辽宁省沈阳市中考数学试题及答案

合集下载

辽宁省沈阳市2022年中考数学真题试题Word版含解析

辽宁省沈阳市2022年中考数学真题试题Word版含解析

辽宁省沈阳市2022年中考数学真题试题Word版含解析辽宁省沈阳市2022年中考数学真题试题一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔2.00分〕以下各数中是有理数的是〔〕 A.π B.0C.D.2.〔2.00分〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞××××103.〔2.00分〕如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是〔〕4646A. B. C. D.4.〔2.00分〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B 关于x轴对称,那么点A的坐标是〔〕 A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕 D.〔﹣1,﹣4〕5.〔2.00分〕以下运算错误的选项是〔〕A.〔m〕=m B.a÷a=a C.x?x=x D.a+a=a6.〔2.00分〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕236109358437A.60° B.100°C.110°D.120°7.〔2.00分〕以下事件中,是必然事件的是〔〕 A.任意买一张电影票,座位号是2的倍数 B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨8.〔2.00分〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k 和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.〔2.00分〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕 A.﹣6 B.﹣ C.﹣1 D.610.〔2.00分〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.π B.π C.2π D.π二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔3.00分〕因式分解:3x﹣12x= .12.〔3.00分〕一组数3,4,7,4,3,4,5,6,5的众数是. 13.〔3.00分〕化简:14.〔3.00分〕不等式组﹣= .的解集是.315.〔3.00分〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= m时,矩形土地ABCD的面积最大.16.〔3.00分〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH= .三、解答题题〔17题6分,18-19题各8分,请认真读题〕 17.〔6.00分〕计算:2tan45°﹣|﹣3|+〔〕﹣〔4﹣π〕.﹣218.〔8.00分〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是.19.〔8.00分〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题〔每题8分,请认真读题〕20.〔8.00分〕九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进行调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了名学生,m的值是.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.〔8.00分〕某公司今年1月份的生产本钱是400万元,由于改良技术,生产本钱逐月下降,3月份的生产本钱是361万元.假设该公司2、3、4月每个月生产本钱的下降率都相同.〔1〕求每个月生产本钱的下降率;〔2〕请你预测4月份该公司的生产本钱.五、解答题〔此题10〕22.〔10.00分〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A 作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.六、解答题〔此题10分〕23.〔10.00分〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E 的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒t秒〔t>0〕.①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.个单位的速度匀速移动〔点A移动到点E时止移动〕,设移动时间为七、解答题〔此题12分〕24.〔12.00分〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3于点F,请直接写出线段CF的长.,点N是BC边上的三等分点,直线ED与直线BC交八、解答题〔此题12分〕25.〔12.00分〕如图,在平面角坐标系中,抛物线C1:y=ax+bx﹣1经过点A 〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.22参考答案与试题解析一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔2.00分〕以下各数中是有理数的是〔〕 A.π B.0C.D.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误; B、0是有理数,故本选项正确; C、D、是无理数,故本选项错误;无理数,故本选项错误;应选:B.【点评】此题考查了有理数,有限小数或无限循环小数是有理数.2.〔2.00分〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞××××10【分析】科学记数法的表示形式为a×10的形式,其中1≤×10.应选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔2.00分〕如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是〔〕n4n4646A. B. C. D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定那么可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:应选:D.【点评】此题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.〔2.00分〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B 关于x轴对称,那么点A的坐标是〔〕 A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕 D.〔﹣1,﹣4〕【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,∴点A的坐标是:〔4,1〕.应选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.〔2.00分〕以下运算错误的选项是〔〕A.〔m〕=m B.a÷a=a C.x?x=x D.a+a=a【分析】直接利用合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么化简求出即可.【解答】解:A、〔m〕=m,正确; B、a÷a=a,正确; C、x?x=x,正确; D、a+a=a+a,错误;应选:D.4343358109236236109358437【点评】此题主要考查了合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么等知识,正确掌握运算法那么是解题关键.6.〔2.00分〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕 A.60° B.100°C.110°D.120°【分析】根据平行线的性质比拟多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,应选:D.【点评】此题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握根本知识,属于中考常考题型.7.〔2.00分〕以下事件中,是必然事件的是〔〕 A.任意买一张电影票,座位号是2的倍数 B.13个人中至少有两个人生肖相同 C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数〞是随机事件,故此选项错误; B、“13个人中至少有两个人生肖相同〞是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯〞是随机事件,故此选项错误;D、“明天一定会下雨〞是随机事件,故此选项错误;应选:B.【点评】考查了随机事件.解决此题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.〔2.00分〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k 和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b 的图象经过一、二、四象限,∴k<0,b>0.应选:C.【点评】此题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b〔k ≠0〕中,当k<0,b>0时图象在一、二、四象限.9.〔2.00分〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕 A.﹣6 B.﹣ C.﹣1 D.6【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,∴k=〔﹣3〕×2=﹣6.应选:A.【点评】此题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.。

2022年辽宁省沈阳市中考数学试卷和答案

2022年辽宁省沈阳市中考数学试卷和答案

2022年辽宁省沈阳市中考数学试卷和答案一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)计算5+(﹣3),结果正确的是()A.2B.﹣2C.8D.﹣82.(2分)如图是由4个相同的小立方体搭成的几何体,这个几何体的主视图是()A.B.C.D.3.(2分)下列计算结果正确的是()A.(a3)3=a6B.a6÷a3=a2C.(ab4)2=ab8D.(a+b)2=a2+2ab+b24.(2分)在平面直角坐标系中,点A(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(﹣3,﹣2)5.(2分)调查某少年足球队全体队员的年龄,得到数据结果如下表:年龄/岁1112131415人数34722则该足球队队员年龄的众数是()A.15岁B.14岁C.13岁D.7人6.(2分)不等式2x+1>3的解集在数轴上表示正确的是()A.B.C.D.7.(2分)如图,在Rt△ABC中,∠A=30°,点D、E分别是直角边AC、BC的中点,连接DE,则∠CED的度数是()A.70°B.60°C.30°D.20°8.(2分)在平面直角坐标系中,一次函数y=﹣x+1的图象是()A.B.C.D.9.(2分)下列说法正确的是()A.了解一批灯泡的使用寿命,应采用抽样调查的方式B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则乙组数据较稳定D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件10.(2分)如图,一条河的两岸互相平行,为了测量河的宽度PT(PT 与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为()A.msinαB.mcosαC.mtanαD.二、填空题(每小题3分,共18分)11.(3分)因式分解:ay2+6ay+9a=.12.(3分)二元一次方程组的解是.13.(3分)化简:(1﹣)•=.14.(3分)如图,边长为4的正方形ABCD内接于⊙O,则的长是(结果保留π).15.(3分)如图,四边形ABCD是平行四边形,CD在x轴上,点B 在y轴上,反比例函数y=(x>0)的图象经过第一象限点A,且▱ABCD的面积为6,则k=.16.(3分)如图,将矩形纸片ABCD折叠,折痕为MN,点M,N 分别在边AD,BC上,点C,D的对应点分别为点E,F,且点F 在矩形内部,MF的延长线交边BC于点G,EF交边BC于点H.EN =2,AB=4,当点H为GN的三等分点时,MD的长为.三、答案题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:﹣3tan30°+()﹣2+|﹣2|.18.(8分)为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.19.(8分)如图,在△ABC中,AD是△ABC的角平分线,分别以点A,D为圆心,大于AD的长为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,连接DE,DF.(1)由作图可知,直线MN是线段AD的.(2)求证:四边形AEDF是菱形.四、(每小题8分,共16分)20.(8分)某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B(摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.根据以上信息,答案下列问题:(1)此次被调查的学生人数为名;(2)直接在答题卡中补全条形统计图;(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.21.(8分)如图,用一根60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成的矩形框架ABCD的面积为144平方厘米,则AB 的长为多少厘米?(2)矩形框架ABCD面积的最大值为平方厘米.五、(本题10分)22.(10分)如图,四边形ABCD内接于⊙O,AD是⊙O的直径,AD,BC的延长线交于点E,延长CB交PA于点P,∠BAP+∠DCE=90°.(1)求证:PA是⊙O的切线;(2)连接AC,sin∠BAC=,BC=2,AD的长为.六、(本题10分)23.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C (8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.七、(本题12分)24.(12分)【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x 轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.答案一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.【知识点】有理数的加法.【答案】解:5+(﹣3)=2,故选:A.2.【知识点】简单组合体的三视图.【答案】解:从正面看,底层有2个正方形,上层左边有1个正方形,故选:D.3.【知识点】完全平方公式;幂的乘方与积的乘方;同底数幂的除法.【答案】解:A.(a3)3=a9,因此选项A不符合题意;B.a6÷a3=a6﹣3=a3,因此选项B 不符合题意;C.(ab4)2=a2b8,因此选项C不符合题意;D.(a+b)2=a2+2ab+b2,因此选项D符合题意;故选:D.4.【知识点】关于x轴、y轴对称的点的坐标.【答案】解:点A(2,3)关于y轴的对称点坐标为(﹣2,3).故选:B.5.【知识点】众数.【答案】解:该足球队队员年龄13岁出现的次数最多,故众数为13岁.故选:C.6.【知识点】在数轴上表示不等式的解集.【答案】解:不等式2x+1>3的解集为:x>1,故选:B.7.【知识点】三角形中位线定理.【答案】解:在Rt△ABC中,∠A=30°,则∠B=90°﹣∠A=60°,∵D、E分别是边AC、BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠CED=∠B=60°,故选:B.8.【知识点】一次函数的图象.【答案】解:一次函数y=﹣x+1中,令x=0,则y=1;令y=0,则x=1,∴一次函数y=﹣x+1的图象经过点(0,1)和(1,0),∴一次函数y=﹣x+1的图象经过一、二、四象限,故选:C.9.【知识点】随机事件;全面调查与抽样调查;方差.【答案】解:A.了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A符合题意;B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B不符合题意;C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则甲组数据较稳定,因此选项C不符合题意;D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D不符合题意;故选:A.10.【知识点】解直角三角形的应用.【答案】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ•tanα=mtanα(米),∴河宽PT的长度是mtanα米,故选:C.二、填空题(每小题3分,共18分)11.【知识点】提公因式法与公式法的综合运用.【答案】解:ay2+6ay+9a=a(y2+6y+9)=a(y+3)2.故答案为:a(y+3)2.12.【知识点】解二元一次方程组.【答案】解:,将②代入①,得x+4x=5,解得x=1,将x=1代入②,得y=2,∴方程组的解为,故答案为:.13.【知识点】分式的混合运算.【答案】解:(1﹣)•===x﹣1,故答案为:x﹣1.14.【知识点】弧长的计算;圆内接四边形的性质.【答案】解:连接OA、OB.∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=42,解得:AO=2,∴的长==π,故答案为:π.15.【知识点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;平行四边形的性质;反比例函数的性质.【答案】解:作AE⊥CD于E,如图,∵四边形ABCD为平行四边形,∴AB∥x轴,∴四边形ABOE为矩形,∴S平行四边形ABCD=S矩形ABOE=6,∴|k|=6,而k>0,∴k=6.故答案为:6.16.【知识点】翻折变换(折叠问题);矩形的性质.【答案】解:当HN=GN时,GH=2HN,∵将矩形纸片ABCD折叠,折痕为MN,∴MF=MD,CN=EN,∠E=∠C=∠D=∠MFE=90°,∠DMN =∠GMN,AD∥BC,∴∠GFH=90°,∠DMN=∠MNG,∴∠GMN=∠MNG,∴MG=NG,∵∠GFH=∠E=90°,∠FHG=∠EHN,∴△FGH∽△ENH,∴==2,∴FG=2EN=4,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,则MG=GN=x+4,∴CG=x+6,∴PM=6,∵GP2+PM2=MG2,∴42+62=(x+4)2,解得:x=2﹣4,∴MD=2﹣4;当GH=GN时,HN=2GH,∵△FGH∽△ENH,∴==,∴FG=EN=1,∴MG=GN=x+1,∴CG=x+3,∴PM=3,∵GP2+PM2=MG2,∴42+32=(x+1)2,解得:x=4,∴MD=4;故答案为:2﹣4或4.三、答案题(第17小题6分,第18、19小题各8分,共22分)17.【知识点】实数的运算;负整数指数幂;特殊角的三角函数值.【答案】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.18.【知识点】列表法与树状图法;概率公式.【答案】解:(1)由题意得,随机抽取一张卡片,卡片上的数字是“4”的概率是.故答案为:.(2)画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是“2”和“3”的结果有2种,∴小明随机抽取两张卡片,两张卡片上的数字是“2”和“3”的概率为.19.【知识点】作图—基本作图;线段垂直平分线的性质;菱形的判定.【答案】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵FA=FD,∴四边形AEDF为菱形.四、(每小题8分,共16分)20.【知识点】条形统计图;用样本估计总体;扇形统计图.【答案】解:(1)此次被调查的学生人数为:12÷10%=120(名),故答案为:120;(2)选择B的学生有:120﹣12﹣48﹣24=36(名),补全的条形统计图如图所示;(3)360°×=72°,即拓展课程D(劳动实践)所对应的扇形的圆心角的度数是72°;(3)800×=320(名),答:估计该校800名学生中,有320名学生最喜欢C(音乐鉴赏)拓展课程.21.【知识点】二次函数的应用;一元二次方程的应用.【答案】解:(1)设框架的长AD为xcm,则宽AB为cm,∴x•=144,解得x=12或x=18,∴AB=12cm或AB=8cm,∴AB的长为12厘米或8厘米;(2)由(1)知,框架的长AD为xcm,则宽AB为cm,∴S=x•,即S=﹣x2+20x=﹣(x﹣15)2+150,∵﹣<0,∴要使框架的面积最大,则x=15,此时AB=10,最大为150平方厘米.故答案为:150.五、(本题10分)22.【知识点】切线的判定与性质;解直角三角形;圆周角定理.【答案】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠BAD=∠DCE,∵∠BAP+∠DCE=90°,∴∠BAP+∠BAD=90°,∴∠OAP=90°,∵OA是⊙O的半径,∴PA是圆O的切线;(2)连接BO并延长交⊙O于点F,连接CF,∵BF是⊙O的直径,∴∠BCF=90°,∵∠BAC=∠F,∴sin∠BAC=sinF=,在Rt△BCF中,BC=2,∴BF===6,∴AD=BF=6,故答案为:6.六、(本题10分)23.【知识点】一次函数综合题.【答案】解:(1)将点B(0,9),C(8,3)的坐标代入直线y =kx+b,∴,解得.∴直线AB的函数表达式为:y=﹣x+9;(2)①由(1)知直线AB的函数表达式为:y=﹣x+9,令y=0,则x=12,∴A(12,0),∴OA=12,OB=9,∴AB=15;如图1,过点C作CF⊥C′D′于点F,∴CF∥OA,∴∠OAB=∠FCC′,∵∠C′FC=∠BOA=90°,∴△CFC′∽△AOB,∴OB:OA:AB=C′F:CF:CC′=9:12:15,∵CC′=m,∴CF=m,C′F=m,∴C′(8﹣m,3+m),A′(12﹣m,m),D′(8﹣m,m),∵C(8,3),∴直线OC的解析式为:y=x,∴E(8﹣m,3﹣m).∴C′E=3+m﹣(3﹣m)=m.故答案为:m.②当点D′落在直线OC上时,有m=(8﹣m),解得m=,∴当0<m<时,点D′未到直线OC,此时S=C′E•CF=•m•m=m2;故答案为:m2.③分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∴M(m,m),∴D′E=m﹣(3﹣m)=m﹣3,D′M=m﹣(8﹣m)=m﹣8;∴S=m2﹣•(m﹣3)•(m﹣8)=﹣m2+m﹣12,令﹣m2+m﹣12=;整理得,3m2﹣30m+70=0,解得m=或m=>5(舍);当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m<15时,如图4,此时A′B=15﹣m,∴BN=(15﹣m),A′N=(15﹣m),∴S=•(15﹣m)•(15﹣m)=(15﹣m)2,令(15﹣m)2=,解得m=15+2>15(舍)或m=15﹣2.故答案为:或15﹣2.七、(本题12分)24.【知识点】几何变换综合题.【答案】解:(1)AD=BC.理由如下:如图1,∵△AOB和△COD是等腰直角三角形,∠AOB=∠COD =90°,∴OA=OB,OD=OC,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC,故答案为:AD=BC;(2)AD=BC仍然成立.证明:如图2,∵∠AOB=∠COD=90°,∴∠AOB+∠AOC=∠AOC+∠COD=90°+α,即∠BOC=∠AOD,在△AOD和△BOC中,,°∴△AOD≌△BOC(SAS),∴AD=BC;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,∵△ABT和△CBD都是等腰直角三角形,∴BT=AB,BD=BC,∠ABT=∠CBD=45°,∴==,∠ABC=∠TBD,∴△ABC∽△TBD,∴==,∴DT=AC=×3=3,∵AT=AB=8,DT=3,∴点D的运动轨迹是以T为圆心,3为半径的圆,∴当D在AT的延长线上时,AD的值最大,最大值为8+3,故答案为:8+3;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,∵==cos30°=,∠ABC=∠TBD=30°+∠TBC,∴△BAC∽△BTD,∴==,∴DT=AC=×3=,在Rt△ABT中,AT=AB•sin∠ABT=8sin30°=4,∵∠BAT=90°﹣30°=60°,∴∠TAH=∠BAT﹣∠DAB=60°﹣30°=30°,∵TH⊥AD,∴TH=AT•sin∠TAH=4sin30°=2,AH=AT•cos∠TAH=4cos30°=2,在Rt△DTH中,DH===,∴AD=AH+DH=2+;如图5,在AB上方作∠ABE=30°,过点A作AE⊥BE于点E,连接DE,则==cos30°=,∵∠EBD=∠ABC=∠ABD+30°,∴△BDE∽△BCA,∴==,∴DE=AC=×3=,∵∠BAE=90°﹣30°=60°,AE=AB•sin30°=8×=4,∴∠DAE=∠DAB+∠BAE=30°+60°=90°,∴AD===;综上所述,AD的值为2+或.八、(本题12分)25.【知识点】二次函数综合题.【答案】解:(1)①∵抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),∴,解得:,∴抛物线的函数表达式为y=x2﹣x﹣3;②由①得y=x2﹣x﹣3,当y=0时,x2﹣x﹣3=0,解得:x1=6,x2=﹣2,∴A(﹣2,0),设直线AD的函数表达式为y=kx+d,则,解得:,∴直线AD的函数表达式为y=x﹣1;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图1,∵S1=2S2,即=2,∴=2,∴=,∵EM⊥x轴,FN⊥x轴,∴EM∥FN,∴△BFN∽△BEM,∴===,∵BM=6﹣t,EM=﹣(t2﹣t﹣3)=﹣t2+t+3,∴BN=(6﹣t),FN=(﹣t2+t+3),∴x=OB﹣BN=6﹣(6﹣t)=2+t,y=﹣(﹣t2+t+3)=t2﹣t﹣2,∴F(2+t,t2﹣t﹣2),∵点F在直线AD上,∴t2﹣t﹣2=﹣(2+t)﹣1,解得:t1=0,t2=2,∴E(0,﹣3)或(2,﹣4);(3)∵y=x2﹣x﹣3=(x﹣2)2﹣4,∴顶点坐标为G(2,﹣4),当x=0时,y=3,即点C (0,﹣3),∴点C′(0,3),G′(2,4),∴向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,∴向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,设直线BC的解析式为y=k′x+d′(k′≠0),把点B(6,0),C(0,﹣3)代入得:,解得:,∴直线BC的解析式为y=x﹣3,同理直线C′G′的解析式为y=x+3,∴BC∥C′G′,设点P的坐标为(s,s﹣3),∵点C′(0,3),G′(2,4),∴点C′向右平移2个单位,再向上平移1个单位得到点G′,∵四边形C′G′QP是平行四边形,∴点Q(s+2,s﹣2),当点P,Q均在向上翻折部分平移后的图象上时,则,解得:(不符合题意,舍去),当点P在向上翻折部分平移后的图象上,点Q在平移后抛物线剩下部分的图象上时,则,解得:或(不合题意,舍去),当点P在平移后抛物线剩下部分的图象上,点Q在向上翻折部分平移后的图象上时,则,解得:或(不合题意,舍去),综上所述,点P的坐标为(1+,)或(1﹣,).。

【九年级】沈阳市2021年中考数学试卷(含答案)

【九年级】沈阳市2021年中考数学试卷(含答案)

【九年级】沈阳市2021年中考数学试卷(含答案)考试时间:120分钟,试卷满分150分,参考公式:参考公式:抛物线的顶点坐标是.对称轴是直线,注意事项21.答题前,考生须用0. 5mm黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效;3.考试结束,将本试题卷和答题卡一并交回;.4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明,否则后果自负.一、(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.2021年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),讲196亿用科学记数法表示为()A. B. C. D.2.右图是一个几何体的三视图,这个几何体的名称是()A.圆柱体 B.三棱锥 C.球体 D.圆锥体3.下面计算一定正确的是()A.B.C. D.4.如果,那么m的取值范围是()A. B. C. D.5.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数 B.射击运动员射击一次,命中9环.C.明天会下雨 D.度量三角形的内角和,结果是360°6.计算的结果是( )A. B. C. D.7、在同一平面直角坐标系中,函数与函数的图象可能是()8.如图,中,AE交BC于点D,,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A. B. C. D.二、题(每小题4分,共32分)9.分解因式: _________.10.一组数据2,4,x,-1的平均数为3,则x的值是 =_________.11.在平面直角坐标系中,点M(-3,2)关于原点的对称点的坐标是 _________.12.若关于x的一元二次方程有两个不相等的实数根,则a的取值方位是_________.13.如果x=1时,代数式的值是5,那么x= -1时,代数式的值 _________.14.如图,点A、B、C、D都在⊙O上,=90°,AD=3,CD=2,则⊙O 的直径的长是_________.15.有一组等式:请观察它们的构成规律,用你发现的规律写出第8个等式为_________16.已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离和最大距离分别是_________三、解答题(第17、18小题各8分,第19小题10分.共26分)17.计算:18.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图。

最新版辽宁省沈阳市2022届中考数学试卷和答案解析详解完整版

最新版辽宁省沈阳市2022届中考数学试卷和答案解析详解完整版
D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件
10.如图,一条河两岸互相平行,为测得此河的宽度PT(PT与河岸PQ垂直),测P、Q两点距离为m米, ,则河宽PT的长度是()
A. B. C. D.
二、填空题(每小题3分,共18分)
11.分解因式: ______.
12.二元一次方程组 的解是______.
一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)
1.计算 正确的是()
A 2B. C.8D.
2.如图是由4个相同的小立方块搭成的几何体,这个几何体的主视图是( )
A. B.
C. D.
3.下列计算结果正确的是()
A B.
C. D.
4.在平面直角坐标系中,点 关于y轴对称的点的坐标是( )
③分情况讨论,
当0<m< 时,由②可知,S= m2;
令S= m2= ,解得m= > (舍)或m=﹣ (舍);
当 ≤m<5时,如图2,
设线段A′D′与直线OC交于点M,
∴M( m, m),
∴D′E= m﹣(3﹣ m)= m﹣3,
D′M= m﹣(8﹣ m)= m﹣8;
∴S= m2﹣ •( m﹣3)•( m﹣8)
1-10 ADDBC BBAAC
11.【答案】
12【答案】 ##
13【答案】 ##
14.【答案】
15.【答案】6
16.【答案】 或4
17.解:原式=

18【小问1详解】
解:随机抽取一张卡片,卡片上的数字是4的概率为 ,
故答案为: ;
【小问2详解】
解:画树状图如下:
共有12种等可能的结果,其中两张卡片上的数字是2和3的结果有2种,

2023年辽宁省沈阳市中考数学真题试卷(解析版)

2023年辽宁省沈阳市中考数学真题试卷(解析版)

2023年辽宁省沈阳市中考数学真题试卷及答案一、选择题(本大题共10小题,共20)1. 2的相反数是()A. 2B. -2C.D.【答案】B【解析】2的相反数是-2.故选:B.2. 如图是由个相同的小立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.【答案】A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中;解:此几何体的主视图从左往右分列,小正方形的个数分别是,,.故选:A【点拨】本题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图3. 我国自主研发的口径球面射电望远镜()有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据为()A. B. C. D.【答案】D【解析】科学记数法的表示形式为的形式,其中为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数;解:,故选:D【点拨】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值4. 下列计算结果正确的是()A. B. C. D.【答案】D【解析】根据整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算即可求解.解:、,故此选项错误,不符合题意;B.,故此选项错误,不符合题意;C.,故此选项错误,不符合题意;D.,正确,符合题意.故选:.【点拨】本题主要考查整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算,掌握整式的混合运算是解题的关键.5. 不等式的解集在数轴上表示正确的是()A. B.C. D.【答案】C【解析】根据在数轴上表示不等式解集的方法求解即可.解:∵,∴1处是实心原点,且折线向右.故选:C.【点拨】题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6. 某班级准备利用暑假去研学旅行,他们准备定做一批容量一致的双肩包为此,活动负责人征求了班内同学的意向,得到了如下数据:容量人数则双肩包容量的众数是()A. B. C. D.【答案】C【解析】根据众数的定义求解即可.解:出现次,出现次数最多,众数是,故选:C.【点拨】本题考查了众数的定义,众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.7. 下列说法正确的是()A. 将油滴入水中,油会浮在水面上是不可能事件B. 抛出的篮球会下落是随机事件C. 了解一批圆珠笔芯的使用寿命,采用普查的方式D. 若甲、乙两组数据的平均数相同,,,则甲组数据较稳定【答案】D【解析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.解:、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B.抛出的篮球会下落是必然事件,故B不符合题意;C.了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定,故D符合题意;故选:.【点拨】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.8. 已知一次函数的图象如图所示,则,的取值范围是()A. ,B. ,C. ,D. ,【答案】A【解析】根据一次函数图象进行判断.解:一次函数的图象经过第一、三、四象限,,.故选:A.【点拨】本题考查一次函数的图象和性质,熟知一次函数的图象与系数的关系是解题的关键.9. 二次函数图象的顶点所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】根据抛物线,可以写出该抛物线的顶点坐标,从而可以得到顶点在第几象限.解:,顶点坐标为,顶点在第二象限.故选:.【点拨】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.10. 如图,四边形内接于,的半径为,,则的长是()A. B. C. D.【答案】C【解析】根据圆内接四边形的性质得到,由圆周角定理得到,根据弧长的公式即可得到结论.解:四边形内接于,,,,的长.故选:.【点拨】本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题(本大题共6小题,共18分)11. 因式分解:__________.【答案】a(a+1)2【解析】先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a±2ab+b=(a±b):a3+2a2+a,=a(a2+2a+1),=a(a+1)2.【点拨】此题考查提公因式法与公式法的综合运用,掌握运算法则是解题关键12. 当时,代数式的值为______ .【答案】2【解析】先将原式去括号,然后合并同类项可得,再把前两项提取,然后把的值代入可得结果.解:当时,原式,故答案为:.【点拨】此题主要是考查了整式化简求值,能够熟练运用去括号法则,合并同类项法则化简是解题的关键.13. 若点和点都在反比例函数的图象上,则______ .(用“”“”或“”填空)【答案】【解析】把和分别代入反比例函数中计算y的值,即可做出判断.解:∵点和点都在反比例函数的图象上,∴令,则;令,则,,,故答案为:.【点拨】本题考查了反比例函数图像上点的坐标特征,计算y的值是解题的关键.14. 如图,直线,直线分别与,交于点,,小明同学利用尺规按以下步骤作图:(1)点为圆心,以任意长为半径作弧交射线于点,交射线于点;(2)分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;(3)作射线交直线于点;若,则______度.【答案】58【解析】由作图得平分,再根据平行线的性质“两直线平行,内错角相等”易得,即可获得答案.解:由作图得:平分,∴,∵,∴,∴.故答案为:.【点拨】本题主要考查了尺规作图-基本作图以及平行线的性质,由作图得到平分是解题关键.15. 如图,王叔叔想用长为的栅栏,再借助房屋的外墙围成一个矩形羊圈,已知房屋外墙足够长,当矩形的边______ 时,羊圈的面积最大.【答案】15【解析】设为,则,根据矩形的面积公式可得关于x的二次函数关系式,配方后即可解.解:设为,面积为,由题意可得:,当时,取得最大值,即时,羊圈的面积最大,故答案为:.【点拨】本题考查了二次函数的性质在实际生活中的应用.最大面积的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在时取得.16. 如图,在中,,,点在直线上,,过点作直线于点,连接,点是线段的中点,连接,则的长为______ .【答案】或【解析】分两种情况当在延长线上和当在上讨论,画出图形,连接,过点作于,利用勾股定理解题即可解:当在线段上时,连接,过点作于,当在线段上时,,,,,点是线段的中点,,,,,,,,,,当在延长线上时,则,是线段的中点,,,,,,,,,,,,的长为或.故答案为:或.【点拨】本题考查等腰直角三角形的判定和性质,勾股定理,正确作出辅助线是解题的关键.三、解答题(本大题共9小题,共82)17. 计算:.【答案】10【解析】根据零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,进行计算即可.解:.【点拨】本题主要考查了实数混合运算,解题的关键是熟练掌握零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,准确计算.18. 为弘扬中华优秀传统文化,学校举办“经典诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类(分别用,,依次表示这三类比赛内容).现将正面写有,,的三张完全相同的卡片背面朝上洗匀,由选手抽取卡片确定比赛内容选手小明先从三张卡片中随机抽取一张,记下字母后放回洗匀,选手小梅再随机抽取一张,记下字母请用画树状图或列表的方法,求小明和小梅抽到同一类比赛内容的概率.【答案】图见解析,【解析】用树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可;解:用树状图法表示所有等可能出现的结果如下:共有种等可能出现的结果,其中小明和小梅抽到同一类比赛内容的有种,所以小明和小梅抽到同一类比赛内容的概率为.【点拨】本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的关键19. 如图,在中,,是边上的中线,点在的延长线上,连接,过点作交的延长线于点,连接、,求证:四边形是菱形.【答案】证明见解析【解析】先根据等腰三角形的性质,得到垂直平分,进而得到,,,再利用平行线的性质,证明,得到,进而得到,即可证明四边形是菱形.证明:,是边上的中线,垂直平分,,,,,,,在和中,,,,,四边形是菱形.【点拨】本题考查了等腰三角形的性质,垂直平分线的性质,全等三角形的判定和性质,菱形的判定,灵活运用相关知识点解决问题是解题关键.20. “书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查问卷设置了五种选项:“艺术类”,“文学类”,“科普类”,“体育类”,“其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______ 名;(2)请直接补全条形统计图;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是______ 度;(4)据抽样调查结果,请你估计该校名学生中,有多少名学生最喜爱“科普类”图书.【答案】(1)100 (2)见解析(3)36 (4)720名【解析】(1)用B的人数除以对应百分比可得样本容量;(2)用样本容量减去其它四类的人数可得D类的人数,进而补全条形统计图;(3)用360乘A“艺术类”所占百分比可得对应的圆心角度数;(4)用总人数乘样本中C类所占百分比即可;(1)此次被调查的学生人数为:名,故答案为:;(2)类的人数为:名,补全条形统计图如下:;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是:,故答案为:;(4)(名),答:估计该校名学生中,大约有名学生最喜爱“科普类”图书.【点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小21. 甲、乙两人加工同一种零件,每小时甲比乙多加工个这种零件,甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工个这种零件.【解析】设乙每小时加工个这种零件,则甲每小时加工个这种零件,利用“甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等”列分式方程即可求解.解:设乙每小时加工个这种零件,则甲每小时加工个这种零件,根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:乙每小时加工个这种零件.【点拨】本题主要考查了分式方程的应用,解题的关键在于能够根据题意找到等量关系列出方程进行求解.22. 如图,是的直径,点是上的一点(点不与点,重合),连接、,点是上的一点,,交的延长线于点,且.(1)求证:是的切线;(2)若的半径为,,则的长为______ .【答案】(1)证明见解析(2)8【解析】(1)利用圆周角定理,等腰三角形的性质定理,对顶角相等,三角形的内角和定理和圆的切线的判定定理解答即可得出结论;(2)利用直角三角形的边角关系定理得到设, 则, 利用x的代数式表示出线段,再利用勾股定理列出关于x的方程,解方程即可得出结论.(1)证明:是的直径,,,,,,,,,,,即.为的直径,是的切线;(2)解:,,,设,则,,,,,是的直径,,,,解得:不合题意,舍去或..故答案为:.【点拨】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,三角形的内角和定理,圆的切线的判定定理,勾股定理,直角三角形的边角关系定理,熟练掌握圆周角定理是解题的关键.23. 如图,在平面直角坐标系中,一次函数的图象交轴于点,交轴于点直线与轴交于点,与直线交于点点是线段上的一个动点(点不与点重合),过点作轴的垂线交直线于点设点的横坐标为.(1)求的值和直线的函数表达式;(2)以线段,为邻边作▱,直线与轴交于点.①当时,设线段的长度为,求与之间的关系式;②连接,,当面积为时,请直接写出的值.【答案】(1),(2)①;②或【解析】(1)根据直线的解析式求出点C的坐标,用待定系数法求出直线的解析式即可;(2)①用含m的代数式表示出的长,再根据得出结论即可;②根据面积得出l的值,然后根据①的关系式的出m的值.(1)点在直线上,,一次函数的图象过点和点,,解得,直线解析式为;(2)①点在直线上,且的横坐标为,的纵坐标为:,点在直线上,且点的横坐标为,点的纵坐标为:,,点,线段的长度为,,,,即;②的面积为,,即,解得,由①知,,,解得,即的值为或.【点拨】本题考查一次函数的知识,熟练掌握一次函数的图象和性质,待定系数法求解析式是解题的关键.24. 如图,在纸片中,,,,点为边上的一点(点不与点重合),连接,将纸片沿所在直线折叠,点,的对应点分别为、,射线与射线交于点.(1)求证:;(2)如图,当时,的长为______ ;(3)如图,当时,过点作,垂足为点,延长交于点,连接、,求的面积.【答案】(1)证明见解析;(2);(3)【解析】(1)根据平行四边形的性质和平行线的性质,得到,再根据折叠的性质,得到,然后结合邻补角的性质,推出,即可证明;(2)作,交的延长线于,先证明四边形是正方形,再利用特殊角的三角函数值,求出,进而得到,即可求出的长;(3)作,交的延长线于,作于,交的延长线于,作于,解直角三角形,依次求出、、、的值,进而求得的值,根据和,求得、,进而得出的值,解直角三角形,求出的值,进而得出的值,根据,得出,从而设,,进而表示出,最后根据,列出,求出,根据,得出,进而得到,即可求出的面积.(1)证明:四边形是平行四边形,,,由折叠性质可知,,,,,;(2)解:如图,作,交的延长线于,,,,,,,,四边形是矩形,由(1)可知:,矩形是正方形,,,,,,,故答案为:;(3)解:如图,作,交的延长线于,作于,交的延长线于,作于,四边形是平行四边形,,,,,,在中,,,,在中,,由(1)可知:,,,又纸片沿所在直线折叠,点,的对应点分别为,,,,,,,,,,,,,,在中,,,,,,,,,,设,,,,,,,,,,,,,,,,,,.【点拨】本题考查了平行四边形的性质,正方形的判定和性质,等腰三角形的性质,解直角三角形、轴对称的性质等知识,正确作辅助线,熟练解直角三角形是解题关键.25. 如图,在平面直角坐标系中,二次函数的图象经过点,与轴的交点为点和点.(1)求这个二次函数的表达式;(2)点,在轴正半轴上,,点在线段上,以线段,为邻边作矩形,连接,设.连接,当与相似时,求的值;当点与点重合时,将线段绕点按逆时针方向旋转后得到线段,连接,,将绕点按顺时针方向旋转后得到,点,对应点分别为、,连接当的边与线段垂直时,请直接写出点的横坐标.【答案】(1)(2)①或;②或或【解析】(1)利用待定系数法解答即可;(2)①利用已知条件用含a的代数式表示出点E,D,F,G的坐标,进而得到线段的长度,利用分类讨论的思想方法和相似三角形的性质,列出关于a的方程,解方程即可得出结论;②利用已知条件,点的坐标的特征,平行四边形的判定与性质,旋转的性质,全等三角形的判定与性质求得,和的长,利用分类讨论的思想方法分三种情形讨论解答利用旋转的性质,直角三角形的边角关系定理,勾股定理求得相应线段的长度即可得出结论;(1)二次函数的图象经过点,与轴的交点为点,解得:此抛物线的解析式为(2)令,则解得:或,∴.∵,∴四边形为矩形,∴∴∴Ⅰ当时,∴∴∴Ⅱ当时,∴∴∴综上,当与相似时,的值为或;点与点重合,∴∴∴四边形为平行四边形,和中,Ⅰ、当所在直线与垂直时,如图,,,三点在一条直线上,过点作轴于点,则∴此时点的横坐标为Ⅱ当所在直线与垂直时,如图,,,设的延长线交于点,过点作,交的延长线于点,过点作,交的延长线于点,则轴,.,,.,.,,此时点的横坐标为;Ⅲ当所在直线与垂直时,如图,,,,,,三点在一条直线上,则,过点作,交的延长线于点,,此时点的横坐标为.综上,当的边与线段垂直时,点的横坐标为或或.【点拨】本题主要考查了二次函数的图象与性质,抛物线上点的坐标的特征,矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,利用点的坐标表示出相应线段的长度和正确利用分类讨论的思想方法是解题的关键。

2021年辽宁省沈阳市中考数学试卷(含答案解析版)

2021年辽宁省沈阳市中考数学试卷(含答案解析版)

2021年辽宁省沈阳市中考数学试卷一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔分〕〔2021•沈阳〕以下各数中是有理数的是〔〕A.πB.0 C.D.2.〔分〕〔2021•沈阳〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞的相关文章到达81000篇,将数据81000用科学记数法表示为〔〕A.×104B.×106C.×104D.×1063.〔分〕〔2021•沈阳〕如图是由五个一样的小立方块搭成的几何体,这个几何体的左视图是〔〕A.B.C.D.4.〔分〕〔2021•沈阳〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,那么点A的坐标是〔〕A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕D.〔﹣1,﹣4〕5.〔分〕〔2021•沈阳〕以下运算错误的选项是〔〕A.〔m2〕3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a76.〔分〕〔2021•沈阳〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕A.60°B.100°C.110° D.120°7.〔分〕〔2021•沈阳〕以下事件中,是必然事件的是〔〕A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖一样C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.〔分〕〔2021•沈阳〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.〔分〕〔2021•沈阳〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕A.﹣6 B.﹣C.﹣1 D.610.〔分〕〔2021•沈阳〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.πB.πC.2πD.π二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔分〕〔2021•沈阳〕因式分解:3x3﹣12x=.12.〔分〕〔2021•沈阳〕一组数3,4,7,4,3,4,5,6,5的众数是.13.〔分〕〔2021•沈阳〕化简:﹣=.14.〔分〕〔2021•沈阳〕不等式组的解集是.15.〔分〕〔2021•沈阳〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= m时,矩形土地ABCD的面积最大.16.〔分〕〔2021•沈阳〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.三、解答题题〔17题6分,18-19题各8分,请认真读题〕17.〔分〕〔2021•沈阳〕计算:2tan45°﹣|﹣3|+〔〕﹣2﹣〔4﹣π〕0.18.〔分〕〔2021•沈阳〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是.19.〔分〕〔2021•沈阳〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性一样,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题〔每题8分,请认真读题〕20.〔分〕〔2021•沈阳〕九年三班的小雨同学想理解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进展调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完好的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了名学生,m的值是.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.〔分〕〔2021•沈阳〕某公司今年1月份的消费本钱是400万元,由于改良技术,消费本钱逐月下降,3月份的消费本钱是361万元.假设该公司2、3、4月每个月消费本钱的下降率都一样.〔1〕求每个月消费本钱的下降率;〔2〕请你预测4月份该公司的消费本钱.五、解答题〔此题10〕22.〔分〕〔2021•沈阳〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.六、解答题〔此题10分〕23.〔分〕〔2021•沈阳〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒个单位的速度匀速挪动〔点A挪动到点E时止挪动〕,设挪动时间为t秒〔t>0〕.①矩形ABCD在挪动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在挪动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.七、解答题〔此题12分〕24.〔分〕〔2021•沈阳〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M 在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED 与直线BC交于点F,请直接写出线段CF的长.八、解答题〔此题12分〕25.〔分〕〔2021•沈阳〕如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.2021年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题〔每题只有一个正确选项,此题共10小题,每题2分,共20分〕1.〔分〕〔2021•沈阳〕以下各数中是有理数的是〔〕A.πB.0 C.D.【考点】27:实数.【专题】511:实数.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;应选:B.【点评】此题考察了有理数,有限小数或无限循环小数是有理数.2.〔分〕〔2021•沈阳〕辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠〞的相关文章到达81000篇,将数据81000用科学记数法表示为〔〕A.×104B.×106C.×104D.×106【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将81000用科学记数法表示为:×104.应选:C.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔分〕〔2021•沈阳〕如图是由五个一样的小立方块搭成的几何体,这个几何体的左视图是〔〕A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形断定那么可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:应选:D.【点评】此题主要考察了几何体的三种视图和学生的空间想象才能,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.〔分〕〔2021•沈阳〕在平面直角坐标系中,点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,那么点A的坐标是〔〕A.〔4,1〕 B.〔﹣1,4〕C.〔﹣4,﹣1〕D.〔﹣1,﹣4〕【考点】P5:关于x轴、y轴对称的点的坐标.【专题】1 :常规题型.【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是〔4,﹣1〕,点A与点B关于x轴对称,∴点A的坐标是:〔4,1〕.应选:A.【点评】此题主要考察了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.〔分〕〔2021•沈阳〕以下运算错误的选项是〔〕A.〔m2〕3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么化简求出即可.【解答】解:A、〔m2〕3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;应选:D.【点评】此题主要考察了合并同类项法那么以及单项式乘以单项式运算法那么和同底数幂的除法运算法那么等知识,正确掌握运算法那么是解题关键.6.〔分〕〔2021•沈阳〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2补角的度数是〔〕A.60°B.100°C.110° D.120°【考点】IL:余角和补角;JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】根据平行线的性质比拟多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,应选:D.【点评】此题考察平行线的性质、补角和余角等知识,解题的关键是纯熟掌握根本知识,属于中考常考题型.7.〔分〕〔2021•沈阳〕以下事件中,是必然事件的是〔〕A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖一样C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【考点】X1:随机事件.【专题】543:概率及其应用.【分析】必然事件就是一定发生的事件,根据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数〞是随机事件,故此选项错误;B、“13个人中至少有两个人生肖一样〞是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯〞是随机事件,故此选项错误;D、“明天一定会下雨〞是随机事件,故此选项错误;应选:B.【点评】考察了随机事件.解决此题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.〔分〕〔2021•沈阳〕在平面直角坐标系中,一次函数y=kx+b的图象如下图,那么k和b的取值范围是〔〕A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】F7:一次函数图象与系数的关系.【专题】53:函数及其图象.【分析】根据一次函数的图象与系数的关系进展解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.应选:C.【点评】此题考察的是一次函数的图象与系数的关系,即一次函数y=kx+b〔k≠0〕中,当k<0,b>0时图象在一、二、四象限.9.〔分〕〔2021•沈阳〕点A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,那么k的值是〔〕A.﹣6 B.﹣C.﹣1 D.6【考点】G6:反比例函数图象上点的坐标特征.【专题】33 :函数思想.【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A〔﹣3,2〕在反比例函数y=〔k≠0〕的图象上,∴k=〔﹣3〕×2=﹣6.应选:A.【点评】此题考察了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.10.〔分〕〔2021•沈阳〕如图,正方形ABCD内接于⊙O,AB=2,那么的长是〔〕A.πB.πC.2πD.π【考点】LE:正方形的性质;MN:弧长的计算.【专题】1 :常规题型.【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=〔2〕2,解得:AO=2,∴的长为=π,应选:A.【点评】此题考察了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.二、细心填一填〔本大题共6小题,每题3分,总分值18分,请把答案填在答題卷相应题号的横线上〕11.〔分〕〔2021•沈阳〕因式分解:3x3﹣12x=3x〔x+2〕〔x﹣2〕.【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式3x,然后利用平方差公式即可分解.【解答】解:3x3﹣12x=3x〔x2﹣4〕=3x〔x+2〕〔x﹣2〕故答案是:3x〔x+2〕〔x﹣2〕.【点评】此题考察了提公因式法与公式法分解因式,要求灵敏使用各种方法对多项式进展因式分解,一般来说,假如可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.〔分〕〔2021•沈阳〕一组数3,4,7,4,3,4,5,6,5的众数是4.【考点】W5:众数.【专题】1 :常规题型;542:统计的应用.【分析】根据众数的定义求解可得.【解答】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.【点评】此题主要考察众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,假设几个数据频数都是最多且一样,此时众数就是这多个数据.13.〔分〕〔2021•沈阳〕化简:﹣=.【考点】6B:分式的加减法.【专题】11 :计算题;513:分式.【分析】原式通分并利用同分母分式的减法法那么计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考察了分式的加减法,纯熟掌握运算法那么是解此题的关键.14.〔分〕〔2021•沈阳〕不等式组的解集是﹣2≤x<2.【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,那么不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】此题考察理解一元一次不等式组,遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.〔分〕〔2021•沈阳〕如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.篱笆的总长为900m〔篱笆的厚度忽略不计〕,当AB= 150m时,矩形土地ABCD的面积最大.【考点】HE:二次函数的应用.【专题】12 :应用题.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答此题.【解答】解:〔1〕设AB=xm,那么BC=〔900﹣3x〕,由题意可得,S=AB×BC=x×〔900﹣3x〕=﹣〔x2﹣300x〕=﹣〔x﹣150〕2+33750∴当x=150时,S获得最大值,此时,S=33750,∴AB=150m,故答案为:150.【点评】此题考察二次函数的应用,解答此题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.16.〔分〕〔2021•沈阳〕如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【考点】KD:全等三角形的断定与性质;KK:等边三角形的性质;S9:相似三角形的断定与性质.【专题】11 :计算题.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,那么可根据“AAS〞证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,那么CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH 的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+〔AH〕2=AC2=〔〕2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】此题考察了相似三角形的断定与性质:在断定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥根本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考察了全等三角形的断定与性质和等边三角形的性质.三、解答题题〔17题6分,18-19题各8分,请认真读题〕17.〔分〕〔2021•沈阳〕计算:2tan45°﹣|﹣3|+〔〕﹣2﹣〔4﹣π〕0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式=2×1﹣〔3﹣〕+4﹣1=2﹣3++4﹣1=2+.【点评】此题主要考察了实数运算,正确化简各数是解题关键.18.〔分〕〔2021•沈阳〕如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.〔1〕求证:四边形OCED是矩形;〔2〕假设CE=1,DE=2,ABCD的面积是4.【考点】L8:菱形的性质;LD:矩形的断定与性质.【专题】556:矩形菱形正方形.【分析】〔1〕欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;〔2〕由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】〔1〕证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;〔2〕由〔1〕知,平行四边形OCED是矩形,那么CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.故答案是:4.【点评】考察了矩形的断定与性质,菱形的性质.此题中,矩形的断定,首先要断定四边形是平行四边形,然后证明有一内角为直角.19.〔分〕〔2021•沈阳〕经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性一样,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行〞的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点评】此题考察了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.四、解答题〔每题8分,请认真读题〕20.〔分〕〔2021•沈阳〕九年三班的小雨同学想理解本校九年级学生对哪门课程感兴趣,随机抽取了局部九年级学生进展调查〔每名学生必只能选择一门课程〕.将获得的数据整理绘制如下两幅不完好的统计图.据统计图提供的信息,解答以下问题:〔1〕在这次调查中一共抽取了50名学生,m的值是18.〔2〕请根据据以上信息直在答题卡上补全条形统计图;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是108度;〔4〕假设该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】54:统计与概率.【分析】〔1〕根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m的值;〔2〕根据〔1〕中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完好;〔3〕根据统计图中的数据可以求得“数学〞所对应的圆心角度数;〔4〕根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【解答】解:〔1〕在这次调查中一共抽取了:10÷20%=50〔名〕学生,m%=9÷50×100%=18%,故答案为:50,18;〔2〕选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15〔名〕,补全的条形统计图如右图所示;〔3〕扇形统计图中,“数学〞所对应的圆心角度数是:360°×=108°,故答案为:108;〔4〕1000×=300〔名〕,答:该校九年级学生中有300名学生对数学感兴趣.【点评】此题考察条形统计图、扇形统计图、用样本估计总体,解答此题的关键是明确题意,利用数形结合的思想解答.21.〔分〕〔2021•沈阳〕某公司今年1月份的消费本钱是400万元,由于改良技术,消费本钱逐月下降,3月份的消费本钱是361万元.假设该公司2、3、4月每个月消费本钱的下降率都一样.〔1〕求每个月消费本钱的下降率;〔2〕请你预测4月份该公司的消费本钱.【考点】AD:一元二次方程的应用.【专题】34 :方程思想;523:一元二次方程及应用.【分析】〔1〕设每个月消费本钱的下降率为x,根据2月份、3月份的消费本钱,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;〔2〕由4月份该公司的消费本钱=3月份该公司的消费本钱×〔1﹣下降率〕,即可得出结论.【解答】解:〔1〕设每个月消费本钱的下降率为x,根据题意得:400〔1﹣x〕2=361,解得:x1=0.05=5%,x2〔不合题意,舍去〕.答:每个月消费本钱的下降率为5%.〔2〕361×〔1﹣5%〕〔万元〕.答:预测4月份该公司的消费本钱为万元.【点评】此题考察了一元二次方程的应用,解题的关键是:〔1〕找准等量关系,正确列出一元二次方程;〔2〕根据数量关系,列式计算.五、解答题〔此题10〕22.〔分〕〔2021•沈阳〕如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.〔1〕假设∠ADE=25°,求∠C的度数;〔2〕假设AB=AC,CE=2,求⊙O半径的长.【考点】KQ:勾股定理;M5:圆周角定理;MC:切线的性质.【专题】55:几何图形.【分析】〔1〕连接OA,利用切线的性质和角之间的关系解答即可;〔2〕根据直角三角形的性质解答即可.【解答】解:〔1〕连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;〔2〕∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=,解得:r=2,∴⊙O的半径为2.【点评】此题考察切线的性质,关键是根据切线的性质进展解答.六、解答题〔此题10分〕23.〔分〕〔2021•沈阳〕如图,在平面直角坐标系中,点F的坐标为〔0,10〕.点E的坐标为〔20,0〕,直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.〔1〕求直线l1的表达式和点P的坐标;〔2〕矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF 上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.矩形ABCD以每秒个单位的速度匀速挪动〔点A挪动到点E时止挪动〕,设挪动时间为t秒〔t>0〕.①矩形ABCD在挪动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②假设矩形ABCD在挪动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.【考点】FI:一次函数综合题.【专题】153:代数几何综合题;31 :数形结合;32 :分类讨论;533:一次函数及其应用.【分析】〔1〕利用待定系数法求解析式,函数关系式联立方程求交点;〔2〕①分析矩形运动规律,找到点D和点B分别在直线l2上或在直线l1上时的情况,利用AD、AB分别可以看成图象横坐标、纵坐标之差构造方程求点A坐标,进而求出AF间隔;②设点A坐标,表示△PMN即可.【解答】解:〔1〕设直线l1的表达式为y=kx+b∵直线l1过点F〔0,10〕,E〔20,0〕∴解得直线l1的表达式为y=﹣x+10求直线l1与直线l2交点,得x=﹣x+10解得x=8y=×8=6∴点P坐标为〔8,6〕〔2〕①如图,当点D在直线上l2时∵AD=9∴点D与点A的横坐标之差为9∴将直线l1与直线l2交解析式变为x=20﹣2y,x=y∴y﹣〔20﹣2y〕=9解得y=那么点A的坐标为:〔,〕那么AF=∵点A速度为每秒个单位∴t=如图,当点B在l2直线上时∵AB=6∴点A的纵坐标比点B的纵坐标高6个单位∴直线l1的解析式减去直线l2 的解析式得﹣x+10﹣x=6解得x=那么点A坐标为〔,〕那么AF=∵点A速度为每秒个单位∴t=故t值为或②如图,设直线AB交l2 于点H设点A横坐标为a,那么点D横坐标为a+9由①中方法可知:MN=此时点P到MN间隔为:a+9﹣8=a+1∵△PMN的面积等于18∴解得a1=,a2=﹣〔舍去〕∴AF=6﹣那么此时t为当t=时,△PMN的面积等于18【点评】此题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.七、解答题〔此题12分〕24.〔分〕〔2021•沈阳〕:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M 在边AC上,点N在边BC上〔点M、点N不与所在线段端点重合〕,BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.〔1〕如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;〔2〕当∠ACB=α,其它多件不变时,∠BDE的度数是α或180°﹣α〔用含α的代数式表示〕〔3〕假设△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED 与直线BC交于点F,请直接写出线段CF的长.【考点】KY:三角形综合题.【专题】152:几何综合题.【分析】〔1〕①根据SAS证明即可;②想方法证明∠ADE+∠ADB=90°即可;〔2〕分两种情形讨论求解即可,①如图2中,当点E在AN的延长线上时,②如图3中,当点E在NA的延长线上时,〔3〕分两种情形求解即可,①如图4中,当BN=BC=时,作AK⊥BC于K.解直角三角形即可.②如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.【解答】〔1〕①证明:如图1中,∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,∵∠ACN=∠BCM∴△BCM≌△ACN.②解:如图1中,∵△BCM≌△ACN,∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.〔2〕解:如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.如图3中,当点E在NA的延长线上时,易证:∠1+∠2=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α.综上所述,∠BDE=α或180°﹣α.故答案为α或180°﹣α.〔3〕解:如图4中,当BN=BC=时,作AK⊥BC于K.∵AD∥BC,∴==,∴AD=,AC=3,易证△ADC是直角三角形,那么四边形ADCK是矩形,△AKN≌△DCF,∴CF=NK=BK﹣BN=﹣=.如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.∵AD∥BC,∴==2,∴AD=6,易证△ACD是直角三角形,由△ACK∽△CDH,可得CH=AK=,由△AKN≌△DHF,可得KN=FH=,∴CF=CH﹣FH=4.综上所述,CF的长为或4.【点评】此题考察三角形综合题、全等三角形的断定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想考虑问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.八、解答题〔此题12分〕25.〔分〕〔2021•沈阳〕如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕,抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.〔1〕求抛物线C1的表达式;〔2〕直接用含t的代数式表示线段MN的长;〔3〕当△AMN是以MN为直角边的等腰直角三角形时,求t的值;〔4〕在〔3〕的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16 :压轴题;537:函数的综合应用;558:平移、旋转与对称.【分析】〔1〕应用待定系数法;〔2〕把x=t带入函数关系式相减;〔3〕根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.〔4〕根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进展计算.【解答】解:〔1〕∵抛物线C1:y=ax2+bx﹣1经过点A〔﹣2,1〕和点B〔﹣1,﹣1〕。

2022年辽宁省沈阳市中考数学试卷及答案解析

2022年辽宁省沈阳市中考数学试卷及答案解析

2022年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)计算5+(﹣3),结果正确的是()A.2B.﹣2C.8D.﹣82.(2分)如图是由4个相同的小立方体搭成的几何体,这个几何体的主视图是()A.B.C.D.3.(2分)下列计算结果正确的是()A.(a3)3=a6B.a6÷a3=a2C.(ab4)2=ab8D.(a+b)2=a2+2ab+b24.(2分)在平面直角坐标系中,点A(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(﹣3,﹣2)5.(2分)调查某少年足球队全体队员的年龄,得到数据结果如下表:年龄/岁1112131415人数34722则该足球队队员年龄的众数是()A.15岁B.14岁C.13岁D.7人6.(2分)不等式2x+1>3的解集在数轴上表示正确的是()A.B.C.D.7.(2分)如图,在Rt△ABC中,∠A=30°,点D、E分别是直角边AC、BC的中点,连接DE,则∠CED的度数是()A.70°B.60°C.30°D.20°8.(2分)在平面直角坐标系中,一次函数y=﹣x+1的图象是()A.B.C.D.9.(2分)下列说法正确的是()A.了解一批灯泡的使用寿命,应采用抽样调查的方式B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则乙组数据较稳定D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件10.(2分)如图,一条河的两岸互相平行,为了测量河的宽度PT(PT与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为()A.m sinαB.m cosαC.m tanαD.二、填空题(每小题3分,共18分)11.(3分)因式分解:ay2+6ay+9a=.12.(3分)二元一次方程组的解是.13.(3分)化简:(1﹣)•=.14.(3分)如图,边长为4的正方形ABCD内接于⊙O,则的长是(结果保留π).15.(3分)如图,四边形ABCD是平行四边形,CD在x轴上,点B在y轴上,反比例函数y=(x>0)的图象经过第一象限点A,且▱ABCD的面积为6,则k=.16.(3分)如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别为点E,F,且点F在矩形内部,MF的延长线交边BC于点G,EF交边BC于点H.EN=2,AB=4,当点H为GN的三等分点时,MD的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:﹣3tan30°+()﹣2+|﹣2|.18.(8分)为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.19.(8分)如图,在△ABC中,AD是△ABC的角平分线,分别以点A,D为圆心,大于AD 的长为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,连接DE,DF.(1)由作图可知,直线MN是线段AD的.(2)求证:四边形AEDF是菱形.四、(每小题8分,共16分)20.(8分)某校积极落实“双减”政策,将要开设拓展课程.为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B (摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取了部分学生进行调查,每名学生必须且只能选择其中最喜欢的一种课程,并将调查结果整理绘制成如下不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为名;(2)直接在答题卡中补全条形统计图;(3)求拓展课程D(劳动实践)所对应的扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校800名学生中,有多少名学生最喜欢C(音乐鉴赏)拓展课程.21.(8分)如图,用一根60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成的矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积的最大值为平方厘米.22.(10分)如图,四边形ABCD内接于⊙O,AD是⊙O的直径,AD,BC的延长线交于点E,延长CB交PA于点P,∠BAP+∠DCE=90°.(1)求证:PA是⊙O的切线;(2)连接AC,sin∠BAC=,BC=2,AD的长为.六、(本题10分)23.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y 轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.24.(12分)【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA 上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.2022年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.【分析】根据有理数异号相加法则即可处理.【解答】解:5+(﹣3)=2,故选:A.【点评】本题主要考查有理数加法,掌握其运算法则是解题关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,底层有2个正方形,上层左边有1个正方形,故选:D.【点评】本题考查了三视图的知识.注意主视图是指从物体的正面看物体.3.【分析】根据幂的乘方与积的乘方,同底数幂的除法以及完全平方公式逐项进行计算即可.【解答】解:A.(a3)3=a9,因此选项A不符合题意;B.a6÷a3=a6﹣3=a3,因此选项B不符合题意;C.(ab4)2=a2b8,因此选项C不符合题意;D.(a+b)2=a2+2ab+b2,因此选项D符合题意;故选:D.【点评】本题考查幂的乘方与积的乘方,同底数幂的除法以及完全平方公式,掌握幂的乘方与积的乘方的计算方法,同底数幂的除法的计算法则以及完全平方公式的结构特征是正确判断的前提.4.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点A(2,3)关于y轴的对称点坐标为(﹣2,3).故选:B.【点评】本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.【分析】一组数据中出现次数最多的数据叫做众数.【解答】解:该足球队队员年龄13岁出现的次数最多,故众数为13岁.故选:C.【点评】本题考查了众数,掌握众数的定义是解答本题的关键.6.【分析】解不等式求得不等式的解集,然后根据数轴上表示出的不等式的解集,再对各选项进行逐一分析即可.【解答】解:不等式2x+1>3的解集为:x>1,故选:B.【点评】本题考查的解一元一次不等式以及在数轴上表示不等式解集,熟知实心圆点与空心圆点的区别是解答此题的关键.7.【分析】根据直角三角形的性质求出∠B,根据三角形中位线定理得到DE∥AB,根据平行线的性质解答即可.【解答】解:在Rt△ABC中,∠A=30°,则∠B=90°﹣∠A=60°,∵D、E分别是边AC、BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠CED=∠B=60°,故选:B.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形中位线平行于第三边是解题的关键.8.【分析】依据一次函数y=x+1的图象经过点(0,1)和(1,0),即可得到一次函数y=﹣x+1的图象经过一、二、四象限.【解答】解:一次函数y=﹣x+1中,令x=0,则y=1;令y=0,则x=1,∴一次函数y=﹣x+1的图象经过点(0,1)和(1,0),∴一次函数y=﹣x+1的图象经过一、二、四象限,故选:C.【点评】本题主要考查了一次函数的图象,一次函数的图象是与坐标轴不平行的一条直线.9.【分析】根据抽样调查与全面调查的定义,概率以及方差的定义逐项进行判断即可.【解答】解:A.了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A符合题意;B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B不符合题意;C.若甲、乙两组数据的平均数相同,S甲2=2.5,S乙2=8.7,则甲组数据较稳定,因此选项C不符合题意;D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D不符合题意;故选:A.【点评】本题考查全面调查与抽样调查,方差以及随机事件、不可能事件、必然事件,理解全面调查与抽样调查的方法,方差的意义以及随机事件、不可能事件、必然事件的定义是正确判断的前提.10.【分析】根据垂直定义可得PT⊥PQ,然后在Rt△PQT中,利用锐角三角函数的定义进行计算即可解答.【解答】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ•tanα=m tanα(米),∴河宽PT的长度是m tanα米,故选:C.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.二、填空题(每小题3分,共18分)11.【分析】首先提取公因式a,进而利用完全平方公式分解因式得出即可.【解答】解:ay2+6ay+9a=a(y2+6y+9)=a(y+3)2.故答案为:a(y+3)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用完全平方公式是解题关键.12.【分析】用代入消元法解二元一次方程组即可.【解答】解:,将②代入①,得x+4x=5,解得x=1,将x=1代入②,得y=2,∴方程组的解为,故答案为:.【点评】本题考查二元一次方程组,理解二元一次方程组的解,掌握二元一次方程组的解法是正确解答的关键.13.【分析】先算括号内的式子,然后计算括号外的乘法即可.【解答】解:(1﹣)•===x﹣1,故答案为:x﹣1.【点评】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.14.【分析】连接OA、OB,可证∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【解答】解:连接OA、OB.∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=42,解得:AO=2,∴的长==π,故答案为:π.【点评】本题考查了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.15.【分析】作AE⊥CD于E,由四边形ABCD为平行四边形得AB∥x轴,则可判断四边形ABOE为矩形,所以S平行四边形ABCD=S矩形ABOE,根据反比例函数k的几何意义得到S矩形ABOE=|k|,利用反比例函数图象得到.【解答】解:作AE⊥CD于E,如图,∵四边形ABCD为平行四边形,∴AB∥x轴,∴四边形ABOE为矩形,=S矩形ABOE=6,∴S平行四边形ABCD∴|k|=6,而k>0,∴k=6.故答案为:6.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k ≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【分析】根据点H为GN三等分点,分两种情况分别计算,根据折叠的性质和平行线的性质证明∠GMN=∠MNG,得到MG=NG,证明△FGH∽△ENH,求出FG的长,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,根据勾股定理列方程求出x即可.【解答】解:当HN=GN时,GH=2HN,∵将矩形纸片ABCD折叠,折痕为MN,∴MF=MD,CN=EN,∠E=∠C=∠D=∠MFE=90°,∠DMN=∠GMN,AD∥BC,∴∠GFH=90°,∠DMN=∠MNG,∴∠GMN=∠MNG,∴MG=NG,∵∠GFH=∠E=90°,∠FHG=∠EHN,∴△FGH∽△ENH,∴==2,∴FG=2EN=4,过点G作GP⊥AD于点P,则PG=AB=4,设MD=MF=x,则MG=GN=x+4,∴CG=x+6,∴PM=6,∵GP2+PM2=MG2,∴42+62=(x+4)2,解得:x=2﹣4,∴MD=2﹣4;当GH=GN时,HN=2GH,∵△FGH∽△ENH,∴==,∴FG=EN=1,∴MG=GN=x+1,∴CG=x+3,∴PM=3,∵GP2+PM2=MG2,∴42+32=(x+1)2,解得:x=4,∴MD=4;故答案为:2﹣4或4.【点评】本题考查了翻折变换(折叠问题),矩形的性质,考查了分类讨论的思想,根据勾股定理列方程求解是解题的关键.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.【分析】先计算开方运算、特殊三角函数值、负整数指数幂的运算及绝对值的运算,再合并即可.【解答】解:原式=2﹣3×+4+2﹣=2﹣+4+2﹣=6.【点评】此题考查的是实数的运算,负整数指数幂的运算,特殊三角形函数值,掌握其运算法则是解决此题的关键.18.【分析】(1)根据概率公式求解即可.(2)画树状图,表示出所有等可能的结果数,以及两张卡片上的数字是“2”和“3”的结果数,再结合概率公式即可得出答案.【解答】解:(1)由题意得,随机抽取一张卡片,卡片上的数字是“4”的概率是.故答案为:.(2)画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是“2”和“3”的结果有2种,∴小明随机抽取两张卡片,两张卡片上的数字是“2”和“3”的概率为.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法是解答本题的关键.19.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上FA=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵FA=FD,∴四边形AEDF为菱形.【点评】本题考查了作图﹣基本作图以及菱形的判定方法,熟知线段垂直平分线的作法是解答此题的关键.四、(每小题8分,共16分)20.【分析】(1)根据选择A的人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据条形统计图中的数据,即可计算出选择B的人数,然后即可将条形统计图补充完整;(3)用360°乘以D(劳动实践)所占比例可得答案;(4)用样本估计总体即可.【解答】解:(1)此次被调查的学生人数为:12÷10%=120(名),故答案为:120;(2)选择B的学生有:120﹣12﹣48﹣24=36(名),补全的条形统计图如图所示;(3)360°×=72°,即拓展课程D(劳动实践)所对应的扇形的圆心角的度数是72°;(4)800×=320(名),答:估计该校800名学生中,有320名学生最喜欢C(音乐鉴赏)拓展课程.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、频数(率)分布表,解答本题的关键是明确题意,利用数形结合的思想解答.21.【分析】(1)设框架的长AD为xcm,则宽AB为cm,根据面积公式列出一元二次方程,解之即可;(2)在(1)的基础上,列出二次函数,再利用二次函数的性质可得出结论.【解答】解:(1)设框架的长AD为xcm,则宽AB为cm,∴x•=144,解得x=12或x=18,∴AB=12cm或AB=8cm,∴AB的长为12厘米或8厘米;(2)由(1)知,框架的长AD为xcm,则宽AB为cm,∴S=x•,即S=﹣x2+20x=﹣(x﹣15)2+150,∵﹣<0,∴要使框架的面积最大,则x=15,此时AB=10,最大为150平方厘米.故答案为:150.【点评】此题考查的是二次函数在实际生活中的运用及求函数最值的方法,属较简单题目.解题的关键是用一个未知数表示出长和宽,利用面积公式来列出函数表达式后再求其最值.五、(本题10分)22.【分析】(1)根据圆内接四边形对角互补以及平角定义可得∠BAD=∠DCE,然后根据已知可得∠BAP+∠BAD=90°,从而可得∠OAP=90°,即可解答;(2)连接BO并延长交⊙O于点F,连接CF,根据直径所对的圆周角是直角可得∠BCF=90°,再利用同弧所对的圆周角相等可得sin∠BAC=sin F=,最后在Rt△BCF中,利用锐角三角函数的定义进行计算即可解答.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠BAD=∠DCE,∵∠BAP+∠DCE=90°,∴∠BAP+∠BAD=90°,∴∠OAP=90°,∵OA是⊙O的半径,∴PA是圆O的切线;(2)连接BO并延长交⊙O于点F,连接CF,∵BF是⊙O的直径,∴∠BCF=90°,∵∠BAC=∠F,∴sin∠BAC=sin F=,在Rt△BCF中,BC=2,∴BF===6,∴AD=BF=6,故答案为:6.【点评】本题考查了解直角三角形,切线的判定与性质,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.六、(本题10分)23.【分析】(1)将点B(0,9),C(8,3)的坐标代入直线解析式,求解即可;(2)①过点C作CF⊥C′D′,易得△CFC′∽△AOB,可用m表达CF和C′F的长度,进而可表达点C′,D′的坐标,由点C的坐标可得出直线OC的解析式,代入可得点E的坐标;②根据题意可知,当0<m<时,点D′未到直线OC上,利用三角形面积公式可得出本题结果;③分情况讨论,分别求出当0<m<时,当<m<5时,当5<m<10时,当10<m<15时,S与m的关系式,分别令S=,建立方程,求出m即可.【解答】解:(1)将点B(0,9),C(8,3)的坐标代入直线y=kx+b,∴,解得.∴直线AB的函数表达式为:y=﹣x+9;(2)①由(1)知直线AB的函数表达式为:y=﹣x+9,令y=0,则x=12,∴A(12,0),∴OA=12,OB=9,∴AB=15;如图1,过点C作CF⊥C′D′于点F,∴CF∥OA,∴∠OAB=∠FCC′,∵∠C′FC=∠BOA=90°,∴△CFC′∽△AOB,∴OB:OA:AB=C′F:CF:CC′=9:12:15,∵CC′=m,∴CF=m,C′F=m,∴C′(8﹣m,3+m),A′(12﹣m,m),D′(8﹣m,m),∵C(8,3),∴直线OC的解析式为:y=x,∴E(8﹣m,3﹣m).∴C′E=3+m﹣(3﹣m)=m.故答案为:m.②法一、当点D′落在直线OC上时,有m=(8﹣m),解得m=,∴当0<m<时,点D′未到直线OC,此时S=C′E•CF=•m•m=m2;法二、∵C′D′∥BO,∴△CC′E∽△CBO,∴=()2,即=,∴S=m2.故答案为:m2.③法一、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);当≤m<5时,如图2,设线段A′D′与直线OC交于点M,∴M(m,m),∴D′E=m﹣(3﹣m)=m﹣3,D′M=m﹣(8﹣m)=m﹣8;∴S=m2﹣•(m﹣3)•(m﹣8)=﹣m2+m﹣12,令﹣m2+m﹣12=;整理得,3m2﹣30m+70=0,解得m=或m=>5(舍);当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m<15时,如图4,此时A′B=15﹣m,∴BN=(15﹣m),A′N=(15﹣m),∴S=•(15﹣m)•(15﹣m)=(15﹣m)2,令(15﹣m)2=,解得m=15+2>15(舍)或m=15﹣2.法二、分情况讨论,当0<m<时,由②可知,S=m2;令S=m2=,解得m=>(舍)或m=﹣(舍);(同法一)当≤m<5时,如图2,设线段A′D′与直线OC交于点M,=×4×3=6,∵S△A′C′D′=6﹣=,∴S=18,∵S△AOC∵A′D′∥OA,∴△A′CM∽△ACO,∴=,∴CA′=,∴m=C′A′﹣CA′=5﹣,当5≤m<10时,如图3,S=S△A′C′D′=×4×3=6≠,不符合题意;当10≤m<15时,如图4,∵A′D′∥x轴,∴△A′BK∽△ABO,=54,∵S=,S△ABO∴=,解得BA′=2,∴m=BA﹣BA′=15﹣2.故答案为:或15﹣2.【点评】本题属于一次函数综合题,涉及待定系数法求函数解析式,三角形的面积,相似三角形的性质与判定,分类讨论思想等知识,根据△A′C′D′的运动,进行正确的分类讨论是解题关键.七、(本题12分)24.【分析】(1)证明△AOD≌△BOC(SAS),即可得出结论;(2)利用旋转性质可证得∠BOC=∠AOD,再证明△AOD≌△BOC(SAS),即可得出结论;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,先证得△ABC∽△TBD,得出DT=3,即点D的运动轨迹是以T为圆心,3为半径的圆,当D在AT的延长线上时,AD的值最大,最大值为8+3;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,可证得△BAC∽△BTD,得出DT=AC=×3=,再求出DH、AH,即可求得AD;如图5,在AB下方作∠ABE=30°,过点A作AE⊥BE 于点E,连接DE,可证得△BAC∽△BTD,得出DE=,再由勾股定理即可求得AD.【解答】解:(1)AD=BC.理由如下:如图1,∵△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,∴OA=OB,OD=OC,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC,故答案为:AD=BC;(2)AD=BC仍然成立.证明:如图2,∵∠AOB=∠COD=90°,∴∠AOB+∠AOC=∠AOC+∠COD=90°+α,即∠BOC=∠AOD,在△AOD和△BOC中,,°∴△AOD≌△BOC(SAS),∴AD=BC;(3)①过点A作AT⊥AB,使AT=AB,连接BT,AD,DT,BD,∵△ABT和△CBD都是等腰直角三角形,∴BT=AB,BD=BC,∠ABT=∠CBD=45°,∴==,∠ABC=∠TBD,∴△ABC∽△TBD,∴==,∴DT=AC=×3=3,∵AT=AB=8,DT=3,∴点D的运动轨迹是以T为圆心,3为半径的圆,∴当D在AT的延长线上时,AD的值最大,最大值为8+3,故答案为:8+3;②如图4,在AB上方作∠ABT=30°,过点A作AT⊥BT于点T,连接AD、BD、DT,过点T作TH⊥AD于点H,∵==cos30°=,∠ABC=∠TBD=30°+∠TBC,∴△BAC∽△BTD,∴==,∴DT=AC=×3=,在Rt△ABT中,AT=AB•sin∠ABT=8sin30°=4,∵∠BAT=90°﹣30°=60°,∴∠TAH=∠BAT﹣∠DAB=60°﹣30°=30°,∵TH⊥AD,∴TH=AT•sin∠TAH=4sin30°=2,AH=AT•cos∠TAH=4cos30°=2,在Rt△DTH中,DH===,∴AD=AH+DH=2+;如图5,在AB上方作∠ABE=30°,过点A作AE⊥BE于点E,连接DE,则==cos30°=,∵∠EBD=∠ABC=∠ABD+30°,∴△BDE∽△BCA,∴==,∴DE=AC=×3=,∵∠BAE=90°﹣30°=60°,AE=AB•sin30°=8×=4,∴∠DAE=∠DAB+∠BAE=30°+60°=90°,∴AD===;综上所述,AD的值为2+或.【点评】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线,构造全等三角形或相似三角形解决问题,综合性较强,难度较大,属于中考压轴题.八、(本题12分)25.【分析】(1)运用待定系数法即可求得抛物线解析式和直线AD的解析式;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x 轴于点N,如图1,根据三角形面积关系可得=,由EM∥FN,可得△BFN∽△BEM,得出===,可求得F(2+t,t2﹣t﹣2),代入直线AD的解析式即可求得点E的坐标;(3)根据题意可得:点C′(0,3),G′(2,4),向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,利用待定系数法可得:直线BC的解析式为y=x﹣3,直线C′G′的解析式为y=x+3,由四边形C′G′QP是平行四边形,分类讨论即可.【解答】解:(1)①∵抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),∴,解得:,∴抛物线的函数表达式为y=x2﹣x﹣3;②由①得y=x2﹣x﹣3,当y=0时,x2﹣x﹣3=0,解得:x1=6,x2=﹣2,∴A(﹣2,0),设直线AD的函数表达式为y=kx+d,则,解得:,∴直线AD的函数表达式为y=x﹣1;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x 轴于点N,如图1,∵S1=2S2,即=2,∴=2,∴=,∵EM⊥x轴,FN⊥x轴,∴EM∥FN,∴△BFN∽△BEM,∴===,∵BM=6﹣t,EM=﹣(t2﹣t﹣3)=﹣t2+t+3,∴BN=(6﹣t),FN=(﹣t2+t+3),∴x=OB﹣BN=6﹣(6﹣t)=2+t,y=﹣(﹣t2+t+3)=t2﹣t﹣2,∴F(2+t,t2﹣t﹣2),∵点F在直线AD上,∴t2﹣t﹣2=﹣(2+t)﹣1,解得:t1=0,t2=2,∴E(0,﹣3)或(2,﹣4);(3)∵y=x2﹣x﹣3=(x﹣2)2﹣4,∴顶点坐标为G(2,﹣4),当x=0时,y=3,即点C(0,﹣3),∴点C′(0,3),G′(2,4),∴向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,∴向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,设直线BC的解析式为y=k′x+d′(k′≠0),把点B(6,0),C(0,﹣3)代入得:,解得:,∴直线BC的解析式为y=x﹣3,同理直线C′G′的解析式为y=x+3,∴BC∥C′G′,设点P的坐标为(s,s﹣3),∵点C′(0,3),G′(2,4),∴点C′向右平移2个单位,再向上平移1个单位得到点G′,∵四边形C′G′QP是平行四边形,∴点Q(s+2,s﹣2),当点P,Q均在向上翻折部分平移后的图象上时,则,解得:(不符合题意,舍去),当点P在向上翻折部分平移后的图象上,点Q在平移后抛物线剩下部分的图象上时,则,解得:或(不合题意,舍去),当点P在平移后抛物线剩下部分的图象上,点Q在向上翻折部分平移后的图象上时,则,解得:或(不合题意,舍去),综上所述,点P的坐标为(1+,)或(1﹣,).【点评】本题主要是二次函数综合题,考查了待定系数法求函数解析式,二次函数的图象和性质,三角形面积,平行四边形的性质,相似三角形的判定和性质,抛物线的平移、翻折变换等,利用数形结合思想解答是解题的关键.。

2021年辽宁省沈阳市中考数学试卷及解析(真题样卷)

2021年辽宁省沈阳市中考数学试卷及解析(真题样卷)

2021年辽宁省沈阳市中考数学试卷一。

选择题(每小题3分,共24分,只有一个答案是正确的)1.(3分)(2021•沈阳)比0大的数是()C.﹣0。

5 D.1A.﹣2 B.﹣2.(3分)(2021•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(3分)(2021•沈阳)下列事件为必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.(3分)(2021•沈阳)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°5.(3分)(2021•沈阳)下列计算结果正确的是()A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2 6.(3分)(2021•沈阳)一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3。

5,5 B.4,4 C.4,5 D.4。

5,47.(3分)(2021•沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形C.矩形D.正方形8.(3分)(2021•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.二。

填空题(每小题4分,共32分)9.(4分)(2021•沈阳)分解因式:ma2﹣mb2=.10.(4分)(2021•沈阳)不等式组的解集是.11.(4分)(2021•沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm 为半径作⊙A,当AB=cm时,BC与⊙A相切.12.(4分)(2021•沈阳)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65。

2020年辽宁省沈阳市中考数学试卷(含答案)

2020年辽宁省沈阳市中考数学试卷(含答案)

2020年辽宁省沈阳市中考数学试卷一•选择题〔下列各題的备选答案中.只有一个答案是正确的.每小题2分.共20分〉1・(2分)下列有理数中,比0小的数是( ) A.・2 B. 1 C. 2 D ∙ 32. (2分)2020年乍月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深 廈超10900米,刷新我国潜水器最大下潜深滾记录.将数据10900用科学记数法表示为 ( )A. 1.09×103B. 1.09× IO 4C. 10.9×103 D ∙ 0.109× IO 53. (2分)如圈是由四个相同的小立方块搭成的几何体,这个几何体的主视图是( )4. (2分)下列运算疋确的是() A ・ Λ⅛3=Λ5 B ・ Q 2∙G=Q 65. (2分)如图J 直线AE"CD 、且日C 丄CE 于点CJ 若ΔBAC=3Y J 则乙EGD 的度数为( 7 (2分)下列事件中,是必燃事件的是( )A ・从一个只有白球的盒子里摸出一个球是白球E ・任意买一张电影票,座位号是3的倍 数 C.掷一枚质地均匀的硬币,正面向上 D.汽车走过一个红绿灯路口时,前 方正好是绿灯8・(2分)一元二次方⅛ ?-2^+1= 0的根的惰况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C •没有实数根 D.无法确定9・(2分)一次函数,=卄 (⅛≠0)的图象经过点卫(・3, 0),区B (0, 2),那么谕图象不 经过的象限是(〉£・第一象限 B.第二象限 C.第三象限 D.第四象限10. (2分)如图S 在矩形肋CD 中,A5=√i BC=2,以点人为圆心,HD 长为半径画弧交 边EC 于点E 连接则窥的长为( ) £・竺B •筑C •至33二 填空题(每小題3分,共18分)11・(3分)因式分解:2x ⅛v= _____ •第1页(共砸)C. (2o) 3=咖 D ∙ ∕÷α=G B. 550D. 35°第5题图 & (2分)不等5t2x≤β的解集是 第IO 题图 ) C. x<3 D ∙ Λ>3 A. 第14题图12.(3分)二元一次方程组厂W的解是__________ ・2χ-y=l13.(3分)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为—2=29 Ej=I 2,则两入成绩比较稳定的是_____________ (填沁甲”或显乙O 14.(3分)如图,在平面直角坐标系中,O是坐标原点,在AO肋中,AQ=ABS HC丄OB于点G点月在反比例函数>=兰仏弄0)的图象上,若02=4, ∕C=3,则必的值为_________________________________________________________________________________ ・X15・(3分)如图,在平行四边形ABCD中,点M为边也上一点,AM=ZMD.点耳点F分别是列也CM中鼠若EF=J则血f的扶为___________________ ■16.(3分)如图,在矩形ABCD中,AB=6^ BC=^对角线4C, BD相交于点O,点F为边AD±—⅞⅛点,连接OP, ^OP为折痕,将P折叠,点/的对应点为点线段M 与OD相交于点只若ZXPDF为直角三角形,则”的长为 _______________________ ・三.MΦJ≡ <第17水題6分,第18、19 4>JB⅜ 8分,共22分)17.(6 分)计绰:2sιn60' + ( - A) '⅜(II- 2020)α+∣2-√3∣.31& (8分)沈阳市图书馆推出“阅读沈阳书香盛京"等一系列线上线下相融合的阅读推广活动J需要招募学生志愿者•某校甲•乙两班共有五名学生报名,甲班一名男生,一名女生; 乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请曲列表法或画树状图法求抽出的两名学生性别相同的概率・(温鑿提示:甲班男生用力表示s文生用B 衆示;乙班男生用α表示,两名女生分别用如,血表示)・19.(8分)如图J在矩形ABCD中,对角线/C的垂直平分线分别与边和边CD的延长线交于点M N,与边交于点0垂足为点0・(1)求证:ΔAOM^ΔCON i(2)___________________________________________ 若AB = 3, AD=6,请直接写出刃E 的长为・第15题图C第16题图aD第上页(共硒)22. (IO 分)如圏,在△应C 中,ΛACB=90o ,点O 为Ee 边上一点,以点O 为圆心,OS 长为半径的圆与边相交于点D,连接。

中考数学试题及参考答案 (2)

中考数学试题及参考答案 (2)

沈阳市中等学校招生统一考试数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.-13的相反数是( )A .13B .3C .-3D .-132.如图,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A 的值是( )A .215 B .25 C .212 D .523.沈阳市水质监测部门全年共监测水量达48909.6万吨,水质达标率为100%.用科学记数法表示全年共监测水量约为( )万吨(保留三个有效数字)A .4.89×104B .4.89×105C .4.90×104D .4.90×105 4.下列事件中是必然事件的是( )A .小婷上学一定坐公交车B .买一张电影票,座位号正好是偶数C .小红期末考试数学成绩一定得满分D .将豆油滴入水中,豆油会浮在水面上 5.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点, 若∠FEB =110°,则∠EFD 等于( )A .50°B .60°C .70°D .110° 6.依次连接菱形各边中点所得到的四边形是( ) A .梯形 B .菱形 C .矩形 D .正方形 7.反比例函数y =-4x的图象在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限8.将一张长与宽的比为2∶1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是( )图① 图② 图③ 图④A .B .C .D .第2题图第5题图二、填空题(每小题3分,共24分)9.分解因式:325x x -= .10.已知一组数据1,a ,4,4,9,它的平均数是4,则a 等于 ,这组数据的众数是 .11.如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件,使得△AOB ≌ △DOC ,你补充的条件是 .12.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)13.有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .14.如图,在正方形网格中,以点A 为旋转中心,将△ABC 按逆时针方向旋转90°,画出旋转后的△AB 1C 1.15.将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为 .16.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .第14题图第16题图第11题图第12题图三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:(π-3)0-|5-3|+(-13)-2-5.18.解不等式组⎩⎪⎨⎪⎧2x -5≤3(x -1)x +72>4x,并把它的解集在数轴上表示出来.19.如图,已知在□ABCD 中,E 、F 是对角线BD 上的两点,BE =DF ,点G 、H 分别在BA 和DC 的延长线上,且AG =CH ,连接GE 、EH 、HF 、FG .求证:四边形GEHF 是平行四边形.20.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?第19题图四、(每小题10分,共20分)21.沈阳市城市环境空气质量达到了有记录以来的最好水平,优良天气的天数在全国副省级以上城市排名第9,排名在北京、天津、重庆等城市之前.空气质量分为优良天气、轻度污染、中度污染、重度污染四种类型,有关部门将我市——前三类空气质量的天数制成条形统计图,请根据统计图解答下列问题:——沈阳市优良天气、轻度污染、中度污染天数统计图第21题图①(1)根据图①中的统计图可知,和前一年比,年优良天气的天数增加最多,这一年优良天气的天数比前一年优良天气的天数的增长率约为;(精确到1%)(2)在图②中给出了我市——优良天气天数的扇形统计图中的部分数据,请你补全此统计图,并写出计算过程;(精确到1%)(3)根据这6年沈阳市城市空气质量的变化,谈谈你对我市环保的建议.——沈阳市优良天气天数统计图第21题图②22.如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.(1)求证:DB平分∠ADC;(2)若BE=3,ED=6,求AB的长.第22题图五、(本题12分)23.如图所给的A、B、C三个几何体中,按箭头所示的方向为它们的正面,设A、B、C三个几何体的主视图分别是A1、B1、C1;左视图分别是A2、B2、C2;俯视图分别是A3、B3、C3.(1)请你分别写出A1、A2、A3、B1、B2、B3、C1、C2、C3图形的名称;(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A1、A2、A3的三张卡片放在甲口袋中,画有B1、B2、B3的三张卡片放在乙口袋中,画有C1、C2、C3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片.①通过补全下面的树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率;②小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗?为什么?解:(1)ABC第23题图(2)①树状图:24.已知在矩形ABCD 中,AB =4,BC =252,O 为BC 上一点,BO =72,如图所示,以BC 所在直线为为线段OC 上的一点.(1)若点M 的坐标为(1,0),如图①,以OM 为一边作等腰△OMP ,使点P 在矩形ABCD 的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P 的坐标;(3)若将(1)中的点M 的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P 的坐标)第24题图25.化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:实际售价x(元/千克)…150 160 168 180 …月销售量y(千克)…500 480 464 440 …①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y (千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?第25题图26.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x 轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E 作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.第26题图沈阳市中等学校招生统一考试数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.A2.B3.A4.D5.C6.C7.B8.A二、填空题(每小题3分,共24分)9.x(x+5)(x-5)10.2,411.AO=DO或AB=DC或BO=CO12.(63+1)m13.5014.如图第14题图15.y=2x216.6三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.解:原式=1-3+5+9-5 …………………………………………………4分=7 ……………………………………………………………………6分18.解:解不等式2x -5≤3(x -1)得x ≥-2 ……………………………………2分 解不等式x +72>4x 得x <1 ……………………………………………………………4分∴不等式组的解集为-2≤x <1 ……………………………………………………6分 在数轴上表示为:………………………………………………8分19.证明:∵四边形ABCD 是平行四边形 ∴AB =CD ,AB ∥CD∴∠GBE =∠HDF …………………………………………………………………2分 又∵AG =CH ∴BG =DH 又∵BE =DF∴△GBE ≌△HDF …………………………………………………………………5分 ∴GE =HF ,∠GEB =∠HFD ∴∠GEF =∠HFE ∴GE ∥HF∴四边形GEHF 是平行四边形. ……………………………………………………8分 20.解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, …………………………………………1分根据题意,得10x +1245x =1 …………………………………………………………4分 解这个方程,得x =25 ………………………………………………………………6分 经检验,x =25是所列方程的根 ……………………………………………………7分 当x =25时,45x =20 …………………………………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天. ……………10分 四.(每小题10分,共20分)21.解:(1),45% ……………………………………………………………4分 (2)由图①,得162+204+295+301+317+321=1600 301÷1600≈0.19=19%321÷1600≈0.20=20% …………………7分 ∴19%,20%正确补全统计图. ………………………8分第21题(2)图(3)建议积极向上即可. ………………10分 22.(1)证明:∵ AB =BCAB BC ∴= ………………………………2分∴∠BDC =∠ADB ,∴DB 平分∠ADC ……………………………………………4分 (2)解:由(1)可知AB BC =,∴∠BAC =∠ADB ∵∠ABE =∠ABD∴△ABE ∽△DBA ……………………………………………………………………6分 ∴AB BE =BD AB ∵BE =3,ED =6∴BD =9 ……………………………………………………………………………8分 ∴AB 2=BE ·BD =3×9=27∴AB =33 …………………………………………………………………………10分 五、(本题12分)23.解:(1)由已知可得A 1、A 2是矩形,A 3是圆;B 1、B 2、B 3都是矩形;C 1是三角形,C 2、C 3是矩形. ………………………………………………………3分 (2)①补全树状图如下:……………………………………………………………………………………………7分 由树状图可知,共有27种等可能结果,其中三张卡片上的图形名称都相同的结果有12种,∴三张卡片上的图形名称都相同的概率是1227=49 …………9分②游戏对双方不公平.由①可知,三张卡片中只有两张卡片上的图形 名称相同的概率是1227=49,即P (小刚获胜)=49三张卡片上的图形名称完全不同的概率是327=19,即P (小亮获胜)=19∵49>19 ∴这个游戏对双方不公平. ……………………………………………12分 六、(本题12分)24.解:(1)符合条件的等腰△OMP 只有1个.点P 的坐标为(12,4) ……2分(2)符合条件的等腰△OMP 有4个. …………………………………………3分 如图①,在△OP 1M 中,OP 1=OM =4,在Rt △OBP 1中,BO =72, BP 1=OP 21-OB 2=42-(72)2=152 ∴P 1(-72,152) ……………………………………………………………………5分 在Rt △OMP 2中,OP 2=OM =4,∴P 2(0,4)在△OMP 3中,MP 3=OP 3,∴点P 3在OM 的垂直平分线上,∵OM =4,∴P 3(2,4)在Rt △OMP 4中,OM =MP 4=4,∴P 4(4,4) …………………………………9分(3)若M (5,0),则符合条件的等腰三角形有7个. …………………………12分 点P 的位置如图②所示七、(本题12分) 25.解:(1)依题意,每千克原料的进货价为160×75%=120(元) ……………2分 设化工商店调整价格后的标价为x 元,则 0.8x -120=0.8x ×20% 解得 x =187.5187.5×0.8=150(元) ………………………………………………………………4分 ∴调整价格后的标价是187.5元,打折后的实际售价是150元 .…………………5分(2)①描点画图,观察图象,可知这些点的发展趋势近似是一条直线,所以猜想y 与x 之间存在着一次函数关系.………………………………………………………………………………………7分 ②根据①中的猜想,设y 与x 之间的函数表达式为y =kx +b ,将点(150,500)和(160,480)代入表达式,得⎩⎪⎨⎪⎧ 500=150k +b 480=160k +b 解得⎩⎪⎨⎪⎧k =-2b =800 ∴y 与x 的函数表达式为y =-2x +800 ……………………………………………9分将点(168,464)和(180,440)代入y =-2x +800均成立,即这些点都符合y =-2x +800的发展趋势.∴①中猜想y 与x 之间存在着一次函数关系是正确的. …………………………10分 ③设化工商店这个月销售这种原料的利润为w 元,当y =450时,x =175∴w =(175-120)×450=24750(元)答:化工商店这个月销售这种原料的利润为24750元. …………………………12分八、(本题14分)26.解:(1)解方程x 2-10x +16=0得x 1=2,x 2=8 ………………………………1分 ∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC∴点B 的坐标为(2,0),点C 的坐标为(0,8)又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2∴由抛物线的对称性可得点A 的坐标为(-6,0) …………………………………4分(2)∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上∴c =8,将A (-6,0)、B (2,0)代入表达式,得⎩⎪⎨⎪⎧ 0=36a -6b +80=4a +2b +8 解得⎩⎨⎧ a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83,则BE =8-m , ∵OA =6,OC =8,∴AC =10∵EF ∥AC ∴△BEF ∽△BAC∴EF AC =BE AB 即EF 10=8-m 8∴EF =40-5m 4过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45∴FG EF =45 ∴FG =45·40-5m 4=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m ) =12(8-m )(8-8+m )=12(8-m )m =-12m 2+4m ……………………………10分 自变量m 的取值范围是0<m <8 …………………………………………………11分(4)存在.理由:∵S =-12m 2+4m =-12(m -4)2+8 且-12<0, ∴当m =4时,S 有最大值,S 最大值=8 ……………………………………………12分 ∵m =4,∴点E 的坐标为(-2,0)∴△BCE为等腰三角形.…………………………………………………………14分第26题图(批卷教师用图)(以上答案仅供参考,如有其它做法,可参照给分)。

沈阳2022中考数学试题及答案

沈阳2022中考数学试题及答案

沈阳2022中考数学试题及答案一、选择题1. 设函数 $f(x) = 2x^2 - 3x + 5$,则当 $x = 2$ 时,$f(x)$ 的值为:A. 7B. 9C. 11D. 132. 若两个有理数的和为12,差为4,则这两个有理数分别是:A. 6和18B. 8和4C. 10和2D. 4和83. 曲线 $y = ax^2 + bx + c$ (a ≠ 0)的图像经过点(1, 2)和(2, 3),则$a + b + c$ 的值为:A. -2B. -1C. 0D. 14. 在四边形ABCD中,$\angle DAB = 110^\circ$,$\angle ABC = 45^\circ$,则$\angle ACD$ 的度数为:A. 15B. 25C. 35D. 455. 某城市年降水量由 2010 年的 1000 毫米增加到 2020 年的 1500 毫米,年均增长速度为:A. 5%B. 10%C. 12.5%D. 15%二、填空题1. 一辆火车经过一段 500 米长的隧道时,司机看到进隧道前的标志为“500” ⑦,看到出隧道的标志为“400” ⑤,则这辆火车的长度是______ 米。

2. 若 $\frac{2x + 3}{x - 1} = \frac{x + 5}{3}$,则 $x$ 的值为 ______。

3. 已知对数 $\log_a 4 = 2$,则 $\log_a 8 =$ ______。

4. 化简 $\frac{8x^3 y^2}{12x^2 y}$,结果为 ______。

5. 解方程 $3x^2 - 7x - 20 = 0$,得到的两个不同根分别为 ______。

三、解答题1. 完整地列出平面直角坐标系中横坐标大于等于3的点。

解答:横坐标大于等于3的点对应的坐标为$(3, y)$,其中$y$可以取任意实数。

因此,满足条件的点有无穷多个,可以表示为集合$\{(3, y) | y\in (-\infty, +\infty)\}$。

沈阳初三数学试题及答案

沈阳初三数学试题及答案

沈阳初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 11的解?A. x = 4B. x = 5C. x = 6D. x = 7答案:A2. 一个数的3倍减去4等于10,求这个数。

A. 6B. 4C. 2D. 8答案:A3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,它的体积是多少立方厘米?A. 24B. 26C. 28D. 30答案:A4. 一个圆的直径是14cm,那么它的半径是多少?A. 7cmB. 14cmC. 28cmD. 2cm答案:A5. 一个数的50%是25,这个数是多少?A. 50B. 40C. 25D. 30答案:A6. 一个数加上它的1/3等于16,求这个数。

A. 12B. 15C. 18D. 24答案:B7. 一个数的1/4加上这个数的1/2等于9,求这个数。

A. 12B. 18C. 24D. 36答案:B8. 一个数的2倍减去3等于这个数的3倍,求这个数。

A. 3B. 6C. 9D. 12答案:A9. 一个数的3倍加上4等于这个数的5倍,求这个数。

A. 4B. 8C. 12D. 16答案:A10. 一个数的1/2加上这个数的1/3等于5,求这个数。

A. 6B. 12C. 15D. 18答案:B二、填空题(每题4分,共20分)11. 一个数的平方等于36,这个数是________。

答案:±612. 一个数的立方等于27,这个数是________。

答案:313. 一个数的5倍加上20等于60,这个数是________。

答案:814. 一个数的2倍减去3等于9,这个数是________。

答案:615. 一个数的1/4加上这个数的1/2等于7,这个数是________。

答案:8三、解答题(每题10分,共50分)16. 一个长方体的长是宽的2倍,高是宽的3倍,如果长方体的体积是216立方厘米,求长方体的长、宽、高。

答案:设宽为x,则长为2x,高为3x。

辽宁省沈阳市中考数学试题有答案(Word版)

辽宁省沈阳市中考数学试题有答案(Word版)

沈阳市数学中考试题一、选择题(下列各题的备选答案中,只有一个答案是正确的每小题2分,共20分)1.下列各数中是有理数的是A.πB.0C 2.辽宁男篮冠后,从4月21日至24日各类媒体关于“辽篮CBA 夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为A.0.81×104B.0.81×105C.8.1×104D.8.1×1053左下图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是4.在平面直角坐标系中,点B 的坐标是(4,-1),点A 与点B 关于x 轴对称,则点A 的坐标是A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)5.下列运算错误的是A.(m 2)3=m 6B.a 10÷a 9=aC .x 3·x 5=x 8 D.a 4 +a 3=a 76.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是A.60°B.100°C.110°D.120°7.下列事件中,是必然事件的是A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<09.点A (-3,2)在反比例函数y =k x(k ≠O )的图象上,则k 的值是A.-6B.32- C.-1D.610.如图,正方形ABCD 内接于⊙O,AB =AB 的长是A.πB.32πC.2πD.12π 二、填空题(每小题3分,共18分)11.因式分解:3x 3-12x =.12.一组数3,4,7,4,3,4,5,6,5的众数是.13.化简:22124a a a ---=. 14.不等式组20360x x -<⎧⎨+≥⎩的解集是. 15.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱篱笆的厚度忽略不计),当AB =m 时,矩形土地ABCD 面积最大.16.如图,△ABC 是等边三角形,AB D 是边BC 上一点,点H 是线段AD 上一点,连接BH 、CH ,当∠BHD=60°∠AHC=90°时,DH =.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.计算:2013()(4)2π-︒+--2tan45 18.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE =1,DE =2,则菱形ABCD 的面积是.19.经过校园某路口的行人,可能左转,也可能直行或右转假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、(每小题8分,共16分)20.九年三班的小雨同学想了解本校九年级学生对哪门课感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程),将获得的数据整理绘制成如下两幅不完整的统计图:学生感兴趣的课程情况条形统计图学生感兴的课程情况扇形统计图根据统计图提供的信息,解答下列问题(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据以上信息直接..在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21,某公司今年1月份的生产成本是400万元,由于改进生产技术,生产成本逐月下降,3月份的生产成本是361万元、假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下下降率;(2)请你预测4月份该公司的生产成本.五、(本题10分)22.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数(2)若AB=AC,CE=2,求⊙O半径的长.六、(本题10分)23.如图,在平面直角坐标系中,点F的坐标为(0,10),点E的坐标为(20,0),直线l1经过点F和点E,直线11与直线12:y=x相交于点P(1)求直线的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于X轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x轴平行,已知矩形ABCD A移动到点E时停止移动),设移动时间为t秒(t>0),①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线11或12上,请直接..写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线11于点N,交直线于点M,当△PMN的面积等于18时,请直.接.写出此时t的值.七、(本题12分)24.已知△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N 不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN 上,且AE=DE.(1)如图,当∠ACB=90°时,①求证:△BCM≌△CAN;②求∠BDE的度数;(2)当∠ACB=α,其它条件不变时,∠BDE的度数是(用含α的代数式表示)(3)若△ABC是等边三角形,AB=N是BC边上的三等分点,直线ED与直线BC交于点F,请直接..写出线段CF的长八、(本题12分)25.如图,在平而直角坐标系中,抛抛物线C1:y=ax2+bx-1经过点A(-2,1)和点B(-1,-1),抛抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连连接KQ和QN.当KO=1且∠KNO=∠BNP时,请直接..写出点Q的坐标参考答案一、选择题(每小题2分,共20分)1.B2.C3.D4.A5.D6.D7.B8.C9.A10.A二、填空题(每小题3分,共18分)11.3x(x+2)(x-2) 12.4 13.12a+14.22x-≤<15.15016.13三、解答题(第17小题6分,第18、19小题各8分,共22分)17.218.证明:(1)四边形ABCD为菱形,AC⊥BD,∠COD=90°,CE∥OD,DE∥OC,四边形OCED是平行四边形,∠COD=90º,平行四边形OCED是矩形(2)4。

2024沈阳中考数学试卷

2024沈阳中考数学试卷

选择题在平面直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, 2)B. (3, 2)(正确答案)C. (-3, -2)D. (2, 3)已知三角形ABC的三边长为a, b, c,且满足a2 + b2 - c2 = 2ab,则三角形ABC是:A. 等腰三角形B. 等边三角形C. 直角三角形(正确答案)D. 锐角三角形下列函数中,图像经过原点的是:A. y = x2 + 1B. y = 1/xC. y = -2x + 1D. y = 3x(正确答案)若关于x的一元二次方程x2 - 4x + m = 0有两个相等的实数根,则m的值为:A. 1B. 2C. 3D. 4(正确答案)在平行四边形ABCD中,若∠A = 110°,则∠C的度数为:A. 110°(正确答案)B. 70°C. 130°D. 55°下列四个数中,是无理数的是:A. 3.14B. √4C. π(正确答案)D. 22/7已知直线y = kx + b与x轴交于点(2, 0),与y轴交于点(0, -3),则k的值为:A. -3/2(正确答案)B. 3/2C. -2/3D. 2/3若a, b, c是∠ABC的三边长,且a2 + c2 - b2 = ac,则∠ABC是:A. 直角三角形B. 钝角三角形C. 锐角三角形(正确答案)D. 等腰三角形下列计算正确的是:A. √6 × √2 = √3B. (a + b)2 = a2 + b2 + 2ab(正确答案)C. a6 ÷ a3 = a18D. 3-2 = 1/92。

2022年辽宁省沈阳市中考数学真题(解析版)

2022年辽宁省沈阳市中考数学真题(解析版)
∵平行四边形ABCD的面积为6,
∴ ,
∴ ;
故答案为6.
【点睛】本题主要考查平行四边形的性质及反比例函数k的几何意义,熟练掌握平行四边形的性质及反比例函数k的几何意义是解题的关键.
16.如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别在E,F且点F在矩形内部,MF的延长线交BC与点G,EF交边BC于点H. , ,当点H为GN三等分点时,MD的长为______.
(2)由题意易得 ,然后可证 ,则有OF=OE,进而问题可求证.
【小问1详解】
解:由题意得:直线MN是线段AD的垂直平分线;
故答案为:垂直平分线;
【小问2详解】
证明:∵直线MN是线段AD的垂直平分线,
∴ ,
∵AD是 的角平分线,
∴ ,
∵AO=AO,
∴ (ASA),
∴OF=OE,
∵AO=DO,
∴四边形AEDF是平行四边形,
【详解】解:
把②代入①得: ,解得: ,
把 代入②得: ;
∴原方程组的解为 ;
故答案为 .
【点睛】本题主要考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是解题的关键.
13.化简: ______.
【答案】 ##
【解析】
【分析】根据分式的混合运算可直接进行求解.
【详解】解:原式= ;
故答案为 .
A. B. C. D.
【答案】D
【解析】
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【详解】解:从正面看易得上面第一层有1个正方形,第二层左边和右边都有一个正方形,如图所示:
故选:D.
【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.

2020年辽宁省沈阳市中考数学试题及参考答案(word解析版)

2020年辽宁省沈阳市中考数学试题及参考答案(word解析版)

2020年辽宁省沈阳市中考数学试题及参考答案与解析(试题满分120分,考试时间120分钟)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.32.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×1053.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a35.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°6.不等式2x≤6的解集是()A.x≤3 B.x≥3 C.x<3 D.x>37.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.π C.D.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.12.二元一次方程组的解是.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.16.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B 逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.参考答案与解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.3【知识考点】有理数大小比较.【思路分析】根据有理数的大小比较的法则分别进行比较即可.【解题过程】解:由于﹣2<0<1<2<3,故选:A.【总结归纳】此题考查了有理数的大小比较,掌握正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.2.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将10900用科学记数法表示为1.09×104.故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由四个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解题过程】解:从几何体的正面看,底层是三个小正方形,上层的中间是一个小正方形.故选:D.【总结归纳】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.a3÷a=a3【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解题过程】解:A、a2+a3,不是同类项,无法合并,不合题意;B、a2•a3=a5,故此选项错误;C、(2a)3=8a3,正确;D、a3÷a=a2,故此选项错误;故选:C.【总结归纳】此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握相关运算法则是解题关键.5.如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD的度数为()A.65°B.55°C.45°D.35°【知识考点】垂线;平行线的性质.【思路分析】由三角形内角和定理可求∠ABC的度数,由平行线的性质可求解.【解题过程】解:∵AC⊥CB,∴∠ACB=90°,∴∠ABC=180°﹣90°﹣∠BAC=90°﹣35°=55°,∵直线AB∥CD,∴∠ABC=∠BCD=55°,故选:B.【总结归纳】本题考查了平行线的性质,垂线的性质,三角形内角和定理,掌握平行线的性质是本题的关键.6.不等式2x≤6的解集是()A.x≤3 B.x≥3 C.x<3 D.x>3【知识考点】解一元一次不等式.【思路分析】不等式左右两边同时除以2,不等号方向不变,即可求出不等式的解集.【解题过程】解:不等式2x≤6,左右两边除以2得:x≤3.故选:A.【总结归纳】此题考查了一元一次不等式的解法,熟练运用不等式的性质是解不等式的关键.7.下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯【知识考点】随机事件.【思路分析】根据事件发生的可能性大小判断.【解题过程】解:A、从一个只有白球的盒子里摸出一个球是白球,是必然事件;B、任意买一张电影票,座位号是3的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件;故选:A.【总结归纳】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【知识考点】根的判别式.【思路分析】根据根的判别式即可求出答案.【解题过程】解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.【总结归纳】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式,本题属于基础题型.9.一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【知识考点】函数的图象;一次函数图象与系数的关系;待定系数法求一次函数解析式.【思路分析】(方法一)根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限;(方法二)描点、连线,画出函数y=kx+b(k≠0)的图象,观察函数图象,即可得出一次函数y=kx+b(k≠0)的图象不经过第四象限.【解题过程】解:(方法一)将A(﹣3,0),B(0,2)代入y=kx+b,得:,解得:,∴一次函数解析式为y=x+2.∵k=>0,b=2>0,∴一次函数y=x+2的图象经过第一、二、三象限,即该图象不经过第四象限.故选:D.(方法二)依照题意,画出函数图象,如图所示.观察函数图象,可知:一次函数y=kx+b(k≠0)的图象不经过第四象限.故选:D.【总结归纳】本题考查了待定系数法求一次函数解析式、一次函数图象与系数的关系以及函数图象,解题的关键是:(方法一)根据点的坐标,利用待定系数法求出一次函数解析式;(方法二)画出函数图象,利用数型结合解决问题.10.如图,在矩形ABCD中,AB=,BC=2,以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则的长为()A.B.π C.D.【知识考点】矩形的性质;弧长的计算.【思路分析】根据矩形的性质和三角函数的定义得到∠BAE=30°,根据弧长公式即可得到结论.【解题过程】解:∵四边形ABCD是矩形,∴AD=BC=2,∠B=90°,∴AE=AD=2,∵AB=,∴cos∠BAE==,∴∠BAE=30°,∴∠EAD=60°,∴的长==,故选:C.【总结归纳】本题考查了弧长的计算,矩形的性质,熟练掌握弧长公式是解题的关键.二、填空题(每小题3分,共18分)11.因式分解:2x2+x=.【知识考点】因式分解﹣提公因式法.【思路分析】原式提取公因式即可.【解题过程】解:原式=x(2x+1).故答案为:x(2x+1).【总结归纳】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.二元一次方程组的解是.【知识考点】解二元一次方程组.【思路分析】方程组利用加减消元法求出解即可.【解题过程】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=3,则方程组的解为.故答案为:.【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).甲【知识考点】方差.【思路分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解题过程】解:∵甲=7=乙,S甲2=2.9,S乙2=1.2,∴S甲2>S乙2,∴乙的成绩比较稳定,故答案为:乙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图,在平面直角坐标系中,O是坐标原点,在△OAB中,AO=AB,AC⊥OB于点C,点A 在反比例函数y=(k≠0)的图象上,若OB=4,AC=3,则k的值为.【知识考点】反比例函数图象上点的坐标特征;等腰三角形的性质;勾股定理.【思路分析】利用等腰三角形的性质求出点A的坐标即可解决问题.【解题过程】解:∵AO=AB,AC⊥OB,∴OC=BC=2,∵AC=3,∴A(2,3),把A(2,3)代入y=,可得k=6,故答案为6.【总结归纳】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.【知识考点】三角形中位线定理;平行四边形的性质.【思路分析】根据三角形中位线定理和平行四边形的性质即可得到结论.【解题过程】解:∵点E,点F分别是BM,CM中点,∴EF是△BCM的中位线,∵EF=6,∴BC=2EF=12,∵四边形ABCD是平行四边形,∴AD=BC=12,∵AM=2MD,∴AM=8,故答案为:8.【总结归纳】本题考查了平行四边形的性质,三角形中位线定理,熟练掌握平行四边形的性质是解题的关键.16.如图,在矩形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,点P为边AD上一动点,连接OP,以OP为折痕,将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F.若△PDF为直角三角形,则DP的长为.【知识考点】勾股定理;矩形的性质;翻折变换(折叠问题).【思路分析】分两种情况讨论,当∠DPF=90°时,过点O作OH⊥AD于H,由平行线分线段成比例可得OH=AB=3,HD=AD=4,由折叠的性质可得∠APO=∠EPO=45°,可求OH=HP=3,可得PD=1;当∠PFD=90°时,由勾股定理和矩形的性质可得OA=OC=OB=OD=5,通过证明△OFE∽△BAD,可得,可求OF的长,通过证明△PFD∽△BAD,可得,可求PD的长.【解题过程】解:如图1,当∠DPF=90°时,过点O作OH⊥AD于H,∵四边形ABCD是矩形,∴BO=OD,∠BAD=90°=∠OHD,AD=BC=8,∴OH∥AB,∴,∴OH=AB=3,HD=AD=4,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴∠APO=∠EPO=45°,又∵OH⊥AD,∴∠OPH=∠HOP=45°,∴OH=HP=3,∴PD=HD﹣HP=1;当∠PFD=90°时,∵AB=6,BC=8,∴BD===10,∵四边形ABCD是矩形,∴OA=OC=OB=OD=5,∴∠DAO=∠ODA,∵将△AOP折叠,点A的对应点为点E,线段PE与OD相交于点F,∴AO=EO=5,∠PEO=∠DAO=∠ADO,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴,∴,∴OF=3,∴DF=2,∵∠PFD=∠BAD,∠PDF=∠ADB,∴△PFD∽△BAD,∴,∴,∴PD=,综上所述:PD=或1,故答案为或1.【总结归纳】本题考查了翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解题过程】解:原式=2×+9+1+2﹣=+12﹣=12.【总结归纳】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.(8分)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).【知识考点】列表法与树状图法.【思路分析】画树状图展示所有6种等可能的结果,找出抽出的两名学生性别相同的结果数,然后根据概率公式求解.【解题过程】解:画树状图为:共有6种等可能的结果,其中抽出的两名学生性别相同的结果数为3,所以抽出的两名学生性别相同的概率==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为.【知识考点】全等三角形的判定;线段垂直平分线的性质;矩形的性质.【思路分析】(1)利用线段垂直平分线的性质以及矩形的性质,即可得到判定△AOM≌△CON 的条件;(2)连接CE,设AE=CE=x,则DE=6﹣x,再根据勾股定理进行计算,即可得到AE的长.【解题过程】解:(1)∵MN是AC的垂直平分线,∴AO=CO,∠AOM=∠CON=90°,∵四边形ABCD是矩形,∴AB∥CD,∴∠M=∠N,在△AOM和△CON中,,∴△AOM≌△CON(AAS);(2)如图所示,连接CE,∵MN是AC的垂直平分线,∴CE=AE,设AE=CE=x,则DE=6﹣x,∵四边形ABCD是矩形,∴∠CDE=90°,CD=AB=3,∴Rt△CDE中,CD2+DE2=CE2,即32+(6﹣x)2=x2,解得x=,即AE的长为.故答案为:.【总结归纳】本题主要考查了矩形的性质以及全等三角形的判定,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.四、(每小题8分,共16分).20.(8分)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据其他垃圾的吨数和所占的百分比可以求得m的值,然后根据条形统计图中的数据,即可得到n的值;(2)根据统计图中的数据,可以得到可回收物的吨数,然后即可将条形统计图补充完整;(3)根据统计图中的数据,可以计算出厨余垃圾所对应的扇形圆心角的度数;(4)根据统计图中的数据,可以计算出该市2000吨垃圾中约有多少吨可回收物.【解题过程】解:(1)m=8÷8%=100,n%=×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×=108°,故答案为:108;(4)2000×=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?【知识考点】分式方程的应用.【思路分析】求的是工效,工作总量是3000m,则是根据工作时间来列等量关系.关键描述语是提前2天完成,等量关系为:原计划时间﹣实际用时=2,根据等量关系列出方程.【解题过程】解:设原计划每天修建盲道xm,则﹣=2,解得x=300,经检验,x=300是所列方程的解,答:原计划每天修建盲道300米.【总结归纳】本题主要考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.五、(本题10分)22.(10分)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.【知识考点】切线的判定与性质.【思路分析】(1)如图,连接OD,由切线的性质可得∠ODC=90°,可得∠BDO+∠ADC=90°,由直角三角形的性质和等腰三角形的性质可证∠A=∠ADC,可得DC=AC;(2)由等腰三角形的性质可得∠DCB=∠DBC=∠BDO,由三角形内角和定理可求∠DCB=∠DBC=∠BDO=30°,由直角三角形的性质可求解.【解题过程】证明:(1)如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,∴∠BDO+∠ADC=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A=∠ADC,∴CD=AC;(2)∵DC=DB,∴∠DCB=∠DBC,∴∠DCB=∠DBC=∠BDO,∵∠DCB+∠DBC+∠BDO+∠ODC=180°,∴∠DCB=∠DBC=∠BDO=30°,∴DC=OD=,故答案为:.【总结归纳】本题考查了切线的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.六、(本题10分)23.(10分)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.【知识考点】三角形综合题.【思路分析】(1)利用两点间距离公式求解即可.(2)求出直线AB的解析式,利用待定系数法即可解决问题.(3)求出PN,PM即可解决问题.(4)如图,当t=时,MN==4,设EM=m,则EN=4﹣m.构建二次函数利用二次函数的性质即可解决问题.【解题过程】解:(1)∵A(4,4),B(6,0),∴OA==4,AB==2.故答案为4,2.(2)设直线AB的解析式为y=kx+b,将A(4,4),B(6,0)代入得到,,解得,∴直线AB的解析式为y=﹣2x+12,由题意点N的纵坐标为1,令y=1,则1=﹣2x+12,∴x=,∴N(,1).(3)当0<t<4时,令y=t,代入y=﹣2x+12,得到x=,∴N(,t),∵∠AOB=∠AOP=45°,∠OPM=90°,∴OP=PM=t,∴MN=PN﹣PM=﹣t=.故答案为.(4).如图,当t=时,MN==4,设EM=m,则EN=4﹣m.由题意S1•S2=•m×4×(4﹣m)×4=﹣4m2+16m=﹣4(m﹣2)2+16,∵﹣4<0,∴m=2时,S1•S2有最大值,最大值为16.故答案为16.【总结归纳】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是学会利用参数解决问题,学会构建二次函数解决最值问题,属于中考压轴题.七、(本题12分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离为.【知识考点】几何变换综合题.【思路分析】(1)①证明△PBA≌△DBC(SAS)可得结论.②利用全等三角形的性质解决问题即可.(2)证明△CBD∽△ABP,可得==解决问题.(3)分两种情形,解直角三角形求出AD即可解决问题.【解题过程】(1)①证明:如图①中,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,∵BP=BD,BA=BC,∴△PBA≌△DBC(SAS),∴PA=DC.②解:如图①中,设BD交PC于点O.∵△PBA≌△DBC,∴∠BPA=∠BDC,∵∠BOP=∠COD,∴∠OBP=∠OCD=60°,即∠DCP=60°.(2)解:结论:CD=PA.理由:如图②中,∵AB=AC,PB=PD,∠BAC=∠BPD=120°,∴BC=BA,BD=BP,∴==,∵∠ABC=∠PBD=30°,∴∠ABP=∠CBD,∴△CBD∽△ABP,∴==,∴CD=PA.(3)过点D作DM⊥PC于M,过点B作BN⊥CP交CP的延长线于N.如图3﹣1中,当△PBA是钝角三角形时,在Rt△ABN中,∵∠N=90°,AB=6,∠BAN=60°,∴AN=AB•cos60°=3,BN=AB•sin60°=3,∵PN===2,∴PA=3﹣2=1,由(2)可知,CD=PA=,∵∠BAP=∠BDC,∴∠DCA=∠PBD=30°,∵DM⊥PC,∴DM=CD=如图3﹣2中,当△ABN是锐角三角形时,同法可得PA=2+3=5,CD=5,DM=CD=,综上所述,满足条件的DM的值为或.故答案为或.【总结归纳】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题注意一题多解.八、(本题12分)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,线段OC绕原点O逆时针旋转30°得到线段OD.过点B作射线BD,点M是射线BD上一点(不与点B重合),点M关于x轴的对称点为点N,连接NM,NB.①直接写出△MBN的形状为;②设△MBN的面积为S1,△ODB的面积为是S2.当S1=S2时,求点M的坐标;(3)如图3,在(2)的结论下,过点B作BE⊥BN,交NM的延长线于点E,线段BE绕点B 逆时针旋转,旋转角为α(0°<α<120°)得到线段BF,过点F作FK∥x轴,交射线BE于点K,∠KBF的角平分线和∠KFB的角平分线相交于点G,当BG=2时,请直接写出点G的坐标为.【知识考点】二次函数综合题.【思路分析】(1)将点B,点C坐标代入解析式,可求b,c的值,即可求抛物线的表达式;(2)①如图2,过点D作DH⊥OB,由旋转的性质可得OD=3,∠COD=30°,由直角三角形的性质可得OH=OH=,DH=OH=,由锐角三角函数可求∠HBD=30°,由对称性可得BN=BM,∠MBH=∠NBH=30°,可证△BMN是等边三角形;②由三角形面积公式可求S2,S1,由等边三角形的面积公式可求MN的长,由对称性可求MR=NR=,由直角三角形的性质可求BR=3,可得OR=3,即可求点M坐标;(3)如图3中,过点F作FH⊥BG交BG的延长线于H.想办法证明△BFK是等边三角形,推出BG⊥x轴即可解决问题.【解题过程】解:(1)∵抛物线y=x2+bx+c经过点B(6,0)和点C(0,﹣3),∴,解得:,∴抛物线解析式为:y=x2﹣;(2)①如图2,过点D作DH⊥OB于H,设MN与x轴交于点R,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年辽宁省沈阳市中考数学试卷考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .525.310⨯亩B .62.5310⨯亩C .425310⨯亩D .72.5310⨯亩2)3.下列各点中,在反比例函数2y x=-图象上的是() A .(21),B .233⎛⎫⎪⎝⎭,C .(21)--,D .(12)-,4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取 值范围是( )A .0x >B .0x <C .2x >D .2x <6.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或807.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--, 8.如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE , 交对角线BD 于点F ,连接CF ,则图中全等三角形共有( ) A .1对 B .2对 C .3对 D .4对 二、填空题(每小题3分,共24分)9.已知A ∠与B ∠互余,若70A ∠=,则B ∠的度数为 .正面 第2题图A .B .C .D .第5题图xADCE FB第8题图10.分解因式:328m m -= .11.已知ABC △中,60A ∠=,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 .12.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补 充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13.不等式26x x -<-的解集为 .14.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE为 米. 15.观察下列图形的构成规律,根据此规律,第8第15题图16.在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.计算:101(1)52-⎛⎫π-+-+- ⎪⎝⎭18.解分式方程:1233xx x=+--.19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.20.如图所示,在66⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形.(1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.四、(每小题10分,共20分) 21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上. 第1个 ……第2个 第3个 第4个ADBO 第12题图 B C DE A 第14题图 图① 第20题图 图② 图③(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.五、(本题12分)23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:平均数(分) 中位数(分) 众数(分)一班 87.6 90 二班87.6100A B C D第23题图1210 8 6420 人数612 2 5 一班竞赛成绩统计图 二班竞赛成绩统计图 16% D 级 36%C 级 44% A 级EB CA O 第21题图 小刚 小明A 1B 1C 1A B C 第22题图(3)请从下列不同角度对这次竞赛成绩的结果进行分析: ①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 六、(本题12分) 24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (时)之间的关系:(1)y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围) (2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升? (3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D 处至少加多少升油,才能使货车到达B地.(货车在D 处加油过程中的时间和路程忽略不计) 七、(本题12分) 25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.八、(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应C E ND A BM图① C A EM B D N图② 第25题图点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.第26题图2008年辽宁省沈阳市中考数学试卷答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.A 3.D 4.C 5.C 6.D7.A8.C二、填空题(每小题3分,共24分) 9.2010.2(2)(2)m m m +-11.12012.90BAD ∠=(或AD AB ⊥,AC BD =等)13.4x >14.1215.65 16.8 三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.解:原式1(2)5=+-+-··················· 4分125=-+- ··························· 5分6= ································· 6分18.解:12(3)x x =-- ·························· 2分126x x =--7x = ·································· 5分检验:将7x =代入原方程,左边14==右边 ·················· 7分所以7x =是原方程的根 ··························· 8分 (将7x =代入最简公分母检验同样给分)19.解:原式2222222xy y x xy y x y =++-+-- ··············· 4分xy =- ·································· 6分当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭···························· 8分 20.解:(1)答案不唯一,如分割线为三角形的三条中位线中任意一条所在的直线等.·········· 2分拼接的图形不唯一,例如下面给出的三种情况:图① 图② 图③ 图④图①~图④,图⑤~图⑦,图⑧~图⑨,画出其中一组图中的两个图形. ······· 6分 (2)对应(1)中所给图①~图④的周长分别为4+8,4+,4+ 图⑤~图⑦的周长分别为10,8+8+图⑧~图⑨的周长分别为2+,4+.结果正确. ··········· 10分 四、(每小题10分,共20分) 21.解:(1)OD AB ⊥,AD DB ∴= ··················· 3分11522622DEB AOD ∴∠=∠=⨯=····················· 5分 (2)OD AB ⊥,AC BC ∴=,AOC △为直角三角形, 3OC =,5OA =,由勾股定理可得4AC == ··············· 8分28AB AC ∴== ···························· 10分22.解:(1)1()3P =一次出牌小刚出象牌“” ················ 4分(2)树状图(树形图):························· 8分或列表 图⑤ 图⑥ 图⑦图⑧ 图⑨A 1B 1C 1 AA 1B 1C 1 BA 1B 1C 1C开始小刚小明8分由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ···························· 9分1()3P ∴=一次出牌小刚胜小明. ······················ 10分 五、(本题12分) 23.解:(1)21 ······························ 2分 (2)一班众数为90,二班中位数为80 ···················· 6分(3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ····································· 8分②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ···································· 12分 六、(本题12分) 24.解:(1)设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+ ····· 1分 将(0100),,(180),代入上式得,10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩ 20100y x ∴=-+ ····························· 4分验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ················ 5分y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ········ 6分(2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ···················· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ·············· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+,················ 11分 解得,69a =(升) ··························· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ·············· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升)·························· 11分 70.510(16 4.5)69+--=(升) ····················· 12分方法三:由(1)得,货车行驶中每小时耗油20升, ·············· 9分 设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ······························ 11分 ∴在D 处至少加油69升,货车才能到达B 地. ··············· 12分七、(本题12分) 25.证明:(1)①BAC DAE ∠=∠ BAE CAD ∴∠=∠AB AC =,AD AE = ABE ACD ∴△≌△BE CD ∴=································ 3分 ②由ABE ACD △≌△得ABE ACD ∠=∠,BE CD =M N ,分别是BE CD ,的中点,BM CN ∴=················ 4分 又AB AC = ABM ACN ∴△≌△AM AN ∴=,即AMN △为等腰三角形 ··················· 6分 (2)(1)中的两个结论仍然成立. ······················ 8分 (3)在图②中正确画出线段PD由(1)同理可证ABM ACN △≌△ CAN BAM ∴∠=∠ BAC MAN ∴∠=∠ 又BAC DAE ∠=∠MAN DAE BAC ∴∠=∠=∠ AMN ∴△,ADE △和ABC △都是顶角相等的等腰三角形 ·········· 10分 PBD AMN ∴∠=∠,PDB ADE ANM ∠=∠=∠PBD AMN ∴△∽△··························· 12分 八、(本题14分)26.解:(1)点E 在y 轴上 ························· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ····················· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D的坐标为122⎛⎫⎪ ⎪⎝⎭, ·························· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·························· 6分 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =--+ ················ 9分 (3)存在符合条件的点P ,点Q . ···················· 10分第 11 页 共 11 页 理由如下:矩形ABOC 的面积3AB BO == ∴以O B P Q ,,,为顶点的平行四边形面积为 由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2···························· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线2829y x x =-+上282299m m ∴--+= 解得,10m=,28m =- 1(02)P ∴,,22P ⎛⎫ ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形, PQ OB ∴∥,PQ OB ==∴当点1P 的坐标为(02),时,点Q的坐标分别为1(Q,2Q ; 当点2P 的坐标为28⎛⎫- ⎪ ⎪⎝⎭时,点Q 的坐标分别为328Q ⎛⎫- ⎪ ⎪⎝⎭,428Q ⎛⎫ ⎪ ⎪⎝⎭. ············· 14分 (以上答案仅供参考,如有其它做法,可参照给分)x。

相关文档
最新文档