高等数学下册复习题及答案
高等数学(下册)期末复习试题及答案
![高等数学(下册)期末复习试题及答案](https://img.taocdn.com/s3/m/3cb5608a49649b6648d7478e.png)
一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为 Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n,则{}3,2,1111121=--=k j i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解 ⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yzx z ∂∂∂∂,.解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -= ,xz F y -= ,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x . (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为 )!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分)五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x ,且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅. 由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→n n a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(l n 3)(+=x x f . (5分)八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为 )(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有 x x x x e C e C xe e y --++='2212,x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 4. 设Ω是曲面222y x z --=及22y x z +=所围成的区域积分,则⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分形式是⎰⎰⎰-22120d ),sin ,cos (d d r rz z r r f r r θθθπ.5. 设L 是圆周22x x y -=,取正向,则曲线积分=+-⎰Ly x x y d dπ2.6. 幂级数∑∞=--11)1(n nn n x 的收敛半径1=R .7.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.8.设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.9.全微分方程0d d =+y y x x 的通解为Cxy =.10.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共42分 每小题6分)1.求过点)1,2,1(且垂直于直线⎩⎨⎧=+-+=-+-03202z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分) 所求平面方程为 032=++z y x (2分)2.函数),(y x z z =由方程z y x z y x 32)32sin(-+=-+所确定,求xz ∂∂. 解:令z y x z y x z y x F 32)32sin(),,(+---+=, (2分)则,1)32cos(--+=z y x F x 3)32cos(3+-+-=z y x F z . (2分))32c o s (33)32c o s (1z y x z y x F F x z z x -+--+-=-=∂∂ . (2分) 3.计算⎰⎰Dxy σd ,其中D 是由直线2 ,1==x y 及x y =所围成的闭区域.解法一: 原式⎰⎰=211d ]d [xx y xy (2分)x y x x d ]2[2112⎰⋅=x xx d )22(213⎰-= 811]48[2124=-=x x . (4分)解法二: 原式⎰⎰=212d ]d [y y x xy 811]8[2142=-=y y .(同上类似分)4.计算⎰⎰--Dy x y x d d 122,其中D 是由122=+y x 即坐标轴所围成的在第一象限内的闭区域.解: 选极坐标系原式⎰⎰-=2012d 1πθr r r d (3分))1(1)21(22102r d r ---⋅=⎰π6π= (3分) 5.计算⎰Γ-+-z x y yz x z y d d 2d )(222,其中Γ是曲线,t x =,2t y =3t z =上由01=t 到12=t 的一段弧.解:原式⎰⋅-⋅+-=122564d ]322)[(t t t t t t t (3分)⎰-=146d )23(t t t 1057]5273[t t -=351= (3分)6.判断级数∑∞=-1212n n n 的敛散性. 解: 因为 n n n nn n n n u u 2122)12(lim lim11-+=+∞→+∞→ (3分) 121<=, (2分) 故该级数收敛. (1分) 7.求微分方程043=-'-''y y y 满足初始条件,00==x y 50-='=x y 的特解. 解:特征方程 0432=--r r ,特征根 1,421-==r r通解为 x xe C e C y -+=241, (3分)x xe C e C y --='2414,代入初始条件得 1,121=-=C C ,所以特解x x e e y -+-=4.(3分)三、(8分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的 空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x ⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (2分)34213π⋅⋅=π2=. (2分) 四、(8分)设曲线积分⎰-+Ly x x xf x x yf d ])(2[d )(2在右半平面)0(>x 内与路径无关,其中)(x f 可导,且满足1)1(=f ,求)(x f .解:由xQy P ∂∂=∂∂, 得x x f x x f x f 2)(2)(2)(-'+=,即1)(21)(=+'x f xx f , (3分) 所以)d ()(d 21d 21C xeex f x x x x +=⎰⎰-⎰)(2121C dx x x+=⎰-)32(2321C x x+=-, (3分)代入初始条件,解得31=C ,所以xx x f 3132)(+=. (2分)五、(6分)求函数xy y x y x f 3),(33-+=的极值. 解:⎪⎩⎪⎨⎧=-==-=033),(033),(22x y y x f y x y x f y x 得驻点 )1,1(),0,0( (3分),6),(x y x f xx = ,3),(-=y x f xy y y x f yy 6),(=在点)0,0(处,,092>=-AC B 故)0,0(f 非极值;在点)1,1(处,,0272<-=-AC B 故1)1,1(-=f 是极小值. (3分)六、(6分)试证:曲面)(xyxf z =上任一点处的切平面都过原点.证:因),()(xyf x y x y f x z '-=∂∂ )(1)(x y f x x y f x y z '=⋅'=∂∂ (3分) 则取任意点),,(0000z y x M ,有)(0000x y f x z =,得切平面方程为))(())](()([)(00000000000000y y x yf x x x y f x y x y f x y f x z -'+-'-=- 即 0)()]()([0000000=-'+'-z y x y f x x y f x y x y f 故切平面过原点. (3分)07A一、 填空题(每小题3分,共21分).1.设向量}5,1,{},1,3,2{-==λb a ,已知a 与b垂直,则=λ1-2.设3),(,2,3π===b a b a ,则=-b a 6-3.yoz 坐标面上的曲线12222=+bz a y 绕z 轴旋转一周生成的旋转曲面方程为122222=++bz a y x4.过点)0,4,2(且与直线⎩⎨⎧=--=-+023012z y z x 垂直的平面方程0832=+--z y x5.二元函数)ln(y x x z +=的定义域为}0,0,({>+≥=y x x y x D6.函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(gradf }1,0,1{7.设xy e z=,则=dz )(xdy ydx e xy +8.设),(x y x xf u =,f 具有连续偏导数,则=∂∂x u21f xyxf f -+ 9.曲线32,,t z t y t x ===上点)1,1,1(处的切向量=T}3,2,1{10.交换积分顺序:⎰⎰=ydx y x f dy 010),(⎰⎰110),(xdyy x f dx11.闭区域Ω由曲面222y x z+=及平面1=z 所围成,将三重积分⎰⎰⎰Ωdv z y x f ),,(化为柱面坐标系下的三次积分为⎰⎰⎰πθθθ20101),sin ,cos (r dz z r r f rdr d12.设L 为下半圆周21x y--=,则=+⎰ds y xL )(22π13.设L 为取正向圆周922=+y x,则=-+-⎰dy x x dx y xy L )4()22(2π18-14.设周期函数在一个周期内的表达式为⎩⎨⎧<≤≤<-=ππx xx x f 000)(则它的傅里叶级数在π=x 处收敛于2π15.若0lim ≠∞→nn u ,则级数∑∞=1n n u 的敛散性是 发散16.级数∑∞=1!2n n n nn 的敛散性是 收敛17.设一般项级数∑∞=1n n u ,已知∑∞=1n n u 收敛,则∑∞=1n n u 的敛散性是 绝对收敛18.微分方程05)(23=+'-''xy y y x 是 2 阶微分方程19.微分方程044=+'+''y y y 的通解=y xx xe C e C 2221--+20.微分方程x xe y y y 223=+'-''的特解形式为xe b ax x 2)(+二、(共5分)设xy v y x u v u z ===,,ln 2,求yz x z ∂∂∂∂,解:]1)ln(2[1ln 2222+=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy y x y v u y v u x v v z x u u z x z]1)ln(2[)(ln 23222--=⋅+-⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy yx x v u y x v u y v v z y u u z y z 三、(共5分) 设022=-++xyz z y x ,求xz∂∂ 解:令xyz z y x z y x F 22),,(-++=x y zyzxyz F x -=xyzxyxyz F z -=xyxyz xyz yz F F x zz x --=-=∂∂ 四、(共5分)计算⎰⎰⎰Ωxdxdydz ,其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域解:y x z x y x --≤≤-≤≤≤≤Ω10,10,10:⎰⎰⎰⎰⎰⎰⎰⎰----Ω--==xyx xdy y x x dx xdz dy dx xdxdydz 1010101010)1(241)2(21)1(213102102=+-=-=⎰⎰dx x x x dx x x 五、(共6分)计算⎰-+-Lx x dy y e dx y y e )1cos ()sin (,其中L 为由点)0,(a A 到点)0,0(O 的上半圆周ax y x =+22解:添加有向辅助线段OA ,则有向辅助线段OA 和有向弧段OA 围成闭区域记为D ,根据格林 公式⎰-+-Lxx dy y e dx y y e )1cos ()sin ( ⎰⎰⎰-+--=DOAx x dy y e dx y y e dxdy )1cos ()sin (0)2(212-=a π 381a π= 六、(共6分)求幂级数∑∞=-13)3(n nn n x 的收敛域 解:对绝对值级数,用比值判敛法3313131lim 333)1(3lim lim 111-=-⋅+=-+-=∞→++∞→+∞→x x n n n x n x u u n n nn n n n n n 当1331<-x 时,即60<<x ,原级数绝对收敛 当1331>-x 时,即60><x x 或,原级数发散 当0=x 时,根据莱布尼兹判别法,级数∑∞=-1)1(n nn收敛当6=x时,级数∑∞=11n n发散,故收敛域为)6,0[七、(共5分) 计算dxdy z⎰⎰∑2,其中∑为球面1222=++z y x 在第一卦限的外侧解:∑在xoy 面的投影xy D :0,0,122≥≥≤+y x y xdxdy z ⎰⎰∑2dxdy y x xyD )1(22--+=⎰⎰rdr r d )1(20102⎰⎰-=πθ412⋅=π8π=八、(共7分)设0)1(=f ,求)(x f 使dy x f ydx x f x x )()](1[ln ++为某二元函数),(y x u 的全微分,并求),(y x u解:由x Q y P ∂∂=∂∂,得)()(1ln x f x f x x '=+,即x x f xx f ln )(1)(=-' 所以)ln 21()1ln ()ln ()(211C x x C dx x x x C ex ex f dxx dxx+=+⋅=+=⎰⎰⎰⎰---带入初始条件,解得0=C,所以x x x f 2ln 21)(=⎰++=),()0,0(22ln 21)ln 21(ln ),(y x xdy x ydx x x y x u⎰⎰+=xyxdy x 002ln 210x xy 2ln 21=07高数B一、(共60分 每题3分)1. 设向量}4 ,2 ,6{-=a ,}2 ,1 ,{-=λb ,已知a 与b平行,则=λ3-.2. yoz 坐标面上的曲线12222=-c z a y 绕z 轴旋转一周生成的旋转曲面方程为122222=-+bz a y x . 3.设3),(,1,2π===∧b a b a ,则a b -=3.4. 设一平面经过点)1,1,1(,且与直线⎩⎨⎧=+=--03042z y y x 垂直,则此平面方程为032=-+z y x .5. 二元函数12ln2+-=x y z 的定义域为{}012|),(2>+-x y y x .6. 设xye z =,则=z d )d d (y x x y e xy +.7. 函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(grad f )1,0,1(.8.设(,)y u xf x x =,f 具有连续导数,则u x ∂=∂12yf xf f x''+-.9. 曲面1222=++z y x 在点)2,0,1(-处的法向量=n{}4,0,2-. 10. 交换积分顺序:⎰⎰=1d ),(d x y y x f x ⎰⎰101d ),(d yx y x f y .11.闭区域Ω由曲面22y x z +=及平面1=z 所围成,将三重积⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分为⎰⎰⎰11202d ),sin ,cos (d d rz z r r f r r θθθπ.12. 设∑是闭区域Ω的整个边界曲面的外侧,V 是Ω的体积,则 ⎰⎰∑++y x z x z y x y x d d d d d d =V 3.13. 设L 为上半圆周21x y -=,则=+⎰Ls y x d )(22π.14. 设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.15. 若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 16. 级数∑∞=1!5n n nn n 的敛散性是 收敛 .17.级数∑∞=12sin n nn的敛散性是 收敛 . 18. 微分方程06)(542=+'+''y y y x 是 2 阶微分方程. 19. 微分方程02=+'-''y y y 的通解为)(21x C C e x +.20.微分方程x xe y y y 2365-=+'+''的特解的形式xe bx ax y 22*)(-+=.三、(共5分)函数),(y x z z =由方程04222=-++z z y x 所确定,求xz∂∂. 解:令=),,(z y x F z z y x 4222-++, (1分)则 ,2x F x = ,42-=z F z (2分)zxF F x z z x -=-=∂∂2 (2分) 五、(共6分)计算曲线积分⎰+--Ly y x x y x d )sin (d )2(22,其中L 为由点)0,2(A 到点)0,0(O 的上半圆周x y x 222=+.解:添加有向辅助线段,它与上半圆周围成的闭区域记为D ,根据格林公式⎰+--Ly y x x y x d )sin (d )2(22⎰⎰⎰+---+-=OADy y x x y x y x d )sin (d )2(d d )21(22 (3分)⎰⎰=Dy x d d ⎰-22d x x 3823212132-=-⋅⋅=ππ (3分)七、(共6设0)1(=f ,确定)(x f 使y x f x xyx f x d )(d )]([sin +-为某二元函数(,)u x y 的全微分.解: 由xQy P ∂∂=∂∂ 得 )()(sin x f x x f x '=-, 即 xxx f x x f s i n )(1)(=+' (2分) 所以 )d sin ()(d x 1d 1C xe xx ex f x x x+⋅=⎰⎰⎰-)d sin (ln ln C x e xx e xx +⋅=⎰- (2分) )cos (1C x x+-=, (1分) 代入初始条件,解得1cos =C ,所以)cos 1(cos 1)(x xx f -=. (1分) 八、(共6分) 计算⎰⎰∑y x z d d 2,其中∑是球面1222=++z y x 外侧在,0≥x 0≥y 的部分.解:⎰⎰∑y x z d d ⎰⎰∑=1d d y x z ⎰⎰∑+2d d y x (2分)⎰⎰--=xyD y x y x d d )1(22⎰⎰----xyD y x y x d )d 1()1(22 (2分) ⎰⎰--=xyD y x y x d )d 1(222r r r d )1(d 21220⋅-=⎰⎰πθ 4π=(2分)08高数A一、选择题(共24分 每小题3分)1.设{}1111,,p n m s =,{}2221,,p n m s =分别为直线1L ,2L 的方向向量,则1L 与2L 垂直的充要条件是 (A )(A )0212121=++p p n n m m (B )212121p p n n m m ==(C )1212121=++p p n n m m (D )1212121=++p pn n m m 2.Yoz 平面上曲线12+=y z 绕z 轴旋转一周生成的旋转曲面方程为 ( C )(A )12+=y z (B )22x y z +=(C )122++=x y z (D )x y z +=23.二元函数12ln2+-=x y z 的定义域为 (B )(A ){}02|),(2>-x y y x (B ){}012|),(2>+-x y y x (C ){}012|),(2≤+-x y y x (D ){}0,0|),(≥>y x y x4.交换积分顺序:1d (,)d yy f x y x =⎰⎰ ( A )(A )dy y x f dx x ⎰⎰110),((B )dx y x f dy y ⎰⎰110),((C )dx y x f dy y⎰⎰110),((D )dy y x f dx x⎰⎰110),(5.空间闭区域Ω由曲面1=r 所围成,则三重积分⎰⎰⎰Ωv d 2= ( C ) (A )2 (B )2π (C )38π (D )34π 6.函数),(y x z z =由方程04222=-++z z y x 所确定,则xz∂∂= ( D ) (A )zy -2 (B )y x-2 (C )zz-2 (D )zx-27.幂级数∑∞=13n n nn x 的收敛域是 ( C )(A )][3,3- (B )](3,0(C ) [)3,3- (D )()3,3-8.已知微分方程xe y y y =-'+''2的一个特解为x xe y =*,则它的通解是( B )(A )x xe x C x C ++221(B )x x x xe e C e C ++-221(C )x e x C x C ++221(D )x x x xe e C e C ++-21二、填空题(共15分 每小题3分)1.曲面z y x =+22在点)1,0,1(处的切平面的方程是012=--z x . 2.若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 3.级数∑∞=12cos n nn的敛散性是 绝对收敛 . 4.二元函数2221sin)(),(xy x y x f +=,当()()0,0,→y x 时的极限等于 0 。
高数第二学期总复习题及答案
![高数第二学期总复习题及答案](https://img.taocdn.com/s3/m/0a43b71cb7360b4c2e3f64bc.png)
高数第二学期复习题及答案1. 求球面222x y z R ++=与x z a +=的交线在x o y 面上的投影曲线的方程.()2222x y a x R z ⎧++-=⎪⎨=⎪⎩2. 判断方程22220,24x y z z x y +-=++=所表示的几何图形.(旋转抛物面,圆锥面) 3. 判断平面:230x y z ∏+-+=与直线112:311x y z l -+-==-的位置关系.(线在面内)4. 求过点()1,1,0且与125:214x y z l ---==垂直相交的直线方程.1121x y z --⎛⎫==⎪-⎝⎭5. 求通过点(1,2,1)-且通过23:212x t L y t z t =+⎧⎪=+⎨⎪=+⎩的平面方程.()2450x y z --+=6. 求过直线0230x y z x y z ++=⎧⎨-+=⎩且平行于直线23x y z==的平面方程.()726180x y z -+=7. 判断函数1sin ,0(,)0,0x y y f x y y ⎧≠⎪=⎨⎪=⎩在(0,0)点与(1,0)点的连续性.(在(0,0)点连续,在(1,0)点不连续)8. 求22(,)(0,0)1lim ()sinx y x y xy→+.()09. 求()()()2222(,)(0,0)221cos limexyx y x y xy+→-++.()010. 求(,)(0,0)lim24x y xy xy →-+.()4-11. 若00(,)0x y f x∂=∂,00(,)0x y f y∂=∂,判断(,)f x y 在点00(,)x y 的连续性和可微性.(不一定连续也不一定可微)12. 设函数(,)z f x y =在点00(,)x y 处可微,且00(,)0x f x y '=,00(,)0y f x y '=,判断函数(,)f x y 在00(,)x y 处有无极值,如果有,判断是极大值还是极小值.(可能有极值,也可能无极值)13. 设222(,)z x yf x y xy =-,其中f 具有连续偏导数,求d z .()()()3222223121222d 2d xyf x y f x y f x xf x y f x y f y ''''+++-+14. 设(),z z x y =是由e2e 2xyzz -+-=所确定,求d z .()e d d 2exyzy x x y -⎛⎫+ ⎪-⎝⎭15. 设()222,u f x y z xyz =++,其中f 具有二阶连续的偏导数,求2u x y∂∂∂.()22221112222422u xyf x z y z f xyz f zf x y ⎛⎫∂'''''''=++++ ⎪∂∂⎝⎭16. 求曲面222z x y =+在(0,1,1)-处指向下侧的单位法向量.()()0,2,1-- 17. 求曲面arctany z x=在1,1,4π⎛⎫⎪⎝⎭处指向上侧的法向量.()()1,1,2-18. 求函数()22ln u x y z=++在点()1,0,1A 处的梯度.11,0,22⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭19. 求曲面2222321x y z ++=平行于平面460x y z ++=的切平面方程.()4621x y z ++=±20. 求曲线2222223472x y z x y z⎧++=⎪⎨+=⎪⎩在点()2,1,6-处的切线和法平面方程.切线:21627284x y z +--==法平面:2728420x y z +++=21. 求曲线2322y xz x x⎧=⎪⎨=+⎪⎩在点()1,2,3处的切线和法平面方程.切线:123145x y z ---==法平面:45240x y z ++-=22. 在螺旋线()2cos ,sin ,02x y z θθθθπ===≤≤上求一点,使该点处螺旋线的切线平行于平面24x z +=.(2(2,,)24π或23(2,,)24π-)23. 交换二重积分21101d (,)d x xI x f x y y --=⎰⎰的积分次序. 21101d (,)d y yy f x y x --⎛⎫⎪⎝⎭⎰⎰ 24. 交换二重积分e ln 1d (,)d x I x f x y y =⎰⎰的积分次序.()1e 0ed (,)d yy f x y x ⎰⎰25. 把220d (,)d a ax x xI x f x y y -=⎰⎰化为极坐标形式.()2cos 24d cos ,sin d a f πθπθρθρθρρ⎛⎫ ⎪⎝⎭⎰⎰ 26. 把22222d ()d y y I y f x y x -=+⎰⎰化为极坐标形式. ()2sin 2200d d f πθθρρρ⎛⎫ ⎪⎝⎭⎰⎰ 27. 把21110d (,)d y yI y f x y x +-=⎰⎰化为极坐标形式.()2cos 400d cos ,sin d f πθθρθρθρρ⎛⎫ ⎪⎝⎭⎰⎰ 28. 求22d d Dx y x y +⎰⎰,其中区域D 为由222x y y +=及0x =所围在第一象限内的区域.169⎛⎫⎪⎝⎭29. 求()22ln 1d d Dx yx y ++⎰⎰,其中区域D为由221,0,0x y x y +≤≥≥所围成的区域.()ln 414π⎛⎫-⎪⎝⎭30. 求arctand d Dy x y x⎰⎰,其中区域D 为22224,1,,0x y x y y x y +≤+≥≤≥所围成的区域.2364π⎛⎫⎪⎝⎭31. 求224d d Dx y x y --⎰⎰,其中区域D 为以222x y x +=为边界的上半圆域.41639π⎛⎫-⎪⎝⎭32. 求2d d Dx y x y ⎰⎰,其中区域D 为1,,2xy y x x ===所围成的区域.118⎛⎫⎪⎝⎭33. 求22d d Dxx y y ⎰⎰,其中区域D 为2,x y x ==及双曲线1xy =所围成的区域.94⎛⎫⎪⎝⎭34. 设积分区域:Ω2222(0)x y z az a ++≤>,把三重积分22()d x y v Ω+⎰⎰⎰化为球面坐标下的三次积分. 22cos 432000d d sin d a r r ππϕθϕϕ⎛⎫ ⎪⎝⎭⎰⎰⎰35. 设有一物体,占有空间闭区域Ω是由圆柱面22y x x =-及平面0,0y z ==和1z =围成的,在点(,,)x y z 处的密度为22(,,)x y z z x y ρ=+,计算该物体的质量. 89⎛⎫⎪⎝⎭36. 设有一物体,占有空间闭区域Ω是以221z x y =--及0z =围成的,在点(,,)x y z 处的密度222(,,)x y z x y z ρ=++,计算该物体的质量. 2π⎛⎫ ⎪⎝⎭37. 利用三重积分计算由曲面221()2z x y =+与平面0z =和2z =所围成的介于两平面之间的立体的体积. ()4π38. 设222:1,0,0,0x y z x y z Ω++≤≥≥≥,求4d v Ω⎰⎰⎰.23π⎛⎫⎪⎝⎭39. 设L 为椭圆2212yx +=,其周长为a ,求22(2)d Lx y s +⎰ .()2a40. 设空间曲线22222:x y z x y⎧+=⎪Γ⎨=+⎪⎩,求22e d x ys +Γ⎰ .()22eπ41. 求d xyz s Γ⎰ ,其中Γ是点()1,0,2A 与()2,3,1B 之间的直线段.13114⎛⎫⎪⎝⎭42. 求()2d d 2L xxy x x y ++⎰其中L 沿222x y R +=顺时针从()0,A R 到(),0B R .22R ⎛⎫⎪⎝⎭43. 求()()esin d e cos d xxLy my x y my y -+-⎰其中L 为22x y ax +=从点(),0A a 到()0,0O 的上半圆弧,m 为常数.28m a π⎛⎫⎪⎝⎭44. 求()()22d sin d Lxy x x y y --+⎰其中L 是22y x x =-由点()0,0到()1,1的一段弧.sin 2746⎛⎫-⎪⎝⎭45. 设2222:x y z a ∑++=,求2d S ∑⎰⎰.()28a π46. 求(e cos 5)d (e sin 5)d x xCy y x y y --+-⎰,其中C 为222x y x +=自(2,0)A 到(0,0)O 的一段弧. 25(e 1)2π⎛⎫+- ⎪⎝⎭47. 计算22d d d d d d x y z xy z x y x y ∑++⎰⎰,其中∑为抛物面22z x y =+被4z =所截下部分的下侧. ()4π-48. 计算()d d ()d d ()d d y z y z z x z xx y x y ∑-+-+-⎰⎰,其中∑为圆锥面22z x y=+被1z =所截下部分的下侧.()049. 计算22222()d d I x y z x y x y ∑=+++⎰⎰,∑为下半球面221z x y=---的下侧.23π⎛⎫- ⎪⎝⎭50. 设级数21nn u ∞=∑和21nn v ∞=∑均收敛,判断以下结论是否成立(()21n n n u v ∞=+∑收敛成立 )1n n u ∞=∑收敛;1n n n u v ∞=∑条件收敛;()21n n n u v ∞=+∑收敛; ()211nn n u ∞=-∑条件收敛.51. 判别下列级数的收敛性,若收敛,是绝对收敛还是条件收敛.21(1)sin ln(1)nn n ∞=⎡⎤-⎢⎥+⎣⎦∑(条件收敛),11(1)1ln n n n n n-∞=-+∑(绝对收敛),31arctan n n n ∞=∑(绝对收敛),()111n n n n ∞=+-∑(发散),()()12111n n n n ∞-=-+∑(条件收敛),()()111ln 1n n n -∞=-+∑(条件收敛). 52. 判断1!nn n n∞=∑的敛散性.(收敛)53. 判断1!21nn n ∞=+∑的敛散性.(发散)54. 判断13!nnn nn ∞=∑的敛散性.(收敛)55. 求幂级数2321(1)2nn nn xn∞-=-∑的收敛域. ()2,2⎡⎤-⎣⎦56. 求幂级数21212n nn n x∞=-∑的收敛域. ()(2,2)-57. 求幂级数()112(1)nn n x n∞-=+-∑的收敛域.(]()3,1--58. 求幂级数()21211nnn x n ∞=-+∑的收敛域.13,22⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭59. 微分方程323e x y y y x -'''++=的特解形式为________.()e ()x x Ax B -+ 60. 微分方程369(1)e x y y y x '''-+=+的特解形式为________.()23e ()x x Ax B + 61. 微分方程244e x y y y x '''-+=的特解形式为________.()()22e x Ax B x +62. 求以12e (cos 2sin 2)xy C x C x =+为通解的二阶常系数齐次线性微分方程.()250y y y '''-+=63. 已知二阶常系数齐次线性微分方程的两个特解为212e ,e x xy y -==,求其方程.()20y y y '''+-=64. 已知二阶常系数齐次线性微分方程的两个特解为12e ,e x xy y x ==,求其方程.()20y y y '''-+=65. 求以12e xy C C =+为通解的二阶常系数齐次线性微分方程.()0y y '''-=66. 已知123,,y y y 是某二阶非齐次线性微分方程的三个解,且2131y y y y -≠-常数,则方程的通解为________.()()()1212311C y y C y y y -+-+ 67. 求微分方程2d 1d 0xy x x y +-=满足初始条件1e x y ==的特解.()211e xy +-=68. 求解2110x y y x x y =⎧'=-+⎪⎨⎪=⎩.ln x y x ⎛⎫= ⎪⎝⎭69. 求解32cos xy y x x '-=.()()2sin y x x C =+70. 求解004306,10x x y y y y y =='''-+=⎧⎪⎨'==⎪⎩.()32e 4e x x y =+1.求过直线1123:11x y z L ---==-且平行于直线221:211x y z L +-==的平面方程.解:直线1L 上的一点(1,2,3)A ,方向向量1(1,0,1)s =-,2L 的方向向量2(2,1,1)s = 从而所求平面的法向量121013211ijkn s s i j k =⨯=-=-+∴所求平面的方程为:(1)3(2)(3)0x y z ---+-=即320x y z -++=2.设()22,,z f xy x y=+其中f具有二阶连续偏导数,求2z x y∂∂∂.解:121222z f y f x yf xf x∂''''=⋅+⋅=+∂()()2111122122222z z f y f x f y x f x f y x yy x ∂∂∂⎛⎫'''''''''==+⋅+⋅+⋅+⋅ ⎪∂∂∂∂⎝⎭()221112122224f xyf x y f xyf '''''''=++++ 3.求曲线e cos ,e sin ,e t t t x t y t z ===在0t =时的法平面与切线方程. 解:()e (cos sin ),()e (sin cos ),()e t t t x t t t y t t t z t '''=-=+= ∴在0t =处的切向量为:()(0),(0),(0)(1,1,1)T x y z '''==又 0t =时对应曲线上的点(1,0,1),∴切线方程:101111x y z ---==,法平面方程:1010x y z -+-+-=,即20x y z ++-= 4.计算22()d d ,Dx y x y +⎰⎰其中 22:24,02D x x y x x -≤≤-≤≤.解::0,2cos 22D πθθρ≤≤≤≤22223202cos ()d d d d d d DDx y x y πθρρρθθρρ+=⋅=⎰⎰⎰⎰⎰⎰()42041cos d πθθ=-⎰20312+2cos2+cos 4d 22ππθθθ⎛⎫=-⎪⎝⎭⎰20312+sin2+sin 4)28ππθθθ⎡⎤=-⎢⎥⎣⎦54π=5.计算()22d ,x y v Ω+⎰⎰⎰其中Ω是由曲面222x y z +=与平面2z =所围成的空间闭区域.解:2:02,02,22z ρθπρΩ≤≤≤≤≤≤,则()223d d d d x y v z ρθρΩΩ+=⎰⎰⎰⎰⎰⎰222232d d d z πρθρρ=⎰⎰⎰2246230162(2)d 222123ρρρππρρπ⎡⎤=-=-=⎢⎥⎣⎦⎰6.计算22()d (sin )d ,LI x y x x y y =--+⎰其中L 是圆周22y x x =-由点(0,0)到 (1,1)的一段弧.解:22,sin P x y Q x y =-=--,则1P Q yx∂∂=-=∂∂ ∴曲线积分与路径无关取折线:0,:01;:1,:01OB y x BA x y =→=→∴OBBAI =+⎰⎰1122d (1sin )d x x y y =+--⎰⎰131sin 2324⎛⎫=+-+ ⎪⎝⎭71sin 264=-+7.计算()()()222d d d d d d ,y z y z z x z x x y x y ∑-+-+-⎰⎰其中∑为锥面22(0)z x y z h =+≤≤的外侧.解:补*222:()z h x y h ∑=+≤取上侧,则2P y z =-,2Q z x =-,2R x y =-, 0P Q R xyz∂∂∂===∂∂∂由Gauss 公式得,*0d 0v Ω∑+∑==⎰⎰⎰⎰⎰**22()d d ()d d xyD x y x y x y x y ∑∑=-=-⎰⎰⎰⎰⎰⎰2224d (cos sin )d 4h h ππθρθρθρρ=-=⎰⎰故**44044h h ππ∑∑+∑∑=-=-=-⎰⎰⎰⎰⎰⎰8.判定级数12ln 2n nn n ∞=⎛⎫+ ⎪⎝⎭∑的敛散性. 解:0lim2n n n→∞= n ∴→∞时,ln 122n n n n ⎛⎫+ ⎪⎝⎭∴由比较审敛法知:1ln 12n n n ∞=⎛⎫+ ⎪⎝⎭∑与12n n n ∞=∑有相同的敛散性.下面只要判定12nn n ∞=∑的敛散性1121lim 122nn n n n +→∞+⋅=< ,故由比值法,知12n n n∞=∑收敛 ∴12ln 2n n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛 9.求幂级数12121(1)n nn n xn∞-=+-∑的收敛域.解:()2121121211nn nn n n n xxnn∞∞-==++-=∑∑,令221nn n u xn+=,则22212(23)limlim1(21)n n nn n nn xu n x u n n x++→∞→∞+=⋅=++当21x <,即1x <时,2121nn n xn∞=+∑收敛,21x>,即1x >时,2121nn n xn∞=+∑发散,当1x =时,121n n n∞=+∑发散;1x =-时,121n n n∞=+∑发散, ∴原级数的收敛域:()1,1-10.求微分方程cos d cot 5ed xy y x x+=的通解.解: 对应的齐次线性方程:d cot 0d y y x x+=,即1cos d d sin x y x yx=-两端积分,得ln ln(sin )ln y x C =-+ sin Cy x∴=用常数变易法,设原方程的通解为:()sin C x y x=代入原方程,得cos 2()sin ()cos ()cos 5e sin sin x C x x C x x C x x x x'-+=cos ()5sin e xC x x '∴= 从而cos ()5e xC x C =-+∴原方程的通解:cos 5esin xCy x-+=1.求直线⎩⎨⎧=---=+-0923042:z y x z y x l 在平面14:=+-∏z y x 上的投影直线的方程.解:过直线l 的平面束()092342=---++-z y x z y x λ即()()()0921432=--++-+λλλλz y x ,又l 的投影直线与l 确定的平面与平面∏垂直()()01,1,421,4,32=-⋅---+∴λλλ 即01311=+λ,解得1113-=λ所以投影直线⎩⎨⎧=+-=--+140117373117z y x z y x 。
高数下册试题及答案
![高数下册试题及答案](https://img.taocdn.com/s3/m/010ee388162ded630b1c59eef8c75fbfc67d947c.png)
高数下册试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = x^3 - 3x,求f'(x)。
A. 3x^2 - 3B. x^2 - 3xC. 3x^2 + 3D. 3x^2 - 3x答案:A2. 设函数f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)答案:B3. 求极限lim(x→0) (sin(x)/x)的值。
A. 0B. 1C. 2D. 3答案:B4. 若函数f(x) = e^x,则f'(x)等于:A. e^xB. e^(-x)C. x * e^xD. 1答案:A二、填空题(每题5分,共20分)1. 已知曲线y = x^2 + 2x + 1,求该曲线在x = 1处的切线斜率。
答案:42. 设函数f(x) = ln(x),则f'(x) = ________。
答案:1/x3. 求定积分∫(0,1) x^2 dx的值。
答案:1/34. 若函数f(x) = x^3 - 6x^2 + 9x + 15,求f'(x)。
答案:3x^2 - 12x + 9三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值。
答案:首先求导数f'(x) = 3x^2 - 12x + 11。
令f'(x) = 0,解得x = 1 和 x = 11/3。
计算f''(x) = 6x - 12,可以判断x = 1处为极大值点,x = 11/3处为极小值点。
极大值为f(1) = 0,极小值为f(11/3) = -2/27。
2. 计算定积分∫(0,2) (3x^2 - 2x + 1) dx。
答案:首先求原函数F(x) = x^3 - x^2 + x。
高数下试题及答案解析
![高数下试题及答案解析](https://img.taocdn.com/s3/m/c589c7e0bdeb19e8b8f67c1cfad6195f312be897.png)
高数下试题及答案解析一、选择题(每题4分,共40分)1. 函数f(x)=x^2-4x+3的零点个数为()。
A. 0B. 1C. 2D. 3答案:C解析:函数f(x)=x^2-4x+3可以因式分解为f(x)=(x-1)(x-3),因此有两个零点x=1和x=3。
2. 极限lim(x→0) (1+x)^(1/x)等于()。
A. 0B. 1C. eD. -e答案:C解析:根据极限的定义,lim(x→0) (1+x)^(1/x)等于自然对数的底数e。
3. 函数f(x)=x^3-3x^2+2在x=1处的导数为()。
A. -1B. 0C. 1D. 2答案:C解析:首先求导数f'(x)=3x^2-6x,然后将x=1代入得到f'(1)=3(1)^2-6(1)=-3,因此答案为C。
4. 曲线y=x^2+2x-3在点(1,0)处的切线斜率为()。
A. 1B. 2C. 3D. 4答案:B解析:首先求导数y'=2x+2,然后将x=1代入得到y'(1)=2(1)+2=4,因此答案为D。
5. 函数f(x)=sin(x)+cos(x)的周期为()。
A. πB. 2πC. π/2D. 1答案:B解析:函数f(x)=sin(x)+cos(x)可以化简为f(x)=√2sin(x+π/4),因此周期为2π。
6. 函数f(x)=x^3-6x^2+11x-6的单调增区间为()。
A. (-∞, 1)∪(3, +∞)B. (1, 3)C. (-∞, 1)∪(3, +∞)D. (1, +∞)答案:B解析:首先求导数f'(x)=3x^2-12x+11,令f'(x)>0,解得x<1或x>3,因此单调增区间为(1, 3)。
7. 函数f(x)=x^2-4x+3的极值点为()。
A. x=1B. x=2C. x=3D. x=4答案:B解析:首先求导数f'(x)=2x-4,令f'(x)=0,解得x=2,因此极值点为x=2。
高数下考试题和答案
![高数下考试题和答案](https://img.taocdn.com/s3/m/d48a225582c4bb4cf7ec4afe04a1b0717fd5b3da.png)
高数下考试题和答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x+1在x=0处的导数为()。
A. 0B. 1C. -1D. 3答案:B2. 曲线y=x^2+2x-3的拐点坐标为()。
A. (-1, -2)B. (1, -2)C. (-1, -4)D. (1, 0)答案:A3. 函数y=e^x的不定积分为()。
A. xe^x + CB. e^x + CC. e^x - x + CD. x^2e^x + C答案:B4. 计算定积分∫(0,1) x^2 dx的值为()。
A. 1/3B. 1/2C. 1/4D. 1/6答案:B5. 函数y=x^2-4x+3的极值点为()。
A. x=1B. x=2C. x=3D. x=4答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的最小值为________。
答案:-17. 计算定积分∫(-1,1) e^(-x^2) dx的值约为________。
答案:1.462658. 函数y=ln(x)的导数为________。
答案:1/x9. 函数y=x^3-3x^2+2x的二阶导数为________。
答案:6x-610. 计算定积分∫(0,π) sin(x) dx的值为________。
答案:2三、计算题(每题10分,共30分)11. 计算不定积分∫(x^2-2x+1) dx。
解:∫(x^2-2x+1) dx = (1/3)x^3 - x^2 + x + C12. 求函数y=x^3-3x+2在x=1处的切线方程。
解:首先求导数y'=3x^2-3,代入x=1得y'|_{x=1}=0,切线斜率为0。
切点为(1,0),因此切线方程为y=0。
13. 计算定积分∫(0,2) (x^2-2x+1) dx。
解:∫(0,2) (x^2-2x+1) dx = [(1/3)x^3 - x^2 + x](0,2) = (8/3 - 4 + 2) - (0) = 2/3四、应用题(每题10分,共30分)14. 一个物体从高度h=100米处自由落下,忽略空气阻力,求物体落地时的速度v。
高等数学(下册)试题及详细解答
![高等数学(下册)试题及详细解答](https://img.taocdn.com/s3/m/dd2d687cf46527d3240ce0ce.png)
高等数学2一.填空题(每小题3分,本大题满分30分)1.已知(1,2,3)a =,(3,2,1)b = ,则a b ⨯= (4,8,4)--.2.yOz 面上的抛物线21z y =-绕z 轴旋转一周所得曲面方程为221z x y =--.3.(,)(0,2)lim x y →=18. 4.对函数yz x =利用近似计算公式d z z ∆≈,则 2.02(1.04)≈ 1.08.5.曲线2211x ty t z t =⎧⎪=-⎨⎪=+⎩上点(2,3,5)处的切线方程为35244y z x ---==.6.将下列函数展开成(1)x -的幂级数:13x =-101(1)2n n n x ∞+=-∑,(13x -<<). 7.微分方程xy y e -'+=的通解为y =()x e x C -+.8.微分方程690y y y '''-+=的通解为y =312()xC C x e +.9.设2x f xy '=,2y f x '=,则(1,2)(0,0)f f -=2.10.已知L 为球面2222x y z R ++=被平面0x y z ++=所截得的圆周,则2d Ly s =⎰323R π.二.解答下列各题(每小题8分,本大题满分16分)1.已知(,)z f x y =是由方程2sin z z x y +=确定的隐函数,求z x ∂∂和22zx∂∂.解:令2(,,)sin F x y z z z x y =+-,则2x F xy =-,cos 1z F z =+, 2cos 1x z z F xyx F z ∂=-=∂+, 。
(5分)2222(cos 1)2(sin )(cos 1)x z y z xy z z x z ∂+-⋅-⋅=∂+ 22232(cos 1)4sin (cos 1)y z x y z z ++=+. 。
(8分) 2.求函数2(,)624ln f x y x y xy y =+--的极值.解:解方程组2204620x yf x y f x y '=-=⎧⎪⎨'=--=⎪⎩, 得驻点(1,1),(2,2). 。
高数下试题及答案
![高数下试题及答案](https://img.taocdn.com/s3/m/1f20361fbf23482fb4daa58da0116c175e0e1e6f.png)
高数下试题及答案一、选择题1. 道函数f(x)在x=2处连续,则f(x)满足的条件是()A. f(2)=1B. f(2)=2C. f(2^+)=f(2^-)D. f(2^+)>f(2^-)2. 设函数f(x)=log₁₀x,则f(1000)等于()A. 1B. 2C. 3D. 43. 设函数f(x)=e^(-x), g(x)=x^2,则f(x)在[0,∞)上单调递()。
A. 递增B. 递减C. 既增又减D. 既减又增4. H(x)为曲线y=x/(x+1)在点P(x,y)处的切线,若x的取值范围为(-∞,-1),则k为正数满足H'(x)≤k,则k的取值范围是()A. (0,1)B. (1,2)C. (2,3)D. (3,4)5. 设f(x)为定义域为[x₁,x₂]的函数,若f'(x)>0,则函数f(x)在( )上单调递增。
A. (x₁,x₂)B. [x₁,x₂]C. (x₁,∞)D. (-∞,x₂)二、计算题1. 求一个点P(x,y),使得点P到直线y=3x+7的距离最小,并求出最小距离。
2. 计算∫(x³+1)/x² dx3. 已知函数f(x)=e^x,求f'(x)4. 求函数f(x)=sin(3x)的不定积分5. 设函数y=f(x)满足方程y''+2y'+y=sin(x),且满足初值条件y(0)=0,y'(0)=1,求f(x)的表达式。
三、解答题1. 证明函数f(x)=1/x 在区间(0,∞)上是严格递减的。
2. 求不定积分∫sin^2(x) dx3. 已知函数y=f(x)满足微分方程y''-4y'+4y=0,且满足初值条件y(0)=1,y'(0)=2,求f(x)的表达式。
4. 设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一个点ξ∈(a,b),使得f'(ξ)+f(ξ)=0。
《高等数学(下)》试题及参考答案
![《高等数学(下)》试题及参考答案](https://img.taocdn.com/s3/m/1de6446e00f69e3143323968011ca300a7c3f650.png)
《高等数学(下)》习题答案一、单选题1、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件C必要非充分条件D既非充分又非必要条件2、当x→0时,y=ln(1+x)与下列那个函数不是等价的(C)Ay=x By=sinx Cy=1-cosx Dy=e^x-13、如果在有界闭区域上连续,则在该域上(C)A只能取得一个最大值B只能取得一个最小值C至少存在一个最大值和最小值D至多存在一个最大值和一个最小值4、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件6、当x→0时,下列变量中(D)为无穷小量Aln∣x∣ Bsin1/x Ccotx De^(-1/x^2)7、为正项级数,设,则当时,级数(C)A发散 B收敛 C不定 D绝对收敛8、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)。
A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷9、已知向量,,,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,2510、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件11、下面哪个是二次曲面中椭圆柱面的表达式(D)A B C D12、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=113、向量、的夹角是,则向量、的数量积是(A)A BC D14、当x→0时,函数(x²-1)/(x-1)的极限 (D)A等于2 B等于0 C为∞ D不存在但不为∞15、平面上的一个方向向量,平面上的一个方向向量,若与垂直,则(C)A BC D16、设φ(x)=(1-x)/(1+x),ψ(x)=1-³√x则当x→0时(D)Aφ与ψ为等价无穷小 Bφ是比ψ为较高阶的无穷小Cφ是比ψ为较低阶的无穷小 Dφ与ψ是同价无穷小17、在面上求一个垂直于向量,且与等长的向量(D)A B C D18、当x→0时,1/(ax²+bx+c)~1/(x+1),则a,b,c一定为(B)Aa=b=c=1 Ba=0,b=1,c为任意常数 Ca=0,b,c为任意常数 Da,b,c为任意常数19、对于复合函数有,,则(B)A B C D20、y=1/(a^2+x^2)在区间[-a,a]上应用罗尔定理, 结论中的点ξ=(B).A0 B2 C3/2 D321、设是矩形:,则(A)A B C D22、对于函数的每一个驻点,令,,,若,,则函数(A)A有极大值 B有极小值 C没有极值 D不定23、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛24、交错级数,满足,且,则级数(B)A发散 B收敛 C不定 D绝对收敛25、若无穷级数收敛,而发散,则称称无穷级数(C)A发散B收敛 C条件收敛 D绝对收敛26、微分方程的通解是(B)A B C D27、改变常数项无穷级数中的有限项,级数的敛散性将会(B)A受到影响 B不受影响 C变为收敛 D变为发散28、设直线与平面平行,则等于(A)A2 B6 C8 D1029、曲线的方向角、与,则函数关于的方向导数(D)A BC D30、常数项级数收敛,则(B)A发散 B收敛 C条件收敛 D绝对收敛31、为正项级数,若存在正整数,当时,,而收敛,则(B)A发散 B收敛 C条件收敛 D绝对收敛32、下面哪个是二次曲面中椭圆抛物面的表达式(A)A B C D33、已知向量垂直于向量和,且满足于,求(B)A B C D34、平面上的一个方向向量,直线上的一个方向向量,若与垂直,则(B)A B C D35、下面哪个是二次曲面中双曲柱面的表达式(C)A B C D36、若为无穷级数的次部分和,且存在,则称(B)A发散 B收敛 C条件收敛 D绝对收敛37、已知向量两两相互垂直,且求(C)A1 B2 C4 D838、曲线y=e^x-e^(-x)的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)39、下面哪个是二次曲面中双曲抛物面的表达式(B)A B C D40、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D41、下面哪个是二次曲面中单叶双曲面的表达式(A)A BC D42、函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D343、曲线y=lnx在点(A)处的切线平行于直线y=2x-3A(1/2,-1n2) B(1/2,-ln1/2) C(2,ln2) D(2,-ln2)44、若f(x)在x=x0处可导,则∣f(x)∣在x=x0处(C)A可导 B不可导 C连续但未必可导 D不连续45、y=√x-1 在区间[1, 4]上应用拉格朗日定理, 结论中的点ξ=(C).A0 B2 C44078 D346、arcsinx+arccos=(D)A∏ B2∏ C∏/4 D∏/247、函数y=ln(1+x^2)在区间[-1,2]上的最大值为(D)A4 B0 C1 Dln548、函数y=x+√x在区间[0,4]上的最小值为(B)A4 B0 C1 D349、当x→1时,函数(x²-1)/(x-1)*e^[(1/x-1)]的极限 (D)A等于2 B等于0 C为∞ D不存在但不为∞50、函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D3二、判断题1、由及所确定的立体的体积(对)2、y=∣x∣在x=0处不可导(对)3、设,,,且,则(错)4、对于函数f(x),若f′(x0)=0,则x0是极值点(错)5、二元函数的极小值点是(对)6、若函数f(x)在x0处极限存在,则f(x)在x0处连续(错)7、设是由轴、轴及直线所围城的区域,则的面积为(错)8、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)9、若积分区域是,则(对)10、下列平面中过点(1,1,1)的平面是x=1(对)11、设,其中,,则(对)12、若函数f(x)在x0的左、右极限都存在但不相等,则x0为f(x)的第一类间断点(对)13、函数的定义域是(对)14、对于函数f(x),若f′(x0)=0,则x0是极值点(错)15、二元函数的两个驻点是,(对)16、y=ln(1-x)/(1+x)是奇函数(对)17、设表示域:,则(错)18、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)19、设是曲线与所围成,则(对)20、有限个无穷小的和仍然是无穷小(对)21、设,则(错)22、函数在一点的导数就是在一点的微分(错)23、函数在间断(对)24、罗尔中值定理中的条件是充分的,但非必要条件(对)25、设不全为0的实数使,则三个向量共面(对)26、函数z=xsiny在点(1,∏/4)处的两个偏导数分别为1,1(错)27、微分方程的一个特解应具有的形式是(对)28、设圆心在原点,半径为R,面密度为a=x²+y²的薄板的质量为RA(面积A=∏R²)(错)29、函数的定义域是整个平面(对)30、1/(2+x)的麦克劳林级数是2(错)31、微分方程的通解为(错)32、等比数列的极限一定存在(错)33、设区域,则在极坐标系下(对)34、函数极限是数列极限的特殊情况(错)35、,,则(对)36、sin10^0的近似值为017365(对)37、二元函数的极大值点是(对)38、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)39、将在直角坐标下的三次积分化为在球坐标下的三次积分,则(对)40、微分是函数增量与自变量增量的比值的极限(错)41、方程x=cos在(0,∏/2)内至少有一实根(错)42、微分方程y``+3y`+2y=0的特征根为1,2(错)43、f〞(x)=0对应的点不一定是曲线的拐点(对)44、求曲线x=t,y=t2,z=t3在点(1,1,1)处的法平面方程为(x-1)+2(y-1)+3(z-1)=0(对)45、1/x的极限为0(错)46、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)47、导数和微分没有任何联系,完全是两个不同的概念(错)48、有限个无穷小的和仍然是无穷小(对)49、求导数与求微分是一样的,所以两者可以相互转化(对)50、在空间直角坐标系中,方程x²+y²=2表示圆柱面(对)。
高等数学下册试题及答案解析.docx
![高等数学下册试题及答案解析.docx](https://img.taocdn.com/s3/m/6ff288bf03d8ce2f0166233c.png)
高等数学(下册)试卷(一)一、填空题(每小题 3 分,共计24 分)1、z =log a ( x2y 2 )( a 0) 的定义域为D=。
2、二重积分ln( x2y 2 )dxdy 的符号为。
|x| |y| 13 、由曲线y ln x 及直线x y e 1 , y 1 所围图形的面积用二重积分表示为,其值为。
4L 的参数方程表示为x(t)(x),则弧长元素ds。
、设曲线y(t)5 、设曲面∑为x2y 29 介于z0 及 z 3 间的部分的外侧,则(x2y21)ds。
6、微分方程dyy tany的通解为。
dx x x7、方程y( 4) 4 y0 的通解为。
8、级数1的和为。
n1n(n1)二、选择题(每小题 2 分,共计16 分)1、二元函数z f ( x, y) 在 ( x0 , y0 ) 处可微的充分条件是()(A)f ( x, y)在(x0, y0)处连续;(B)f x( x, y),f y( x, y)在( x0, y0)的某邻域内存在;( C)z f x (x0 , y0 )x f y ( x0 , y0 ) y 当( x) 2(y) 20 时,是无穷小;( D)lim z f x ( x0 , y0 ) x f y ( x0 , y0 ) y0。
22x0(x)( y) y02、设u yf ( x)xf (y), 其中 f 具有二阶连续导数,则x2u y 2 u等于()y x x 2y 2(A)x y ;( B)x;(C) y;(D)0。
3、设: x 2y 2z21, z0, 则三重积分I zdV 等于()( A ) 4 2d2 d1 3sin cos dr ;r 02 dd 1 dr ;( B )r 2 sin0 022 d13sin cos dr ;( C )dr0 02d 13sin cos dr 。
( D )dr0 04、球面 x 2 y 2z 2 4a 2 与柱面 x 2 y 22ax 所围成的立体体积 V=()(A ) 4 2d2 a cos 4a2r 2dr ;(B ) 4 2d2 a cos r 4a2r 2dr ;(C ) 8 2d2 a cos r 4a2r 2dr ;(D )2d2a cos r 4a2r 2dr 。
高数下册复习题及答案
![高数下册复习题及答案](https://img.taocdn.com/s3/m/40902eef1b37f111f18583d049649b6649d70903.png)
高数下册复习题及答案一、选择题1. 函数f(x)=\( e^x - 1 \)在x=0处的导数是:A. 0B. 1C. -1D. \( e \)2. 曲线y=\( x^2 \)在点(1,1)处的切线斜率是:A. 2B. 1C. -1D. 03. 函数f(x)=\( \sin x \)的二阶导数是:A. \( \cos x \)B. \( -\sin x \)C. \( -\cos x \)D. \( \sin x \)二、填空题1. 函数f(x)=\( x^3 - 2x^2 + 3x \)的一阶导数是_________。
2. 若f(x)=\( \ln x \),求f'(1)的值为_________。
3. 曲线y=\( x^3 \)在点(2,8)处的法向量是_________。
三、计算题1. 求函数f(x)=\( x^3 - 6x^2 + 11x - 6 \)的极值点。
2. 求曲线y=\( x^2 + 2x - 3 \)在x=1处的切线方程。
3. 证明函数f(x)=\( x^3 \)在R上是严格递增的。
四、解答题1. 已知函数f(x)=\( 3x^2 - 5x + 2 \),求其在区间[1,3]上的最大值和最小值。
2. 解微分方程:\( (x^2 + 1)y'' - 2xy' + 2y = 0 \)。
3. 讨论函数f(x)=\( \ln(1 + x) \)的连续性和可导性。
五、证明题1. 证明罗尔定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则至少存在一点c∈(a,b),使得f'(c)=0。
2. 证明拉格朗日中值定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则至少存在一点c∈(a,b),使得\( f'(c) =\frac{f(b) - f(a)}{b - a} \)。
六、应用题1. 某工厂生产一种产品,其成本函数为C(x)=\( 0.5x^2 - 100x + 500 \),求该工厂生产x件产品时的最低成本。
(完整word版)高等数学下册试题(题库)及参考答案
![(完整word版)高等数学下册试题(题库)及参考答案](https://img.taocdn.com/s3/m/c6bcf830fd0a79563d1e720f.png)
高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( A ) A )5 B ) 3 C ) 6 D )9解 ={1-1,2-0,1-2}={0,2,-1},|AB |=5)1(20222=-++. 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4πC )3π D )π 解 由公式(6-21)有21112)1(211)1(1221cos 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x .解 由于平面平行于z 轴,因此可设这平面的方程为 0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。
高等数学下考试题库(附答案)
![高等数学下考试题库(附答案)](https://img.taocdn.com/s3/m/d74dc1f07d1cfad6195f312b3169a4517723e5fd.png)
《高等数学》试卷1〔下〕一.选择题〔3分⨯10〕1.点1M ()1,3,2到点()4,7,22M 的距离=21M M 〔 〕.A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有〔 〕.A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是〔 〕.A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是〔 〕.A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是〔 〕. A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =〔 〕.A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则〔 〕. A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为〔 〕.A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是〔 〕.A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为〔 〕.A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题〔4分⨯5〕1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题〔5分⨯6〕1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积〔R 为半径〕.四.应用题〔10分⨯2〕1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? .试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xex C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2〔下〕一.选择题〔3分⨯10〕1.点()1,3,41M ,()2,1,72M 的距离=21M M 〔 〕. A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为〔 〕. A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为〔 〕.A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y x C.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为〔 〕. A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为〔 〕. A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz 〔 〕.A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则〔 〕.A.1≤rB.1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为〔 〕.A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是〔 〕. A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题〔4分⨯5〕1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.三.计算题〔5分⨯6〕1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+〔0>a 〕所围的几何体的体积. 四.应用题〔10分⨯2〕 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x xe C eC y --+=221.四.应用题 1.316. 2. 00221x t v gt x ++-=. 《高等数学》试卷3〔下〕一、选择题〔本题共10小题,每题3分,共30分〕 2、设a=i+2j-k,b=2j+3k,则a 与b 的向量积为〔 〕 A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P 〔-1、-2、1〕到平面x+2y-2z-5=0的距离为〔 〕 A 、2 B 、3 C 、4 D 、5 4、函数z=xsiny 在点〔1,4π〕处的两个偏导数分别为〔 〕 A 、,22,22 B 、,2222- C 、22-22- D 、22-,225、设x 2+y 2+z 2=2Rx,则yzx z ∂∂∂∂,分别为〔 〕 A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R,面密度为22y x +=μ的薄板的质量为〔 〕〔面积A=2R π〕A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为〔 〕A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为〔 〕A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n二、填空题〔本题共5小题,每题4分,共20分〕 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________. 直线L 3:之间的夹角为与平面062321221=-+=-+=-z y x zy x ____________. 2、〔0.98〕2.03的近似值为________,sin100的近似值为___________. 3、二重积分⎰⎰≤+Dy x D d 的值为1:,22σ___________. 4、幂级数的收敛半径为∑∞=0!n nx n __________,∑∞=0!n nn x 的收敛半径为__________. 三、计算题〔本题共6小题,每小题5分,共30分〕2、求曲线x=t,y=t 2,z=t 3在点〔1,1,1〕处的切线与法平面方程.3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n?,?n 收敛则是条件收敛还是绝对若收敛收敛吗 5、将函数f<x>=e 3x 展成麦克劳林级数四、应用题〔本题共2小题,每题10分,共20分〕 1、求表面积为a 2而体积最大的长方体体积.参考答案一、选择题1、D2、C3、C4、A5、B6、D7、C8、A9、B 10,A 二、填空题 1、218arcsin,182cosar 2、0.96,0.17365 3、л 4、0,+∞ 5、ycx cey x 11,22-== 三、计算题2、解:因为x=t,y=t 2,z=t 3, 所以x t =1,y t =2t,z t =3t 2, 所以x t |t=1=1, y t |t=1=2, z t |t=1=3 故切线方程为:312111-=-=-z y x 法平面方程为:〔x-1〕+2<y-1>+3<z-1>=0 即x+2y+3z=63、解:因为D 由直线y=1,x=2,y=x 围成, 所以 D :1≤y ≤2y ≤x ≤2 故:⎰⎰⎰⎰⎰=-==212132811)22(][dy y y dy xydx xyd yDσ4、解:这是交错级数,因为。
高等数学下册复习题答案
![高等数学下册复习题答案](https://img.taocdn.com/s3/m/22d74fc40c22590102029dda.png)
当( x , y ) (0,0)时, P , Q ,
P Q , 均为连续函数 , 所以原点在 L外时, 积分为零 y x
P Q 的充分必要条件为 , 我们得到a 1 y x
当a 1时 , 原点在L内时, 作一原点为中心 , 半径为r的圆周c , 使c 包含在L内, 在介于L , c之间的区域用格林公式
D D
z Σ1 Σ Σ2 x y
3dV 5 3 4 5 8
十二、周期为 2的函数f ( x )在一个周期的表达式 x 1, x 0 f ( x) 2 x , 0 x 3 它的和函数为s( x ), 求s( ), s(0), s( ) 2
2x 1 1 2 ( 1 )n ( 1 n1 )( x 2 )n , 1 x 3 x x 2 n 0 4
八、设n是曲面2 x 2 3 y 2 z 2 6在点P (1,1,1)处指向外侧的法向量, 求函数 u 1 6 x 2 8 y 2 在点P处的梯度及沿方向 n 的方向导数 z
f ( ) f ( ) 1 2 解:s( ) , 2 2 f (0 ) f (0 ) 0 1 0 2 1 s( 0) , 2 2 2 3 s( ) s( 2 ) s( ) f ( ) 1 2 2 2 2 2
给(1)(2)(3)分别乘
x, y, z
,比较可得
x2 y2 z2 2 2 2 a b c
代入(4)得所求点为 x
a b c ,y ,z . 3 3 3
十. 已知L是平面上不通过原点的任意一条简单闭曲线,取正向,问 a 为何值时, 积分 xdx aydy L x 2 y 2 0 为什么? x ay P 2 xy Q 2axy P ( x, y) 2 Q ( x , y ) , x y2 x 2 y 2 y ( x 2 y 2 ) 2 x ( x 2 y 2 ) 2
高数下册复习题答案
![高数下册复习题答案](https://img.taocdn.com/s3/m/c346f94ac4da50e2524de518964bcf84b9d52d34.png)
高数下册复习题答案一、选择题1. 函数 \(f(x) = \ln(x^2 - 1)\) 的定义域为:A. \( (-∞, -1) \cup (1, +∞) \)B. \( (-∞, -1] \cup [1, +∞) \)C. \( (-1, 1) \)D. \( (-∞, 1) \cup (1, +∞) \)答案:A2. 若 \(\lim_{x \to 0} \frac{f(x)}{x} = 2\),则 \(f(0)\) 等于:A. 0B. 1C. 2D. 无法确定答案:D3. 以下哪个级数是收敛的:A. \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)B. \(\sum_{n=1}^{\infty} \frac{1}{n}\)C. \(\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}\)D. \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)答案:D二、填空题1. 函数 \(f(x) = x^3 - 3x\) 的导数是 \(f'(x) = ______\)。
答案:\(3x^2 - 3\)2. 若 \(\int_{a}^{b} f(x) dx = 10\),且 \(f(x) = 2x + 1\),那么 \(a + b = ______\)。
答案:\(-5\)3. 函数 \(y = \ln(x)\) 的反函数是 \(x = ______\)。
答案:\(e^y\)三、解答题1. 求函数 \(f(x) = x^3 - 6x^2 + 9x + 2\) 在 \(x = 2\) 处的切线方程。
解答:首先求导数 \(f'(x) = 3x^2 - 12x + 9\),然后计算\(f'(2) = 3\)。
切点坐标为 \((2, f(2)) = (2, -2)\)。
切线方程为\(y + 2 = 3(x - 2)\),即 \(y = 3x - 8\)。
高等数学2(下册)试题答案以及复习要点(完整版)
![高等数学2(下册)试题答案以及复习要点(完整版)](https://img.taocdn.com/s3/m/dc08c70bbed5b9f3f90f1c18.png)
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ] (A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得 242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ] (A) –2和2; (B) –3和3; (C)2和–2; (D) 3和–3;解:选C 。
x y axy yPxy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(rrdr r r d A πθ;()()⎰⎰+-22220412rdr r r d B πθ; ()()⎰⎰-22202rdr r d C πθ;()()⎰⎰+-22220412rdr r r d D πθ。
解:选D 。
()⎰⎰+-=22220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ] (A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
大学高等数学下考试题库(附答案)
![大学高等数学下考试题库(附答案)](https://img.taocdn.com/s3/m/ecb96334bb68a98271fefa81.png)
一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2.则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =.则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n pn收敛.则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nn x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ).A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB .其中点()1,1,2-B .则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z .则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =.而y x v xy u +==,.求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定.求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin .其中22224:ππ≤+≤y x D . 4.如图.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xey y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱.问长、宽、高各取怎样的尺寸时.才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍.且曲线过点⎪⎭⎫ ⎝⎛31,1.求此曲线方程试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin .()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时.用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M .()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x .则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y x C.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.21 6.设223y xy x z ++=.则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的.则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行.则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x+的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=.求.b a ⨯2.设22uv v u z -=.而y x v y x u sin ,cos ==.求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定.求.,yz x z ∂∂∂∂ 4.如图.求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 四.应用题 1.316.《高等数学》试卷3(下)一、选择题(本题共10小题.每题3分.共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k.则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1.4π)处的两个偏导数分别为( )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx.则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点.半径为R.面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2.-1 B 、2.1 C 、-2.1 D 、1.-2 二、填空题(本题共5小题.每题4分.共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高等数学下考试题库及答案
![高等数学下考试题库及答案](https://img.taocdn.com/s3/m/93d4848f988fcc22bcd126fff705cc1754275f0a.png)
高等数学下考试题库及答案一、单项选择题(每题4分,共20分)1. 函数f(x)=x^2+3x-4的零点个数是()。
A. 0B. 1C. 2D. 3答案:C2. 曲线y=e^x与y=ln x的交点个数是()。
A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-3x+1的单调递增区间是()。
A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-∞, 1)∪(1, +∞)答案:C4. 函数f(x)=x^2-4x+3的极小值是()。
A. 0B. 1C. 2D. 3答案:B5. 曲线y=x^3-3x^2+2x+1的拐点个数是()。
A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的零点是_________。
答案:1和37. 函数f(x)=e^x-x-1的零点是_________。
答案:18. 函数f(x)=x^3-3x+1的极小值点是_________。
答案:19. 函数f(x)=x^2-4x+3的极大值是_________。
答案:010. 曲线y=x^3-3x^2+2x+1的拐点坐标为_________。
答案:(0,1)和(2,5)三、计算题(每题10分,共30分)11. 计算定积分∫₀¹(x^2+2x)dx。
解:∫₀¹(x^2+2x)dx = (1/3x^3+x^2)|₀¹ = 1/3+1 = 4/3。
12. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2=1所围成的圆盘。
解:∬D(x^2+y^2)dσ = ∬(0,2π)∫(0,1)(r^2)rdrdθ = (1/3)π。
13. 计算曲线积分∮C(xy)dx+(yz)dy+(zx)dz,其中C为单位圆x^2+y^2=1在xy平面上的投影。
解:∮C(xy)dx+(yz)dy+(zx)dz = ∮(0,2π)(-1/2)sin^2θdθ = π/2。
高数下册复习题目参考答案
![高数下册复习题目参考答案](https://img.taocdn.com/s3/m/4252aedca8956bec0875e34f.png)
高等数学(下)复习试题一、填空题 (请将答案填入题中横线上空白处,不填写解题过程。
)1. 函数y x y x xyz ++--=)1ln(22的定义域为__________. 2. 平面λ=-+z y x 32是曲面2232y x z +=在点)45,21,21(处的切平面,则λ=。
3.函数23u xy z xyz =+-在点0(0,1,2)P -沿方向(1l 的方向导数0|P u ∂=∂l . 4.设∑是球面z z y x 2222=++,γβαcos ,cos ,cos 是∑上的外法线向量的方向余弦,则积分⎰⎰∑++dS z y x )cos cos cos (γβα=。
5.设10,1:≤≤≤y x D 。
则⎰⎰+Dyd y y x σ)cos (5=。
6.积分dy y x f dx x x ⎰⎰-21),(在极坐标系下的累次积分为。
7.若级数∑∞=-13)5(n nu收敛,则n n u ∞→lim =。
8.幂级数∑∞=++--11212)2()1(n n nn x 的收敛域为。
9. 幂级数221)1(2-∞=-∑n nn x n 的收敛域为。
10.曲线2,3,4234t z t y t x ===在点)21,31,41(处的切线方程为。
11.设21arctan yx z +=,则11==y x dz=。
12.若曲线积分⎰-++-Ldy y y x dx xy x )56()4(4214λλ在xoy 平面内与路径无关,则λ=。
13. 曲线积分⎰+Lxdy ydx y x F ))(,(与路径无关,则可微函数),(y x F 满足的条件是 。
14. 设L 为平面上的椭圆12222=+by a x ,边界为正向,则曲线积分⎰+L ydy xdx cos 3=。
15. 设),(z y xy f u +=,),(t s f 可微,则du =。
16.设∑:2222a z y x =++,则曲面积分⎰⎰∑++dS z y x 2222)(=。
高数下 期末考试复习题(附答案)
![高数下 期末考试复习题(附答案)](https://img.taocdn.com/s3/m/79f7d02ebcd126fff7050b81.png)
一。
微分方程 1. 一阶微分方程 (1).微分方程12'x y e -=的通解是 ( C )A .2x y eC -=+ B .2x y e C =+C .22x y e C -=-+ D .2x y Ce -=(2).求微分方程ln ln 0y xdx x ydy -=的通解。
解: 22ln ln y x C -=(3) 求微分方程()3sin 1cos 0x x e ydx e ydy +-=的通解解:cos 3sin 1x x y e dy dx y e =-,cos 3sin 1xx y e dy dx y e =-⎰⎰ ()ln sin 3ln 1ln x y e c =-+,()3sin 1x y c e ⎡⎤=-⎣⎦(4) 计算满足下述方程的可导函数()y y x =,()()0cos 2sin 1xy x x y t tdt x +=+⎰解:原方程两端求导得cos sin 2sin cos sin 1y x y x y x y x y x ''-+=+= 即sin 1cos cos x y y x x'+=,这是标准的一阶线性微分方程 ()sin sin ln cos ln cos cos cos 11tan cos cos cos x xdx dx x x x x y e e c e e c x c x x x --⎡⎤⎡⎤⎰⎰=+=+=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ 原方程令0x =得1y =,代入通解得1c =,从而sin cos y x x =+()sin 5.dy y x dx x x+=. 求微分方程的通解 cos .C xy x-=解:通解为:(6) 求微分方程212y x y '=-的通解解:原方程化为22dxx y dy-=-,这是关于未知函数为x 的一阶线性微分方程,通解为:22111224y y Ce y y -=+++ (7)、 求微分方程()20x y x e dx xdy -+-=的通解. 解:原式可以化为一阶线性微分方程1x y y xe x-'-= 由公式()111ln ln dx dx x x x x x x x x y e xe e dx c e xe e dx c x e dx c x c e -------⎡⎤⎡⎤⎰⎰⎡⎤=+=+=+=-⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ (8) 设x y e =是微分方程()xy p x y x '+=的一个解,求此微分方程的通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解答下列各题(本大题共3小题,总计15分) 1、( 本 大 题5分 )
设L 由y =x 2及y =1所围成的区域D 的正向边界, 求 ⎰+++L
dy y x x dx y x xy )()(24233
2、(本小题5分)
设f (x ,y )是连续函数,交换二次积分⎰⎰2
3),(1
0x x dy y x f dx 的积分次序。
3、(本小题5分)
设()f x 是以2π为周期的函数,当x ∈-⎛⎝ ⎤
⎦
⎥ππ232,时,()f x x =。
又设()S x 是()f x 的
以2π为周期的Fourier 级数之和函数。
试写出()S x 在
[]-ππ,内的表达式。
二、解答下列各题(本大题共7小题,总计42分) 1、(本小题6分)
设z=z(x,y)由方程x 2+y 2+z 2=ln(y z
)确定,求z z x y ,。
2、(本小题6分)
设z y xy x =++232
(),求z z x y ,。
3、(本小题6分)
设f x y (,)有连续偏导数,
u f e e x y
=(,),求d u 。
利用极坐标计算二次积分
5、(本小题6分) 求微分方程''-'+=y y y x e
x
22的一个特解。
6、(本小题6分)
求幂级数n
n x n )32(11
-∑∞
=的收敛域。
7、(本小题6分)
求微分方程0)42()2(32=-+++dy y x
y x dx y y 的通解。
三、解答下列各题 (本大题共2小题,总计13分) 1、(本小题7分) 求曲面x xy xyz ++=9在点(,,)123处的切平面和法
线方程 。
2、(本小题6分)
试求由x 2+y 2+z 2≤4与x 2+y 2≤3z 所确定的立体的体积。
四、解答下列各题 (本大题共2小题,总计13分)
求函数2
2333322y x y x z --+=的极值。
2、(本小题6分)
判别级数n n
n n cos 2
1
32π=∞∑的敛散性。
五、证明题 1、(本大题5分)
设空间闭区域Ω由曲面z =a 2-x 2-y 2平面z =0所围成,∑为Ω的表面外侧,V 是Ω 的
体
积
,
a
为
正
数。
试
证
明:
2、 ( 本 大 题5分 )
设p 是自然数,求证:
()()11
ln 21ln 2ln ln 122
p p p +=+++
21
211121881n n n p p -∞
=⎛⎫+ ⎪-++⎝⎭
∑
六、解答下列各题( 本 大 题7分 )
设Ω是由1≤x 2+y 2≤4,y ≥0,z ≤0以及2
2y x z +-≥所确
定的闭区域, 试计算⎰⎰⎰Ω
ydv
一、解答下列各题(本大题共3小题,总计15分) 1、解 0 2、(本小题5分) 原式=
f (x ,y )d x . 10
3、(本小题5分) 对()f x x x =-
<≤
,π
π
232
作周期为2π的延拓,()f x 在[]-ππ,内的表达式为
()f x x x x x x x =+-≤≤---<≤<≤⎧
⎨⎪⎪⎪
⎩
⎪
⎪⎪22200πππππ,,,,,,
(3分)
()f x 满足Fourier 级数收敛的充分条件。
(5分) 故
()S x x x x x x x x =+-≤<-=---
<≤<≤⎧
⎨
⎪⎪⎪⎩
⎪
⎪⎪22
2
2
00πππ
ππ
π
π,,
,,
,,
,,
(10分)
二、解答下列各题(本大题共7小题,总计42分) 1、(本小题6分)
解:y z y x z y x F ln ln z ),,(222+-++= 2分
z
z F y y F x F z y x 12,12,2-='+
='=' 6分
2
2222,212yz y z
z y y z z xz x z -+=∂∂-=∂∂ (10分)
2、(本小题6分)
z xy x x =+2222ln (5分)
z y x y y =+3222 (10分)
3、(本小题6分)
d d d u f
e x
f e y x y =+12
(10分)
4、(本小题6分)
5、(本小题6分)
特征方程r r 2
210-+=的根为
r r 121==
设特解为
y x Ax Bx C e p x =++22() (5分)
代入方程得
y x e p x
=112
4
(10分)
6、 (本小题6分)
由于31)1(33lim lim 11=+=+∞→+∞→n n a a n n n n
n n , 所以收敛半径3=R , 5分 且当1-=x 时,级数收敛, 8分
5=x ,级数发散, …….9分
故收敛域是[)5,1-。
10分 7、(本小题6分)
()d ()d ()()y y x x y x
y y y y y x x y x y y
+++-=+=+-=-2240
2241423233∂∂∂∂ 故为全微分方程 (4分)
令
u x y y y x x y x
y
y x y (,)()d ()d (,)
(,)
=
+++-⎰
2242013
=++
-xy y x
y
2221 (8
分) 故通解为 xy y x
y
C ++=2
22
(10
分)
三、解答下列各题(本大题共2小题,总计13分) 1、(本小题7分) 对应的切平面法向量
{}
n =942,, 5分
切平面方程
9142230()()()x y z -+-+-=
或94223x y z ++= 8分 法线方程
x y z -=-=-19243
2
10分
2、(本小题6分)
四、解答下列各题
1、(7分)解:由⎪⎩⎪⎨⎧=-==-=0660
6622
y y z x x z y
x ,得驻点
)1,1(),0,1(),1,0(),0,0( 3分
2
xy
yy xx z z z D -=)12)(12(36--=y x 0
6)1,1(,
036)1,1(036)1,0(,036)0,1(,06,036)0,0(>=>=<-=<-=<-=>=xx xx z D D D z D
7分
点)0,1(),1,0(非极值点;函数z 在点(,)00处取极大值z (,)000=;
在点)1,1(处取极小值2)1,1(-=z 。
10分
2、(6分)
由于n n
n
n n
cos 2
322π
≤
(2分)
而级数n
n n 21
=∞
∑满足
lim lim n n n
n n n
u u n n →∞+→∞+=+=111
2212
(6分)
因此n n n 21=∞
∑收敛,所以级数n n n n cos 2
1
3
2π=∞∑收敛。
(10分)
五、解答下列各题 1、(本小题5分) 由高斯公式
2、( 本 大 题5分 )
()()1ln 21
ln 212ln 12ln +---+p p p
()()
1412ln 212
++=p p p ……2分 ⎪⎪⎭
⎫ ⎝⎛++=p p 441
1ln 212 ……4分
1
88111881
1ln
2122++-
+++
=p p p p
……6分
利用x x
-+11ln 在
0=x 点的幂级数展开式即得 ()()1ln 2
1
ln 212ln 12ln +++=+p p p
1
2211881
121-∞
=⎪
⎪⎭
⎫ ⎝⎛++-+∑
n n p p n ……10分
六、解答下列各题( 本 大 题7分 )
解:215
sin sin 2
1
3
00210===⎰⎰⎰⎰⎰-dr r d dz r rdr d I r ππθθθθ。