正弦波振荡电路设计
RC正弦波振荡电路的设计
第13章正弦波振荡电路正弦波振荡电路也称信号产生电路,通常也称振荡器,它用于产生一定频率和幅度的信号,例实验室的各种信号的产生电路。
按振荡器输出信号的波形来分有正弦波振荡器和非正弦波振荡器两大类。
13.1 正弦波振荡电路的工作原理一、振荡产生的基本原理:1.什么是正弦波振荡器?无ui →有uo(正弦波)(必须要有能源Vcc)2.如何产生正弦波振荡?U fU o设:U i = U im Sinωt首先将开关S接到1端,U i作用于Au →U o =U i Au(开环),→U f = U o Fu = U i Au Fu(闭环)。
当U f = U i时,再将开关S倒向2端,此时无U i,但U o不变仍为正弦波,即放大器产生了正弦波振荡。
∴自激振荡的条件为:U f = U i二、电路自激振荡的条件(一)振荡的平衡条件:U f = U i 即Au Fu = 11.振幅平衡条件:︱Au Fu︱= 12.相位平衡条件:ψa +ψf = 2nπ(n = 0.1.2……n)作为一个稳态振荡电路,相位平衡条件和振幅平衡条件必须同时满足,利用幅平条件可以稳定U o的幅度,利用相平条件可以确定振荡频率。
(二)振荡的建立与稳定振荡的建立:一合上电源Vcc是一个阶跃电压为非正弦,利用付氏级数分解为若干个正弦波的迭加,其中就有我们所需要的fo的成分,如果能有一个选频网络将它选出,尽管它很小,但经放大→会增大一点→反馈 → 放大,U o 的幅度会越来越大,最终达到预定的数值。
∴ 振荡的建立过程中:︱Au Fu ︱>1;要有选频网络; 振荡的稳定: 负反馈;晶体管的非线性;(三)正弦波振荡器的组成:放大电路 + 反馈网络(正) 其中包括选频和稳幅环节 (四)正弦波振荡器的分类(依据选频网络)RC 正弦波振荡器 (低) LC 正弦波振荡器 (高)石英晶体振荡器 (fo 的稳定性高)U o•13.2 RC 正弦波振荡器一、RC 桥式正弦波振荡器(文氏电桥振荡器) (一)原理图(二)RC 串并联网络的选频特性200)//(91ωωωω-+=u F •当ω=ωo=1 / RC 即f =fo = 1 / 2πRC 则:Fu = Fumax = 1 / 3ψf = 03//arctan00ωωωωF --=ϕ0(三)振荡电路分析 1.起振条件:由自激振荡条件: ︱Au Fu ︱= 1; ψa +ψf =2n π;及RC 串并联网络的选频特性: ∣Fu ∣= 1 / 3 ;ψf = 0; 要求:︱Au ︱= 3;ψa = 2n π; 实际振荡电路:Au 由集成运放担任;Fu 为RC 串并联网络(正反馈),具有选频特性;R 1R f 负反馈用于稳幅;构成电桥;(1)分析电路是否满足振荡条件幅频条件:当ω=ωo 时 ∣Fu ∣= 1 / 3 ∴ 只需Au = 3即可R 1R f 构成电压串联负反馈 Au = 1+ R f / R 1相频条件:已知 ψf = 0;且可分析出ψa = 0∴ ψa +ψf = 0 满足相平条件其实一般情况下,只要是正反馈就一定可以满足ψa +ψf = 2n π∴ 相平条件的判断可用瞬时极性法解决。
用Multisim软件模拟正弦波振荡器电路
正弦波振荡器电路的设计一.设计要求1.要求振荡器的工作频率在30MHZ附近。
2.频率的稳定度为1%—5%。
二.设计原理正弦波振荡器可分为两大类,一类是利用正反馈原理构成的反馈振荡器,它是目前应用最广的一类振荡器。
另一类是负阻振荡器,它是将负阻器件直接连接到谐振回路中,领用负阻器件的负电阻效应去抵消回路中的损耗,从而产生出等幅的自由振荡。
本次实验采用负反馈振荡器产生正弦波。
原理框图如下:1、平衡条件与起振条件(1)振荡的过程当接通电源时,回路内的各种电扰动信号经选频网络选频后,将其中某一频率的信号反馈到输入端,再经放大→反馈→放大→反馈的循环,该信号的幅度不断增大,振荡由小到大建立起来。
随着信号振幅的增大,放大器将进入非线性状态,增益下降,当反馈电压正好等于输入电压时,振荡幅度不再增大进入平衡状态。
(2)起振条件——为了振荡起来必需满足的条件由振荡的建立过程可知,为了使振荡器能够起振,起振之初反馈电压Uf 与输入电压Ui 在相位上应同相(即为正反馈);在幅值上应要求Uf >Ui ,即:起振条件:2T K F n ψψψπ=+=|()|1T jw KF => (3)平衡条件——为维持等幅振荡所需满足的条件振幅平衡条件:|()|1T jw KF == 相位平衡条件 :2T K F n ψψψπ=+=其中n=0,1,2,3…2、稳定条件振荡器工作时要处于稳定平衡状态,既要振幅稳定,而且相位要稳定。
振幅稳定条件:AF 与Ui 的变化方向相反。
相位稳定条件:相位与频率的变化方向相反三. 设计步骤 1.选定电路形式。
选择电容反馈式的改进型振荡器——克拉泼振荡器。
下图是克拉泼振荡器的交流等效电路。
它是用电感L 和电容C3的串联电路构成,且C3<<C1,C2。
C1C2L1C3.此回路的总电容C 只要由C3决定,因为C1,C2和并联对电路总电容的影响很小。
所以电路的振荡角频率为10311LC LC ωω≈== 反馈系数12C F C = 振荡器频率取32MHZ ,则C3电容取50PF ,电感L1取500nH 。
rc正弦波振荡电路设计
rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。
2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。
对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。
因此,已知振荡频率f,可以求出R和C的值。
3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。
电路一般由放大器、RC电路和正反馈网络组成。
放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。
4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。
例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。
5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。
总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。
正弦波振荡器的设计 高频电子线路课程设计
正弦波振荡器的设计高频电子线路课程设计
正弦波振荡器是一种能够产生正弦波的振荡器,在电子线路设计中非常重要。
它有着
广泛的应用,如信号源、调制器和解调器等。
本文主要介绍电子工程中一种高频正弦波振
荡器的设计原理。
正弦波振荡器的设计需要考虑的因素很多,其中比较重要的参数有振荡频率、可靠性、污染物、灵敏度和稳定性等。
综合以上几个参数可以构建出一个满足要求的正弦波振荡器。
实现正弦波振荡器的设计,首先需要搭建电路,电路框图如下所示:
(图)
这是一个普通的多级高频正弦波振荡电路。
它包括四个级别,分别是上放大级、下放
大级、延迟级和信号调节级。
由于这个电路有两个放大级,其频率可以调节范围比较大,但最大的频率不能超过2GHz。
像栅极电容器、延迟电阻等元件可用来控制和调节振荡频率。
这些元件不仅可提升振荡频率,而且还可以降低振荡振幅,以及改善振荡器的可靠
性和稳定性。
正弦波振荡器的设计是一项有趣的研究课题。
它可以满足工业和商业应用的各种需求,正弦波的清晰度和稳定度也极大地增强了电子设备的可靠性。
高频正弦波振荡器的设计原
理完全可以参考上文的框图,依据电路的架构结合参数,可以根据不同的特性需求进行振
荡电路的搭建。
具体实施方法还需要实验进行最后的优化,以获得更好的设计效果。
正弦波振荡电路设计调试方法
正弦波振荡电路设计调试方法嘿,咱今儿个就来唠唠正弦波振荡电路设计调试方法。
你说这正弦波振荡电路啊,就好像是一个有个性的小孩子,得好好琢磨才能让它乖乖听话。
设计正弦波振荡电路,那可得有耐心。
先得选好元器件,这就跟给小孩子挑衣服似的,得合适才行。
电容、电感啥的,都得精挑细选,不然这电路可就“不听话”啦。
然后呢,要搭建起电路的框架,这就像是给小孩子搭积木,得有个稳固的结构。
调试的时候啊,那可真是个有趣又有点头疼的过程。
就好像哄孩子睡觉,得轻手轻脚,小心翼翼的。
你得慢慢调整那些参数,一点点地试,看看这输出的正弦波是不是你想要的那个样子。
有时候啊,它就是不出来你期望的波形,你就得像哄孩子一样,耐心地去找到问题所在。
你想想看,要是这电路一会儿输出个奇奇怪怪的波形,一会儿又没了动静,那不就跟小孩子闹脾气一样嘛。
你得去找到它为啥不高兴,是电容不合适啦,还是电感闹别扭啦。
在调试的过程中,你还得有双敏锐的眼睛,能看出那些细微的变化。
这就好比你能看出孩子脸上细微的表情变化,知道他是高兴还是不高兴。
有时候一个小小的电阻值的改变,就能让整个电路“焕然一新”,就跟孩子突然开心起来一样神奇。
而且啊,你还得有足够的经验和知识,不然面对那些复杂的电路,你不就抓瞎啦?这就像你要是不懂孩子的心思,怎么能哄好他呢。
你得知道哪些地方容易出问题,怎么去解决这些问题。
比如说,有时候你觉得一切都准备好了,可就是没波形出来,那你就得去检查检查是不是哪里连线松了,或者是不是某个元件坏了。
这就像孩子哭了,你得先看看是不是尿布湿了,还是饿了。
总之啊,正弦波振荡电路设计调试可真不是个简单的事儿,但当你最终看到那漂亮的正弦波输出的时候,你就会觉得一切都值了!就像看着孩子健康快乐地成长,那种成就感是无与伦比的呀!你说是不是?这就是正弦波振荡电路的魅力所在,让你又爱又恨,却又忍不住去钻研它,征服它!。
rc正弦波振荡电路
RC正弦波振荡电路简介RC正弦波振荡电路是一种基于电容(C)和电阻(R)元件的电路,可以产生稳定的正弦波电信号。
这种电路常见于信号发生器、音频放大器和频率计等领域。
本文将介绍RC正弦波振荡电路的基本原理、设计方法和应用。
原理RC正弦波振荡电路的基本原理是基于RC网络的充放电特性。
当电容器充电时,电流会通过电阻器,同时电流也会通过电容器。
充电过程中,电容器的电压会逐渐增加,直到达到充电电压。
一旦充电电压达到,电容器将开始放电,电流仍然通过电阻器,但是方向相反。
这样不断循环的充电和放电过程将产生连续的正弦波信号。
设计方法1. 选择合适的电阻值和电容值选择合适的电阻和电容值是设计RC正弦波振荡电路的关键。
其中,电阻决定了振荡频率,而电容决定了振荡周期。
根据公式:f = 1 / (2 * π * R * C)其中,f为振荡频率,π为圆周率,R为电阻值,C为电容值。
可以调整R和C的数值来获得所需的振荡频率。
2. 确定放大倍数RC正弦波振荡电路通常需要放大信号的幅度。
可以通过添加一个放大器来实现,放大器通常采用运算放大器或晶体管等元件。
3. 稳定性分析在设计RC正弦波振荡电路时,需要考虑电路的稳定性。
稳定性可以通过研究电路的极点和传递函数来评估。
如果电路的极点位于左半平面,那么电路是稳定的,否则是不稳定的。
通过合适的选择元件值,可以实现稳定的振荡电路。
应用RC正弦波振荡电路具有广泛的应用领域,包括但不限于以下几个方面:1. 信号发生器RC正弦波振荡电路可以用作信号发生器,用于产生稳定的正弦波信号,用于实验、测试和测量等应用。
2. 音频放大器RC正弦波振荡电路经过合适的放大器可以用于音频放大器中,用于放大音频信号。
3. 频率计RC正弦波振荡电路可以用于频率计,通过测量电路振荡频率来实现对待测信号频率的测量。
结论RC正弦波振荡电路是一种基于RC网络的电路,可以实现稳定的正弦波振荡。
通过选择合适的电阻和电容值,设计合适的放大倍数和稳定性分析,可以实现所需的振荡频率和信号幅度。
最简单三极管正弦波振荡电路
最简单的三极管正弦波振荡电路通常是由两个三极管、两个电容、两个电阻以及一个电源构成的自由多谐振荡器电路。
在这个电路中,三极管Q1的集电极输出接在Q2的基极输入,Q2的集电极输出又接在Q1的基极输入。
接通电源后,通过基极电阻R2和R3同时向两个三极管Q1和Q2提供基极偏置电流,使两个三极管进入放大状态。
当电路开始工作时,由于某种微小的差异(如噪声),Q2的放大作用将这个差异放大并反馈到Q1的基极,再经过Q1的放大,形成连锁反应,迅速使Q1饱和,Q2截止。
这时,D点变成低电平“0”,C点变成高电平“1”。
Q1饱和后相当于一个接通的开关,电容C1通过它放电,C2通过它充电。
随着C1的放电,由于有正电源VCC的作用,Q2的基极电压逐渐升高,当A点电压达到0.7V后,Q2开始导通进入放大区,电路中又会立刻出现连锁反应,使Q2迅速饱和,Q1截止。
这时,C点电位变低电平“0”,D点电位变高电平“1”。
这个时候电容C2放电,C1充电。
这一充放电过程又会使Q1重新饱和,Q2截止。
如此周而复始,形成振荡。
这个电路产生的振荡波形并不是正弦波,而是矩形波。
要得到正弦波,通常需要使用更复杂的电路,如LC振荡器、变压器反馈振荡器或者Colpitts振荡器等。
这些电路可以通过适当的滤波器将矩形波转换为正弦波。
需要注意的是,振荡电路的设计需要考虑许多因素,包括三极管的型号、电路元件的选取、电源电压等。
在实际应用中,可能需要进行多次的调试和优化才能达到理想的效果。
因此,建议在设计和使用振荡电路时,先充分理解相关的原理和知识,并进行适当的仿真和测试。
RC正弦波振荡电路设计
RC 正弦波振荡电路设计电气工程系 王文川任务三 RC 正弦波振荡电路一、RC 正弦波振荡器任务描述RC 正弦波振荡电路的描述学习目标RC 正弦波振荡电路的认识。
重点:RC 正弦波振荡电路的描述。
难点:RC 正弦波振荡电路的认识。
一、实验目的1、进一步学习RC正弦波振荡器的组成及其振荡条件2、学会测量、调试振荡器二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R、C元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz~1MHz的低频信号。
1、RC移相振荡器。
电路型式如图12-1所示,选择R>>Ri图12-1 RC移相振荡器原理图振荡频率起振条件放大器A的电压放大倍数||>29电路特点简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。
频率范围几赫~数十千赫。
2、RC串并联网络(文氏桥)振荡器电路型式如图12-2所示。
振荡频率起振条件 ||>3电路特点可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
图12-2 RC串并联网络振荡器原理图3、双T选频网络振荡器电路型式如图12-3所示。
图12-3 双T选频网络振荡器原理图振荡频率起振条件 ||>1电路特点选频特性好,调频困难,适于产生单一频率的振荡。
注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。
三、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、频率计5、直流电压表6、 3DG12×2 或 9013×2电阻、电容、电位器等四、实验内容1、RC串并联选频网络振荡器(1)(1)按图12-4组接线路图12-4 RC串并联选频网络振荡器(2) 断开RC串并联网络,测量放大器静态工作点及电压放大倍数。
(3) 接通RC串并联网络,并使电路起振,用示波器观测输出电压uO波形,调节Rf使获得满意的正弦信号,记录波形及其参数。
rc正弦波振荡器电路设计及仿真
rc正弦波振荡器电路设计及仿真
!
正弦波振荡器电路的设计和仿真是电子技术的一个重要课题,对电子技术的研究有重
要的意义。
正弦波振荡器是一种典型的振荡电路,它可以用来产生正弦波和方波。
因其电
路简单,性能稳定,用途广泛,在电子电路技术中被广泛应用。
正弦波振荡器的基本原理是把正弦波加以无穷次平均,用此组成两极结构,即动态输
入和动态输出端口,把正弦波作为输入量,由输入端口输送到输出端口,通过反馈回路在
输入端口进一步处理,使其可以不断循环。
根据正弦波振荡器的工作原理,结合实际的应用需求,可以设计出一种满足要求的正
弦波振荡器电路。
其核心电路为双极复放机构,由输入阻抗器连接在振荡管的基极,另一
极连接地;反馈分支由调节圈提供反馈能量,当振荡管的基极的电压超过一定的值得时候,参考管会调节输出端口的电压,而正弦波振荡器就是通过这种反应机制实现正弦波振荡的。
在正弦波振荡器的设计与仿真中,可以采用SPICE模拟工具,运用电路技术与分析技术,对正弦波振荡器电路进行仿真,加以验证电路设计的可行性,并评估其性能参数,致
力于达到设计规定的要求。
总之,正弦波振荡器电路的设计与仿真是一个相当重要的课题,可以通过SPICE模拟
工具与电路技术来实现,并有效地验证仿真结果,为电子技术提供参考,提高电子产品的
质量。
正弦波振荡电路设计课程设计
正弦波振荡电路设计1 技术指标设计一个正弦波振荡电路,使它能输出频率一定的正弦波信号,振荡频率测量值与理论值的相对误差小于±5%,电源电压变化±1V 时,振幅基本稳定,振荡波形对称,无明显非线性失真。
2 设计方案及其比较通过查阅资料可以知道所谓的正弦波振荡电路是指一个没有输入信号,依靠自激振荡产生正弦波输出信号的电路。
正弦波电路由放大电路,正反馈电路和选频网络组成。
正弦波振荡电路的实质是放大器引正反馈的结果。
正弦波振荡电路主要有RC 振荡电路,LC 振荡电路和石英晶体振荡电路。
本次试验中我主要设计的方案是RC 正弦波振荡电路。
RC 正弦波振荡电路是由电阻R 和电容C 元件作为选频和正反馈网络的振荡器,RC 作为选频网络的正弦波振荡器有桥式振荡电路,双T 网络和相移式振荡电路。
根据桥式振荡电路和相移式振荡电路的工作原理,我设计了如下三个方案。
U1COMPIR110k R210kR310k R510kR410k C11nF C21nF D1DIODED2DIODE 图一本方案主要采用一个文式桥式振荡电路作为正反馈,一个由两个二极管反相并联组成的稳幅电路作为负反馈。
其中当w=w0=1/RC 时,RC 选频网络的相移为零,这样,RC 串并联选频网络送到运算放大器同向输入端的信号电压与输出电压同相。
满足相位平衡条件有可能发生震荡。
U1COMPIU2COMPI C1C2C3R1R2R3R4R5这是一个RC 相移式电路,正弦波信号发生器由反相输入比例放大器,电压跟随器和三节RC 相移网络构成。
对于三节RC 电路,其最大相移可以接近于二百七十度。
有可能在某一特定的频率下使其相移为一百八十度,满足相位平衡条件,合理的选取元件及元件参数,满足产生振荡条件和幅度平衡条件的电路就会产生振荡。
2.3 方案三U1COMPIR1R2R3R4C1C2图三这是一个RC 文式桥正弦波振荡电路。
振荡原理与方案一相似。
RC振荡电路实验
正弦波振荡电路实验1.实验目的(1)进一步学习RC 正弦波振荡电路的工作原理。
(2)掌握RC 正弦波振荡频率的调整和测量方法。
2.知识要点(1)实验参考电路见图2-11图2-11 RC 正弦波振荡电路电路参考参数:R 1=2k Ω R 2=2k Ω R 3=R 4=15k Ω R W =10k Ω C 1=C 2=0.1µF D 1、D 2为IN4001 运放选LM741(2)RC 正弦波振荡电路元件参数选取条件1)振荡频率 在图2-11电路中,取R 3=R 4=R ,C 1=C 2=C ,则电路的振荡频率为RC f π210=2)起振幅值条件11R R A f f +=应略大于3,R f 应略大于2R 1其中R f =R W +R 2//R D (R D 为二极管导通电阻)。
3)稳幅电路 实际电路中,一般在负反馈支路中加入由两个相互反接的二极管和一个电阻构成的自动稳幅电路,其目的是利用二极管的动态电阻特性,抵消由于元件误差、温度引起的振荡幅度变化所造成的影响。
3.预习要求(1)RC 振荡电路的工作原理和f 0的计算方法。
(2)RC 振荡电路的起振条件,稳幅电路的工作原理。
(3)写出预习报告或设计报告。
4. 实验内容及要求(1)RC 文式振荡电路实验1)按图2-11连接线路,用示波器观察U 0,调节负反馈电位器R w ,使输出U 0产生稳定的不失真的正弦波。
2)设计性实验(1)设计内容:正弦波振荡电路(2)设计要求:振荡频率f 0=320Hz (误差在1%以内)、放大环节采用运算放大电路、输出无明显失真(加稳幅二极管)。
(3)实验要求:设计电路、选择元件并计算理论值。
连接并调试电路,用示波器观察输出电压,得到不失真的正弦波信号。
用示波器测量输出电压频率,测量U0(P-P)和U f(P-P),计算反馈系数F=U f/U0。
测试结果与理论值相比较,检验是否达到设计要求,如不满足,调整设计参数,直到满足为止。
正弦波振荡电路设计实验报告模板
正弦波振荡电路设计实验报告模板一、实验目的1.掌握正弦波振荡电路的基本原理;2.理解RC振荡电路和LC振荡电路的工作原理;3.学习设计正弦波振荡电路及其参数调节方法;4.掌握基本测量仪器的使用和测量方法。
二、实验器材电源、万用表、示波器、电容、电感、电阻、二极管、晶体管等。
三、实验原理1.振荡电路的基本概念振荡电路是指将直流能够转换为交流的电路,它能够自行维持某一稳定的电压或电流波形振荡,并将其输出。
振荡电路一般由一个反馈电路和放大器组成,其中放大器被称为振荡器。
2.RC振荡电路RC振荡电路由一个电容和一个电阻组成,其工作原理是:当电容中的电荷积累到一定程度时,电容极板之间的电压就会达到放大器的门限电压,从而使放大器输出一个脉冲波,使电容充电电过程反转。
之后又会反转到放大器门限电压状态,继续输出脉冲波,如此反复循环,最终产生一定振幅的正弦波。
3.LC振荡电路LC振荡电路由一个电容和一个电感组成,其工作原理是:电感储存着磁能,当电路稳定工作时,电容和电感之间的振荡电流会产生周期性变化的磁场,控制着电感的电磁力线的指向,从而产生电势变化,之后电势会让电容反向充电,这种反向充电循环会一直进行下去,最终形成一定振幅的正弦波输出。
4.放大器的作用放大器是振荡器中的关键器件,它的主要作用是放大振荡电路中产生的正弦波信号。
在RC振荡器中,由于电容和电阻的限制,输出的正弦波信号较弱,需要经过放大器放大后才能被有效的使用;而在LC振荡器中虽然电路振幅比较大,但同样需要放大器过度放大信号以达到要求的输出功率。
四、实验内容1.设计一个RC振荡电路并调整器件参数,测量输出正弦波的频率、幅度和相位差;2.设计一个LC振荡电路并调整器件参数,测量输出正弦波的频率、幅度和相位差;3.比较RC振荡器和LC振荡器的输出波形,分析其差异;4.讨论如何提高振荡电路输出的稳定性和精度。
五、实验步骤1.设计RC振荡电路(以放大器为集成电路为例);2.按照设计电路图逐一连接电路元件;3.将万用表用于测量电路元件和信号输出端之间的参数(电流、电压、功率、频率等);4.将示波器连接到电路的信号输出端,调节示波器参数(如扫描速度、触发方式、增益等);5.调整RC振荡电路中的电容和电阻参数,使输出信号频率、幅度和相位差符合要求;6.重复以上步骤,设计并测试LC振荡电路。
RC正弦波振荡电路设计
RC正弦波振荡电路设计首先,我们需要了解RC正弦波振荡电路的基本原理。
振荡器是一种电路,它能够将直流电源的能量转换为交流信号。
在RC振荡电路中,我们使用了一个电容和一个电阻来实现振荡。
在RC正弦波振荡电路中,电容充电和放电的时间常数(记为τ)非常重要。
时间常数τ决定了振荡频率的大小,公式为τ=RC,其中R为电阻的阻值,C为电容的电容值。
接下来,我们将详细介绍如何设计RC正弦波振荡电路。
设计过程分为以下几个步骤:1.确定振荡频率:首先根据需要确定振荡的频率范围,并选择一个合适的频率。
振荡频率主要由电容值和电阻值决定,可以通过调整它们的比例来改变频率。
2.选择电容和电阻:根据已知的振荡频率,选择一个合适的电容和电阻。
一般来说,电容的值可以在几十皮法(pF)到几百微法(uF)之间选择,而电阻的值可以在几百欧姆(Ω)到几兆欧姆(MΩ)之间选择。
3.计算时间常数:根据所选择的电容和电阻的值,计算时间常数τ。
时间常数τ决定了振荡的频率,可以根据τ=RC公式计算得出。
4.根据振荡频率调整电容和电阻:如果振荡频率与所需要的频率不一致,可以通过调整电容和电阻的比例来改变频率。
通常来说,增加电容值可以降低频率,而增加电阻值可以提高频率。
5.考虑放大器:为了增强正弦波信号的幅度,可以在RC振荡电路中添加一个放大器电路。
放大器电路一般采用运算放大器、晶体管等元件实现。
6.振荡电路的稳定性:为了确保RC振荡电路的稳定性,可以在电容的两端或电阻的两端添加阻尼电阻,用来衰减振荡中的能量。
7.电源:振荡电路需要一个直流电源供电,电源电压的稳定性会影响振荡器的稳定性,因此需要选择一个稳定的电源。
最后,设计好RC正弦波振荡电路后,可以使用示波器等仪器进行验证,观察输出的波形是否为正弦波,并调整电容和电阻的值,使得输出的波形更加稳定和准确。
总结来说,RC正弦波振荡电路的设计步骤包括确定振荡频率、选择电容和电阻、计算时间常数、根据频率调整电容和电阻、考虑放大器、确保振荡电路的稳定性和选择稳定的电源。
模电RC正弦波振荡电路课程设计
课程设计课程名称:模拟电子技术A设计名称:RC正弦波振荡电路专业班级:学号:学生姓名:指导教师:2018年1月5 日XX大学课程设计任务书学生姓名专业班级课程名称模拟电子技术A设计名称RC正弦波振荡电路设计设计周数 1 设计任务主要设计参数⑴振荡频率:500Hz;⑵振荡频率测量值与理论值的相对误差小于;⑶振幅基本稳定,振荡波形对称;⑷电源电压变化在以内时,无明显非线性失真。
设计内容设计要求⑴RC正弦波振荡电路形式有多种,按照设计要求,提出两种设计方案,进行比较后确定选用方案。
⑵用Multisim软件设计电路原理图;②根据电路功能及技术指标要求,计算电路各元件的参数;③对所设计电路进行仿真、调试,使所设计电路能实现设计要求。
④对仿真过程和仿真结果进行分析。
⑤将仿真测得的正弦波频率,输出幅值分别与理论计算值进行比较,分析产生误差的原因。
⑥如果所设计的RC正弦波振荡电路不能起振,一个条件哪个参数?如何调节?(通过仿真验证)⑦如果输出波形失真,应该调节哪个参数?如何调节?(通过仿真验证)主要参考资料[1]华中科技大学电子技术课程组编,康华光主编.电子技术基础.模拟部分.第五版.北京:高等教育出版社,2010[2]华中科技大学电子技术课程组编,康华光主编.电子技术基础.数字部分.第五版.北京:高等教育出版社,2011[3]刘原主编.电路分析基础.北京:电子工业出版社,2011[4]及力主编.Protel 99 SE原理图与PCB设计教程.北京:电子工业出版社,2007[5](日)稻叶保著,何希才,尤克译.振荡电路的设计与应用.北京:科学出版社,2004学生提交归档文件“课程设计说明书”一本(用word编辑排版打印)要求:内容准确,表述清晰、调理,图文详尽。
注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订)。
2.可根据实际内容需要续表,但应保持原格式不变。
rc正弦波振荡电路设计
rc正弦波振荡电路设计
RC正弦波振荡电路是一种常见的电路设计,用于产生稳定的正弦波信号。
这种电路通常由一个电阻(R)和一个电容(C)组成。
在这个电路中,电容和电阻的相互作用使得电荷以周期性的方式在电容器中积累和释放,从而产生正弦波形的电压输出。
在RC正弦波振荡电路中,电阻的作用是限制电流的流动,而电容则负责积累和释放电荷。
当电压施加到电路上时,电荷开始积累在电容器的板上,导致电压上升。
随着电压的上升,电荷开始流回电源,导致电压下降。
这种电流循环往复,形成了正弦波形的输出信号。
为了确保RC正弦波振荡电路的稳定性,需要选择合适的电阻和电容值。
电阻的值决定了电流的流动速度,而电容的值则影响电荷的积累和释放速度。
选择合适的电阻和电容值可以使电路产生稳定的振荡频率和幅值。
在设计RC正弦波振荡电路时,还需要考虑到电源的稳定性和电路的耦合效应。
电源的稳定性对于产生稳定的振荡信号至关重要,而电路的耦合效应则可能导致信号失真或干扰。
总的来说,RC正弦波振荡电路是一种简单而有效的电路设计,用于产生稳定的正弦波信号。
正确选择电阻和电容值,并考虑电源的稳定性和电路的耦合效应,可以保证电路的性能和稳定性。
这种电路
在很多应用中都有广泛的应用,如音频处理、通信系统等。
文氏电桥正弦波振荡电路
文氏电桥正弦波振荡电路文氏电桥正弦波振荡电路是一种基于反馈机制的电路,其具有稳定性高、频率精确等特点,被广泛应用于科学研究和工程实践中。
本文将从原理、电路设计、电路参数选择和实验结果等方面介绍文氏电桥正弦波振荡电路。
一、原理文氏电桥正弦波振荡电路的基本原理是利用反馈作用,使电路产生无衰减的振荡输出。
具体而言,电路中的电阻、电容和二极管等元件按一定的组合方式组成文氏电桥,而在桥路两侧则连有放大器,形成反馈回路。
在适当的条件下,电路会自动产生电流变化,进而输出一定频率的正弦波信号。
二、电路设计文氏电桥正弦波振荡电路的电路设计分为数个环节。
首先需要确定电路的振荡频率,然后根据频率选择合适的电容和电阻,进而计算桥路的元件数值。
接下来需要设计合适的反馈放大器电路,以及通过电压稳压电路来为电路提供稳定的电源。
最后将设计好的电路原理图转化为PCB电路板的布局和线路连接。
三、电路参数选择在具体的电路设计中,需要根据实际需要来确定电路元件的数值和参数。
一般而言,电路的振荡频率和输出幅度是最为重要的参数。
对于振荡频率而言,需要选择合适的电容和电阻来计算桥路的RC值。
同时还要考虑到放大器的增益和回路的稳定条件等问题。
对于输出幅度而言,则需要控制放大器的放大倍数和主反馈路径的电阻值等参数。
四、实验结果实验结果表明,文氏电桥正弦波振荡电路能够稳定产生一定频率的正弦波输出。
同时对于不同频率和不同电路参数的组合,电路的输出特性也不同。
实验中还可以通过调整电路参数和反馈路径来调制输出信号的相位和形状。
综合而言,文氏电桥正弦波振荡电路是一种基于反馈机制和RC 元件的电路,具有很多优良的特性。
在实际应用中,可以根据具体需求和实验条件进行合适的修改和调整,以产生更加稳定、精确和可控的信号输出。
正弦波振荡电路设计
(×1,×10,×100,×1K,×10K,×100K,×1M…)pf,μ f.
3. 元器件选购: 根据前面设计的电路参数选购相对应的元器件是保证本项目是否成功的关键,因此,必须掌握元器件特 性,应用范围,电路特点。电阻的种类有:碳腊电阻,金属氧化膜电阻,直插电阻,贴片电阻。电容的种类 有:瓷片电容,聚脂电容,聚炳烯电容,电解电容,等等。 实验室根据学生提供的电路参数,购进元器件供同学选取。 4. 元器件安装: 由于本项目的学时数有限,仅为 4 学时,要在这样短的时间内完成整个项目设计和调试是不可能的,因 此,要求同学抽空闲时间,在万能板上焊接安装好元器件。 5. 电路调试和性能测试: 首先将已安装好元器件的万能板进行检查,核对元器件是否与设计相符,连接是否正确,是否短路或开 路现象。 第二步是调整直流电源电压,保证输出晓以大义是你电路所需的值。 第三步是加电测试以下参数值: 静态测试:Vcc,VCEQ,VEQ,ICQ 性能测试: 用示波器观察振荡电路产生的正弦波波形,测出正弦波的幅度值。改变有关元器件参数,保证正弦波失 真最小,保证正弦波幅度值达到设计任务书所规定的最小值。记录正弦波波形图及其最大不失真峰峰值。用 频率计测量正弦波的频率,记录下来。 在实际的性能测试中,往往是振荡电路没有正弦波输出,其原因是多种多样的。解决问题主要从以下几 方面考虑(但不局限于此) : 元器件安装错误 元器件参数不符合设计要求 电路连接不对,从而改变了电路结构 电路中有虚焊,假焊,漏焊 振荡电路设计的合理性 等。 用万用表直流档测量以上各电压值,并列表记录下来
实验电路图:
实验结果:
VPP(1)=640mV Free(1)=5.00MHZ 经测试: 输入电压 10.2V V1 管: Uc=10.25V Ub=3.576V Ue=3.539V 且测得可调电阻大小为 10.29KΩ
正弦波振荡电路
正弦波振荡电路正弦波振荡电路是一种常见的电路,它可以产生稳定的正弦波信号,被广泛应用于通信、测量、音频等领域。
本文将从电路原理、设计和应用等方面介绍正弦波振荡电路。
一、电路原理正弦波振荡电路是一种自激振荡电路,其主要原理是利用放大器的正反馈作用,使放大器输出的信号反馈到输入端形成振荡。
具体来说,正弦波振荡电路由三个基本元件构成:放大器、反馈网络和振荡器。
放大器是正弦波振荡电路的核心部件,它的作用是放大输入信号。
反馈网络是将放大器输出信号反馈到输入端的部件,它的作用是使放大器输出的信号与输入信号同相位。
振荡器是将放大器输出的信号反馈到输入端后形成的振荡电路。
在正弦波振荡电路中,放大器和反馈网络的组合是关键。
放大器的放大倍数和反馈网络的反馈系数决定了电路的稳定性和频率特性。
如果反馈系数过大,正弦波振荡电路将失去稳定性,形成尖峰波振荡电路。
如果反馈系数过小,电路将无法形成振荡。
二、电路设计正弦波振荡电路的设计需要考虑多个因素,包括放大器的选择、反馈网络的设计和电路参数的计算等。
下面将分别介绍这些方面的内容。
1. 放大器的选择放大器是正弦波振荡电路的核心部件,其放大倍数和频率特性对电路的性能有重要影响。
通常选择运放作为放大器,因为运放具有高放大倍数和良好的频率响应特性。
2. 反馈网络的设计反馈网络是正弦波振荡电路的关键部件,其设计需要考虑反馈系数和相位等因素。
通常采用RC网络作为反馈网络,其反馈系数和相位可以通过电路参数进行调节。
3. 电路参数的计算电路参数的计算是正弦波振荡电路设计中的关键步骤。
需要根据电路元件的特性和工作频率等因素进行计算。
具体来说,需要计算放大器的增益、反馈网络的反馈系数和相位等参数。
三、电路应用正弦波振荡电路在通信、测量、音频等领域有广泛的应用。
其中,应用最广泛的是在通信中产生稳定的载波信号。
此外,正弦波振荡电路还可以用于音频振荡器、频率计、信号发生器等领域。
在通信中,正弦波振荡电路主要用于产生载波信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书
学生姓名:专业班级:
指导老师:刘辛工作单位:武汉理工大学理学院
题目:正弦波振荡电路设计
初始条件:直流可调稳压电源一台、示波器一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具
要求完成的主要任务:(包括课程设计工作量及其技术要求以及说明书撰写等具体要求)1、技术要求:
设计一个正弦波振荡电路,使它能输出频率一定的正弦波信号,振荡频率测量值与理论值的相对误差小于±5%,电源电压变化±1V时,振幅基本稳定,振荡波形对称,无明显非线性失真。
2、主要任务:
(一)设计方案
(1)按照技术要求,提出自己的设计方案(多种)并进行比较;
(2)以模拟器件电路为主,设计一个正弦波振荡电路(实现方案);
(3)依据设计方案,进行预答辩;
(二)实现方案
(4)根据设计的实现方案,画出电路逻辑图和装配图;
(5)查阅资料,确定所需各元器件型号和参数;
(6)在面包板上组装电路;
(7)自拟调整测试方法,并调试电路使其达到设计指标要求;
(8)撰写设计说明书,进行答辩。
3、撰写课程设计说明书:
封面:题目,学院,专业,班级,姓名,学号,指导教师,日期
任务书
目录(自动生成)
正文:1、技术指标;2、设计方案及其比较;3、实现方案;
4、调试过程及结论;
5、心得体会;
6、参考文献
成绩评定表
时间安排:
课程设计时间:17周-18周
17周:明确任务,查阅资料,提出不同的设计方案(包括实现方案)并答辩;
18周:按照实现方案进行电路布线并调试通过;撰写课程设计说明书。
指导教师签名:年月日
系主任(或负责老师)签名:年月日
正弦波振荡电路
1.技术指标
1.1初始条件
直流可调稳压电源一台、示波器一台、万用表一块、面包板一块、元器件若干、剪刀、
镊子等必备工具。
1.2技术要求
设计一个正弦波振荡电路,使它能输出频率一定的正弦波信号,振荡频率测量值与理论值的相对误差小于±5%,电源电压变化±1V时,振幅基本稳定,振荡波形对称,无明显非线性失真。
1.3正弦波振荡电路原理
正弦波振荡电路是一个没有输入信号,依靠自激振荡产生正弦波输出信号的电路。
正弦波振荡电路也称为正弦波振荡器,其实质是放大器引正反馈的结果。
正弦波振荡电路一般由放大电路、选频网络、正反馈电路、稳幅环节四部分组成。
选频网络通常不是独立存在,有时和正反馈网络合二为一,有时和放大电路合二为一。
其基本原理如下:在直流电源闭合的瞬间,频率丰富的干扰信号串入振荡电路的输入端,经过放大后出现在电路的输出端,但是由于幅值很小而频率又杂,不是所要求的信号。
此信号再经过选频及正反馈网络把某一频率信号筛选出来(而其他信号被抑制),再送回放大电路的输入端,整个电路的回路增益应略大于1,这样不断循环放大,得到失真的输出信号,最后经稳幅环节可输出一个频率固定、幅值稳定的正弦波信号。
总的来说,正弦波振荡电路大致作用过程如图1所示:
图1 正弦波振荡电路作用过程
2.设计方案及其比较
正弦波振荡电路的类型根据选频网络的组成元件可大致分为RC正弦波振荡电路、LC
正弦波振荡电路、石英晶体正弦波振荡电路三种。
其中RC正弦波振荡电路一般用来产生1Hz到1MHz范围内的低频信号,而LC和石英晶体正弦波振荡电路则一般用来产生1MHz以上的高频信号。
对于产生高频信号的LC正弦波振荡电路,主要有变压器耦合式LC振荡器和三点式LC 振荡器两大类。
其中变压器耦合式LC振荡器又可分为共发射极LC振荡器和共基极LC振荡器;而三点式LC振荡器又可分为电感三点式LC振荡器和电容三点式LC振荡器。
而对于产生低频信号的RC正弦波振荡电路,主要有RC文氏桥振荡电路和双T型RC振荡电路两类。
2.1方案一
电感三点式振荡器
图2 电感三点式振荡器电路
图 3 交流通路
相位条件:如图2所示,当线圈L1上端电位为“+”时,L2下端点位为“-”,此时L1与L2公共端电位低于L1上端电位而高于L2下端电位,即Vf与Vo反相,经过倒相放大后,形成正反馈,既满足相位条件。
振幅条件:适当选择L2和L1的比值,使AvF>1,满足振幅条件,即电路可以振荡。
由于反馈电压Vf取自L2两端,故改变线圈抽头位置,可调节振荡器的输出幅度。
L2越大,反馈越强,振荡输出越大,反之,L2越小,反馈越小,不易起振。
电路振荡频率为
其中M是L1与L2之间的互感系数。
2.2方案二
电容三点式振荡器
图 4 电容三点式振荡器电路
图 5 交流通路
相位条件:当线圈1端电位为“+”时,3端电位为“-”,此电压经C1和C2分压后,2端电位低于1端而高于3端,即Vf与Vo反相,经V倒相放大后,使1端获得“+”电位,形成正反馈,满足相位条件。
振幅条件:适当选择C1和C2的数值,使电路具有足够大的放大倍数,即可产生振荡,电路振荡频率为
其中C'为串联电容。
2.3方案比较
(1)对于电感三点式振荡器
优点:工作频率范围为几百kHz到几MHz。
缺点:反馈信号取自于L2,其对f0的高次谐波的阻抗较大,因而引起振荡回路的谐波分量增大,使输出波形不理想,即波形失真较大。
(2)对于电容三点式振荡器
优点:输出波形好,电路的频率稳定度高,工作频率可高达几十MHz到几百MHz的高频波段范围。
缺点:调节不方便。
3.实现方案
图6 RC文氏桥振荡电路原理图
3.1原理与说明
如图6所示,RC串并联构成选频网络,其中R1与R2阻值相等,均为10k,C1与C2容值相等,均为0.033uf,Rp和R3构成反馈网络,R3阻值取15k,R4、D1、D2构成稳幅电路,R4阻值取15k,调节Rp可改变反馈系数,从而改变放大电路的电压增益满足振荡的幅度条件,二极管利用其稳压特性来限制输出幅度,改善输出波形,避免失真。
由图4所示RC串并联电路可得
其中
,
令
则得
(1)当上式分母中虚部系数为零时,RC串并联网络的相角为零。
满足这个条件的频率可由
式(1)求出:
或(2)将(2)代入(1)中有
(3)由上可得:(4)
(5)由式(4)及式(5)可知,当
或(6)幅频响应的幅值为最大,即
(7)而相频响应的相位角为零,即(8)起振条件:|AF|≥1 ,A≥3
3.2布线图
图 7 布线图
4.调试过程及结论
4.1调试过程
首先,用两根导线从面包板引出地线和输出端,然后打开直流电源调至12v电压输出,再分别引出+12v、-12v和接地三根导线端,将+12v和-12v分别接入运算放大器的4端和11端,尤其注意极性,上端接正极,下端接负极,打开示波器,红夹子接输出端,黑夹子接地线,如图8所示,接通后发现波形较粗,调整示波器的周期、幅度至波形适中,此时波形失真,用螺丝刀调整电位器大小并观察波形变化,直至波形不再有肉眼可分辨的失真,调整示波器使其显示出周期、频率、峰峰值,如图9所示,记下数据后,再根据元件参数计算出理论值,并比较。
图 8 完整电路
图 9 显示数据
4.2设计结论
由公式计算出频率的理论值为480Hz,比实际值461.3Hz稍大。
5.心得体会
三个学期,不长不短,感觉模拟电子技术这门课程真的很重要。
好像这个学期一直在围着它转,从最开始的理论课,到后来的实验课,再到后来的电子线路辅助设计选修课,以及这次的课程设计。
这个过程中,真的学了很多东西,不再是理论计算,而是真正的需要自己动手、动脑,提案、答辩、调试、撰写,每一步都需要自己亲自去完成,其中有甜有苦,有时候为了一个问题会纠结很久很久,有时候会因为问题得到解决而高兴好久。
那种亲自去播种后所得到的收获,不管多少,总是很让人享受的。
调试那天,因为示波器与实验课的示波器稍有差别,便不敢随便调弄,调整波形时便有点束手束脚的感觉。
尤其是频率实际值的得出,并不知道示波器可以直接显示数据,便根据所选择的档位去数格子计算频率,后来经过老师提点,并亲自师范,才知道。
另外,在撰写这篇说明书时也遇到了瓶颈,很多要求并不知道该如何去设置,例如行间距、居中标页码等,都是自己一点点摸索、试探的,确实耗费了很久的时间,但是也相应地掌握了编辑文档的一些必备技能。
总的来说,对自己在这一过程中的表现并不满意,确实看到了进步的自己,但是总感觉自己应该做得更好,不应该做得这么吃力,说到底,可能还是功夫下得少。
6.参考文献
[1]吴友宇.模拟电子技术基础.北京:清华大学出版社,2009
[2]周新民.工程实践与训练教程.武汉:武汉理工大学出版社,2009
武汉理工大学《专业课程设计(一)》课程设计说明书本科生课程设计成绩评定表
指导教师签字:
年月日
11。