4 微分方程建模实例——Malthus模型与Logistic模型

合集下载

微分方程(组)模型

微分方程(组)模型


(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例

matlab曲线拟合人口增长模型及其数量预测

matlab曲线拟合人口增长模型及其数量预测

实验目的[1] 学习由实际问题去建立数学模型的全过程;[2] 训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题; [3] 应用matlab 软件求解微分方程、作图、函数拟合等功能,设计matlab 程序来求解其中的数学模型;[4] 提高论文写作、文字处理、排版等方面的能力;通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘拟合问题不收敛时,如何调整初值,变换函数和数据使优化迭代过程收敛。

应用实验(或综合实验)一、实验内容从1790—1980年间美国每隔10年的人口记录如表综2.1所示:表综2.1年 份 1790 1800 1810 1820 1830 1840 1850 人口(×106)3.9 5.3 7.2 9.6 12.9 17.1 23.2 年 份 1860 1870 1880 1890 1900 1910 1920 人口(×106)31.4 38.6 50.2 62.9 76.0 92.0 106.5 年 份 193019401950196019701980人口(×106)123.2 131.7 150.7 179.3 204.0 226.5用以上数据检验马尔萨斯(Malthus)人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进,并利用至少两种模型来预测美国2010年的人口数量。

二、问题分析1:Malthus 模型的基本假设是:人口的增长率为常数,记为 r 。

记时刻t 的人口为x (t ),(即x (t )为模型的状态变量)且初始时刻的人口为x 0,于是得到如下微分方程:⎪⎩⎪⎨⎧==0)0(d d x x rxtx2:阻滞增长模型(或Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为x 的减函数,如设r(x)=r(1-x/x m ),其中r 为固有增长率(x 很小时),x m 为人口容量(资源、环境能容纳的最大数量),于是得到如下微分方程:⎪⎩⎪⎨⎧=-=0)0()1(d d xx x x rx t xm三、数学模型的建立与求解根据Malthus 模型的基本假设,和Logistic 模型,我们可以分别求得微分方程的解析解,y1=x0*exp(r*x);y2= xm/(1+x0*exp(-r*x))对于1790—1980年间美国每隔10年的人口记录,分别用matlab 工具箱中非线性拟合函数的命令作一般的最小二乘曲线拟合,可利用已有程序lsqcurvefit 进行拟合,检验结果进一步讨论模型的改进,预测美国2010年的人口数量。

Malthus模型和Logistic模型

Malthus模型和Logistic模型

Malthus模型和Logistic 模型随着社会的发展,人口问题与经济、资源、环境、社会的冲突日益成为制约国家发展的瓶颈,了解了人口增长函数,也就掌握了人口的发展动态和发展规律,这对国家的发展有重要意义。

1798年.英国人口学家和政治经济学家马尔萨斯以两个假设为前提:第一,食物为人类生存所必须;第二,人的性本能几乎无法限制,提出了闻名于世的人口指数增长模型,即Malthus人口模型:人口总数为p(t),人口的出生率为b,死亡率为d。

任取时段【t, t + dt ],在此时段中的出生人数为b p(t)dt ,死亡人数为d p(t)dt。

假设出生数及死亡数与p(t)及dt均成正比,而且以矩形取代了曲边梯形的面积。

在时段【t, t+dt ]中,人口增加量为p(t dt)- p(t)〜d p(t), 它应等于此时段中的出生人数与死亡人数之差,即d p(t) =b p(t) dt —d p(t) dt = a p(t) dt,其中a=b—d称为人口的净增长率。

于是p(t)满足微分方程^=ap(t). (1)dt若已知初始时刻t=t0时的人口总数为P0,那么p(t)还满足初始条件t=t0 时,p(t) =p0. (2)可以求得微分方程(1)满足初始条件⑵ 的解为(设a是常数) p(t)=p c e a(t _t0), ⑶即人口总数按指数增长。

模型参数的意义和作用:t0为初始时刻(初始年度),P0为初始年度t0的人口总数,a为每年的人口净增长率,b为人口出生率,d 为人口死亡率。

Malthus 人口模型所说的人口并不一定限于人,可以是认可一个生物群体,只要满足类似的性质即可。

现在讨论模型的应用和正确性。

例如,根据统计数据知在1961 年全世界人口为30.6 亿,1951 年-1961 年十年每年人口净增长率约为0.02。

取t o=1961, p o=3.06*109和a =0.02,就有9 0.02(t-t0)p(t)=3.06*10 *e ,用这个公式倒计算全世界在1700-1961 年间的人口总数,并把计算结果与实际统计数据作比较可以发现它们是比较符合的。

微分方程(模型)

微分方程(模型)

dx 2 或 x 0.03 dt 100 t 这是一阶线性非齐次方程,且有初值条件 x(0) 10,;利用8.3节的公式(5),可得此 C 方程的通解:x (t ) 0.01(100 t ) (100 t ) 2 有初值条件可得C 9 10 4,所以容器内含盐 量x随时间t的变化规律为 9 10 4 x 0.01(100 t ) 2 (100 t )
微分方程模型
重庆邮电大学
数理学院
引言
微分方程模型
当我们描述实际对象的某些特性随时间(空 间)而演变的过程、分析它的变化规律、预测它 的未来形态、研究它的控制手段时。通常要建立 对象的动态模型。

在研究某些实际问题时,经常无法直接得 到各变量之间的联系,问题的特性往往会给出关 于变化率的一些关系。利用这些关系,我们可以 建立相应的微分方程模型。在自然界以及工程技 术领域中,微分方程模型是大量存在的。它甚至 可以渗透到人口问题以及商业预测等领域中去, 其影响是广泛的。
四. 悬链线方程问题
将一均匀柔软的绳索两端固定,使之仅受重力的作 用而下垂,求该绳索在平衡状态下的曲线方程(铁塔 之间悬挂的高压电缆的形状就是这样的曲线)。 解 以绳索所在的平面为xoy 平面,设绳索最低点 为y轴上的P点,如图8-1所示。考察绳索上从点p到 l 另一点Q(x,y)的一段弧 PQ ,该段弧长为 ,绳索线密 度为 l ,则这段绳索所受重力为gl 。由于绳索是软 的,
y x 2 2.
微分方程的几个应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一. 嫌疑犯问题

人口增长的预测(数学建模论文

人口增长的预测(数学建模论文

关键字:人口数平衡点方程模型运动预测曲线稳定增长人口一题目:请在人口增长的简单模型的基础上。

" (1)找到现有的描述人口增长,与控制人口增长的模型;" (2)深入分析现有的数学模型,并通过计算机进行仿真验证;" (3)选择一个你们认为较好的数学模型,并应用该模型对未来20年的某一地区或国家的人口作出有关预测;" (4)就人口增长模型给报刊写一篇文章,对控制人口的策略进行论述。

二摘要:本次建模是依照已知普查数据,利用Logistic模型,对中国人口的增长进行预测。

首先假设人口增长符合Logistic模型,即引入常数,用来表示自然环境条件所能容许的最大人口数。

并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。

按照这个假设,。

用参数=3.0,r=0.0386, =1908, =14.5。

画出N=N(t)的图像,作为人口增长模型的一种近似。

做微分方程解的定性分析,求出N=N(t)的驻点和拐点,按照函数作图方法列出定性分析表,作出相轨迹的运动图。

当初始人口<时,方程的解单调递增到地趋向,这意味着如果使用Logistic模型描述人口增长,则人口发展地总趋势是渐增到最大人口数,因此可作为人口的预测值,也称谓平衡点。

用导数做稳定分析,为判断平衡点是否为稳定,可在平面上绘制f(x)的图象,然后像函数绘图那样,用导数进行定性分析,通过图看出人口数N(t)按时间是递增的,当人口数未达到饱和状态的时候,将逐渐地趋向,这意味着是稳定的平衡点。

按该模型,未来人口的数量将随着时间的演化,从初始状态出发达到极限状态,这样就给出了人口的未来预测。

三问题的提出1. Malthus模型英国统计学家Malthus(1766-1834)发现人口增长率是一个常数。

设t时刻人口为N(t),因为人口总数很大,可近似把N(t)当作连续变量处理。

Malthus的假设是:在人口的自然增长过程中,净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与人口总数成正比。

人口指数增长模型和Logistic模型

人口指数增长模型和Logistic模型

表1 美国人口统计数据指数增长模型:rt e x t x 0)(=Logistic 模型:()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭解:模型一:指数增长模型。

Malthus 模型的基本假设下,人口的增长率为常数,记为r ,记时刻t 的人口为 )(t x ,(即)(t x 为模型的状态变量)且初始时刻的人口为0x ,因为⎪⎩⎪⎨⎧==0)0(x x rxdt dx由假设可知0()rt x t x e = 经拟合得到:}2120010120()ln ()ln ,ln (),,ln rt a y a t a x t x e x t x rt r a x ey x t a r a x =+=⇒=+⇒=====程序:t=1790:10:1980;x(t)=[ ]; y=log(x(t));a=polyfit(t,y,1) r=a(1),x0=exp(a(2)) x1=x0.*exp(r.*t);plot(t,x(t),'r',t,x1,'b') 结果:a =r= x0=所以得到人口关于时间的函数为:0.02140()t x t x e =,其中x0 = , 输入:t=2010;x0 = ;x(t)=x0*exp*t)得到x(t)= 。

即在此模型下到2010年人口大约为 610⨯。

模型二:阻滞增长模型(或 Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为 x 的减函数,如设)/1()(m x x r x r -=,其中 r 为固有增长率 (x 很小时 ) ,m x 为人口容量(资源、环境能容纳的最大数量), 于是得到如下微分方程:⎪⎩⎪⎨⎧=-=0)0()1(xx x x rx dt dxm 建立函数文件function f=curvefit_fun2 (a,t)f=a(1)./(1+(a(1)/*exp(-a(2)*(t-1790))); 在命令文件中调用函数文件 % 定义向量(数组) x=1790:10:1990; y=[ 76 ... 92 204 ];plot(x,y,'*',x,y); % 画点,并且画一直线把各点连起来 hold on;a0=[,1]; % 初值% 最重要的函数,第1个参数是函数名(一个同名的m 文件定义),第2个参数是初值,第3、4个参数是已知数据点 a=lsqcurvefit('curvefit_fun2',a0,x,y); disp(['a=' num2str(a)]); % 显示结果 % 画图检验结果 xi=1790:5:2020; yi=curvefit_fun2(a,xi); plot(xi,yi,'r'); % 预测2010年的数据 x1=2010;y1=curvefit_fun2(a,x1) hold off 运行结果: a= y1 =其中a(1)、a(2)分别表示()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭中的m x 和r ,y1则是对美国美国2010年的人口的估计。

人口增长的微分方程模型

人口增长的微分方程模型

人口增长的微分方程模型通常基于Malthusian或Logistic增长模型。

以下是这两种常见的人口增长模型:
1. **Malthusian模型**:
Malthusian模型是人口增长的最简单模型之一,它基于以下假设:
- 人口的增长率与当前人口数量成正比。

- 增长率是恒定的,不受其他因素的影响。

用数学符号表示,Malthusian模型可以写成如下的微分方程:
\(\frac{dP}{dt} = rP\)
其中,\(P\) 表示人口数量,\(t\) 表示时间,\(r\) 表示增长率。

这个方程的解是指数函数,人口数量会随时间指数增长。

2. **Logistic模型**:
Logistic模型更贴近实际情况,考虑了人口增长的有限性。

它基于以下假设:- 人口的增长率与当前人口数量成正比,但随着人口接近一个上限,增长率会减小。

- 人口增长率的减小是受到资源限制或竞争的影响。

Logistic模型的微分方程如下:
\(\frac{dP}{dt} = rP(1 - \frac{P}{K})\)
其中,\(P\) 表示人口数量,\(t\) 表示时间,\(r\) 表示初始增长率,\(K\) 表示人口的上限或最大承载能力。

这个方程的解是S形曲线,人口数量会在接近\(K\) 时趋于稳定。

需要注意的是,实际的人口增长受到多种复杂因素的影响,包括出生率、死亡率、移民等。

因此,上述模型是简化的描述,用于理论分析和初步估算。

实际人口增长的模拟需要更复杂的模型和更多的参数考虑。

此外,这些模型还可以扩展,以包括更多的因素,如年龄结构、性别比例和社会因素等。

4-微分方程建模实例——Malthus模型与Logistic模型-课件PPT

4-微分方程建模实例——Malthus模型与Logistic模型-课件PPT

23
于是,
N0 N (t)e (tt0 ) r[e (tt0 ) 1].
若此画是真品,t - t0 ≈ 300 (年) . 从而可求出 λN0 的 近似值. 对油画《在埃牟斯的门徒》具体计算如下:
N0 N (t)e300 r[e300 1]
由于半衰期: T ln 2 ,
于是, ln 2 .
4.1. 人口增长模型 4.2. 赝品的鉴定 4.3. 耐用新产品的销售速度问题 4.4. 传染病模型
1
4.1 人口增长模型
世界人口增长概况

1625 1830 1930 1960 1974 1987 1999
人口(亿) 5 10 20 30 40 50 60
中国人口增长概况
年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0
马尔萨斯(1766~1834) Malthus,Thomas Robert
4
模型假设: • 人口增长率 r 是常数. • 人口的数量本应取离散
值,但由于人口数量一 般较大,为建立微分方 程模型,可以将人口数 量看作连续变量,甚至 允许它为可微变量,由 此引起的误差将是十分 微小的.
5
模型构成:
设 x(t) 表示 t 时刻的人口,有
16
• 六十年后,美国记者、专栏作家乔 纳森·洛佩兹(Jonathan Lopez)出 版了《制造维米尔的人》(The man who made Vermeers) 一书. 在书中,洛佩兹表达了对那个时代 荷兰人民的体谅:“荷兰人对米格 伦的态度并非不可理解. 在二战中, 这个国家遭遇了残酷的羞辱,光复 也是在盟国的帮助下完成. 米格伦 给了未能主宰自身命运的荷兰人内 心深处想要得到的东西. 而对于 ‘欺骗’这种事情,他又是太熟谙 了.”

malthus人口模型

malthus人口模型

常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为00d 1d ()m N N r N t N N t N ⎧⎛⎫=-⎪ ⎪⎨⎝⎭⎪=⎩,, 上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ; (2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<t N ,t N d d 单减,即人口增长率tNd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿.值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α.下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 p p p t p t c a +-=+-)(0e )()(α , 令+∞→t ,取极限得p t p t =+∞→)(lim这说明,市场价格逐步趋于均衡价格.又若初始价格p p =0,则动态价格就维持在均衡价格p 上,整个动态过程就化为静态过程;(2)由于t c a c a p p tp)(0e )()(d d +-+-=αα , 所以,当p p >0时,0d d <t p ,)(t p 单调下降向p 靠拢;当p p <0时, 0d d >tp ,)(t p 单调增加向p 靠拢.这说明:初始价格高于均衡价格时,动态价格就要逐步降低,且逐步靠近均衡价格;否则,动态价格就要逐步升高.因此,式①在一定程度上反映了价格影响需求与供给,而需求与供给反过来又影响价格的动态过程,并指出了动态价格逐步向均衡价格靠拢的变化趋势.三、混合溶液的数学模型 例 4 设一容器内原有100L 盐,内含有盐10kg,现以3L/min 的速度注入质量浓度为0.01kg/L 的淡盐水,同时以2L/min 的速度抽出混合均匀的盐水,求容器内盐量变化的数学模型.解 设t 时刻容器内的盐量为)(t x kg,考虑t 到t t d +时间内容器中盐的变化情况,在dt 时间内容器中盐的改变量=注入的盐水中所含盐量-抽出的盐水中所含盐量容器内盐的改变量为x d ,注入的盐水中所含盐量为t d 301.0⨯,t 时刻容器内溶液的质量浓度为tt x )23(100)(-+,假设t 到t t d +时间内容器内溶液的质量浓度不变(事实上,容器内的溶液质量浓度时刻在变,由于t d 时间很短,可以这样看).于是抽出的盐水中所含盐量为t tt x d 2)23(100)(-+,这样即可列出方程t txt x d 1002d 03.0d +-=,即txt x +-=100203.0d d . 又因为0=t 时,容器内有盐10kg,于是得该问题的数学模型为d 20.03d 100(0)10x x t tx ⎧+=⎪+⎪⎨⎪⎪=⎩,, 这是一阶非齐次线性方程的初值问题,其解为24)100(109)100(01.0)(t t t x +⨯++=. 下面对该问题进行一下简单的讨论,由上式不难发现:t 时刻容器内溶液的质量浓度为34)100(10901.0100)()(t t t x t p +⨯+=+=, 且当+∞→t 时,01.0)(→t p ,即长时间地进行上述稀释过程,容器内盐水的质量浓度将趋于注入溶液的质量浓度.溶液混合问题的更一般的提法是:设有一容器装有某种质量浓度的溶液,以流量1V 注入质量浓度为1C 的溶液 (指同一种类溶液,只是质量浓度不同),假定溶液立即被搅匀,并以2V 的流量流出这种混合溶液,试建立容器中质量浓度与时间的数学模型.首先设容器中溶质的质量为)(t x ,原来的初始质量为0x ,t =0时溶液的体积为2V ,在d t 时间内,容器内溶质的改变量等于流入溶质的数量减去流出溶质的数量,即t V C t V C x d d d 2211-=,其中1C 是流入溶液的质量浓度, 2C 为t 时刻容器中溶液的质量浓度,,tV V V xC )(2102-+=于是,有混合溶液的数学模型11220d d (0)xC V C V tx x ⎧=-⎪⎨⎪=⎩,. 该模型不仅适用于液体的混合,而且还适用于讨论气体的混合.四、振动模型振动是生活与工程中的常见现象.研究振动规律有着极其重要的意义.在自然界中,许多振动现象都可以抽象为下述振动问题.例5 设有一个弹簧,它的上端固定,下端挂一个质量为m 的物体,试研究其振动规律. 解 假设(1)物体的平衡位置位于坐标原点,并取x 轴的正向铅直向下(见图4).物体的平衡位置指物体处于静止状态时的位置.此时,作用在物体上的重力与弹性力大小相等,方向相反;(2)在一定的初始位移0x 及初始速度0v 下,物体离开平衡位置,并在平衡位置附近作没有摇摆的上下振动;(3)物体在t 时刻的位置坐标为)(t x x =,即t 时刻物体偏离平衡位置的位移;(4)在振动过程中,受阻力作用.阻力的大小与物体速度成正比,阻力的方向总是与速度方向相反,因此阻力为txhd d -,h 为阻尼系数;(5)当质点有位移)(t x 时,假设所受的弹簧恢复力是与位移成正比的,而恢复力的方向总是指向平衡位置,也就是总与偏离平衡位置的位移方向相反,因此所受弹簧恢复力为kx -,其中k 为劲度系数;(6)在振动过程中受外力)(t f 的作用.在上述假设下,根据牛顿第二定律得)(d d d d 22x f kx t xh tx m +--= , ①这就是该物体的强迫振动方程.由于方程①中, )(t f 的具体形式没有给出,所以,不能对式 ①直接求解.下面我们分四种情形对其进行讨论.1. 无阻尼自由振动在这种情况下,假定物体在振动过程中,既无阻力、又不受外力 作用.此时方程①变为0d d 22=+kx txm ,令2ω=mk,方程变为 0d d 222=+x tx ω,特征方程为 022=+ωλ, 特征根为ωλi 2,1±=,通解为 t C t C x ωωcos sin 21+=,或将其写为⎪⎪⎭⎫ ⎝⎛++++=t C C C t C C C C C x ωωcos sin 22212222112221图4()t t A ωϕωϕcos sin sin cos +=,)sin(ϕω+=t A 其中 2221C C A +=,22212sin CC C +=ϕ,22211cos CC C +=ϕ.这就是说,无阻尼自由振动的振幅2221C C A +=,频率mk=ω均为常数. 2.有阻尼自由振动在该种情况下,考虑物体所受到的阻力,不考虑物体所受的外力.此时,方程①变为0d d d d 22=++kx t xh tx m ,令2ω=m k ,δ2=mh,方程变为 0d d 2d d 222=++x t xtx ωδ, 特征方程为0222=++ωδλλ,特征根 222,1ωδδλ-±-=.根据δ与ω的关系,又分为如下三种情形:(1)大阻尼情形, δ>ω.特征根为二不等实根,通解为ttC C x )(2)(12222eeωδδωδδ-+--+-+=(2)临界阻尼情形,ωδ=.特征根为重根,通解为tt C C x δ-+=e)(21这两种情形,由于阻尼比较大,都不发生振动.当有一初始扰动以后,质点慢慢回到平衡位置,位移随时间t 的变化规律分别如图5和图6所示.图5 图6(3)小阻尼情形,δ<ω.特征根为共轭复根,通解为)sin C sinC (e 222221t t x t δωδωδ-+-=-将其简化为)sin(e 22ϕδωδ+-=-t A x t其中,cos ,sin ,22211222122221C C C C C C C C A ++=+=ϕϕ振幅A tδ-e 随时间t 的增加而减小.因此,这是一种衰减振动.位移随时间t 的变化规律见图7.3.无阻尼强迫振动在这种情形下,设物体不受阻力作用,其所受外力为简谐力pt m t f sin )(=,此时,方程①化为pt m kx t xm sin d d 22=+,pt x tx sin d d 222=+ω, 根据p i 是否等于特征根ωi ,其通解分为如下两种情形:(1)当ω≠p 时,其通解为 图7t C t C pt px ωωωcos sin sin 12122++-=, 此时,特解的振幅221p -ω为常数,但当p 接近于ω时,将会导致振幅增大,发生类似共振的现象;(2)当ω=p 时,其通解为t C t C pt t px ωωcos sin cos 2121++-=, 此时,特解的振幅t p21随时间t 的增加而增大,这种现象称为共振,即当外力的频率p 等于物体的固有频率ω时,将发生共振.4.阻尼强迫振动在这种情形下,假定振动物体既受阻力作用,又受外力pt m x f sin )(=的作用,并设ωδ<,方程①变为pt x t xtx sin d d 2d d 222=++ωδ ,特征根0,i 22≠-±-=δδωδλ,则p i 不可能为特征根,特解为pt B pt A x cos sin *+=,其中22222224)(p p p A δωω+--=,222224)(2pp pB δωδ+--=, 还可将其化为*22222221[()sin 2cos ]()4x w p pt p pt w p pδδ=---+, 由此可见,在有阻尼的情况下,将不会发生共振现象,不过,当ω=p 时,pt px cos 21*δ-=, 若δ很小,则仍会有较大的振幅;若δ比较大,则不会有较大的振幅.。

数学建模 微分方程模型讲解

数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )

Malthus模型与Logistic模型

Malthus模型与Logistic模型

的解为: 故(3.9)的满足初始条件N(0)=N0的解为: 3.9)的满足初始条件
N (t ) =
(3.10)
易见 易见:
N(0)=N0 , lim N (t ) = K
t →+∞
N(t)的图形请看图 的图形请看图3.5 的图形请看图
图3-5
模型检验 用Logistic模型来描述种群增长的规律效果如何呢?1945 Logistic模型来描述种群增长的规律效果如何呢? 模型来描述种群增长的规律效果如何呢 年克朗皮克(Crombic)做了一个人工饲养小谷虫的实验, 年克朗皮克(Crombic)做了一个人工饲养小谷虫的实验,数 学生物学家高斯( F Gauss 也做了一个原生物草履虫实验, Gauss) 学生物学家高斯(EFGauss)也做了一个原生物草履虫实验, 实验结果都和Logistic曲线十分吻合. Logistic曲线十分吻合 实验结果都和Logistic曲线十分吻合. 大量实验资料表明用Logistic模型来描述种群的增长, 大量实验资料表明用Logistic模型来描述种群的增长,效 Logistic模型来描述种群的增长 果还是相当不错的.例如,高斯把 只草履虫放进一个盛有 果还是相当不错的.例如,高斯把5只草履虫放进一个盛有 0.5cm3营养液的小试管,他发现,开始时草履虫以每天 营养液的小试管,他发现,开始时草履虫以每天230.9% 的速率增长,此后增长速度不断减慢, 的速率增长,此后增长速度不断减慢,到第五天达到最大量 375个,实验数据与 个 实验数据与r=2.309,a=0.006157,N(0)=5的Logistic , , 的 曲线: 曲线: 375 N (t ) = 几乎完全吻合,见图3.6. 几乎完全吻合,见图 . 1 + 74e 2.309 t

人口模型马尔萨斯vslogistic

人口模型马尔萨斯vslogistic

本节将建立几个简单的单种群增长模型,以简略分析一
下这方面离的散问化题为。连一续般,生方态系统的分析可以通过一些简单模
型的复合来研究便,研大究家若有兴趣可以根据生态系统的特征自
行建立相应的模型。
美丽的大自然
种群的数量本应取离散值,但由于种群数 量一般较大,为建立微分方程模型,可将种群 数量看作连续变量,甚至允许它为可微变量, 由此引起的误差将是十分微小的。
§ 4.1 Malthus模型与Logistic模型
世界人口

1625 1830 1930 1960 1974 1987 1999 哇!
人口(亿) 5
10
20 30 40 50 60
美丽的大自然
中国人口

1908 1933 1953 1964 1982 1990 2000
人口(亿) 3 4.7 6 7.2 10.3 11.3 12.95
求出方程的解 ——求出未知函数的解析表达式 ——利用各种数值解法、数值软件(如Matlab)求
近似解 不必求出方程的解
——根据微分方程的理论研究某些性质,或它的变 化趋势
§ 4.1 Malthus模型与Logistic模型
为了保持自然资料的合理开发与利用,人类必须保持并 控制生态平衡,甚至必须控制人类自身的增长。
(4.4)
x(0) x0
增长对的(马4.种6尔)群式萨个还斯体有,模另当一型种解引群释入数,一量由过次于多空项时间(,和竞由资争于源人项都均是)资有,源限令占的有,r(率不x)的可=r下能-a降供x及养环无境限
恶化此、时疾得病到增微多等分原方因程,:出生率将降低而死亡率却会提高。设环境能供养
的x积被m(成 称种-(x4恰正为群4..为55数比统))环量,计被可境的正筹称还d改上d好算为xtdd能L界符律xt写o供为合的gx成rim(养sx统原rt(m:ix的c计 因(rm得马(模ax就种规 。近x据r)到 尔型为 模 程 实 是)最(是x群xx律似实或)的 萨拟了 型 师 采际)简x引数是,地际生就 斯合得 , 原 用问单或进量未得将物背是 模方题出 我 则 尽的一,总知到x景马 型法dm的一 们 。 可d形次数(函x了看t,尔 的来个 不 工 能数式增项4数实成它萨 最.求有 妨 程 简学(是6长r(,验常无)(斯 简14的实 采 师 单模常。竞.但结数法指6模 单统际 用 们 的型数)争x根果)用出x型 的计m时意 一 在 方,项的),,筹。 改x,义 下 建 法此)支x种算对 进的工立。表总时持律(群示,4,增.当5是这)长前由就率的荷是与兰种(两数群4者学.数6的生)量乘也,

种群增长率的计算公式

种群增长率的计算公式

种群增长率的计算公式1.离散型增长模型:离散型增长模型适用于种群数量在离散的时间段内发生变化的情况,其中最常用的模型是Malthus模型和Logistic模型。

1.1 Malthus模型:Malthus模型是由Thomas Robert Malthus在18世纪末提出的,他认为种群数量的增长速度与种群数量成正比。

该模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)表示时间t时刻的种群数量,N(0)表示初始种群数量,e是自然对数的底,r是每一单位时间内的增长率。

1.2 Logistic模型:Logistic模型在Malthus模型的基础上考虑了资源有限的情况,种群数量的增长速度受到资源限制的影响。

该模型可以用以下公式表示:N(t) = K / [1 + (K/N(0) - 1) * e^(-rt)]其中,N(t)、N(0)和r的含义与Malthus模型中相同,K表示环境的承载能力。

2.连续型增长模型:连续型增长模型适用于种群数量在连续的时间段内发生变化的情况,其中最常用的模型是Logistic模型和Verhulst模型。

2.1 Logistic模型:在离散型增长模型中已经介绍过Logistic模型的公式。

2.2 Verhulst模型:Verhulst模型是对Logistic模型的一种改进,它考虑了种群数量在资源有限条件下的波动。

该模型可以用以下微分方程表示:dN(t)/dt = r * N(t) * [1 - (N(t)/K)]其中dN(t)/dt表示时间t时刻种群数量的增长率,其值等于种群数量关于时间的导数,r表示每一单位时间内的增长率,K表示环境的承载能力。

微分方程与差分方程建模

微分方程与差分方程建模

p(r , t )dr p(r dr1 , t dt)dr (r, t ) p(r, t )drdt
[ p(r dr1 , t dt ) p(r , t dt )] [ p(r , t dt ) p(r , t )] (r , t ) p(r , t )dt , dt dr1
3)平均寿命
S (t ) t e


0 ( r ,t ) dr
t
d
t时刻出生的人,死亡率按 (r,t) 计算的平均存活时间
4)老龄化指数
控制生育率
(t ) R(t ) / S (t )
控制 N(t)不过 大 控制 (t)不过 高
Malthus模型和Logistic模型的总结 Malthus模型和Logistic模型均为对微分方程(3.7) 所作的模拟近似方程。前一模型假设了种群增长率r为一常 数,(r被称为该种群的内禀增长率)。后一模型则假设环 境只能供养一定数量的种群,从而引入了一个竞争项。 用模拟近似法建立微分方程来研究实际问题时必须对 求得的解进行检验,看其是否与实际情况相符或基本相符。 相符性越好则模拟得越好,否则就得找出不相符的主要原 因,对模型进行修改。 Malthus模型与Logistic模型虽然都是为了研究种群数量的 增长情况而建立的,但它们也可用来研究其他实际问题,只要这 些实际问题的数学模型有相同的微分方程即可。
模型4
di dt si i ds si dt i (0) i0 , s (0) s0
SIR模型
消去dt /
1 di ds s 1 i s s i0
0
相轨线
相轨线 i (s ) 的定义域

Maltlhus模型 Logistic模型:SIS模型 两种群竞争模型 报童的决策

Maltlhus模型    Logistic模型:SIS模型  两种群竞争模型  报童的决策

数学建模平时作业班级:0820862 学号:09姓名:武彩霞一、 Maltlhus 模型: 模型假设:记t 时刻人口的数量为)(t x ,假设人口是连续发生变化的,人口的增长率是常数 r ,如果不考虑环境资源和社会因素对人口的限制,和人口的迁入、迁出,试建立人口数量的变化规律。

已知;150)100(;100)0(==x x 求)150(x ,并图示模型曲线。

建立模型::rx dtdx= , 100)0(=x 由Matlab 软件容易解出这个方程:>> % Malthus 模型 syms x x0 rdsolve('Dx=r * x','x(0)=100') ans =100*exp(r*t) 即: rt e t x 100)(=由已知条件,利用Matlab 软件可以求出r ,>> syms rsolve('150=100*exp(r*100)') ans =1/100*log(3/2)然后 t=150 ,可以计算出 )150(x 。

利用Matlab 软件可以求出解: >> syms t f y>> f=100*exp(1/100*log(3/2)*t); >> subs(f,t,150)ans =183.7117即: )150(x =183.7117。

用Matlab 软件中的“plot ”命令画出图形:>> x=[0:1:100];>> y=100*exp(1/100*log(3/2)*x); >> plot(x,y,'-b')01002003004005006007008009001000100020003000400050006000xy指数增长模型拟合图形Logistic 模型: 模型假设:如果考虑环境资源和社会因素对人口的限制,考虑人口的迁入、迁出,试建立人口数量的变化规律。

微分方程讲座-人口增长模型

微分方程讲座-人口增长模型
Malthus模型呈现的是J型增长,只适应于短 期内,并无外界因素影响。而Logistic模型呈现S 型,适应于中长期且有外界因素影响。
Malthus模型和Logistic模型的推广
Malthus模型与Logistic模型虽然都是为 了研究种群数量的增长情况而建立的,但它 们也可用来研究其他实际问题,只要这些实 际问题的数学模型有相同的微分方程即可。
r
p
r
p t
(r,
t)
p(r,
t
)
p(r,0) p0 (r), r 0 ~已知函数(人口调查)
p(0,
t
)
f
(t),
t0
~生育率(控制人口手段)
男女性别比
在增大
生育率
生育数
只生一个
育龄区间
晚婚、晚育
人口增长模型的总结
基于一个假设,形成了基础模型Malthus模 型,再通过对现实世界分析,改进模型引进 了阻滞项,从而得到了Logistic模型.
p
P(r,t)
方 程
rm ~ 最高年龄
F (0, t) 0, F (rm , t) N (t)
p(r, t) F r
0 F(r0,t) r0
r rm
t,年dr龄]人[r数, r
t r
dt,年龄[r dr1 dr1 dr]人数
,
dt
dr1
死(t, t亡人dt数)内
p(r, t)dr p(r dr1,t dt)dr (r,t) p(r,t)drdt
马尔萨斯模型人口预测图
11
x 10 3.5
马尔萨斯模型人口预测
3
2.5
N/人
2
自然资源限制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xm:人口容量(资源、环境能容纳的最大数量)
r(xm ) 0
s= r0 xm
r(x)=r0(1-
x xm
)
dx dt
r(x )x
dx/dt
r0(1
x )x, xm
x(0) x0.
0
x(t)
xm
1 ( xm 1)er0t
x0
x xm
xm/2 x0 0
xm/2
xm x
t
模型检验和预测:
• 大量实验资料表明用Logistic模型描述种群的增长, 效果相当不错!
米格伦最著名的 伪作之一
• 一位法官试图证明米格伦确有通过制赝牟利的动机, 他却高调回答:“如果我不卖个高价,他们就不会相 信这是真的!”
• 这件事在当时震惊了全世界,为了证明自己是一个伪造者, 米格伦在监狱里开始伪造维米尔的油画《在埃牟斯的门 徒》.
马尔萨斯(1766~1834) Malthus,Thomas Robert
模型假设: • 人口增长率 r 是常数. • 人口的数量本应取离散
值,但由于人口数量一 般较大,为建立微分方 程模型,可以将人口数 量看作连续变量,甚至 允许它为可微变量,由 此引起的误差将是十分 微小的.
模型构成:
设 x(t) 表示 t 时刻的人口,有
由荷兰生物数学家 P. F. Verhust 于1837 年在 研究人口问题时建立. 基于这个模型能够描述 一些事物的客观规律,常被称为Logistic 模型.
阻滞作用随人口数量增加而变大 r 是 x 的减函数
假定 r(x) r0 sx (r0, s 0)
r (0) = r0:固有增长率
s 的意义是什么?
• 特别,利用马尔萨斯模型验证并检查1700年至1961的260 年间人口实际数据,发现两者几乎完全一致!
• 例如,1961年世界人口数为30.6 亿 ,人口数大约每35年增 加一倍.
模型预测:
假如人口数真能保持每35年增加一倍,那么人口数将以
几何级数的方式增长。例如,到2510年,人口达2×1014个,
象.
3
2.5
2
N/人
1.2050
2100
2150
2200
t/年
由于空间和资源都是有限的,不可能供养无限 增长的种群个体,当种群数量过多时,由于人 均资源占有率的下降及环境恶化、疾病增多等 原因,出生率将降低而死亡率却会提高.
模型三 (阻滞增长模型,即 Logistic 模型):
4.2 赝品的鉴定
• 在第二次世界大战比利时解放后 ,荷兰野战军保安机关开始搜捕 纳粹同谋犯.
• 他们从一家曾向纳粹德国出卖过 艺术品的公司中发现线索,于 1945年5月29日以通敌罪逮捕了 三流画家汉·凡·米格伦(Han van Meegeren),此人曾将17 世纪荷兰著名画家约翰内斯·维 米尔(Johannes Vermeer)的一些 油画卖给了当时纳粹德国的空军 司令戈林.
即使海洋全部M变alt成hu陆s地模,型每实人际也上只只有有9在.3群平体方总英尺的活动范围, 而到2670年,数人不口太达大3时6×才1合01理5个,,当只总好数一增个大人时站,在另一人的 肩上排成二所层生以了物M.群a故体lt马h的u尔各s模萨成型斯员假模之设型间的是由人不于口完有善限的的.
净生增存长空率间不,可有能限始的终自保然持资常源数及,食物 它等应原当因与,人就口可数能量发有生关生. 存3.5x 10竞11 争等现马尔萨斯模型人口预测
• 例如,数学家高斯把 5 只草履虫放进一个盛有
0.5cm3 营养液的小试管,他发现,开始时草履虫以
每天 230.9% 的速率增长,此后增长速度不断减慢,
到第五天达到最大量375个,实验数据与r0 =
2.309,x0 = 5, xm = 375 的Logistic曲线:
x(t)
1
375 74e2.309t
中国人口增长概况
年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0
研究人口变化规律,控制人口过快增长!
模型一 (最简单的人口增长模型):
假设今年的人口是 x0, 人口的年增长率是常数 r ,
4 微分方程建模 —— Malthus模型 与 Logistic模型
4.1. 人口增长模型 4.2. 赝品的鉴定 4.3. 耐用新产品的销售速度问题 4.4. 传染病模型
4.1 人口增长模型
世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
几乎完全吻合.
x(t)
xm
1 ( xm 1)er0t
x0
总结
阻滞增长模型从一定程度上克服了指数增长模型的 不足,可以被用来做相对较长时期的人口预测;而 指数增长模型在做人口的短期预测时因为其形式的 相对简单性也常被采用.
Malthus 模型与 Logistic 模型虽然都是为了研究种 群数量的增长情况而建立的,但它们也可用来研究 其他实际问题,只要这些实际问题的数学规律与 Malthus 模型与 Logistic 模型所反映的数学规律类似 即可.
dx dt
rx(t ),
x(t) x e rt
x(0) x0.
0
x0(er )t
当 r > 0,随着时间的增加, 人口按指数规律无限增长!
x0(1 r )t .
回忆: x x (1 r)k
k
0
(r 1)
模型检验:
• 比较历年的人口统计资料,可以发现人口增长的实际情况 与马尔萨斯模型的预报结果基本相符.
维米尔名作
《戴珍珠耳环的 少女》
• 最初,米格伦的确惊慌了一阵子. 可是,米格伦在同 年7月12日在牢里突然宣称:他从未把真画卖给戈林, 而且他还说,这些画包括当时众所周知的油画《在埃 牟斯的门徒》都是他自己为“戏弄纳粹”的仿制品.
《在埃牟斯的门 徒》(The Disciples at Emmaus)
于是,k 年后的人口为:
x x (1 r)k
k
0
美丽的大自然
模型二 (指数增长模型,即 Malthus 模型):
英国著名经济学家,出生于 英格兰的一个土地贵族家庭. 1784年进入剑桥大学学习, 1798年加入英国教会的僧籍, 任牧师. 1799年到欧洲一些 国家调查人口问题. 1805年 成为英国第一位(也是世界上 第一位)政治经济学教授.
相关文档
最新文档