高二下学期理科数学周练(七)
2021年高二下学期周末训练数学(理)试题(12)含答案
2021年高二下学期周末训练数学(理)试题(12)含答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题..卡.相应的位置上.......1.已知集合,则= .2.i+i2+i3+i xx= .3.命题“对所有的正数x,”的否定是 .4.命题“使x为31的约数”是命题。
(从“真”和“假”中选择一个填空)5.若A=+i,则A2= .6.“a=b”是“”的条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选择一个填空)7.复数z1,z2满足|z1|=|z2|=|z2-z1|=2,则|z1+z2|= .8.设a>1,函数在区间上的最大值与最小值之差为,则a= .9.如果复数是纯虚数,那么实数= .10.若关于的方程=3+a有实数根,则实数的取值范围是 .11.在等差数列中,若已知两项a p和a q,则等差数列的通项公式a n=a p+(n-p).类似的,在等比数列中,若已知两项a p和a q(假设pq),则等比数列的通项公式a n= .12.若是上的单调递增..函数,则实数的取值范围为 .13.从等式2c os,2c os,2c os,中能归纳出一个一般性的结论是 .14.已知f(x)=|x+1|+|x+2|+|x+3|++|x+xx|+|x-1|+|x-2|+|x-3|++|x-xx|(R),且则a的取值范围是 .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知命题p:∀x∈[1,12],x2-a≥0.命题q:∃x0∈R,使得x20+(a-1)x0+1<0.若p或q 为真,p且q为假,求实数a的取值范围.16.实数m分别取什么值时,复数z=m+1+(m-1)i是 (1)实数?(2)虚数?(3)纯虚数?17.证明:(1)>;(2)1,,3不可能是一个等差数列中的三项。
18.某地区的农产品第天的销售价格(元∕百斤),一农户在第天农产品的销售量(百斤)。
高二数学(理)第二学期周练试题(13套,有答案)
河南省正阳县第二高级中学2018-2019学年下期高二数学理科周练(一)一.选择题:1. 函数()332f x x x =-++的单调递增区间是 A. ()1,+∞ B. (),1-∞- C. ()1,1- D. ()2,2-2.关于函数2()2ln f x x x =- 的极值,下列说法正确的是( )A.有极大值点-1和极小值点1B.仅仅有极小值点-1C.仅仅有极小值点1D.无极值3.命题“,sin 1x R x ∀∈>”的否定是A. ,sin 1x R x ∀∈≤B. ,sin 1x R x ∀∈<C. ,sin 1x R x ∃∈≤D. ,sin 1x R x ∃∈< 4.椭圆22143x y +=的左右焦点为1F ,2F ,点P 为椭圆上异于长轴端点的任一点,则12PF F ∆的周长为( )A.4 B.2 C.5 D.65.与双曲线22:1169x y C -=有相同的渐近线的双曲线E 的离心率为 A. 53 B. 54 C. 53或54 D. 53或526."0,0"a b >>时“22222a b a b ++⎛⎫≤ ⎪⎝⎭”的 A. 充分不必要条件 B. 必要不充分条件C.充要条件D.既不充分也不必要条件7.平面内到x 轴于与到y 轴的距离之和为1的点的轨迹围成的图形的面积为A. 1B. 2C. 3D. 48.若""p q ∧⌝为假命题,""p q ⌝∨为真命题,p ⌝为假命题则,p q 的真假为A.p 假且q 假B.p 假且q 真C.p 真且q 假D.p 真q 真9.四面体A —BCD 的所有棱长均相等,E 为AB 的中点,则异面直线CE 和BD 所成的余弦值为( )A.6 B. 3 C. 13 D. 2310.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,点P 在此双曲线的右支上,若12211tan ,tan 22PF F PF F ∠=∠=-,则双曲线的离心率为( )A.55 D.511.已知12,F F 分别为双曲线22:145x y C -=的左、右焦点,P 为C 右支上一点,且122PF PF =,则12PF F ∆外接圆的半径为A.15 B. 15 C. 15 D.15 12.设△ABC 的内角A ,B ,C 所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C ,3b=20acosA ,则sinA∶sinB∶sinC 为( )(A)4∶3∶2 (B)5∶6∶7 (C)5∶4∶3 (D)6∶5∶4二.填空题:13.连接椭圆()222210x y a b a b+=>>的四个顶点构成的四边形的面积为4,其一个焦点与抛物线2y =14.已知12,F F 分别为双曲线22:143x y C -=的左、右焦点,抛物线29:4E y x =与C 的一个交点为P ,则12PF F ∆的面积为 .15.给出下列四个结论:①若,a b R ∈,则220a ab b ++≥ ②“若tan 1α=,则34πα=”的逆命题; ③“若2x y +≠,则1x ≠或1y ≠”的否命题;④“若()()22001x a y b -+-=,则点()00,x y 在圆()()221x a y b -+-=内”的否命题 其中正确的是 .(只填正确的结论的序号)16.设函数()x f x m π=,若存在f(x)的极值点0x 满足22200[()]x f x m +<,则实数m 的取值范围是_________________三。
晋江市养正中学周练(7)2013.4(教师版)
晋江市养正中学周练(7)2013.4(教师版)晋江市养正中学周练(7)2013.4(教师版)数 学 试 题(理科)(命卷:郑明铿 审卷:高三备课组 考试时间:120分钟;满分:150分)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是满足题目要求的. (1)全集U=R ,集合{}02|2≥+=x xx A ,则[U A=(A )[]0,2- (B )()0,2- (C )(][)+∞⋃-∞-,02, (D )[]2,0(2)已知,54cos ,23,-=⎪⎭⎫ ⎝⎛∈αππα则)4tan(απ-等于 (A )7 (B )71 (C )71- (D )7-(3)如果等差数列{}na 中,15765=++a a a,那么943...a a a +++等于(A )21 (B )30 (C )35 (D )40(4)为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了附:)(2k K P >0.0500.010 0.001200位老年人,结构如下:性别男女是否需要志愿者需要70 40不需要30 60参照附表,得到的正确结论是( )(A)至少有99.9﹪的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”(B)至少有99.9﹪的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”(C)最多有99﹪的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”(D)最多有99﹪的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”(5)“1-=m”是“直线0+ym2-mx与直线+)12(= +myx垂直”的+3=3(A)充分而不必要条件(B)必要而不充分条件(C )充要条件 (D )既不充分也不必要条件(6)函数x x y sin =在[]ππ,-上的图象是(7)已知双曲线()0,012222>>=-b a by a x 的一条渐近线的斜率为2,且右焦点与抛物线xy 342=的焦点重合,则该双曲线的离心率等于(A )2 (B )3 (C )2 (D )23(8)一个几何体的三视图如图所示,其中主视图和左视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是(A )π12 (B )π24 (C )π32 (D )π48 (9)若()()()()()()923112012311132222xx a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为(A )0 (B )5- (C )5 (D )255(10)已知函数⎩⎨⎧>≤+=0,10,2)(x nx x kx x f ()k R ∈,若函数()y f x k=+有三个零点,则实数k 的取值范围是(A )2k ≤ (B )10k -<< (C )21k -≤<- (D )2k ≤-第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.(11)已知向量)0,2(),1,1(==b a ,则向量b a ,的夹角为 。
2021年高二下学期周末训练数学(理)试题(7)含答案
(第9题)2021年高二下学期周末训练数学(理)试题(7)含答案一、填空题1. 已知集合,,则 .2.命题“若实数满足,则”的否命题是_____命题(填“真”、“假”之一).3.函数在区间上的平均变化率为________.4.已知,则.5.若“”是“”的必要不充分条件,则实数的最大值是________.6.直线是曲线的一条切线,则实数的值为 。
7.函数在上的最大值_______.8.分别在曲线与直线上各取一点与,则的最小值为________.9. 10.杯中,当水深为时,则水面升高的瞬时变化率是________.11.已知函数,对任意的,恒成立,则的取值范围为_______. 12. 已知函数,曲线过点,且在点处的切线恰好与直线垂直,若在区间上单调递增,求的取值范围________.13. 已知集合,,其中,我们把集合,记作,若集合中的最大元素是,则的取值范围是 .14.已知函数为常数,为自然对数的底数的图像在点处的切线与该函数的图像恰有三个公共点,则实数的取值范围是_______.二解答题15.变换是逆时针旋转的旋转变换,对应的变换矩阵是;变换对应用的变换矩阵是.(Ⅰ)求点在作用下的点的坐标;(Ⅱ)求函数的图象依次在,变换的作用下所得曲线的方程.16.已知,.(1)若为真命题,求实数的取值范围;(2)若为成立的充分不必要条件,求实数的取值范围.17.已知矩阵的逆矩阵,向量.(1)求矩阵及矩阵的特征值;(2)求的值.18. 如图,两个工厂相距,点为的中点,现要在以为圆心,为半径的圆弧上的某一点处建一幢办公楼,其中.据测算此办公楼受工厂的“噪音影响度”与距离的平方成反比,比例系数是1,办公楼受工厂的“噪音影响度”与距离的平方也成反比,比例系数是4,办公楼受两厂的“总噪音影响度”是受两厂“噪音影响度”的和,设为.(1)求“总噪音影响度”关于的函数关系,并求出该函数的定义域;(2)当为多少时,“总噪音影响度”最小.19.已知,其中是自然常数,(Ⅰ)当时, 研究的单调性与极值;(Ⅱ)在(Ⅰ)的条件下,求证:;(Ⅲ)是否存在实数,使的最小值是?若存在,求出的值;若不存在,说明理由.20.设函数.(1)当时,讨论函数的单调性;(2)若对任意及任意,恒有成立,求实数的取值范围.K23371 5B4B 孋30792 7848 硈w38105 94D9 铙;-]l 32132 7D84 綄34533 86E5 蛥A33109 8155 腕。
淮北一中高二年级周练数学理科试卷
2014-2015学年度淮北一中高二年级 数学周练试卷1.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( )A.(3,0)-B.()3,1--C.(]3,1--D.()3,3-2.设m ,n 是两条不同的直线,α、β、γ是三个不同的平面,给出下列命题,正确的是( ).A .若m β⊂,αβ⊥,则m α⊥B .若m//α,m β⊥,则αβ⊥C .若αβ⊥,αγ⊥,则βγ⊥D .若mαγ=,n βγ=,m//n ,则//αβ3.圆x 2+y 2=1和圆x 2+y 2﹣6y+5=0的位置关系是( ). A.外切 B.内切 C.外离 D.内含 4.函数y =-xcosx 的部分图象是( ).5. 已知向量b a ,满足1||||||=+==b a b a ,则向量b a ,夹角的余弦值为 ( )A 6.设△ABC 的内角CB A ,,所对边的长分别为c b a ,,,若a c b 2=+,B A sin 5sin 3=,)7.按如图的程序框图运行后,输出的S 应为( )A.7B.15C.26D.408.设偶函数()f x 在(0,)+∞上为减函数,且(2)0f =,则不等式( ). A .(2,0)(2,)-+∞ B .(,2)(0,2)-∞- C .(,2)(2,)-∞-+∞ D .(2,0)(0,2)-9.已知函数)(x f y =,将)(x f 图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得到的图象沿x 轴向左平移,这样得到的曲线与x y sin 3=的图象相同, 那么)(x f y =的解析式为( )A C 10.已知函数)(x f y =的周期为2,当x ∈[-1,1]时2)(x x f =,那么函数)(x f y =的图( ).A 、10个B 、9个C 、8个D 、1个二、填空题(题型注释)11.已知数列1是这个数列的第 项.12.函数()()πϕπϕ<≤-+=,2cos x y 的图像向右平移个单位后,与函数的图像重合,则ϕ= 。
2021年高二下学期数学周练试卷(理科实验班零班3.20) 含答案
2021年高二下学期数学周练试卷(理科实验班零班3.20)含答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.随机变量服从正态分布,若,则()A. B. C. D.2.某班有50人,从中选10人均分2组(即每组5人), 一组打扫教室, 一组打扫操场,那么不同的选派法有( )A. B. C. D.3.已知随机变量的分布列是其中,则-1 0 2PA、 B、 C、4.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x 1.99 3 4 5.1 6.12y 1.5 4.04 7.5 12 18.01( )A.y=2x-2 B.y=(12)x C.y=log2xD.y=12(x2-1)5.已知函数,则其导函数的图象大致是()A. B. C. D.6.某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的体积等于 ( )A. B. C. D.7.已知函数的导函数为,且满足关系式,则的值等于()A. B. C. D.8.已知,是的导函数,即,,…,,,则()A. B. C. D.9.如图是可导函数,直线:是曲线在x=3处的切线,令, 是的导函数,则=()A.-1 B.0 C.2 D.410.如图是函数的大致图象,则等于A. B. C. D.11. 下列判断错误..的是()A.若随机变量服从正态分布则B.若组数据的散点都在上,则相关系数C.若随机变量服从二项分布: ,则D.“”是“”的必要不充分条件12.定义域为的可导函数的导函数为,满足,且则不等式的解集为()A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分.)13.,则等于 ___________14.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线的周围,令z=ln y,求得线性回归方程为,则该模型的回归方程为________.15.若函数,是的导函数,则函数的最大值是.16.设、分别为具有公共焦点、的椭圆和双曲线的离心率,是两曲线的一个公共点,且满足,则的值为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽样100名市民, 按年龄情况进行统计的频率分布表Ⅰ和频率分布直方图2,频率分布表Ⅰ(1)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图统计这500名志愿者得平均年龄;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加的宣传活动,再从这20名中选取2名志愿者担任主要发言人.记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:(1)根据以上数据,(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“微信控”和“非微信控”的人数;(3)从(2)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,记这3人中“微信控”的人数为,试求的分布列与数学期望.参考公式:,其中.参考数据:19、设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求20.已知函数,其中若在x=1处取得极值,求a的值;求的单调区间;21.如图,已知斜三棱柱中,平面平面,且,,求侧面与底面所成锐二面角的大小.22.如图,M是抛物线上上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB. (1)若M为定点,证明:直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹.丰城中学xx学年下学期高二周考试题答案(数学)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A D D C B D A B D D B 二、填空题(本大题共有4小题,每小题4分共16分.把答案填在题中横线上)13. 14.15. 16.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.平均年龄估值为:(45×0.05+55×0.2+65×0.35+75×0.3+85×0.1)=33.5(岁).(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2, , , ,∴X的分布列为:.18.(本小题满分12分)【答案】(1)没有60%的把握认为“微信控”与“性别”有关;(2)2人;(3)的分布列是的期望值是.. (10分)所以的分布列是所以X 的期望值是.(12分19.【答案】解:(Ⅰ)由已知得到:当两次摸到的球分别是红红时,此时;当两次摸到的球分别是黄黄,红蓝,蓝红时,此时;当两次摸到的球分别是红黄,黄红时,此时;当两次摸到的球分别是黄蓝,蓝黄时,此时;当两次摸到的球分别是蓝蓝时,此时;所以的分布列是:2 3 4 5 6 P(Ⅱ)由已知得到:有三种取值即1,2,3,所以的分布列是:1 2 3 P所以:2225233555253(1)(2)(3)9333a b c E a b c a b c a b c a b c D a b c a b c a b c ηη⎧==++⎪⎪++++++⎨⎪==-⨯+-⨯+-⨯⎪++++++⎩,所以.20. 解(Ⅰ)22222'(),1(1)(1)(1)a ax a f x ax x ax x +-=-=++++ ∵在x=1处取得极值, ∴解得 (Ⅱ)∵ ∴①当时,在区间∴的单调增区间为 ②当时,由22'()0,'()0,aaf x x f x x a a-->><<解得由解得 ∴()),a af x a a+∞2-2-的单调减区间为(0,单调增区间为(,). 21.解:过点A 1作A 1O ⊥AC,由题意O 为AC 的中点,过点O 作OD ⊥AC 交AB 于D ,平面平面ABC,平面ABC, (3分) 以O 为原点,OD,OC,OA 1分别为轴,建立如图所示的直角坐标系,则1263(0,3,0),(,,0),(0,0,3)33A B A - (6分),由题意平面ABC 的一个法向量为 设,平面的一个法向量为,则由 ,令,则设平面A 1ABB 1与平面ABC 所成锐二面角为, 则 (11分)所以平面A 1ABB 1与平面ABC 所成锐二面角为 (12分) 22.(本题12分)解:(1)设M (y,y 0),直线ME 的斜率为k(l>0) ——1分 则直线MF 的斜率为-k ,方程为 ——2分 ∴由,消 ——3分解得 ——5分∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值) ——6分 所以直线EF 的斜率为定值.(2)90,45,1,EMF MAB k ∠=∠==当时所以 ——7分 直线ME 的方程为由得——8分同理可得——9分设重心G(x, y),则有222200000000(1)(1)23333(1)(1)333M E FM E Fy y y yx x xxy y y yx x xx⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩——10分消去参数得——12分 D30999 7917 礗uWt30275 7643 癃31083 796B 祫21707 54CB 哋 35102 891E 褞 K。
江西省会昌中学2017-2018学年高二卓越班下学期周练7(5.9)
江西省会昌中学2017-2017学年高二卓越班下学期周练7(5.9)一、单项选择1、区位指数是综合了区域发展的资源、环境、交通、能源、劳动力、经济、科技、政府管理等多项自然、社会指标的量化参数。
读“我国区位指数分布图”,回答1—2题1.关于我国区位指数的说法,正确的是()A.我国区位指数由南部向北部递减B.东部沿海省区位指数较高的主要是资源丰富C.乙地的区位指数小于10 的主要原因是环境恶劣D.丙地区位指数较低,其主要原因是交通闭塞2.甲地区的区位指数大于40,其中关于其优势的说法正确的是()①交通便利②老工业基地,经济基础好③矿产资源丰富④毗邻港澳,便于引进资金、技术A.①② B.①④ C.②③ D.③④2、“振兴东北要从发展现代农业开始”。
我国最大的商品粮基地黑龙江省2012年全省粮食总产量登上1 000亿千克新台阶,粮食商品量达到800亿千克。
今后黑龙江垦区将围绕“粮、牧、企”的结构模式对产业结构进行战略性调整,尽快实现从“北大荒”走向“北大仓”之后再走向“北大商”的合理构想。
据此完成1~2题。
1.下列粮食作物属于黑龙江垦区的是()A.冬小麦和高粱B.春小麦和玉米C.油菜籽和甜菜D.水稻和花生2.对黑龙江垦区进行产业结构调整,下列叙述正确的是()A.“粮、牧、企”结构模式中的“企”是指新建立一批国有大中型企业B.从“北大荒”走向“北大仓”的过程主要依靠加大科技投入C.“北大仓”要走向“北大商”必须依靠扩大耕地面积D.产业结构调整必须面向国际和国内市场,提高农产品的附加值3、下图是黄土高原外力作用示意图,读图,完成(1)~(2)题。
(1)黄土高原位置特殊表现在它位于()A.东南季风向西南季风的过渡地带B.森林带向荒漠带的过渡地带C.以流水作用为主向以风力作用为主的过渡地带D.湿润地区向半湿润地区的过渡地带(2)黄土高原的成因是()A.流水侵蚀B.风力侵蚀C.流水堆积D.风力堆积4、当今3S技术在生产、生活和科研中的作用越来越突出。
2021年高二下学期周末训练数学(理)试题(10) Word版含答案
2021年高二下学期周末训练数学(理)试题(10) Word 版含答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡...相应位置上...... 1. 命题“,有”的否定是 ▲ .2. 若(为虚数单位),则的值为 ▲ .3. 观察下列式子:, ,,…,根据以上式子可以猜想 ▲ .4. 若(为虚数单位),则是的 ▲ 条件. (填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)5.设的展开式中的系数为,二项式系数为,则 ▲ .6.已知函数是上的增函数,,命题“若,则”与它的逆命题,否命题,逆否命题四个命题中真命题的个数为 ▲ .7. 已知,,则可化简为▲ . (用含有的式子表示)8. 已知条件和条件,若是的充分条件,则实数的取值范是 ▲ .9. 现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为. 类比到空间,有两个棱长均为的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为 ▲ .10. 若()()()()99221091...112+++++++=++x a x a x a a m x ,且 ()()9293128203......=+++-+++a a a a a a ,则实数m 的值为 ▲ .11. 下列四个命题中,真命题的序号是 ▲ .①,使是幂函数,且在上递减;②,函数有零点;③,使;④,函数都不是偶函数.12.已知(其中为给定的正整数),则对任意整数(),恒为定值是▲.13. 已知二次函数的值域为,且当,时,不等式恒成立,则实数的最大值为▲.14. 设集合,选择的两个非空子集和,要使中最小的数大于中最大的数,则不同的选择方法共有▲种.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知是虚数,是实数.(1)求为何值时,有最小值,并求出|的最小值;(2)设,求证:为纯虚数.16.(本小题满分14分)已知命题:函数在定义域上单调递增;命题:不等式对任意实数恒成立,若是真命题,求实数的取值范围.颜色(其中一种为红色)对图中四个三角形进行染色,且每个三角形用一种颜色图染.(1)若必须使用红色,求四个三角形中有且只有一组相邻三角形同色的染色方法的种数;(2)若不使用红色,求四个三角形中所有相邻三角形都不同色的染色方法的种数.18.(本小题满分16分)已知函数(且),函数、分别是上的奇函数和偶函数,并且.(1)求和的解析式;(2)计算,探索它们之间的关系并推广到一般情形,并给予证明;(3)类比“两角和与差的正余弦公式”的形式,结合(2)的结论,试写出与(2)结果不相同的三个关于、的关系式,并给予证明.19.(本小题满分16分)已知数列满足,且.(1)计算的值,由此猜想数列的通项公式,并用数学归纳法证明;(2)求证:.20.(本题满分16分)已知函数和函数.(1)若方程在上有两个不同的解,求实数的取值范围;(2)若对,均,使得成立,求实数的取值范围.评分标准1.,有 2. 3. 4.充分不必要 5.4 6.4 7. 8. 9. 10.1或-3 11.①②③ 12. 13. 14. 4915.解:设,则i b a b b b a a a b a bi a bi a bi a bi a z z ⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛++=+-++=+++=+22222211 所以,,又可得 …………………………………4分(1)22)1()2()1()2(2-++=-++=-+b a i b a i z表示点到点的距离,所以最小值为 ………7分解方程组并结合图形得 …………………………………9分(2)()()()[]()[]()a bi ba bi a bi a bi a bi a z z u +-=++-+⋅--=++--=+-=1111111122 又,所以为纯虚数 ……………………………………………………………………14分16.解: ……………………………………………………………………5分当时恒成立; …………………………………………………………………7分当时,,解得:……………………………………………………………………………11分所以, ……………………………………………………………………………14分17.解:(1)同色的相邻三角形共有种,不妨假设为,①若同时染红色,则另外两个三角形共有种染色方法,因此这种情况共有种染色方法; ②若同时染的不是红色,则它们的染色有种,另外两个三角形一个必须染红色,所以这两个三角形共有,因此这种情况共有种染色方法.综上可知有且只有一组相邻三角形同色的染色方法的种数为种;……7分(2)因为不用红色,则只有四种颜色.若一共使用了四种颜色,则共有种染色方法;若只使用了三种颜色,则必有一种颜色使用了两次,且染在对顶的区域,所以一共有种染色方法;若只使用了两种颜色,则两种颜色都使用了两次,且各自染在一组对顶区域,所以共有种染色方法.综上可知所有相邻三角形都不同色的染色方法的种数为种. ………………14分18.解:(1)将代入 ①得,因为函数、分别是上的奇函数和偶函数,所以 ②,①②得,①②得; ………………………………4分(2),,,,,所以, ………………………………6分推广得到.证明:+; …………………………………………………………9分(3);;. …………………………………………………12分证明:+将和中用 代替得,因为函数、分别是上的奇函数和偶函数,所以,.…………16分19.解:(1),由此猜想数列 ……………………3分证明:当时,,符合;假设当时,成立,那么当时,1)1(21)1()1(1221++=+=++-+=+-=+k k k k k ka a a k k k所以,当时也成立. …………………………………………………………7分(2)即证 …………………………………………………………9分 2111...111111221=⋅+≥⋅++⋅+⋅+=⎪⎭⎫ ⎝⎛+n C n C n C n C n n n n n n n n ………………………11分 又1212...211!11...21!11-=⋅⋅⋅≤≤+-⋅⋅-⋅-⋅⋅=k k k nk n k n n n n n n n k n C , …………………13分 故有32123211211121...2121111112<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-+=+++++≤⎪⎭⎫ ⎝⎛+-n n n n n 综上:,即.……………………………………………16分20.(1)或或所以,且即且………………………………………5分(2)…………………………………………………………8分…………………………………………………………13分当时,,解得当时,,解得当时,,解得综上,…………………………………………………………16分L31758 7C0E 簎24168 5E68 幨;k21766 5506 唆36139 8D2B 贫31589 7B65 筥31143 79A7 禧27124 69F4 槴4qT32482 7EE2 绢j。
高二下学期理科数学周测试题及答案(精)
高二理科数学周测卷 (10班级 ________________姓名 _______________分数 ______________一、填空题 (每题 5 分,共 40 分1. 已知会合 }1,1{-=M ,}0|{2=+=x x x N ,则M N =(A.}1,0,1{-B.}1,1{-C.{1}-D.{0}2.3a =是直线 230ax y a ++=和直线 3(17x a y a +-=-平行的 ( A . 充足不用要条件B .必需不充足条件C .充要条件D .既不充足又不用要条件3.计算 :=+? -222(sin dx x (A.-1B.1C.8D.-84.把函数 6sin( π+=x y 图象上各点的横坐标缩短到本来的21 倍(纵坐标不变 ,再将图象向右平移3π个单位 ,那么所得图象的一条对称轴方程为( A .2π-=x B .4π-=x C .8π=x D .4π=x5.甲、乙两人玩猜数字游戏,先由甲心中想一个数字 ,记为 a ,再由乙猜甲方才所想的数字 ,把乙猜的数字记为 b ,此中 {},1,2,3,4,5,6a b ∈,若 1a b -≤,就称甲乙“心有灵犀”现.随意找两人玩这个游戏,则他们“心有灵犀”的概率为 (A .19B .29C.718D.496.平面向量 a 与 b 的夹角为 60? ,(2,0,||1==a b ,则|2|+a b 等于 ( AB.C.4D.127.已知双曲线 221x my +=的虚轴长是实轴长的 2 倍 ,则实数 m 的值是 (A . 4B.14C.14 -D.-4 8.如图 ,水平搁置的三棱柱的侧棱长和底边长均为2,且侧棱 AA 1 ⊥平面 A 1B 1C 1,正视图是正方形 ,俯视图是正三角形 ,该三棱柱的侧视图面积为(二、填空题 (每题 5 分,共 30 分9.已知 i 为虚数单位 ,复数 2i 1iz+=-,则 |z | = .10.在等比数列 }{n a 中,已知 ,21=a 164=a ,n a =__________.11.已知 ??? >+-≤ =0,11(0,cos (x x f x x x f 则 4π,(3f 的值为 _______.12.某校有高级教师 26 人,中级教师 104 人 ,其余教师若干人 .为了认识该校教师的薪资收入状况 ,若按分层抽样从该校的全部教师中抽取 56 人进行检查 ,已知从其余教师中共抽取了 16 人 ,则该校共有教师人. 13. (6睁开式中的常数项是 (用数字作答。
2021年高二下学期周末训练数学(理)试题(6) Word版含答案
2021年高二下学期周末训练数学(理)试题(6) Word版含答案一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“x∈N,x2≠x”的否定是▲.1.x∈N,x2=x2.在平面直角坐标系xOy中,焦点为F(5,0)的抛物线的标准方程是▲.2.y2=20x3.设复数z满足z·i=3+4i (i是虚数单位),则复数z的模为▲. 3.54.椭圆x28+y24=1的右准线方程是▲.4.x=45.记函数f(x)=x+1x的导函数为f(x),则f (1)的值为▲.5.-16.记命题p为“若=,则cos=cos”,则在命题p及其逆命题、否命题、逆否命题中,真命题的个数是▲. 7.27.已知实数、满足,则的最小值为 .8.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为▲.8.5 29.在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,点P在抛物线上,若PF=2,则点P到抛物线顶点O的距离是▲.10.已知函数f (x )=e x -ax 在区间(0,1)上有极值,则实数a 的取值范围是 ▲ 10.(1,e) 11.“a =1”是“函数f (x )=x +a cos x 在区间(0,2)上为增函数”的 ▲ 条件(在“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中,选择适当的一种填空).11.充分不必要12.对于任意实数x ,不等式恒成立,则实数a 的取值范围是▲ 。
13.定义在R 上的函数y =f (x )的图像经过坐标原点O ,且它的导函数y =f (x ) 的图像是如图所示的一条直线,则y =f (x )的图像一定不经过第 ▲ 象限.一14. 设二次函数的值域为,且,则的最大值是 。
二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分14分)已知a ∈R ,设p :函数f (x )=x 2+(a -1)x 是区间(1,+∞)上的增函数,q :方程x 2-ay 2=1表示双曲线.(1)若p 为真命题,求实数a 的取值范围; (2)若“p 且q ”为真命题,求实数a 的取值范围.15.解 (1)因为p 为真命题,即函数f (x )=x 2+(a -1)x 是(1,+∞)上的增(第14题Oxy函数,所以-a-1 2≤1.………………… 3分解得a≥-1.即实数a的取值范围是[-1,+∞.………………… 7分(2)因为“p且q”为真命题,所以p为真命题,且q也为真命题.由q为真命题,得a>0.所以a≥-1且a>0,即a>0.所以实数a的取值范围是(0,+∞).…………………14分16、(本题满分14分)已知曲线过点P(1,3),且在点P处的切线恰好与直线垂直.求(Ⅰ)常数的值;(Ⅱ)的单调区间.解(Ⅰ)据题意,所以,又曲线在点P处的切线的斜率为,∴,即解得.(Ⅱ). ∴当时,;当时,.∴的单调区间为,在区间上是增函数,在区间上是减函数.17. (15分)已知双曲线以点为顶点,且过点.(1)求双曲线的标准方程;(2)求离心率为,且以双曲线的焦距为短轴长的椭圆的标准方程;(3)已知点在以点为焦点、坐标原点为顶点的抛物线上运动,点的坐标为,求的最小值及此时点的坐标.解:(1)依题意,…………………2分设将代入,得双曲线标准方程为:…………………5分(2)由(1)知,椭圆标准方程为:或…………………11分(3)依题意,抛物线标准方程为:设点到准线的垂线段为此时, (15)分18. (本题满分15分)经过长期的观测得到:在交通繁忙时段,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为.(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/小时)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内? 17.解:(1)2920920920160031600833v y v v v v==≤=≈++++11.1,当且仅当,即时,上式取等号.所以,当汽车的平均速度v 为40千米/小时时,车流量最大,最大车流量为11.1千辆/小时.(2)由得,,即, 解得25<v <64.所以,当汽车的平均速度大于25千米/小时,小于64千米/小时时,该时段内车流量超过10千辆/小时.19.(16分)已知函数f (x )=(x ﹣a )(x ﹣b )2,a ,b 是常数. (1)若a≠b,求证:函数f (x )存在极大值和极小值;(2)设(1)中f(x)取得极大值、极小值时自变量的值分别为x1、x2,令点A(x1,f(x1)),B(x2,f(x2)).如果直线AB的斜率为﹣,求函数f(x)和f′(x)的公共递减区间的长度。
高二理科数学周练七
一.选择题1、空间有10个点,其中5点在同一平面上,其余没有4点共面,则10个点可以确定不同平面的个数是( )A 、206B 、205C 、111D 、1102.有8人已站成一排,现在要求其中4人位置不变,其余4人调换位置,则有( )种不同的调换方法A .1680B .256C .630D .2803.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有( )种不同的坐法A .7200B .3600C .2400D .12004.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为( )A .1440B .-1440C .-2880D .28805.(x -1)11展开式中x 的偶次项系数之和是( )A.-2048B.-1023C.-1024D.10246. (82展开式中不含..4x 项的系数的和为( ) A.-1 B.0 C.1 D.27.若多项式102x x +=10109910)1()1()1(++++⋅⋅⋅+++x a x a x a a ,则=9a ( )A 9B 10C 9-D 10-8.已知i x +=2,设444334224141x C x C x C x C M +-+-=,则M 的值为( ) A 4 B -4i C 4i D -4二.填空题9.=++++nn n 2n 21n 0n C 3C 3C 3C 10.(1)=_______11.已知等式141422104232)21()1(x a x a x a a x x x ++++=-⋅-+ 成立,则+++321a a a 1413a a ++ 的值等于 .12、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成________种不同币值。
班级________ 姓名________ 座号________ 得分________9.10 .11 .12 .三.简答题13. 某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?14. 20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.。
高二理科数学周测试题(4-7)
广州市汾水中学高二年级理科数学周练题(共14题)1.(2012年南京市调研题)命题“若a b <,则a c b c +<+”的逆否命题是( )A. 若a c b c +<+,则a b >B. 若a c b c +>+,则a b >C. 若a c b c +≥+,则a b ≥D. 若a c b c +<+,则a b ≥2.(2013年广东省六校联考(理))若 '0()3f x =-,则000()(3)lim h f x h f x h h →+--=( )A .3-B . 12-C .9-D .6-3.(2013年成都市诊断题)复数z=534+i,则z =( ) A .25 B .5 C .1 D .74.(长沙市雅礼中学高三月考试题)用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A . 假设至少有一个钝角B .假设至少有两个钝角C.假设没有一个钝角 D.假设没有一个钝角或至少有两个钝角5. (佛山一中高三月考试题)有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点.以上推理中( )A .大前提错误B . 小前提错误C .推理形式错误D .结论正确6. (2013年广州市三校联考)以下有四种说法,其中正确说法的个数为:( )(1)“m 是实数”是“m 是有理数”的充分不必要条件;(2) “a b >”是“22a b >”的充要条件;(3) “3x =”是“2230x x --=”的必要不充分条件;(4)“A B B =”是“A φ=”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个7.(2013年揭阳市模拟试题)01-⎰(x 2+2 x +1)dx =__________8.(2008年海南宁夏高考试题(理))已知向量(0,1,1)a =-,(4,1,0)b =,||29a b λ+=且0λ>,则λ= __________9.(2010年肇庆市综合测试试题) 已知点P 到点(3,0)F 的距离比它到直线2x =-的距离大1,则点P 满足的方程为 .10.(2011年惠州市质检题)如果椭圆193622=+y x 的弦被点(4,2)平分,则这 条弦所在的直线方程是________________11.(选修2-1,p96复习题二,B 组2题改编)已知椭圆的顶点与双曲线221412y x -=的焦点重合,它们的离心率之和为135,若椭圆的焦点在x 轴上,求椭圆的方程.12. 已知、a b R ∈,a b e >>(其中e 是自然对数的底数),求证:a b b a >. (提示:可考虑两边取对数并用分析法找思路)13.(2013年广东省十校联考)已知数列{}n a 的前n 项和*1()n n S na n =-∈N .(1) 计算1a ,2a ,3a ,4a ;(2) 猜想n a 的表达式,并用数学归纳法证明你的结论.14.(2008年安徽省高考试题(理))如图,在四棱锥O ABCD -中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N为BC 的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题:(Ⅰ)证明:直线MN OCD 平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小;(Ⅲ)求点B 到平面OCD 的距离.15.(综合题·广东省六校联考)设p :函数)4lg()(2a x ax x f +-=的定义域为R ; q :不等式ax x x +>+222 ,对∀x ∈(-∞,-1)上恒成立,如果命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,求实数a 的取值范围.。
2021年高二下学期数学理周练(7)
2021年高二下学期数学理周练(7)1、若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则= ( )A. B. C. D.答案: B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A2、若,则的定义域为 ( )A. (,0)B. (,0]C. (,)D. (0,)答案: A 解析:3、已知数列的前项和满足:,且,那么 ( )A. 1B. 9C. 10D. 55答案:A 解析: 11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S4、观察下列各式:则的末四位数字为 ( )A.3125B. 5625C.0625D.8125答案:D 解析:()()()()()()()8125***2011,12008420113906258,781257,156256,31255,6254,5=∴-=-======f f f f f f x f x 5、已知是三个相互平行的平面,平面之间的距离为,平面之间的距离为.直线与分别交于.那么是的 ( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件答案:C解析:平面平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知如果,同样是根据两个三角形全等可知6、若曲线与曲线有四个不同的交点,则实数的取值范围是 ( )A. B.C. D.答案:B 曲线表示以为圆心,以1为半径的圆,曲线表示过定点,与圆有两个交点,故也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应,由图可知,m的取值范围应是7、已知,,则与的夹角为.答案:()解析:根据已知条件,去括号得:242cos224222-=⨯-⨯⨯+=-•+→→→→θbbaa,8、小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.答案:解析:方法一:不在家看书的概率=161321-4122=⨯⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛⨯=+ππππ所有情况打篮球看电影方法二:不在家看书的概率=1—在家看书的概率=1—9、.下图是某算法程序框图,则程序运行后输出的结果是__________.9 解析:s=0,n=1;带入到解析式当中,s=0+(-1)+1=0,n=2;s=0+1+2=3, n=3;S=3+(-1)+3=5, n=4;S=5+1+4=10,此时s>9,输出10、若椭圆的焦点在x轴上,过点作圆的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是.答案:解析:设过点(1,)的直线方程为:当斜率存在时,,根据直线与圆相切,圆心(0,0)到直线的距离等于半径1可以得到k=,直线与圆方程的联立可以得到切点的坐标(),当斜率不存在时,直线方程为:x=1,根据两点A:(1,0),B:()可以得到直线:2x+y-2=0,则与y轴的交点即为上顶点坐标(2,0),与x轴的交点即为焦点,根据公式,即椭圆方程为:11、对于实数x,y,若,,则的最大值为 .(2)此题,看似很难,但其实不难,首先解出x的范围,,再解出y的范围,,最后综合解出x-2y+1的范围,那么绝对值最大,就去512、在△ABC中,角的对边分别是,已知.(1)求的值;(2)若,求边的值.解:(1)已知2sin2sin2cos2sin2cos2cos2sin22222CCCCCCC-+=-+∴整理即有:012sin 22cos 22sin 02sin 2sin 22cos 2sin22=⎪⎭⎫ ⎝⎛+-⇒=+-C C C C C C C 又C 为中的角, 412sin 2cos 2cos 2sin 2412cos 2sin 212cos 2sin 222=++-⇒=⎪⎭⎫ ⎝⎛-⇒=-∴C C C C C C C C (2) ()()2,2022044442222==⇒=-+-⇒=++--+∴b a b a b a b a 又,13、(本小题满分12分)已知两个等比数列,,满足3,2,1),0(3322111=-=-=->=a b a b a b a a a .(1)若=1,求数列的通项公式;(2)若数列唯一,求的值..解:(1)当a=1时,,又为等比数列,不妨设公比为,由等比数列性质知: ,同时又有()()()()22322322,121212112112113112±=⇒+=+⇒+=+⇒==q q q q a q a q a a q a a 所以: (2)要唯一,当公比时,由且()()()01343121212121=-+-⇒++=+a aq aq aq a aq ,,最少有一个根(有两个根时,保证仅有一个正根) ()()()014013442≥+⇒≥--∴a a a a a ,此时满足条件的a 有无数多个,不符合。
高二数学下学期第二次周练试题(理科普通班)-人教版高二全册数学试题
高二下理科普通班周周练测试题一.选择题1.下列求导运算正确的是( )A B .2ln 1)(log '2x x = C .e x x 3'log 3)3(= D .x x x x sin 2)cos ('2-=2.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( ) A .1,1a b == B .1,1a b =-= C .1,1a b ==- D .1,1a b =-=- 3.若复数z 满足1zi i =-,则z 的共轭复数是 ( )A .1i --B .1i -C .1i -+D .1i + 4.设复数z 满足||2+=+z z i ,那么z 等于( ) A .34-+i B .34-i C .34--i D .34+i 5.已知e 为自然对数的底数,设函数f (x )=xe x,则( ) A .1是f (x )的极小值点B .﹣1是f (x )的极小值点 C .1是f (x )的极大值点D .﹣1是f (x )的极大值点6.已知13)(23+-+=mx x x x f 在]2,2[-为单调增函数,则实数m 的取值范围为( ) A .3-≤m B .0≤m C .24-≥m D .1-≥m7.已知m x x x f +-=2362)((m 为常数)在]2,2[-上有最大值3,那么此函数在]2,2[-上的最小值为( )A .-37B .-29C .-5D .-118.用数学归纳法证明“(1)(2)()212(21)()nn n n n n n N +++⋅⋅⋅+=⋅⋅⋅⋅⋅-∈时,从 “n k =到1n k =+”时,左边应增添的式子是( ).A .21k +B .23k +C .2(21)k +D .2(23)k +9.10)d x x -⎰等于( )A .1 B .1 C .1π- D .2π-10.若2()2'(1)f x xf x =+,则'(0)f 等于 ( ) A. -2 B. -4 C. 2 D. 0 11.设函数)(x f 在R 上可导,其导函数为)(x f '且函数)()1(x f x y '-=的图像如图所示,则下列结论一定成立的是( )A.函数)(x f 的极大值是)2(f ,极小值是)1(fB.函数)(x f 的极大值是)2(-f ,极小值是)1(fC.函数)(x f 的极大值是)2(f ,极小值是)2(-fD.函数)(x f 的极大值是)2(-f ,极小值是)2(f12.已知定义在R 上的函数()f x 满足()()0xf x f x '+>,当01a b <<<时,下面选项中最大的一项是( )A .()b b a f a ⋅ B .()a ab f b ⋅ C .()log log a a b f b ⋅ D .()log log b b a f a ⋅二.填空题13.设m ∈R ,()2221i m m m +-+-是纯虚数,其中i 是虚数单位,则m = .14.函数32()6(,)f x ax x x =---∞+∞+在上既有极大值又有极小值,则a 的取值范围为 15.复数满足,则的最小值为 .16.函数f(x)=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f(x 1)-f(x 2)|≤t,则实数t 的最小值是________.姓名:________ 班级:________ 考号:________ 分数:________ 13._ _____ 14._ _____ 15._ _____ 16._ _____ 三.解答题17.已知函数3()3f x x x =- (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[-3,2]上的最值.18.已知函数3()16f x x x =+-.(1)求曲线()y f x =在点(2,6)-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.19.若函数4)(3+-=bx ax x f .当2=x 时,函数)(x f 取得极值4-3. (1)求函数的解析式;(2)若函数k x f =)(有3个解,求实数k 的取值范围.20.已知函数()1xf x e ax =--(0,a e >为自然对数的底数). (1)求函数()f x 的最小值;(2)若()0f x ≥对任意的x R ∈恒成立,求实数a 的值.21.设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.22.函数()32()330f x ax x x a =++≠(1)讨论()f x 的单调性;(2)若函数()f x 在区间()1,2上是增函数,求a 的取值范围。
2021年高二下学期周末训练数学(理)试题(2)含答案
FP2021年高二下学期周末训练数学(理)试题(2)含答案一、填空题(本大题共14小题,每小题5分,共70分.) 1.若复数,则= ▲ . 2. 用数学归纳法证明2231*11+(1,)1n n a a a a aa n N a++-++++=≠∈-,在验证n=1成立时,等式左边是 ▲ . 3.已知,且,,…,,…,则= ▲ .4.已知三棱锥O-ABC ,点G 是△ABC 的重心。
设,,,那么向量用基底{,,}可以表示为 ▲ .5.将3名男生和4名女生排成一行,甲、乙两人必须站在两头,则不同的排列方法共有 种。
(用数字作答)6. 某医院有内科医生5名,外科医生6名,现要派4名医生参加赈灾医疗队,如果要求内科医生和外科医生中都有人参加,则有 ▲ 种选法(用数字作答).7.一种报警器的可靠性为%,那么将这两只这样的报警器并联后能将可靠性提高到 ▲ .8.用数学归纳法证明“<,>1”时,由>1不等式成立,推证时,左边应增加的项数是 ▲ .9.若,则最大值为___▲_______.10.边长均为正整数,且最大边长为11的三角形的个数为 ▲ . 11.展开式中的一次项系数为 ▲ . 12.已知,则= ▲ .13.已知关于实数的方程组没有实数解,则实数的取值范围为 ▲ . 14.设是关于的方程的两个根,则的值为▲ . 二、解答题(本大题共6道题,共计90分) 15.(本小题满分15分)求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *). 16.(本小题满分15分)设z 是虚数,是实数,且.(1)求|z|的值;(2)求z 的实部的取值范围. 17.(本小题满分15分)如图,四边形是正方形,△ 与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点. (1)求证:;(2)求二面角的平面角的正弦值. 18.(本小题满分16分)设函数,.(1)求的展开式中系数最大的项; (2)若(为虚数单位),求. 19.(本小题满分16分)电子蛙跳游戏是: 青蛙第一步从如图所示的正方体顶点起跳,每步从一顶点跳到相邻的顶点.(1)直接写出跳两步跳到的概率; (2)求跳三步跳到的概率; (3)青蛙跳五步,用表示跳到过的次数,求随机变量的概率分布.20. (本小题满分16分)设M 是由满足下列条件的函数构成的集合:“①的定义域为R ;②方程有实数根;③函数的导数满足”.(1)判断函数是否是集合M 中的元素,并说明理由; (2)证明:方程只有一个实数根; (3)证明:对于任意的,,当且时,.答案一.填空题:1. 2. 3. 0 4. 5. 240 6. 310 7.8. 9.2 10. 36 11. 55 12. 28 13. 14.二.解答题:15.证明: ①n =1时,左边=12-22=-3,右边=-3,等式成立. ………6′1Azyx EFDCB AP………15′ 16.解:(1)设z =a +bi (a,b ∈R 且b ≠0)则(2) 1.a 212知ω1由2a,于是ω 1.z||即1,b a 0,ω是实数,b i.b a b b b a a a bi a 1bi a ω222222<<-<<-===+∴≠⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛++=+++= ………8′………15′17.(1)证明:∵是的中点,且,∴ .∵ △与△均是以为直角顶点的等腰直角三角形, ∴ ,.∵ ,平面,平面, ∴ 平面. ∵ 平面, ∴ .∵ 四边形是正方形, ∴ . ∵ ,平面,平面, ∴ 平面. ∵ 平面, ∴ .∵ ,平面,平面, ∴ 平面. ∵ 平面,∴ . ………6′ (2)解法1:作于,连接,∵ ⊥平面,平面 ∴ .∵ ,平面,平面, ∴ ⊥平面. ∵ 平面,∴ . ∴∠为二面角的平面角. 设正方形的边长为,则,, 在Rt △中,,在Rt △中,,,在Rt △中, .∴ 二面角的平面角的正弦值为. …………15′ 解法2:以为坐标原点,分别以所在直线为轴,轴,轴 , 建立空间直角坐标系,设, 则,,,. ∴,.设平面的法向量为, 由 得令 ,得, ∴ 为平面的一个法向量. ∵ 平面,平面, ∴ 平面平面. 连接,则.∵ 平面平面,平面, ∴ 平面. ∴ 平面的一个法向量为. 设二面角的平面角为, 则. ∴.∴ 二面角的平面角的正弦值为. …………15′ 18.解:(1)展开式中系数最大的项是第4项=; ………6′ (2)由已知,,两边取模,得,所以.所以=而1001229910101010101010(1)i C C i C i C i C i =++++++ ()()024*********1010101010101010101010C C C C C C C C C C C i =++++----+-所以 …………16′19.解:将A 标示为0,A 1、B 、D 标示为1,B 1、C 、D 1标示为2,C 1标示为3,从A 跳到B 记为01,从B 跳到B 1再跳到A 1记为121,其余类推.从0到1与从3到2的概率为1,从1到0与从2到3的概率为,从1到2与从2到1的概率为.(1)P =; ………4′(2)P =P (0123)=1=; ………10′ (3)X =0,1,2. P (X =1)=P (010123)+P (012123)+P (012321)=11+1+11=,P (X =2)=P (012323)=11= , P (X =0)=1-P (X =1)-P (X =2)=或P (X =0)=P (010101)+P (010121)+P (012101)+P (012121)=111+11+11+1=,…………16′20.解:(1)易证函数满足条件①②③,因此 ………4′(2)假设存在两个实根,则,不妨设,∵∴函数为减函数,∴>,矛盾.所以方程只有一个实数根 ………10′(3) 不妨设,∵,∴为增函数,∴,又∵∴函数为减函数,∴, ∴,即,∴2|||||)(||||)()(|121312132323<-+-≤---=-<-x x x x x x x x x x x f x f …………16′tM_21988 55E4 嗤@|23858 5D32 崲23412 5B74 孴40294 9D66 鵦#21541 5425 吥27708 6C3C 氼R。
高二数学下学期周练十理 试题
卜人入州八九几市潮王学校正阳县第二高级二零二零—二零二壹高二下期理科数学周练〔十〕一.选择题: 1.“0>b>a 〞是“22ab >〞的〔〕A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件 2.复数121izi +=-的虚部和实部之和是〔〕 A .-1B .32C .1D .12-3.双曲线1C :22221(0,0)x y a b a b-=>>22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的间隔为2,那么抛物线2C 的方程为〔〕A.23x y =B.2x y =C.28x y =D.216x y = 4.定积分(cos sin )x x dx π+⎰〔〕A .-1B .2C .1D .π5.设随机变量X 服从二项分布B(5,),那么P(X =3)等于〔〕A.B.C.D.6.函数f(x)=kx-lnx 在区间〔1,+∞〕上是减函数,k 的取值范围是〔〕 A 、〔-∞,0〕B 、〔-∞,0]C 、〔-∞,1〕D 、〔-∞,1]252x +22m y =1(m>0)的左焦点为F 1(-4,0),那么此椭圆的离心率等于()A.45B.35 C .1625D.9258.等比数列{a n }中,a 2=1,那么其前3项的和S 3的取值范围是〔〕 A .〔﹣∞,﹣1]B .〔﹣∞,0〕∪〔1,+∞〕C .[3,+∞〕D .〔﹣∞,﹣1]∪[3,+∞〕9.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐4名同学〔乘同一辆车的4名同学不考虑位置〕,其中大一的孪生姐妹需乘同一辆车,那么乘坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式一共有〔〕 A .48种B .18种C .24种D .36种10.假设524(18)(xax -的展开式中含3x 项的系数是16,那么a =. A.2± B.4± C.1±D.11.设a>b>1,那么以下不等式成立的是〔〕A .alnb>blnaB .alnb<blnaC .ba aebe >D .b a ae be <12.函数ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩,假设m<n ,且f(m)=f(n),那么n-m 的取值范围是〔〕.A .[1,2)e -B .[32ln 2,2]-C .[1,2]e -D .[32ln 2,2)- 二.填空题:13.某种种子每粒发芽的概率是0.9,如今播种1000粒,对于没有发芽的种子,每粒需要补种2粒,补种的种子粒数记为X ,那么X 的数学期望为______14.经过点M 〔2,1〕作直线l 交双曲线2212y x -=于A 、B 两点,且M 是AB 的中点,那么直线l 的方程为y=.15.椭圆22221(0)x y a b a b+=>>的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF 、BF ,假设|AB|=10,|AF|=6,cos ∠ABF=,那么C 的离心率e=.16.函数f(x)=ax 3+bx 2+cx ,其导函数y =f ′(x)的图像经过点(1,0),(2,0), 如下列图,那么以下说法中不.正确的序号是________.①当x=32时函数f(x)获得极小值;②f(x)有两个极值点;③当x=2时函数f(x)获得极小值;④当x=1时函数f(x)获得极大值.三.解答题:17.在直角坐标系XOY中,动点P与平面上两定点M〔-1,0〕,N〔1,0〕连线的斜率的积为定值-4,设点P的轨迹为C.〔1〕求出曲线C的方程;〔2〕设直线y=kx+1与C交于A,B两点,假设⊥,求k的值.18.某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)。
人教A版数学高二选修2-3第二章《排列组合、二项式定理、概率》数学周练7
高二理科小班数学周练(7)参考答案
一、选择题(本大题共12小题,每小题5分,共60分)
题号
1
2
3
4
5
6
7
8
9
10
答案
B
C
A
A
D
D
D
B
B
C
二、填空题(本大题共5小题,每小题5分,共25分)
11. 12.-513.24014.126015.
新建二中2010-2011学年度下学期高二理科小班数学周练(7)
命题:习海辉考试内容:排列组合、二项式定理、概率
审题:高二数共10小题,每小题5分,共50分。在每小题给出的四个选项中,恰有一项是符合题目要求的)
1.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()
A. B. C. D.
7.为了庆祝六一儿童节,某食品厂制作了 种不同的精美卡片,每袋食品随机装入一张卡片,集齐 种卡片可获奖,现购买该种食品 袋,能获奖的概率为( )
A. B. C. D.
8.有6名志愿者(其中4名男生,2名女生) 义务参加某项宣传活动,他们自由分成两组完成不同的两项任务,但要求每组最多4人,女生不能单独成组,则不同的工作安排方式有()
19.解:(1)
(2)
(分布列略)
A. 12种B.18种C.36种D.54种
2.若n为奇数,7n+ 被9除所得的余数是()
A.0B.2C.7D.8
3.将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为()
2021年高二下学期数学周练试题(理科实验班3.6) 含答案
2021年高二下学期数学周练试题(理科实验班3.6) 含答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若二项式⎝⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.54 C .1 D.242.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.453.设,则落在内的概率是( )A.B.C.D.4.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .245.设,则等于( )A.1.6 B.3.2 C.6.4 D.12.86.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为( )A.0.998 B.0.046 C.0.002 D.0.9547.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( ) A . B . C . D .8.如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为,则的均值为( ) A . B . C . D .9.袋子里装有大小相同的黑白两色的手套,黑色手套15支,白色手套10只,现从中随机地取出2只手套,如果2只是同色手套则甲获胜,2只手套颜色不同则乙获胜.试问:甲、乙获胜的机会是( )A.甲多 B.乙多 C.一样多 D.不确定10.节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X 服从如下表所示的分布:200 300 400 500 0.20 0.35 0.30 0.15若进这种鲜花500A.706元 B.690元 C.754元 D.720元11.如图,分别是椭圆的左、右焦点,和是以为圆心,以为半径的圆与该椭圆的两个交点,且是等边三角形,则椭圆的离心率为 A . B . C . D .12.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3), 从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(1)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(2)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2). 则( )A .p 1<p 2,E (ξ1)>E (ξ2)B . p 1>p 2,E (ξ1)<E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)二、填空题(本大题共4小题,每小题5分,共20分.)13.事件相互独立,若,则 .14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在 线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于 其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取 值范围是 .16.某公司有5万元资金用于投资开发项目.如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果.则该公司一年后估计可获收益的均值是 元. 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求 (1)恰有1人译出密码的概率;(2)若达到译出密码的概率为,至少需要多少乙这样的人.18.(本小题满分12分)设焦点在轴上的双曲线渐近线为,且焦距为4,已知点.(Ⅰ)求双曲线的标准方程;(Ⅱ)过点的直线交双曲线于两点,点为线段MN的中点,求直线的方程.19.(本小题满分12分)现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为:若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C槽,得重投一次的机会,但投球的总次数不超过3次.(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的分布列及数学期望.20.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.21.(12分)如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA = AB = 2a, DC = a , F为EB的中点,G为AB的中点.(1) 求证:FD∥平面ABC;(2) 求二面角B—FC—G的正切值.22.(12分)(12分)某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分.已知射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.(1)求这位射手在三次射击中命中目标的概率;(2)求这位射手在这次射击比赛中得分的均值.丰城中学xx 学年上学期高二周考试题答案(数学)(本大题共有4小题,每小题4分共16分.把答案填在题中横线上)13. 14. 15. 16.4760三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17..解:设“甲译出密码”为事件A ;“乙译出密码”为事件B , 则. (1).(2)个乙这样的人都译不出密码的概率为. .解得.达到译出密码的概率为,至少需要17人. 18.解:(1)5分(2)设直线:12A(1,)是 12分19. 解:(1)由题意可知投一次小球,落入B 槽的概率为⎝⎛⎭⎫122+⎝⎛⎭⎫122=12.(2)落入A 槽的概率为⎝⎛⎭⎫122=14,落入B 槽的概率为12,落入C 槽的概率为⎝⎛⎭⎫122=14. X 的所有可能取值为0,5,10, P (X =0)=⎝⎛⎭⎫143=164,P (X =5)=12+14×12+⎝⎛⎭⎫142×12=2132,P(X=10)=14+14×14+14×⎝⎛⎭⎫142=2164,X的分布列为E(X)=0×164+5×2132+10×2164=105 16.20.解:记E={甲组研发新产品成功},F={乙组研发新产品成功}.由题设知P(E)=23,P(E)=13,P(F)=35,P(F)=25.且事件E与F,E与F,E与F,E与F都相互独立.(1)记H={至少有一种新产品研发成功},则H=E F,于是P(H)=P(E)P(F)=13×25=215,故所求的概率为P(H)=1-P(H)=1-215=1315.(2)设企业可获利润为X(万元),则X的可能取值为0,100,120,220.P(X=0)=P(E F)=13×25=215,P(X=100)=P(E F)=13×35=315,P(X=120)=P(E F)=23×25=415,P(X=220)=P(EF)=23×35=615.故所求的X分布列为数学期望为E(X)=0×215+100×315+120×415+220×615=300+480+1 32015=2 10015=140.21.解:∵F、G分别为EB、AB的中点,∴FG=EA, ……… 2分又EA、DC都垂直于面ABC, 所以∥且FG =DC, ………4分∴四边形FGCD为平行四边形, ∴FD∥GC, 又GC面ABC, FD面ABC.∴FD ∥面ABC. ……………… 6分 (2) 因为是正三角形,是的中点, 所以 又//,,.FG EA EA B FG BA ⊥∴⊥且面A C作于点连则面即为所求二面角的平面角. ……… 8分…………… 12分方法二(向量法)分别以所在直线为轴建系如图,…… 7分 则…………… 9分 平面的法向量 设平面的法向量则222010(3,1,n BC ax x y z x n BF ax az n ⎧⎧⋅=-==⎪⎪⇒=-⎨⎨=⋅=-+=⎪⎪⎩⎩∴=--设 …………… 10分则121212cos ,7||||7n n n n n n ⋅-<>===-⋅设二面角B —FC —G 的大小为则故二面角B —FC —G 的正切值为.…22.解:记第一、二、三次射击命中目标分别为事件,三次都未击中目标为事件D ,依题意,设在m 处击中目标的概率为,则,且, ,即, ,,.(1) 由于各次射击都是相互独立的, ∴该射手在三次射击中击中目标的概率 .(2)依题意,设射手甲得分为X ,则,,,,117492558532102914414414448EX =⨯+⨯+⨯+⨯==∴.P %-[27425 6B21 次^27063 69B7 榷 33314 8222 舢30551 7757 睗25277 62BD 抽 23853 5D2D 崭。