附录A 极惯性矩与惯性矩

合集下载

01-极惯性矩 惯性矩 惯性积课件

01-极惯性矩  惯性矩  惯性积课件

极惯性矩 惯性矩 惯性积
二、极惯性矩
IP
2dA
A
2 z2 y2
所以 I P I z I y
z
dA
z
O
y
y
对于圆形对圆心的极 惯 性矩自己课下推导 。
极惯性矩 惯性矩 惯性积
三、惯ቤተ መጻሕፍቲ ባይዱ积
I yz
yzdA
A
1.惯性矩的数值恒为正,惯性
积则可能为正值,负值,也
可能等于零;
z
dA dA z y
y
2.若y,z 两坐标轴中有一个为截面的对称轴, 则 截面对y,z轴的惯性积一定等于零。
极惯性矩 惯性矩 惯性积
四、惯性半径
iy
Iy A
iz
Iz A
极惯性矩 惯性矩 惯性积
极惯性矩 惯性矩 惯性积
一、惯性矩(面积的二次矩)
I y
z 2dA
A
Iz
y 2dA
A
z
z
O
y
dA y
极惯性矩 惯性矩 惯性积
例题
I y
z 2dA
A
h/2 z2bdz h/2
z
dA z
yh
b h/2 z2dz h/2 3
bh 12
b
对于三角形、圆形对自身形 心轴的惯性矩自己课下推导 。

附录A_极惯性矩与惯性矩

附录A_极惯性矩与惯性矩

= 附录 A 极惯性矩与惯性矩题号页码A-1 (1)A-3 ........................................................................................................................................................2 A-4 ........................................................................................................................................................3 A-6 ........................................................................................................................................................4 A-7 ........................................................................................................................................................4 A-8 .. (5)(也可通过左侧的题号书签直接查找题目与解)A-1 试确定图示截面形心 C 的坐标 y C。

题 A-1 图(a)解:坐标及微面积示如图 A − 1 (a)。

由此得d A =ρ d ϕd ρR α∫ y d A ∫ ∫ ρ cos ϕ ⋅ρ d ϕd ρ 2R sin α y C= AA−αR α ∫ ∫ =ρ d ϕd ρ3α−α(b)解:坐标及微面积示如图 A − 1 (b)。

工程力学试题库-材料力学

工程力学试题库-材料力学

材料力学基本知识复习要点1.材料力学的任务材料力学的主要任务就是在满足刚度、强度和稳定性的基础上,以最经济的代价,为构件确定合理的截面形状和尺寸,选择合适的材料,为合理设计构件提供必要的理论基础和计算方法。

2.变形固体及其基本假设连续性假设:认为组成物体的物质密实地充满物体所在的空间,毫无空隙。

均匀性假设:认为物体内各处的力学性能完全相同。

各向同性假设:认为组成物体的材料沿各方向的力学性质完全相同。

小变形假设:认为构件在荷载作用下的变形与构件原始尺寸相比非常小。

3.外力与内力的概念外力:施加在结构上的外部荷载及支座反力。

内力:在外力作用下,构件内部各质点间相互作用力的改变量,即附加相互作用力。

内力成对出现,等值、反向,分别作用在构件的两部分上。

4.应力、正应力与切应力应力:截面上任一点内力的集度。

正应力:垂直于截面的应力分量。

切应力:和截面相切的应力分量。

5.截面法分二留一,内力代替。

可概括为四个字:截、弃、代、平。

即:欲求某点处内力,假想用截面把构件截开为两部分,保留其中一部分,舍弃另一部分,用内力代替弃去部分对保留部分的作用力,并进行受力平衡分析,求出内力。

6.变形与线应变切应变变形:变形固体形状的改变。

线应变:单位长度的伸缩量。

练习题一.单选题1、工程构件要正常安全的工作,必须满足一定的条件。

下列除()项,其他各项是必须满足的条件。

A、强度条件B、刚度条件C、稳定性条件D、硬度条件2、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称为()A.弹性B.塑性C.刚性D.稳定性3、结构的超静定次数等于()。

A.未知力的数目B.未知力数目与独立平衡方程数目的差数C.支座反力的数目D.支座反力数目与独立平衡方程数目的差数4、各向同性假设认为,材料内部各点的()是相同的。

A.力学性质B.外力C.变形D.位移5、根据小变形条件,可以认为()A.构件不变形B.结构不变形C.构件仅发生弹性变形D.构件变形远小于其原始尺寸6、构件的强度、刚度和稳定性()A.只与材料的力学性质有关B.只与构件的形状尺寸有关C.与二者都有关D.与二者都无关7、在下列各工程材料中,()不可应用各向同性假设。

极惯性矩常用计算公式

极惯性矩常用计算公式

极惯性矩常⽤计算公式极惯性矩常⽤计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三⾓形:b*h^3/36圆形对于圆⼼的惯性矩:π*d^4/64环形对于圆⼼的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形⼼平⾯图形的⼏何性质⼀般与杆件横截⾯的⼏何形状和尺⼨有关,下⾯介绍的⼏何性质表征量在杆件应⼒与变形的分析与计算中占有举⾜轻重的作⽤。

静矩:平⾯图形⾯积对某坐标轴的⼀次矩,如图Ⅰ-1所⽰。

定义式:,(Ⅰ-1)量纲为长度的三次⽅。

由此可得薄板重⼼的坐标为同理有所以形⼼坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形⼼,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某⼀轴的静矩等于零,则该轴必然通过图形的形⼼。

静矩与所选坐标轴有关,其值可能为正,负或零。

如⼀个平⾯图形是由⼏个简单平⾯图形组成,称为组合平⾯图形。

设第i块分图形的⾯积为,形⼼坐标为,则其静矩和形⼼坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所⽰半圆形的及形⼼位置。

【解】由对称性,,。

现取平⾏于轴的狭长条作为微⾯积所以读者⾃⼰也可⽤极坐标求解。

【例I-2】确定形⼼位置,如图Ⅰ-3所⽰。

【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图⽰坐标下每个矩形的⾯积及形⼼位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形⼼的坐标为§16-2 惯性矩和惯性半径惯性矩:平⾯图形对某坐标轴的⼆次矩,如图Ⅰ-4所⽰。

,(Ⅰ-5)量纲为长度的四次⽅,恒为正。

相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设,(Ⅰ-7)若以表⽰微⾯积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

下式(Ⅰ-10)定义为图形对⼀对正交轴、轴的惯性积。

5.2惯性矩和平行移轴公式教学内容

5.2惯性矩和平行移轴公式教学内容
教学目的和要求
*
优学课堂
§5.2 惯性矩 惯性半径
一、惯性矩
二、惯性矩与极惯性矩的关系
三、惯性半径
四、平行移轴公式
*
优学课堂
1、惯性矩、极惯性矩的概念和计算方法; 2、平行移轴公式。
教学重点
*
优学课堂
平行移轴公式的应用。
教学难点
*
优学课堂
一、惯性矩
整个图形 A 对x 轴的惯性矩
若 x 、 y 轴为一对正交坐标轴
*
优学课堂
§A.2 惯性矩 惯性积 惯性半径
1.矩形截面
常用图形的惯性矩:
*
优学课堂
2.圆形截面
由对称性
3.环形截面
常用图形的惯性矩:
*
优学课堂
惯 性 矩——对某一轴而言
极 惯 性 矩——对某一点而言
特别指出:
*
优学课堂
——图形对 x 轴的惯性半径
整个图形 A 对 y 轴的惯性矩
y2dA——微面积dA对 x 轴的惯性矩
x2dA——微面积dA对 y 轴的惯性矩
定义:
其值:+
单位:m4
1.惯性矩
*
优学课堂
二、惯性矩与极惯性矩的关系
即:
平面图形对任意一点的极惯性矩等于该图形对通过
该点的任意一对相互垂直的坐标轴的惯性矩之和
性质 :
5.1 静矩和形心 5.2惯性矩、极惯性矩 、平行移轴公式
第五章 平面图形的几何性质
*
优学课堂
平面图形的几何性质是影响构件承载能力的重要因素之一。如何确定平面图形的几何性质的量值,是本章讨论的内容。本章主要介绍了形心、静矩、惯性矩、惯性积等几何量,学习时要掌握其基本的概念和计算方法,同时要掌握平行移轴公式及其应用。

附录(惯性矩、静矩)

附录(惯性矩、静矩)
在一组平行的轴中,图形 在一组平行的轴中, 对其形心轴的惯性矩最小。 对其形心轴的惯性矩最小。
O
记住图形对形心轴的惯性矩, 记住图形对形心轴的惯性矩,便可求出对所有 平行于此形心轴的各轴的惯性矩。 平行于此形心轴的各轴的惯性矩。 为形心坐标,注意其正负号。 惯性积公式中 a, b 为形心坐标,注意其正负号。
附录 平面图形的几何性质
几何性质——只与横截面的几何形状和尺 只与横截面的几何形状和尺 几何性质 寸 有关的某些几何量, 有关的某些几何量,对杆件的应力和变形 起 着重要作用,如横截面面积A, 着重要作用,如横截面面积 ,圆轴横截面 F Fl N 拉压杆 对圆心的极惯性矩I σ= 对圆心的极惯性矩 P等。∆l = N A EA 圆轴扭转
材料力学
中南大学土木建筑学院
8
组合图形的静矩和形心有如下公式
S y = ∑ Ai zCi ; S z = ∑ Ai yCi
i =1 i =1
n
n
yC =
∑Ay
i =1 i
n
Ci
A
; zC =
∑Az
i =1
n
i Ci
A
材料力学
中南大学土木建筑学院
9
组合图形的静矩和形心
z Ⅰ
C1(yC1, zC1) C (yC ,zC)
I y + Iz I y − Iz 主惯性轴 Iy = + cos 2α − I yz sin 2α 的意义 1 2 2
对α求导
d Iy1 dα

材料力学
=−2
Iy − Iz 2
sin2 −2Iyz cos2 =−2Iy1z1 = 0 α α
主惯性轴就是使得图形的 惯性矩取极值时的坐标轴

工程力学试题库-材料力学

工程力学试题库-材料力学

材料力学基本知识复习要点1.材料力学的任务材料力学的主要任务就是在满足刚度、强度和稳定性的基础上,以最经济的代价,为构件确定合理的截面形状和尺寸,选择合适的材料,为合理设计构件提供必要的理论基础和计算方法。

2.变形固体及其基本假设连续性假设:认为组成物体的物质密实地充满物体所在的空间,毫无空隙。

均匀性假设:认为物体内各处的力学性能完全相同。

各向同性假设:认为组成物体的材料沿各方向的力学性质完全相同。

小变形假设:认为构件在荷载作用下的变形与构件原始尺寸相比非常小。

3.外力与内力的概念外力:施加在结构上的外部荷载及支座反力。

内力:在外力作用下,构件内部各质点间相互作用力的改变量,即附加相互作用力。

内力成对出现,等值、反向,分别作用在构件的两部分上。

4.应力、正应力与切应力应力:截面上任一点内力的集度。

正应力:垂直于截面的应力分量。

切应力:和截面相切的应力分量。

5.截面法分二留一,内力代替。

可概括为四个字:截、弃、代、平。

即:欲求某点处内力,假想用截面把构件截开为两部分,保留其中一部分,舍弃另一部分,用内力代替弃去部分对保留部分的作用力,并进行受力平衡分析,求出内力。

6.变形与线应变切应变变形:变形固体形状的改变。

线应变:单位长度的伸缩量。

练习题一.单选题1、工程构件要正常安全的工作,必须满足一定的条件。

下列除()项,其他各项是必须满足的条件。

A、强度条件B、刚度条件C、稳定性条件D、硬度条件2、物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称为()A.弹性B.塑性C.刚性D.稳定性3、结构的超静定次数等于()。

A.未知力的数目B.未知力数目与独立平衡方程数目的差数C.支座反力的数目D.支座反力数目与独立平衡方程数目的差数4、各向同性假设认为,材料内部各点的()是相同的。

A.力学性质B.外力C.变形D.位移5、根据小变形条件,可以认为()A.构件不变形B.结构不变形C.构件仅发生弹性变形D.构件变形远小于其原始尺寸6、构件的强度、刚度和稳定性()A.只与材料的力学性质有关B.只与构件的形状尺寸有关C.与二者都有关D.与二者都无关7、在下列各工程材料中,()不可应用各向同性假设。

材料力学教案-截面的几何性质

材料力学教案-截面的几何性质

Iy
2
Iz
1 2
(I y
§1-1 截面的静矩和形心 (The first moment of the area & centroid of
an area)
一、静矩(The first moment of the area )
截面对 y , z 轴的静矩为
z
S y
zdA
A
Sz
ydA
A
dA z
静矩可正,可负,也可能等于零.
形心主惯性矩( Centroidal principal moment of inertia) :截面对 形心主惯性轴的惯性矩.
(Properties of Plane Areas)
(1)主惯性轴的位置 设 为主惯性轴与原坐标轴之间的夹角
则有
Iy
2
Iz
sin
2 0
I
yz
cos 2 0
0
由此
tg2 0
z
负面积
C2 C1
C1(0,0) C2(5,5)
y
y yi Ai y1 A1 y2 A2
A
A1 A2
5 (80 110) 22 120 90 80110
图(b)
(Properties of Plane Areas)
§1-2 极惯性矩、惯性矩、惯性积
(Polar moment of inertia、Moment of
§1-4 转轴公式 (Rotation of axes)
一 、转轴公式 (Rotation of axes)
yOz为过截面上的任 一点建立的坐标系
y1Oz1为yOz 转过 角后形成的新坐标系
逆時针转取为 + 号

惯性矩总结(含常用惯性矩公式)

惯性矩总结(含常用惯性矩公式)

惯性矩就是一个物理量,通常被用作描述一个物体抵抗扭动,扭转得能力。

惯性矩得国际单位为(m^4)。

工程构件典型截面几何性质得计算2、1面积矩1.面积矩得定义图2-2、1任意截面得几何图形如图2-31所示为一任意截面得几何图形(以下简称图形)。

定义:积分与分别定义为该图形对z轴与y轴得面积矩或静矩,用符号S z与S y,来表示,如式(2—2、1)(2—2、1)面积矩得数值可正、可负,也可为零。

面积矩得量纲就是长度得三次方,其常用单位为m3或mm3。

2.面积矩与形心平面图形得形心坐标公式如式(2—2、2)(2—2、2)或改写成,如式(2—2、3)(2—2、3)面积矩得几何意义:图形得形心相对于指定得坐标轴之间距离得远近程度。

图形形心相对于某一坐标距离愈远,对该轴得面积矩绝对值愈大。

图形对通过其形心得轴得面积矩等于零;反之,图形对某一轴得面积矩等于零,该轴一定通过图形形心。

3.组合截面面积矩与形心得计算组合截面对某一轴得面积矩等于其各简单图形对该轴面积矩得代数与。

如式(2—2、4)(2—2、4)式中,A与y i、z i分别代表各简单图形得面积与形心坐标。

组合平面图形得形心位置由式(2—2、5)确定。

(2—2、5)2、2极惯性矩、惯性矩与惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。

定义:积分称为图形对O点得极惯性矩,用符号I P,表示,如式(2—2、6)(2—2、6)极惯性矩就是相对于指定得点而言得,即同一图形对不同得点得极惯性矩一般就是不同得。

极惯性矩恒为正,其量纲就是长度得4次方,常用单位为m4或mm4。

(1)圆截面对其圆心得极惯性矩,如式(2—7)(2—2、7)(2)对于外径为D、内径为d得空心圆截面对圆心得极惯性矩,如式(2—2、8)(2—2、8)式中,d/D为空心圆截面内、外径得比值。

2.惯性矩在如图6-1所示中,定义积分,如式(2—2、9)(2—2、9)称为图形对z轴与y轴得惯性矩。

材料力学(附录)

材料力学(附录)


2I xy Ix I y
0
x1

x
012tan1(I2xIxIyy )
0
0

2
与 0 对应的旋转轴为x0 、y0 轴,
平面图形对x0 、y0轴惯性矩 I x0 、 I y0 为
y
IIm mianxIx2Iy (Ix2Iy)2Ix2y
y0
x0
0
x
平面图形对x0 、y0 轴的惯性积 I x 0 y 0 为
单位:cm
40 10
20 y
1
C2
15 单位:cm
Iy

Iy

i
I y1

Iy2
1020 3 I y1 12
0.67104(cm4)
I
y
2

40 15 12
3
1.13104(cm4)
x
Iy Iy1Iy2
y
x1
(0.671.13)104
1.8104 (cm4 )
[例] 计算图示图形对其形心轴x轴的惯性矩。
360 40
40
20 180
2.592108(mm4)
t
an20

2I xy Ix I y
52.7(521.15.8932)21.3226
2052.9 , 0 26.45
yo 180 y
I max I min
IxIy 2
(Ix 2Iy)2Ix2y
360 40
§I-2 惯性矩和惯性半径 一、惯性矩:
定义: I x y 2 dA
A
I y x 2dA
y
A
Ix、Iy称为图形对x轴、y轴

附录惯性矩与惯性积_图文28页PPT

附录惯性矩与惯性积_图文28页PPT
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
附录惯性矩与惯性积_图文
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

惯性矩

惯性矩

分类
截面极
截面

截面惯性矩(I=截面面积X截面轴向长度的二次方) 截面惯性矩:the area moment of inertia characterized an object's ability to resist bending and is required to calculate displacement. 截面各微元面积与各微元至截面某一指定轴线距离二次方乘积的积分Ix= y^2dF.
定义
面积元素dA与其至z轴或y轴距离平方的乘积y2dA或z2dA的积分,分别称为该面积元素对于z轴或y轴的惯性矩 或截面二次轴矩。惯性矩的数值恒大于零
对Z轴的惯性矩: 对Y轴的惯性矩: 截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩。 极惯性矩常用计算公式: 矩形对于中线(垂直于h边的中轴线)的惯性矩: 三角形: 圆形对于坐标轴的惯性矩: 圆形对于圆心的惯性矩: 环形对于圆心的惯性矩:,
截面极惯性矩(Ip=面积X垂直轴二次)。 扭转惯性矩Ip: the torsional moment of inertia 极惯性矩:the polar moment of inertia 截面各微元面积与各微元至某一指定截面距离二次方乘积的积分Iρ= ρ^2dF。 a quantity to predict an object's ability to resist torsion, to calculate the angular displacement of an object subjected to a torque.
惯性矩
几何量
01 定义
目录
02 静矩
ห้องสมุดไป่ตู้
03 分类

附录A2-讲义惯性矩、极惯性矩与惯性积

附录A2-讲义惯性矩、极惯性矩与惯性积

12
12
cot 2
1
1 sin 2

A









思考题毕


8
BRY 例题 A.4 计算半径为 R 的圆形对其形心轴的惯性矩、惯性
积和对圆心的极惯性矩。
z
材 料


学 (1) 求惯性矩和惯性积
B
附 录
I y
z 2dA
A
d
d y
A
2
R ( sin )2 d d
00

面 图 形 的
BRY
§A.2 惯性矩、极惯性矩与惯性积
材 料
A.2.1 惯性矩
z

学 惯性矩 (moment of inertia)
B
附 平面图形对 y 轴的惯性矩:
z
录 A
I y
z 2dA
A
(A.6.a)
dA A
平 平面图形对 z 轴的惯性矩:
面 图 形
Iz
y2dA
A
(A.6.b)
O
y
y
的 几
惯性矩也称为二次轴矩 (second moment of an area)。
dz
z ( y b ) tan 2
形 的 几 何 性
1 3
h 2 h 2
6(
z
cot
)2
(
b 2
)
2(
b 2
)3
dz

讲 义
1 3
h 2 h
(3bz 2
cot 2
b3 4
)
dz

材料力学附录(截面特性)

材料力学附录(截面特性)



为形心坐标,则根据合力之矩定理
(A-2) 或
页码,3/14
(A-3)
这就是图形形心坐标与静矩之间的关系。 根据上述定义可以看出: 1.静矩与坐标轴有关,同一平面图形对于不同的坐标轴有不同的静矩。对某些坐标轴静矩为 正;对另外某些坐标轴为负;对于通过形心的坐标轴,图形对其静矩等于零。
2.如果已经计算出静矩,就可以确定形心的位置;反之,如果已知形心位置,则可计算图形的
,
(A-12) (A-13)
式中,D为圆环外径;d为内径。 4.根据惯性矩的定义式(A-6)、(A-7),注意微面积的取法(图A-3所示),不难求得矩形对于平 行其边界的轴的惯性矩:
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,6/14
(A-18)
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,8/14
此即关于图形对于平行轴惯性矩与惯性积之间关系的移轴定理。其中,式(A-18)表明: 1.图形对任意轴的惯性矩,等于图形对于与该轴平行的形心轴的惯性矩,加上图形面积与两平 行轴间距离平方的乘积。
之间的关系。
根据转轴时的坐标变换:
于是有
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,9/14
将积分记号内各项展开,得
改写后,得
(A-19)
上述式(A-19)和(A-20)即为转轴时惯性矩与惯性积之间的关系。
(A-20)
若将上述

1、静矩与形心2、惯性矩、极惯性矩和惯性积3、平行移轴公

1、静矩与形心2、惯性矩、极惯性矩和惯性积3、平行移轴公

1. 转轴公式
y
y
A dA
C E
D
O
x
B
新坐标系ox1y1 旧坐标系o x y
x1 x cos y sin y1 y cos x sin
将上述关系代入平 面图形对x1轴的惯性矩:
x
I x1 A y12 d A
Ix1
cos2
y2 d A sin2
(4)由转轴公式得
80 aⅡ 20 10
40 C
bⅠ Ⅰ
aⅠ
xC
tan 20

2I xc yc I xc I yc
1.093
=113°.8
yc0
bⅡ
20 227 .6 0 113 .8
10 Ⅱ
I xc0
Imax
I xc
I yc 2
1 2
I xc
目录
§ I-2 极惯性矩 ·惯性矩 ·惯性积
1.极惯性矩(或截面二次极矩)
y
I p
2d A
A
2.惯性矩(或截面二次轴矩)
y
I y
x2 d A
A
I x
y2d A
A
O
由于 2 y2 x2
dA
x
x
所以
Ip
2 d A
A
(y2
A
x2)
dA IxIy
(B) Ixy<0 (D) Ix=Iy
(思考题I—2)A
y
bO
(思考题I—3)
x
a
y a

x
Ba
D
思考题I—3:等腰直角三角形如图所示,x、y轴是过斜边中点的

极惯性矩常用计算公式

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12三角形:b*h^3/36圆形对于圆心的惯性矩:π*d^4/64环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D§16-1 静矩和形心平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。

静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。

定义式:,(Ⅰ-1)量纲为长度的三次方。

由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。

静矩与所选坐标轴有关,其值可能为正,负或零。

如一个平面图形是由几个简单平面图形组成,称为组合平面图形。

设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)【例I-1】求图Ⅰ-2所示半圆形的及形心位置。

【解】由对称性,,。

现取平行于轴的狭长条作为微面积所以读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。

【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为矩形Ⅰ:mm2mm,mm矩形Ⅱ:mm2mm,mm整个图形形心的坐标为§16-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。

,(Ⅰ-5)量纲为长度的四次方,恒为正。

相应定义,(Ⅰ-6)为图形对轴和对轴的惯性半径。

组合图形的惯性矩设,(Ⅰ-7)若以表示微面积到坐标原点的距离,则定义图形对坐标原点的极惯性矩(Ⅰ-8)因为所以极惯性矩与(轴)惯性矩有关系(Ⅰ-9)式(Ⅰ-9)表明,图形对任意两个互相垂直轴的(轴)惯性矩之和,等于它对该两轴交点的极惯性矩。

下式(Ⅰ-10)定义为图形对一对正交轴、轴的惯性积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= 附录 A 极惯性矩与惯性矩
题号
页码
A-1 (1)
A-3 ........................................................................................................................................................2 A-4 ........................................................................................................................................................3 A-6 ........................................................................................................................................................4 A-7 ........................................................................................................................................................4 A-8 .. (5)
(也可通过左侧的题号书签直接查找题目与解)
A-1 试确定图示截面形心 C 的坐标 y C。

题 A-1 图
(a)解:坐标及微面积示如图 A − 1 (a)。

由此得
d A =ρ d ϕd ρ
R α
∫ y d A ∫ ∫ ρ cos ϕ ⋅ρ d ϕd ρ 2R sin α y C
= A
A
−α
R α ∫ ∫ =
ρ d ϕd ρ

−α
(b)解:坐标及微面积示如图 A − 1 (b)。

0= A
d A = h ( y )d y = ay n d y
由此得
y C =
∫A =ydA =∫b
y ⋅ ay n
d y n
= (n + 1)b 0 ay d y n + 2
A-3 试计算图示截面对水平形心轴 z 的惯性矩。

题 A-3 图
(a)解:取微面积如图 A − 3 (a)所示。

d A = 2 z d y
由于
∫ ∫ ∫ 3
2 2 4 z = a cos α
y = b sin α,d y = b cos αd α
故有
I z =
y 2d A = A
π 2 (b sin α)2 ⋅ 2a cos α ⋅ b cos αd α
- π 2
= ab π
πab 3
2
(1 − cos4α)d α = - π 4 2 4
(b)解:取微面积如图 A − 3 (b)所示。

且ϕ 在 α 与 − α 之间变化,而
d A = 2z d y = d cos 2
ϕd ϕ
2
由此可得
sin α =
d − 2δ d
I = ∫
α
d y 2
d A = ∫ (
sin ϕ ) 2 ⋅ d
cos 2ϕd ϕ z A -α 2 2
4 4
d α 1 d
= ∫ sin 2 2ϕd ϕ = α ∫ (1 − cos4ϕ
)d ϕ 8 -α 4 = d (α − sin 4α ) 32 4
64 -α
A-4 试计算图示截面对水平形心轴 z 的惯性矩。

4
解:由截面的对称性可得
题 A-4 图
I z =
bh 3 12 πd 4 − 64 = a − 12 πR 4
4
A-6 试计算图示截面对水平形心轴 z 的惯性矩。

解:由截面关于 z 轴的对称性可得 4
题 A-6 图
4
I = a z
12 − (a −δ ) 12
= 1 [a 4
− (a −δ )4 ] 12 A-7 图示曲边三角形 EFG ,z 轴为平行于 EF 边的形心轴,试计算该截面对 z 轴的
惯性矩。

题 A-7 图
1
解:视曲边三角形面积 A 为正方形面积 A 1 与 4
圆面积
A 2 之差(见图 A − 7 ),即
A = A 1 − A 2 =
4 − π R 2
4
由图可知, A 1 及 A 2 的形心位置(竖向)依次为
y C 1

= R ,y 2 C 2
= 4R

可得 A 的形心位置为
A 1 y C 1 = Ay C + A 2 y C 2
y C =
A 1 y C 1 − A 2 y C 2 A
= 2
R 3(4 −π)
进而求曲边三角形截面对 z 轴的惯性矩。

先求 A 对 z 0 轴的 I z , I = I (1) − I ( 2 )
= 1 R 4 − π R 4 = 16 − 3π R 4
最后求 I z ,
z 0 z 0
z 0 3 16 48
I = I
− Ay 2 = 16 − 3π R 4 − ( 4 − π R 2 )( 2
R )2 z z 0 C
48 4 12 − 3π
= 3(16 − 3π)(4 − π) − 16 R 4 ≈ 7.55 ×10− 3 R 4
144(4 − π)
A-8 试计算图示截面对水平形心轴 z 的惯性矩。

3 题A-8 图
(a)解:1.确定形心位置(到顶边之距为y C )
y = 0.350 × 0.100 × 0.050 + 2 × (0.400 × 0.050 × 0.300)
m = 0.1833m
C 0.350 × 0.100 + 2 × (0.400 ×0.050) 2.计算惯性矩
I = {0.350 × 0.100
z 12
+ 0.350 × 0.100 × (0.1833 −0.050) 2
3
+ 2 × [0.050 × 0.400
12
+ 0.050 × 0.400 × (0.300 −0.1833 )2 ]}m 4 = 1.729 ×10 −3 m 4 = 1.729 ×109 mm 4
(b)解:1.确定形心位置(到顶边之距为y C )
y = 0.800 × 0.500 × 0.400 −0.550 × 0.400 × 0.425
m = 0.3694m
C 0.800 × 0.500 −0.550 × 0.400 2.计算惯性矩
3 3 2
C 4
2 4 2 I = [
0.500 × 0.800 z 12 + 0.500 × 0.800 × (0.400 − 0.3694) 2 − 0.400 × 0.550 12 − 0.400 × 0.550 × (0.425 − 0.3694) 2 ]m 4 = 1.548 ×10 −2 m 4 = 1.548 ×1010 mm 4
(c)解:根据附录 C 第 4 行的公式,可直接计算惯性矩,
I z =
h 3 (a 2 + 4ab + b 2 ) 36(a + b )
0.2503 × (0.100 2 + 4 × 0.100 × 0.300 + 0.300 2 ) = m 4 36 × (0.100 + 0.300)
= 2.39 ×10 −4 m 4 = 2.39 ×108 mm 4
(d)解:1.确定形心位置(到大圆水平直径之距为 y C )
0 −
π × 0.300
× 0.100 y = 4 m = −0.0333m π
(0.600 2 − 0.300 2 ) 4
结果为负值,表示形心 C 在大圆水平直径上方。

2.计算惯性矩
I = [
π × 0.600 z 64 + π × 0.600 4 × 0.03332
− π × 0.300 64 − π × 0.300 4
× 0.13332 ]m 4 = 5.02 ×10−3 m 4 = 5.02 ×109 mm 4。

相关文档
最新文档