.( 2)若 M(x 0, y 0)在圆上,则 (x 0- a)2+ (y 0- b) 2= r 2.( 3)若 M(x 0, y 0)在圆内,则 (x 0- a)2+ (y 0- b) 2<r 2.(三)直线与圆的地点关系方法一:方法二:(四)圆与圆的地点关系1外离2外切3订交4内切5内含(五)圆的参数方程(六)温馨提示1、方程 Ax2+ Bxy+ Cy 2+ Dx + Ey+ F = 0 表示圆的条件是:( 1)B= 0;( 2) A=C≠0;( 3)D 2+ E2-4AF> 0.2、求圆的方程时,要注意应用圆的几何性质简化运算.( 1)圆心在过切点且与切线垂直的直线上.( 2)圆心在任一弦的中垂线上.( 3)两圆内切或外切时,切点与两圆圆心三点共线.3、中点坐标公式:已知平面直角坐标系中的两点A(x1,y1),B(x2, y2) ,点 M (x, y) 是线段 AB 的中点,则 x=x1x2 ,y=y1y2 .22二、典例概括考点一:相关圆的标准方程的求法【例1】圆22,半径是. x a y bm2 m 0 的圆心是【例2】点 (1,1)在圆 (x- a)2+ (y+ a)2= 4 内,则实数A . (- 1,1)C.( -∞,- 1)∪ (1,+∞ )a 的取值范围是(D. (1,+∞))B. (0,1)【例 3】圆心在 y 轴上,半径为1,且过点 (1,2)的圆的方程为 ()A . x2+ (y-2)2=1B. x2+ (y+ 2)2= 1C.( x- 1) 2+ (y-3) 2= 1D. x2+ (y- 3)2= 1【例 4】圆 (x+2) 2+ y2= 5 对于原点P(0,0)对称的圆的方程为 ()A . (x- 2)2+y2=5B. x2+ (y- 2)2= 5C.( x+ 2) 2+ (y+2) 2= 5D. x2+ (y+ 2)2= 5【变式 1】已知圆的方程为x 1 x 2y 2 y 40 ,则圆心坐标为【变式 2】已知圆 C 与圆x 1221 对于直线 y x 对称,则圆C的方程为y【变式3】若圆 C 的半径为1,圆心在第一象限,且与直线4x- 3y= 0和x 轴都相切,则该圆的标准方程是()A . (x- 3)2+7y- 3 2= 1B. (x- 2)2+ (y- 1)2= 1C.( x- 1) 2+ (y-3) 2= 1D. x- 3 2+(y- 1)2= 12【变式4】已知ABC 的极点坐标分别是 A 1,5 , B 5,5 , C 6, 2 ,求ABC 外接圆的方程 .方法总结:1.利用待定系数法求圆的方程重点是成立对于a, b, r 的方程组.2.利用圆的几何性质求方程可直接求出圆心坐标和半径,从而写出方程,表现了数形联合思想的运用.考点二、相关圆的一般方程的求法【例 1】若方程 x2+ y2+ 4mx- 2y+5m=0 表示圆,则m 的取值范围是()A .1< m< 1 B . m<1或 m> 1 C .m<1D. m> 1 444【例 2】将圆 x2+ y2- 2x- 4y+1= 0 均分的直线是 ()A . x+ y- 1= 0B. x+ y+ 3= 0C. x-y+ 1= 0D. x- y+ 3= 0【例 3】圆 x2-2x+y2- 3=0 的圆心到直线x+3y- 3= 0 的距离为 ________.【变式 1】已知点P是圆C : x2y24x ay 5 0 上随意一点,P点对于直线2 x y 1 0 的对称点也在圆 C 上,则实数a =【变式 2】已知一个圆经过点 A 3,1 、 B 1,3 ,且圆心在3x y 20 上,求圆的方程 .【变式 3】平面直角坐标系中有 A 0,1 , B 2,1 , C 3,4 , D 1,2 四点,这四点可否在同一个圆上?为何?【变式4】假如三角形三个极点分别是O(0,0), A(0,15) , B(- 8,0),则它的内切圆方程为________________ .方法总结:1.利用待定系数法求圆的方程重点是成立对于D, E, F 的方程组.2.娴熟掌握圆的一般方程向标准方程的转变考点三、与圆相关的轨迹问题【例 1】动点 P到点A(8,0)的距离是到点B(2,0)的距离的 2 倍,则动点P 的轨迹方程为()A . x2+ y2=32B. x2+ y2= 16C.( x- 1) 2+ y2=16D. x2+ (y- 1)2= 16【例 2】方程y25 x2表示的曲线是()A. 一条射线B. 一个圆C. 两条射线D. 半个圆【例3】在ABC 中,若点B,C的坐标分别是(-2,0)和(2,0),中线AD的长度是3,则点 A 的轨迹方程是()A. x2y23B. x2y24C. x 2222y 9 y 0 D. x y 9 x 01【例4】已知一曲线是与两个定点O(0,0) ,A(3,0) 距离的比为的点的轨迹.求这个曲线的方程,并画出曲线.【变式 1】方程x 1 12y 1 所表示的曲线是()A. 一个圆B. 两个圆C. 一个半圆D. 两个半圆【变式 2】动点 P 到点 A(8,0) 的距离是到点B(2,0)的距离的 2 倍,则动点P 的轨迹方程为()A . x2+ y2=32B. x2+ y2= 16C.( x- 1) 2+ y2=16D. x2+ (y- 1)2= 16【变式 3】如右图,过点M(- 6,0)作圆 C: x2+y2-6x- 4y+ 9= 0 的割线,交圆C于 A、B 两点,求线段 AB 的中点P 的轨迹.【变式4】如图,已知点A( -1,0)与点长至 D ,使得 |CD |= |BC|,求 AC 与 ODB(1,0), C 是圆 x2+ y2= 1 上的动点,连结的交点 P 的轨迹方程.BC 并延方法总结:求与圆相关的轨迹问题时,依据题设条件的不一样常采纳以下方法:(1)直接法:依据题目条件,成立坐标系,设出动点坐标,找出动点知足的条件,而后化简.(2)定义法:依据直线、圆等定义列方程.(3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点知足的关系式等.考点四:与圆相关的最值问题【例 1】已知圆x2+ y2+ 2x- 4y+ a= 0 对于直线y= 2x+b 成轴对称,则a- b 的取值范围是________【例 2】已知 x, y 知足 x2+ y2= 1,则y-2的最小值为 ________.x- 1【例 3】已知点则|MN|的最小值是M 是直线()3x+ 4y- 2= 0 上的动点,点N 为圆( x+1) 2+ (y+1)2= 1 上的动点,9A. 5B. 14C.5D.135【例 4】已知实数x, y 知足 (x- 2)2+ (y+ 1)2= 1 则 2x- y 的最大值为 ________,最小值为________.【变式 1】 P(x, y)在圆 C: (x- 1)2+ (y- 1)2=1 上挪动,则x2+ y2的最小值为 ________.【变式 2】由直线 y= x+ 2 上的点 P 向圆 C: (x- 4)2+ (y+ 2)2= 1 引切线 PT(T 为切点 ),当|PT|最小时,点 P 的坐标是 ()A . (- 1,1)B. (0,2)C . (- 2,0)D. (1,3)【变式 3】已知两点A(- 2,0), B(0,2),点积的最小值是 ________.C 是圆x2+ y2- 2x= 0 上随意一点,则△ABC面【变式 4】已知圆M 过两点 C(1,- 1), D (- 1,1),且圆心M 在 x+y- 2= 0 上.(1)求圆 M 的方程;(2)设 P 是直线 3x+ 4y+ 8=0 上的动点, PA、 PB 是圆 M 的两条切线, A, B 为切点,求四边形 PAMB 面积的最小值.方法总结:解决与圆相关的最值问题的常用方法(1)形如 u=y-b的最值问题,可转变为定点 (a, b)与圆上的动点 ( x,y)的斜率的最值问题x - a(2)形如 t= ax+ by 的最值问题,可转变为动直线的截距的最值问题;(3)形如 (x- a)2+ (y- b)2的最值问题,可转变为动点到定点的距离的最值问题.(4)一条直线与圆相离,在圆上找一点到直线的最大(小)值: d r (此中d为圆心到直线的距离)。

相关文档
最新文档