一元线性回归法 excle操作
excel2016官方版做一元线性回归分析图表
excel2016官方版怎么做一元线性回归分析图表
在excel2016中也是能够制作一元线性回归分析图表的,而且方法很简单,想要检测两组数据是否具有线性关系的话就可以使用excel2016官方版来做一元线性回归分析图表分析数据,根据结果来测试两组数据的关系,下面为大家介绍使用官方版excel2016来做一元线性回归分析图表的方法。
excel2016官方版怎么做一元线性回归分析图表分析数据:
1、首先要准备好两组数据做为x和y,这组数据在可以简单感觉一下是否具有线性关系。
将准备好的数据放入excel2016表格里面
2、EXCEL需要我们自己启用数据分析,点击文件,选择选项,点击左侧的加载项,加载分析工具
3、加载工具完成以后,点击数据中的“工具分析”,选择“回归”,点击确定
4、点击Y值输入区域后面的单元格选择工具,选择Y值单元格,比如小编这里的A2:A20,X值同理操作,这里选择B2:B20,勾选下方的线性拟合图,我们可以看一下拟合的效果
5、excel会在新的工作表里面输出回归分析的相关结果,比如相关系数
R^2,标准误差,在X-variable和Intercept两项的值可以写出一元回归方程
6、在右侧就是我们的线性拟合图,观察拟合效果还不错,我们可以对图做一些修改,方便放到word文档里面,选中该图
7、在图表工具里面的图表布局中选择“布局3”,图标样式选择第一个黑白色
8、在新的图标样式里面多了很多网格线,实际我们并不是太需要,选中右击删除。
是整个图标简洁一些
总结:以上就是全部的“excel2016官方版怎么做一元线性回归分析图表”内容。
利用Excel进行线性回归分析
利用Excel进行线性回归分析————————————————————————————————作者: ————————————————————————————————日期:ﻩ文档内容1.利用Excel进行一元线性回归分析2. 利用Excel进行多元线性回归分析1.利用Excel进行一元线性回归分析第一步,录入数据以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。
录入结果见下图(图1)。
图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)”。
图表向导的图标为。
选中数据后,数据变为蓝色(图2)。
图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):灌溉面积y(千亩)01020304050600102030灌溉面积y(千亩)图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。
只有当数据具有线性分布特征时,才能采用线性回归分析方法。
从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。
回归的步骤如下:1. 首先,打开“工具”下拉菜单,可见数据分析选项(见图5):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图62.然后,选择“回归”,确定,弹出如下选项表(图7):图7进行如下选择:X 、Y 值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。
或者:X 、Y 值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。
注意:选中数据“标志”和不选“标志”,X 、Y 值的输入区域是不一样的:前者包括数据标志:最大积雪深度x (米) 灌溉面积y (千亩)后者不包括。
这一点务请注意(图8)。
图8-1包括数据“标志”图8-2不包括数据“标志”3.再后,确定,取得回归结果(图9)。
用Excel做一元线性回归预测分析
用Excel做一元线性回归预测分析Excel是一个功能强大的数据管理与分析软件,我们可以用Excel 函数与数据分析进行回归预测分析。
回归分析法是根据事物的因果关系对应的变量的预测方法,是定量预测方法的一种。
例如,下表是1-6月每月销量数据,根据这个数据预测7-12月销量数据。
预测方法:一、运用数据分析工具操作步骤如下:step1:根据原始数据制作折线图,如下:step2:通过相关分析判断变量之间的相关程度,并建立回归模型。
点击折线图,右键添加趋势线。
step3:选中趋势线,右键设置趋势线格式,趋势线选项选择线,趋势预测显示公式和显示R平方值打勾,在图表中可以看到回归模型y=kx+b和R平方值。
R平方值越接近1,回归模型越优。
step4:根据回归模型计算7-12月的预测值。
二、运用函数我们可以用forecast函数预测,forecast用途:根据一条线性回归拟合线返回一个预测值。
使用此函数可以对未来销量或消费趋势进行预测。
语法:FORECAST(x,known_y's,known_x's)。
参数:X 为需要进行预测的数据点的X 坐标(自变量值)。
Known_y's 是从满足线性拟合直线y=kx+b 的点集合中选出的一组已知的y值,Known_x's 是从满足线性拟合直线y=kx+b的点集合中选出的一组已知的x 值。
D7公式为=INT(FORECAST(A8,B$2:B7,A$2:A7))在用forecast预测之前可以用correl函数查看月份和销量之间的相关程度。
Correl函数用途:返回单元格区域array1 和array2 之间的相关系数,它可以确定两个不同事物之间的关系。
语法:CORREL(array1,array2)参数:Array1 第一组数值单元格区域。
Array2 第二组数值单元格区域。
相关系数的计算公式为:其中x 和y 是样本平均值AVERAGE(array1) 和AVERAGE(array2)。
Excel数据管理与图表分析 一元线性回归分析
Excel数据管理与图表分析一元线性回归分析在回归分析中,当只涉及一个因变量和一个自变量时,称做一元回归分析。
当描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
本节来介绍一元线性回归分析方法的应用。
例如,某公司长期由7大投资商赞助,其投资额与企业收益密切相关,其相关数据信息如下图13-12所示。
试运用一元线性回归分析的方法来建立回归方程,并对特定投资额进行收益值的预测。
图13-12 创建表格用户可以运用如图13-12所示的表格,对投资与收益进行分析计算并创建回归分析。
1.运用函数分析一元线性方程用户可以通过使用相关的函数,来计算出一元线性方程的斜率和截距,从而帮助创建一元线性方程。
为了创建一元线性方程,可以首先来创建如图13-13所示的表格,以帮助用户在此表格中清楚的观察方程的创建过程。
图13-13 创建表格图13-14 计算斜率和截距选择C13和D13单元格,分别输入“=SLOPE(C3:C9,B3:B9)”和“=INTERCEPT(C3:C9,B3:B9)”公式,即可求出方程的斜率和截距,如图13-14所示。
在进行斜率和截距的计算过程中,使用了SLOPE和INTERCEPT两个函数,下面分别对其进行介绍。
其中,SLOPE函数返回根据known_y's和known_x's中的数据点拟合的线性回归直线的斜率。
斜率为直线上任意两点的重直距离与水平距离的比值,也就是回归直线的变化率。
语法:SLOPE(known_y's,known_x's)其中,Known_y's表示为数字型因变量数据点数组或单元格区域。
Known_x's表示为自变量数据点集合。
提示如果known_y's 和known_x's 为空或其数据点个数不同,函数SLOPE 返回错误值#N/A。
创建表格创建表格输入INTERCEPT函数是利用现有的x值与y值计算直线与y轴的截距。
用Excel做线性的回归分析报告
用Excel进行一元线性回归分析Excel功能强大,利用它的分析工具和函数,可以进行各种试验数据的多元线性回归分析。
本文就从最简单的一元线性回归入手.在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。
很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。
它们虽很专业,但其实使用Excel就完全够用了。
我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
文章使用的是2000版的软件,我在其中的一些步骤也添加了2007版的注解.1 利用Excel2000进行一元线性回归分析首先录入数据.以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。
录入结果见下图(图1)。
图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)(excel2007)”。
图表向导的图标为。
选中数据后,数据变为蓝色(图2)。
图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):灌溉面积y(千亩)01020304050600102030灌溉面积y(千亩)图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。
只有当数据具有线性分布特征时,才能采用线性回归分析方法。
从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。
回归的步骤如下:⑴ 首先,打开“工具”下拉菜单,可见数据分析选项(见图5)(2007为”数据”右端的”数据分析”):图5 用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图6⑵然后,选择“回归”,确定,弹出如下选项表:图7进行如下选择:X、Y值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图。
用Excel做线性回归分析
用Excel进行一元线性回归分析以 601015 陕西黑猫2016年3月14日至3月25日录入数据。
录入结果见下图。
由上图录入的数据制作散点图回归从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。
回归的步骤如下:⑴首先,打开“工具”下拉菜单,可见数据分析选项(见图5)(2007为”数据”右端的”数据分析”):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图6⑵然后,选择“回归”,确定,弹出如下选项表:图7进行如下选择:X、Y值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图。
或者:X、Y值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图。
注意:选中数据“标志”和不选“标志”,X、Y值的输入区域是不一样的:前者包括数据标志:最大积雪深度x(米)灌溉面积y(千亩)后者不包括。
这一点务请注意。
图8-1 包括数据“标志”图8-2 不包括数据“标志”⑶再后,确定,取得回归结果(图9)。
图9 线性回归结果⑷最后,读取回归结果如下:截距:356.2=a ;斜率:813.1=b ;相关系数:989.0=R ;测定系数:979.02=R ;F 值:945.371=F 。
⑸ 建立回归模型,并对结果进行检验模型为:x y813.1356.2ˆ+= 至于检验,R 、R 2和F 值可以直接从回归结果中读出。
实际上,8,05.0632.0989416.0R R =>=,检验通过。
有了R 值,F 值和t 值均可计算出来。
F 值的计算公式和结果为:8,05.0222232.5945.371)989416.01(11101989416.0)1(11F R k n R F =>=---=---=显然与表中的结果一样。
t 值的计算公式和结果为:8,05.02306.2286.191110979416.01979416.011t k n R R t =>=---=---=回归结果中给出了残差(图10),据此可以计算标准离差。
一元线性回归软件(EXCEL)实现
F 132.7560134
Significance F 1.13931E-18
P-value 2.94532E-47 1.13931E-18
70
60
50
坐标轴标题
R² = 0.624
每加仑汽油行驶里程(MPG) 线性 (每加仑汽油行驶里程(MPG))
30
20
10
0 0 50 100 150 200 250 300 350
• 由图中可知,拟合的直线是y=-0.1391x+50.076, 由图中可知,拟合的直线是y=-0.1391x+50.076, y= R2的值为0.624。 的值为0.624 R2的值为0.624。 • 因为R2 值不是很大,所以这是一个线性特征 因为R2 值不是很大, 不是很明显的实验模型 即说明拟合直线只 实验模型, 不是很明显的实验模型,即说明拟合直线只能够 以大于62.4%地解释、涵盖了实测数。 62.4%地解释 以大于62.4%地解释、涵盖了实测数。 • 为了进一步使用更多的指标来描述这一个模 我们使用数据分析中的“回归” 型,我们使用数据分析中的“回归”工具来详细 分析这组数据。
一元线性回归软件(EXCEL)实现 一元线性回归软件(EXCEL)
七十七队: 王玮 指导教员:宋爱斌
一 二 三 四
概述 一元线性回归的基本概念 软件(EXCEL)实现过程 软件(EXCEL) 总结
一、概述
在数据分析中, 在数据分析中 , 对于成对成组数据的 拟合是经常遇到的。 很多专业软件都可以 拟合是经常遇到的 。 很多专业软件 都可以 解决此类问题, 比如数学中常见的MATLAB 解决此类问题 , 比如数学中常见的 MATLAB 它们虽很专业,但其实使用Excel Excel就完 等。它们虽很专业,但其实使用Excel就完 全够用了。我们已经知道在Excel Excel自带的数 全够用了。我们已经知道在Excel自带的数 据库中已有线性拟合工具, 据库中已有线性拟合工具 , 但是它还稍显 单薄, 下面我们来尝试使用较为专业的拟 单薄 , 下面 我们来尝试使用较为专业的拟 合工具来对此类数据进行处理。 合工具来对此类数据进行处理。
用Excel进行一元线性回归分析
用Excel进行一元线性回归分析Excel功能强大,利用它的分析工具和函数,可以进行各种试验数据的多元线性回归分析。
本文就从最简单的一元线性回归入手.在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。
很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。
它们虽很专业,但其实使用Excel就完全够用了。
我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
文章使用的是2000版的软件,我在其中的一些步骤也添加了2007版的注解.首先录入数据.以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。
录入结果见下图(图1)。
图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)(excel2007)”。
图表向导的图标为。
选中数据后,数据变为蓝色(图2)。
图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。
只有当数据具有线性分布特征时,才能采用线性回归分析方法。
从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。
回归的步骤如下:⑴首先,打开“工具”下拉菜单,可见数据分析选项(见图5)(2007为”数据”右端的”数据分析”):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图6⑵然后,选择“回归”,确定,弹出如下选项表:图7进行如下选择:X、Y值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图。
或者:X、Y值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图。
利用Excel进行线性回归分析汇总
利用Excel进行线性回归分析汇文档内容1.利用Excel进行一元线性回归分析2.利用Excel进行多元线性回归分析1.利用Excel进行一元线性回归分析第一步,录入数据以连续101)第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击图表向导”图标;或者在插入菜单中打开图表(H)”图表向导的图标为越。
选中数据后,数据变为蓝色(图2)。
迢 M 1crosoft Excel -连续山年摄犬积雪深度和灌陽面积的数齬b]轡 文件® 編辐囲 视图世)插入Q )榕式© 工具① 数据窗口⑩D L & 19自B1 二] 二「最大积雪深度莖冰)I A 1B 1 CD1 年份 最大积雪深度忑(米)灌溉面积y (千亩)2 1971 15, 2 28, 63 1972 10,4 19.3 4 1973 21.2 40,5 5 1974 18.6 兗>66 1975 26. 4 48. 97 1976 23* 4 45 8 1977 13. 5 29* 2 9 1978 16.7 34.1 10 1979 24 4& 711198019.137. 4 1---------------图2(图 4):点击 图表向导”以后,弹出如下对话框(图 3):图3在左边一栏中选中 “XY 散点图”点击 完成”按钮,立即出现散点图的原始形式灌溉面积y(千亩)第三步,回归观察散点图,判断点列分布是否具有线性趋势。
只有当数据具有线性分布特征时,才能采用线性回归分析方法。
从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。
回归的步骤如下:见图5):用鼠标双击数据分析”选项,弹出数据分析”对话框(图6):图62. 然后,选择回归”确定,弹出如下选项表(图7):图7进行如下选择:X、Y值的输入区域(B1:B11 , C1:C11 ),标志,置信度(95% ), 新工作表组,残差,线性拟合图(图8-1 )。
用excel进行一元线性回归分析
用excel进行一元线性回归分析在Excel中进行一元线性回归分析可以遵循以下步骤:1.打开Excel并输入你的数据。
在A列和B列分别输入x和y的值。
例如,如果你在研究体重(x)和血压(y)的关系,你的数据可能会像这样:A列是体重,B列是血压。
2.在Excel中打开“数据”菜单,然后选择“数据分析”工具。
如果你没有看到这个选项,那么可能需要先在“文件”>“选项”>“加载项”中启用它。
3.在“数据分析”工具中,选择“回归”选项。
这会打开一个新的对话框,其中包含几个选项。
4.在“回归”对话框中,你将看到几个选项。
在“Y值输入区域”中,选择你的y值(在上面的例子中是B列)。
在“X值输入区域”中,选择你的x值(在上面的例子中是A列)。
确保勾选“标志”选项,这样你的模型就会包括截距项。
5.点击“确定”按钮。
Excel会在C列和D列中输出回归结果。
C列包含回归系数,D列包含标准误差和R平方等统计信息。
6.解读结果。
如果回归系数(C列)的P值小于你选择的显著性水平(如0.05),那么你就可以认为这个因素是显著的。
R平方值越接近1,说明模型的解释力度越高。
以上就是在Excel中进行一元线性回归分析的基本步骤。
需要注意的是,虽然Excel提供了一个方便的工具来做这个分析,但是它并不能提供高级的统计测试或者复杂的模型。
如果你需要更复杂的分析,可能需要使用专门的统计软件,如SPSS、SAS或R等。
在进行回归分析时,还要注意几个关键点。
首先,你需要确保你的数据满足线性回归的假设,包括误差的正态性和独立性、线性关系以及合理的异方差性等。
其次,如果你的样本量很小,那么你可能需要更谨慎地解释结果,因为小样本可能会导致较大的误差和偏差。
最后,记住回归分析只能告诉你变量之间的关系,并不能告诉你因果关系。
例如,体重可能和血压有关系,但并不意味着体重是导致血压升高的原因。
在进行回归分析时,还可以使用一些额外的工具和技巧来改进你的分析。
利用Excel进行线性回归分析报告汇总情况
适用标准文档内容1.利用 Excel 进行一元线性回归剖析2.利用 Excel 进行多元线性回归剖析1.利用 Excel 进行一元线性回归剖析第一步,录入数据以连续10年最大积雪深度和浇灌面积关系数据为例予以说明。
录入结果见下列图(图1)。
图 1第二步,作散点图如图 2 所示,选中数据(包含自变量和因变量),点击“图表导游”图标;或许在“插入”菜单中翻开“图表(H )”。
图表导游的图标为。
选中数据后,数据变为蓝色(图 2 )。
图 2点击“图表导游”此后,弹出以下对话框(图3):图 3在左侧一栏中选中“XY 散点图”,点击“达成”按钮,立刻出现散点图的原始形式(图 4):浇灌面积 y( 千亩)60504030浇灌面积 y( 千亩)20100102030图 4第三步,回归察看散点图,判断点列散布能否拥有线性趋向。
只有当数据拥有线性散布特点时,才能采纳线性回归剖析方法。
从图中能够看出,本例数据拥有线性散布趋向,能够进行线性回归。
回归的步骤以下:1. 第一,翻开“工具”下拉菜单,可见数据剖析选项(见图5):图 5用鼠标双击“数据剖析”选项,弹出“数据剖析”对话框(图6):图 62. 而后,选择“回归”,确立,弹出以下选项表(图7):图 7进行以下选择: X、 Y 值的输入地区( B1:B11 , C1:C11 ),标记,置信度( 95% ),新工作表组,残差,线性拟合图(图 8-1 )。
或许: X、 Y 值的输入地区( B2:B11 ,C2:C11 ),置信度( 95% ),新工作表组,残差,线性拟合图(图 8-2 )。
注意:选中数据“标记”和不选“标记”,X、 Y 值的输入地区是不同样的:前者包含数据标记:最大积雪深度 x(米 ) 浇灌面积 y(千亩 )后者不包含。
这一点务请注意(图 8)。
图 8-1包含数据“标记”图 8-2 不包含数据“标记”3. 再后,确立,获得回归纳果(图9)。
图 9 线性回归纳果4.最后,读取回归纳果以下:截距: a 2.356 ;斜率: b 1.813;有关系数: R 0.989;测定系数:R2 0.979 ;F 值:F 371.945 ; t 值: t 19.286 ;标准离差(标准偏差):s 1.419;回归平方和:SSr 748.854 ;节余平方和:SSe 16.107 ;y的偏差平方和即总平方和: SSt764.961。
Excel 财务应用 一元线性回归预测
Excel 财务应用 一元线性回归预测在回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析。
在实际预测中,选取与预测量(Y )最紧密的一个影响因素作为自变量(X ),建立回归方程,配合回归曲线,对参数进行统计检验,从而对预测值进行精度检验和置信区间的估计。
为了研究某一化学反应过程中温度x 对产品生产率Y 的影响,下面利用一元线性回归预测分析来解决这一问题。
1.建立回归方程回归方程是对变量之间统计关系进行定量描述的一种数学表达式。
例如,在工作表中,输入温度与产品生产率的相应数据,如图8-36所示。
试用该工作表中的数据,预测温度为200℃时产品的生产率。
图8-36 温度与生产率基本数据在Excel 中对于一元线性回归提供了两种建立回归方程的方法,下面进行详细介绍。
通过SLOPE 和INTERCEPT 函数首先,对这两个函数进行介绍。
其中,SLOPE 函数返回根据known_y's 和known_x's 中的数据点拟合的线性回归直线的斜率。
斜率为直线上任意两点的重直距离与水平距离的比值,也就是回归直线的变化率。
语法:SLOPE(known_y's,known_x's)其中,Known_y's 表示为数字型因变量数据点数组或单元格区域。
Known_x's 表示为自变量数据点集合。
提 示如果 known_y's 和 known_x's 为空或其数据点个数不同,函数 SLOPE 返回错误值 #N/A 。
INTERCEPT 函数是利用现有的x 值与y 值计算直线与y 轴的截距。
截距为穿过已知的kn own_x's 和known_y's 数据点的线性回归线与y 轴的交点。
当自变量为0(零)时,使用INT ERCEPT 函数可以决定因变量的值。
语法:INTERCEPT(known_y's,known_x's)其中,Known_y's 表示因变的观察值或数据集合。
EXCEL一元线性回归
EXCEL一元线性回归一、概述在数据分析中,对于成对成组数据的二、一元线性回归基本概念➢一元线性回归方程的建立回归系数ˆˆˆiiy x αβ=+αβˆi yˆi i i e y y=-[]222111ˆ(,)()()nnniii ii i i i Q eyyyx αβαβ=====-=-+∑∑∑(,)Q αβ,αβ,αβ1111222111()()()()ˆ()()n n i i n ni i i i i i xy i i nnxxii ni i ii x y x x y y x y L n L xx x xnβ=======---===--∑∑∑∑∑∑∑ˆˆy xαβ=-根据最小二乘法,可以得到一组正规方程组,对方程组求解,即可得到回归系数, 的计算式:ˆαˆβ三、软件(EXCEL)实现过程本功能需要使用Excel扩展功能,如果Excel尚未安装数据分析,需加载“分析数据库”。
加载成功后,可以在“数据”菜单中看到“数据分析”选项汽车马力(HP)每加仑汽油行驶里程(MPG)4965.455565555.970495346.57046.25545.46259.26253.38043.47341.49240.99240.97340.46639.67339.37838.99238.87838.29042.29240.97440.79540散点图直线拟合分析结果SUMMARY OUTPUT回归统计Multiple R 0.789925583R Square 0.623982426Adjusted R Square0.619282206标准误差6.174780275观测值82方差分析df SS MS F Significance F 回归分析15061.709525061.709523132.75601341.13931E-18残差803050.2329238.12791145总计818111.94244Coefficients标准误差t Stat P-value Lower 95%Upper 95%下限95.0%上限95.0%Intercept 50.07566277 1.5696920531.90158406 2.94532E-4746.951876153.199449446.951876153.19944943X Variable 1-0.1390738520.01207031-11.521979581.13931E-18-0.163094531-0.1150532-0.163094531-0.115053172Y=-0.1391+50.075和前面散点图直线拟合的结果一致“回归”工具为我们提供残差图、线性拟合图:线性拟合图谢谢!请批评指正!。
用Excel做线性回归分析
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*用Excel进行一元线性回归分析Excel功能强大,利用它的分析工具和函数,可以进行各种试验数据的多元线性回归分析。
本文就从最简单的一元线性回归入手.在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。
很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。
它们虽很专业,但其实使用Excel就完全够用了。
我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
文章使用的是2000版的软件,我在其中的一些步骤也添加了2007版的注解.1 利用Excel2000进行一元线性回归分析首先录入数据.以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。
录入结果见下图(图1)。
图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)(excel2007)”。
图表向导的图标为。
选中数据后,数据变为蓝色(图2)。
图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):灌溉面积y(千亩)01020304050600102030灌溉面积y(千亩)图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。
只有当数据具有线性分布特征时,才能采用线性回归分析方法。
从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。
回归的步骤如下:⑴ 首先,打开“工具”下拉菜单,可见数据分析选项(见图5)(2007为”数据”右端的”数据分析”):图5 用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图6⑵然后,选择“回归”,确定,弹出如下选项表:图7进行如下选择:X、Y值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图。
Excel求解一元线性回归方程
4.4.2.2Excel求解一元线性回归方程步骤
1.开始-程序-Microsoft Excel,启动Excel程序。
2.Excel程序启动后,屏幕显示一个空白工作簿。
3.选定单元格,在单元格内输入计算数据。
4.选中输入数据,点击“图表向导”按钮。
5.弹出图表向导对话窗,点击XY散点图,选择平滑线散点图,点击下一步。
6.选择系列产生在:列,点击下一步。
7.在图表标题中输入“硝基苯标准曲线”,数值(X)轴输入“硝基苯浓度”,数值(Y)轴输入“HPLC峰面积”。
此外还可以点击“坐标轴”,“网格线”,“图例”,“数据标志”下拉菜单,对其中选项进行选择。
8.点击完成后,即可得到硝基苯的标准曲线图。
9.将鼠标移至图表工作曲线上,单击鼠标右键,选择“添加趋势线”。
10.在“类型”选项中选择“线性”,“选项”中选择“显示公式”,“显示R平方值”,单击确定。
11.单击确定后即可得到附有回归方程的一元线性回归曲线。
用Excel做线性回归分析之欧阳历创编
用Excel进行一元线性回归分析时间:2021.02.09 创作人:欧阳历Excel功能强大,利用它的分析工具和函数,可以进行各种试验数据的多元线性回归分析。
本文就从最简单的一元线性回归入手.在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。
很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。
它们虽很专业,但其实使用Excel就完全够用了。
我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
文章使用的是2000版的软件,我在其中的一些步骤也添加了2007版的注解.1 利用Excel2000进行一元线性回归分析首先录入数据.以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。
录入结果见下图(图1)。
图1第二步,作散点图如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)(excel2007)”。
图表向导的图标为。
选中数据后,数据变为蓝色(图2)。
图2点击“图表向导”以后,弹出如下对话框(图3):图3在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):图4第三步,回归观察散点图,判断点列分布是否具有线性趋势。
只有当数据具有线性分布特征时,才能采用线性回归分析方法。
从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。
回归的步骤如下:⑴首先,打开“工具”下拉菜单,可见数据分析选项(见图5)(2007为”数据”右端的”数据分析”):图5用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):图6⑵然后,选择“回归”,确定,弹出如下选项表:图7进行如下选择:X、Y值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验结果:
实验一:一元线性回归在Excel中的实现
一、实验过程描述
1.录入数据
打开EXCLE,录入实验数据,B列存放居民货币收入,C列存放居民消费品购买力,如下图所示:
2.绘制散点图
点击插入——图表——散点图——下一步,选择数据区域如下图:
定义表名为消费能力表、X轴为收入、Y轴为购买力,形成生散点图:
根据散点图可知,题中两个条件之间存在着线性关系,根据散点图可建立一次回归模型。
3.所需数据的计算
一元线性回归系数的计算中,需要用到∑x、∑y、∑2x、∑2y及∑xy 的值,因此按下列步骤求出这些值。
在D2单元格中输入“=B2*B2”,下拉求出所有的值。
同上,在E2单元格中输入”=C2*C2”,在F2单元格中输入“=B2*C2”,依次下拉,得到所有值。
结果如下表所示:
在B11单元格中输入“=SUM(B2:B10)”,依次右拉,求出各列的和∑x 、∑y 、∑2x 、∑2y 及∑xy ,依次存在B11,C11,D11,E11,F11.如下图所示:
4. 一元线性回归系数的计算:
根据系数公式
x b y a x x n y x xy n b 22-=--=∑∑∑∑∑)(,在EXCLE 表格中进行计算如下: 在I2单元格中输入一元线性回归系数b 的公式“=(9*F11-B11*C11)/(9*D11-B11*B11)”,在I3单元格中输入系数a 的公式 “ =C11/9-I2*(B11/9)”结果如下图所示:
由此得出回归方程:
Y=-0.99464X+0.847206
二、实验结果分析
在进行线性回归分析之前,首先必须依据一定的经济理论、专业知识,对变量间是否存在一定的相关性进行分析。
本题中,应根据实际经验,确定居民货币收入为自变量,居民消费品购买力为因变量。
再次要绘制散点图,观察数据信息是否符合线性要求,在完成上述准备工作后,才能进行线性回归方程的计算。