直角三角形斜边上的中线等于斜边的一半专题训练

合集下载

直角三角形斜边中线练习(尖)

直角三角形斜边中线练习(尖)

直角三角形斜边中线练习【尖】一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是()A.点E B.点F C.点G D.点H3.如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B.2√5 C.8 D.2√74.如图,在△ABC中,∠ACB=90°,D在BC上,E是AB的中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于()A.30°B.40°C.50°D.60°5.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF 的中点,那么CH的长是()A.2.5 B.√5C.32√2D.26.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km7.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.58.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.15二.填空题(共2小题)9.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于度.10.如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是;若将△ABP的PA边长改为2√2,另两边长度不变,则点P到原点的最大距离变为.三.解答题(共11小题)11.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.12.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.13.如图,在△ABC 中,点D 在AB 上,且CD=CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF=12AC . (2)若∠BAC=45°,求线段AM 、DM 、BC 之间的数量关系.14.如图,△ABC 中,AB=AC ,点D 是BC 上一点,DE ⊥AB 于E ,FD⊥BC 于D ,G 是FC 的中点,连接GD .求证:GD ⊥DE .15.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G 为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.16.如图,△ABC中,BD、CE是△ABC的两条高,点F、M分别是DE、BC的中点.求证:FM⊥DE.17.如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点.求证:MN⊥BD.18.如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.19.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE ⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.20.如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.21.已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD与∠BCD所满足的数量关系.直角三角形斜边中线练习参考答案与试题解析一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【解答】解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是()A.点E B.点F C.点G D.点H【分析】根据“对应点到旋转中心的距离相等”,知旋转中心,即为对应点所连线段的垂直平分线的交点.【解答】解:根据旋转的性质,知:旋转中心,一定在对应点所连线段的垂直平分线上.则其旋转中心是NN1和PP1的垂直平分线的交点,即点G.故选:C.【点评】本题考查旋转的性质,要结合三角形的性质和网格特征解答.3.如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B.2√5 C.8 D.2√7【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2DE,再利用勾股定理列式计算即可得解.【解答】解:∵BE⊥AC,D为AB中点,∴AB=2DE=2×4=8,在Rt△ABE中,BE=√AB2−AE2=√82−62=2√7,故选:D.【点评】本题考查了勾股定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质与定理是解题的关键.4.如图,在△ABC中,∠ACB=90°,D在BC上,E是AB的中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于()A.30°B.40°C.50°D.60°【分析】根据直角三角形斜边上中线性质得出BE=CE,根据等腰三角形性质得出∠ECB=∠B=20°,∠DAB=∠B=20°,根据三角形外角性质求出∠ADC=∠B+∠DAB=40°,根据∠三角形外角性质得出DFE=∠ADC+∠ECB,代入求出即可.【解答】解:∵在△ABC中,∠ACB=90°,E是AB的中点,∴BE=CE,∵∠B=20°∴∠ECB=∠B=20°,∵AD=BD,∠B=20°,∴∠DAB=∠B=20°,∴∠ADC=∠B+∠DAB=20°+20°=40°,∴∠DFE=∠ADC+∠ECB=40°+20°=60°,故选:D.【点评】本题考查了等腰三角形的性质,三角形外角性质,直角三角形斜边上中线性质的应用,能求出∠ADC和∠ECB的度数是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.5.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF 的中点,那么CH的长是()A.2.5 B.√5C.32√2D.2【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=√2,CF=3√2,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=√AC2+CF2=√√22+(3√2)2=2√5,∵H是AF的中点,∴CH=12AF=12×2√5=√5.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.【解答】解:∵在Rt △ABC 中,∠ACB=90°,M 为AB 的中点,∴MC=12AB=AM=1.2km . 故选:D .【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.7.直角三角形中,两直角边分别是12和5,则斜边上的中线长是( )A .34B .26C .8.5D .6.5【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边=√122+52=13,所以,斜边上的中线长=12×13=6.5. 故选:D .【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.8.如图,在△ABC 中,CD ⊥AB 于点D ,BE ⊥AC 于点E ,F 为BC 的中点,DE=5,BC=8,则△DEF 的周长是( )A .21B .18C .13D .15【分析】根据直角三角形斜边上的中线等于斜边的一半求出DF 、EF ,再根据三角形的周长的定义解答.【解答】解:∵CD ⊥AB ,F 为BC 的中点,∴DF=12BC=12×8=4, ∵BE ⊥AC ,F 为BC 的中点,∴EF=12BC=12×8=4,∴△DEF的周长=DE+EF+DF=5+4+4=13.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,是基础题,熟记性质并准确识图是解题的关键.二.填空题(共2小题)9.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于30度.【分析】根据直角三角形斜边上的中线等于斜边的一半可得到EC=AE,从而得到∠A=∠ACE,再由折叠的性质及三角形的外角性质得到∠B=2∠A,从而不难求得∠A的度数.【解答】解:∵在Rt△ABC中,CE是斜边AB的中线,∴AE=CE,∴∠A=∠ACE,∵△CED是由△CBD折叠而成,∴∠B=∠CED,∵∠CEB=∠A+∠ACE=2∠A,∴∠B=2∠A,∵∠A+∠B=90°,∴∠A=30°.故答案为:30.【点评】此题主要考查:(1)在直角三角形中,斜边上的中线等于斜边的一半;(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.10.如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是1+√3;若将△ABP的PA边长改为2√2,另两边长度不变,则点P到原点的最大距离变为1+√5.【分析】根据当O到AB的距离最大时,OP的值最大,得到O到AB的最大值是12AB=1,此时在斜边的中点M上,由勾股定理求出PM,即可求出答案;将△ABP 的PA边长改为2√2,另两边长度不变,根据22+22=(2√2)2,得到∠PBA=90°,由勾股定理求出PM即可【解答】解:取AB的中点M,连OM,PM,在Rt△ABO中,OM=AB2=1,在等边三角形ABP中,PM=√3,无论△ABP如何运动,OM和PM的大小不变,当OM,PM在一直线上时,P距O最远,∵O到AB的最大值是12AB=1,此时在斜边的中点M上,由勾股定理得:PM=√22−12=√3,∴OP=1+√3,将△AOP的PA边长改为2√2,另两边长度不变,∵22+22=(2√2)2,∴∠PBA=90°,由勾股定理得:PM=√12+22=√5,∴此时OP=OM+PM=1+√5.故答案为:1+√3,1+√5.【点评】本题主要考查对直角三角形斜边上的中线性质,坐标与图形性质,三角形的三边关系,勾股定理的逆定理等边三角形的性质等知识点的理解和掌握,能根据理解题意求出PO的值是解此题的关键.三.解答题(共11小题)11.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.【分析】(1)分别得到点A、B、C关于x轴的对称点,连接点A1,B1,C1,即可解答;(2)①根据点A,B,C的坐标分别求出AC,BC,AC的长度,根据勾股定理逆定理得到∠CAB=90°,即可得到旋转角;②根据旋转的性质可知AB=AB2=3,所以CB2=AC+AB2=5,所以B2的坐标为(6,2).【解答】解:(1)A(3,2)、B(3,5)、C(1,2)关于x轴的对称点分别为A1(3,﹣2),B1(3,﹣5),C1(1,﹣2),如图所示,(2)①∵A(3,2)、B(3,5)、C(1,2),∴AB=3,AC=2,BC=√(3−1)2+(5−2)2=√13,∵AB2+AC2=13,BC2=(√13)2=13,∴AB2+AC2=BC2,∴∠CAB=90°,∵AC与AC2的夹角为∠CAC2,∴旋转角为90°;②∵AB=AB2=3,∴CB2=AC+AB2=5,∴B2的坐标为(6,2).【点评】本题考查轴对称及旋转的性质,属于基础题,解答本题的关键是掌握两种几何变换的特点,根据题意找到各点的对应点.12.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.【分析】(1)由已知△PAC 绕点A 逆时针旋转后,得到△P′AB ,可得△PAC ≌△P′AB ,PA=P′A ,旋转角∠P′AP=∠BAC=60°,所以△APP′为等边三角形,即可求得PP′;(2)由△APP′为等边三角形,得∠APP′=60°,在△PP′B 中,已知三边,用勾股定理逆定理证出直角三角形,得出∠P′PB=90°,可求∠APB 的度数.【解答】解:(1)连接PP′,由题意可知BP′=PC=10,AP′=AP ,∠PAC=∠P′AB ,而∠PAC +∠BAP=60°,所以∠PAP′=60度.故△APP′为等边三角形,所以PP′=AP=AP′=6;(2)利用勾股定理的逆定理可知:PP′2+BP 2=BP′2,所以△BPP′为直角三角形,且∠BPP′=90°可求∠APB=90°+60°=150°.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.13.如图,在△ABC 中,点D 在AB 上,且CD=CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF=12AC . (2)若∠BAC=45°,求线段AM 、DM 、BC 之间的数量关系.【分析】(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=12 AC;(2)判断出△AEC是等腰直角三角形,根据等腰直角三角形的性质可得EF垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AM=CM,然后求出CD=AM+DM,再等量代换即可得解.【解答】(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=12 AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+DM,CD=CB,∴BC=AM+DM.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质等腰直角三角形的判定与性质,难点在于(2)判断出EF垂直平分AC.14.如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.【分析】由∠1+∠EDF=90°可知,只要证明∠1=∠3,∠2=∠3,推出∠1=∠2即可解决问题.【解答】证明:∵AB=AC,∴∠B=∠C,∵DE⊥AB,FD⊥BC,∴∠BED=∠FDC=90°,∴∠1+∠B=90°,∠3+∠C=90°,∴∠1=∠3,∵G是直角三角形FDC的斜边中点,∴GD=GF,∴∠2=∠3,∴∠1=∠2,∵∠FDC=∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE=90°,∴GD⊥DE.【点评】本题考查等腰三角形的性质、直角三角形斜边中线性质、等角的余角相等等知识,解题的关键是灵活应用这些知识解决问题,属于基础题,中考常考题型.15.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE ;(2)若∠AEC=66°,求∠BCE 的度数.【分析】(1)由G 是CE 的中点,DG ⊥CE 得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE=DC ,由DE 是Rt △ADB 的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到DE=BE=12AB ,即可得到DC=BE ; (2)由DE=DC 得到∠DEC=∠BCE ,由DE=BE 得到∠B=∠EDB ,根据三角形外角性质得到∠EDB=∠DEC +∠BCE=2∠BCE ,则∠B=2∠BCE ,由此根据外角的性质来求∠BCE 的度数.【解答】解:(1)如图,∵G 是CE 的中点,DG ⊥CE ,∴DG 是CE 的垂直平分线,∴DE=DC ,∵AD 是高,CE 是中线,∴DE 是Rt △ADB 的斜边AB 上的中线,∴DE=BE=12AB , ∴DC=BE ;(2)∵DE=DC ,∴∠DEC=∠BCE ,∴∠EDB=∠DEC +∠BCE=2∠BCE ,∵DE=BE ,∴∠B=∠EDB ,∴∠B=2∠BCE ,∴∠AEC=3∠BCE=66°,则∠BCE=22°.【点评】本题考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.也考查了直角三角形斜边上的中线性质.16.如图,△ABC 中,BD 、CE 是△ABC 的两条高,点F 、M 分别是DE 、BC 的中点.求证:FM ⊥DE .【分析】连接MD 、ME ,根据直角三角形斜边上的中线等于斜边的一半可得MD=12BC=ME ,再根据等腰三角形三线合一的性质即可证得结论. 【解答】证明:连接MD 、ME .∵BD 是△ABC 的高,M 为BC 的中点,∴在Rt △CBD 中,MD=12BC ,(直角三角形斜边上那的中线等于斜边的一半) 同理可得ME=12BC , ∴MD=ME ,∵F 是DE 的中点,(等腰三角形三线合一)∴FM ⊥DE .【点评】此题主要考查等腰三角形的性质及直角三角形斜边上的中线的性质的综合运用.17.如图,∠ABC=∠ADC=90°,M 、N 分别是AC 、BD 的中点.求证:MN ⊥BD .【分析】连接BM 、DM ,根据直角三角形斜边上的中线等于斜边的一半可得BM=DM=12AC ,再根据等腰三角形三线合一的性质证明即可. 【解答】证明:如图,连接BM 、DM ,∵∠ABC=∠ADC=90°,M 是AC 的中点,∴BM=DM=12AC , ∵点N 是BD 的中点,∴MN ⊥BD .【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质并作辅助线构造出等腰三角形是解题的关键.18.如图,△ABC 中,CF ⊥AB ,垂足为F ,M 为BC 的中点,E 为AC 上一点,且ME=MF .(1)求证:BE ⊥AC ;(2)若∠A=50°,求∠FME 的度数.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得MF=BM=CM=12BC ,再求出ME=BM=CM=12BC ,再根据直角三角形斜边上的中线等于斜边的一半证明; (2)根据三角形的内角和定理求出∠ABC +∠ACB ,再根据等腰三角形两底角相等求出∠BMF +∠CME ,然后根据平角等于180°列式计算即可得解.【解答】(1)证明:∵CF ⊥AB ,垂足为F ,M 为BC 的中点,∴MF=BM=CM=12BC , ∵ME=MF ,∴ME=BM=CM=12BC , ∴BE ⊥AC ;(2)解:∵∠A=50°,∴∠ABC +∠ACB=180°﹣50°=130°,∵ME=MF=BM=CM ,∴∠BMF +∠CME=(180°﹣2∠ABC )+(180°﹣2∠ACB )=360°﹣2(∠ABC +∠ACB )=360°﹣2×130°=100°,在△MEF 中,∠FME=180°﹣100°=80°.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的判定与性质,熟记性质是解题的关键,难点在于(2)中整体思想的利用.19.如图,直线a 、b 相交于点A ,C 、E 分别是直线b 、a 上两点且BC ⊥a ,DE ⊥b ,点M 、N 是EC 、DB 的中点.求证:MN ⊥BD .【分析】根据直角三角形斜边上的中线等于斜边的一半可得DM=12EC ,BM=12EC ,从而得到DM=BM ,再根据等腰三角形三线合一的性质证明.【解答】证明:∵BC ⊥a ,DE ⊥b ,点M 是EC 的中点,∴DM=12EC ,BM=12EC , ∴DM=BM ,∵点N 是BD 的中点,∴MN ⊥BD .【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.20.如图,△ABC 中,CD 、BE 分别是AB 、AC 边上的高,M 、N 分别是线段BC 、DE 的中点.(1)求证:MN ⊥DE ;(2)连结DM ,ME ,猜想∠A 与∠DME 之间的关系,并写出推理过程;(3)若将锐角△ABC 变为钝角△ABC ,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.【分析】(1)连接DM 、ME ,根据直角三角形斜边上的中线等于斜边的一半可得DM=12BC ,ME=12BC ,从而得到DM=ME ,再根据等腰三角形三线合一的性质证明;(2)根据三角形的内角和定理可得∠ABC +∠ACB=180°﹣∠A ,再根据等腰三角形两底角相等表示出∠BMD +∠CME ,然后根据平角等于180°表示出∠DME ,整理即可得解;(3)根据三角形的内角和定理可得∠ABC +∠ACB=180°﹣∠A ,再根据等腰三角形两底角相等和三角形的一个外角等于与它不相邻的两个内角的和表示出∠BME +∠CME ,然后根据平角等于180°表示出∠DME ,整理即可得解.【解答】解:(1)如图,连接DM ,ME ,∵CD 、BE 分别是AB 、AC 边上的高,M 是BC 的中点,∴DM=12BC ,ME=12BC , ∴DM=ME又∵N 为DE 中点,∴MN ⊥DE ;(2)在△ABC 中,∠ABC +∠ACB=180°﹣∠A ,∵DM=ME=BM=MC ,∴∠BMD +∠CME=(180°﹣2∠ABC )+(180°﹣2∠ACB ),=360°﹣2(∠ABC +∠ACB ),=360°﹣2(180°﹣∠A ),=2∠A ,∴∠DME=180°﹣2∠A ;(3)结论(1)成立,结论(2)不成立,理由如下:在△ABC 中,∠ABC +∠ACB=180°﹣∠A ,∵DM=ME=BM=MC ,∴∠BME +∠CMD=2∠ACB +2∠ABC ,=2(180°﹣∠A ),=360°﹣2∠A ,∴∠DME=180°﹣(360°﹣2∠A ),=2∠A ﹣180°.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形两底角相等的性质,三角形的内角和定理,整体思想的利用是解题的关键.21.已知:在△ABC 中,∠ABC=90°,点E 在直线AB 上,ED 与直线AC 垂直,垂足为D ,且点M 为EC 中点,连接BM ,DM .(1)如图1,若点E 在线段AB 上,探究线段BM 与DM 及∠BMD 与∠BCD 所满足的数量关系,并直接写出你得到的结论;(2)如图2,若点E 在BA 延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E 在AB 延长线上,请你根据条件画出相应的图形,并直接写出线段BM 与DM 及∠BMD 与∠BCD 所满足的数量关系.【分析】(1)由于BM 、DM 分别是Rt △DEC 、Rt △EBC 的斜边上的中线,即可证得BM=DM=12CE ;易知BM=MC=DM ,结合三角形的外角性质可知∠EMB=2∠MCB ,∠DME=2∠DCM ,两式相加即可得到∠BMD=2∠BCD .(2)同(1)易证得DM=BM ;由于BM=MC=DM=EM ,结合三角形的外角性质可得:∠BME=2∠BCM ,∠DME=2∠MCD ,两式相减即可得到∠BMD=2∠BCD .(3)此题应分三种情况:①D 点在线段AC 上时,易证得BM=MD ,同(2)可证得∠BMD=2∠BCD ; ②D 、C 重合,此时BM=MD ,而∠BCD 不存在;③D 点在AC 的延长线上,同(2)可得到∠BMD=∠BME +∠EMD=2∠BCD ,所以钝角∠BMD=360°﹣2∠BCD .【解答】解:(1)结论:BM=DM ,∠BMD=2∠BCD .理由:∵BM 、DM 分别是Rt △DEC 、Rt △EBC 的斜边上的中线,∴BM=DM=12CE ; 又∵BM=MC ,∴∠MCB=∠MBC ,即∠BME=2∠BCM ;同理可得∠DME=2∠DCM ;∴∠BME +∠DME=2(∠BCM +∠DCM ),即∠BMD=2∠BCD .(2)在(1)中得到的结论仍然成立.即BM=DM ,∠BMD=2∠BCD证法一:∵点M 是Rt △BEC 的斜边EC 的中点,∴BM=12EC=MC , 又点M 是Rt △BEC 的斜边EC 的中点,∴DM=12EC=MC , ∴BM=DM ;∵BM=MC ,DM=MC ,∴∠CBM=∠BCM ,∠DCM=∠CDM ,∴∠BMD=∠EMB ﹣∠EMD=2∠BCM ﹣2∠DCM=2(∠BCM ﹣∠DCM )=2∠BCD ,即∠BMD=2∠BCD .证法二:∵点M 是Rt △BEC 的斜边EC 的中点,∴BM=12EC=ME ; 又点M 是Rt △DEC 的斜边EC 的中点,∴DM=12EC=MC ,∴BM=DM;∵BM=ME,DM=MC,∴∠BEC=∠EBM,∠MCD=∠MDC,∴∠BEM+∠MCD=∠BAC=90°﹣∠BCD,∴∠BMD=180°﹣(∠BMC+∠DME),=180°﹣2(∠BEM+∠MCD)=180°﹣2(90°﹣∠BCD)=2∠BCD,即∠BMD=2∠BCD.(3)所画图形如图所示:图1中有BM=DM,∠BMD=2∠BCD;图2中∠BCD不存在,有BM=DM;图3中有BM=DM,∠BMD=360°﹣2∠BCD.解法同(2).【点评】此题主要考查了直角三角形的性质以及三角形的外角性质,要注意(3)题中,点D的位置有三种,不要遗漏任何一种情况.。

直角三角形斜边上的中线(人教版)(含答案)

直角三角形斜边上的中线(人教版)(含答案)
直角三角形斜边上的中线(人教版)
试卷简介:本套试卷继续训练直角三角形的性质:直角三角形两锐角互余,斜边长大于任意一条直角边长,30°所对的直角边等于斜边的一半,同时加上斜边中线等于斜边的一半,检测同学们见到什么想什么,以及有序梳理条件、对条件进行搭配和组合的能力.
一、单选题(共10道,每道10分)
1.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,点P是BD的中点.
③统计数据,检验,防止遗漏.
2.解题过程
3.易错点
未考虑C′D=AD,遗漏三角形ADC′是等腰三角形这一种情形.
试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半
9.如图,在△ABC中,∠BAC=90°,点D在BC延长线上,且 .若∠D=50°,则∠B的度数为( )
A.25° B.30°
C.40° D.45°
∴∠1=∠B=20°
∴∠3=40°
∵E为AB的中点,∠ACB=90°
∴CE=BE=AE
∴∠2=∠B=20°
∴∠DFE=∠AFC=∠2+∠3=60°
故选C
试题难度:三颗星知识点:三角形的外角
8.如图,AD是直角三角形△ABC斜边上的中线,把△ADC沿AD对折,点C落在点C′处,
连接CC′,则图中共有等腰三角形( )个.
∵F为BD中点
∴EF⊥BD
故选A
试题难度:三颗星知识点:等腰三角形三线合一性质
7.如图,在△ABC中,∠C=90°,D在CB上,E为AB之中点,AD,CE相交于F,且AD=DB.
若∠B=20°,则∠DFE的度数是( )
A.40° B.50°
C.60° D.70°
答案:C
解题思路:

专题14 直角三角形斜边上的中线-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)

专题14 直角三角形斜边上的中线-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)

专题14直角三角形斜边上的中线★知识归纳●直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.要点梳理:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.★实操夯实一.选择题(共16小题)1.如图,在三角形ABC中,AB=AC,BC=6,三角形DEF的周长是7,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,则AF=()A.B.C.D.7【解答】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周长=DE+DF+EF=AB+3=7,∴AB=4,由勾股定理知AF==,故选:B.2.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3B.3.5C.4D.4.5【解答】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD,∵AD=6,∴BD=6,∵P点是BD的中点,∴CP=BD=3.故选:A.3.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.不变B.变小C.变大D.无法判断【解答】解:不变.连接OP,在Rt△AOB中,OP是斜边AB上的中线,那么OP=AB,由于木棍的长度不变,所以不管木棍如何滑动,OP都是一个定值.故选:A.4.如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2大小关系不能确定【解答】解:∵∠ABC=∠ADC=90°,E是AC的中点,∴DE=AC,BE=AC,∴DE=BE,∴∠1=∠2.故选:B.5.如图,在△ABC中,∠ACB=90°,AC=8,BC=6,点D为斜边AB上的中点,则CD为()A.10B.3C.5D.4【解答】解:在Rt△ABC中,AC=8,BC=6,∴AB===10,∵点D为斜边AB上的中点,∴CD=AB=×10=5,故选:C.6.已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.12【解答】解:∵直角三角形斜边上的中线长为3,∴斜边长是6.故选:B.7.直角三角形的斜边长为6cm,则斜边上的中线长为()A.2cm B.2.5cm C.3cm D.4cm【解答】解:直角三角形的斜边长为6cm,则斜边上的中线长为3cm,故选:C.8.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=10,则CD=()A.2B.3C.4D.6【解答】解:在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=10,∴AE=CE=10,∵AD=2,∴DE=8,∵CD为AB边上的高,在Rt△CDE中,CD===6,故选:D.9.在Rt△ABC中,∠ACB=90°,AB=6cm,D为AB的中点,则CD等于()A.2cm B.2.5cm C.3cm D.4cm【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3cm.故选:C.10.如图,在△ABC中,∠BAC=90°,点D在BC延长线上,且AD=BC,若∠D=40°,则∠B=()A.10°B.20°C.30°D.40°【解答】解:取BC的中点E,连接AE,∵∠BAC=90°,点E是BC的中点,∴AE=BC=BE,∴∠B=∠EAB,∵AD=BC,∴AE=AD,∴∠AED=∠D=40°,∴∠B=20°,故选:B.11.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10B.6C.8D.5【解答】解:∵AB=AC=10,AD平分∠BAC,∴AD⊥BC,∵E为AC的中点,∴DE=AC=×10=5,故选:D.12.如图在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=3,BC=8,则△EFM的周长是()A.21B.15C.13D.11【解答】解:∵CF⊥AB,BE⊥AC,M为BC的中点,∴EM=FM=BC=×8=4,∴△EFM的周长=8+8+3=11.故选:D.13.如图,边长为2的等边三角形ABC,点A,B分别在y轴和x轴正半轴滑动,则原点O到C的最长距离()A.B.C.D.【解答】解:取AB的中点D,连接OD,CD,在△OCD中,OC<OD+CD,只有当O,D,C三点在一条线上时,OC=OD+CD,此时OC最大,如图所示,OC⊥AB,∵△AOB为等腰直角三角形,AB=2,∴OD=AB=1,在Rt△BCD中,BC=2,BD=1,根据勾股定理得:CD==,∴OC=+1.故选:D.14.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5B.C.D.2【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.15.如图,△ABC中,∠A+∠B=90°,AD=DB,CD=3,则AB的长度为()A.3B.4C.5D.6【解答】解:∵△ABC中,∠A+∠B=90°,∴∠ACB=90°.∵AD=DB,∴CD是该直角三角形斜边AB上的中线,∴AB=2CD=6.故选:D.16.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.3B.4C.5D.6【解答】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中点,∴BD=AB=,∴DE是△ABC的中位线,∴DE=AC=,∴△BDE的周长为BD+DE+BE=++2=5.故选:C.二.填空题(共7小题)17.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=4,BC=10,则△EFM的周长是14.【解答】解:∵BE、CF分别是△ABC的高,M为BC的中点,BC=8,∴在Rt△BCE中,EM=BC=5,在Rt△BCF中,FM=BC=5,又∵EF=4,∴△EFM的周长=EM+FM+EF=5+5+4=14.故答案是:14.18.如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AC的中点,若AB=6,则DE的长为3.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=AC=3.故答案为:3.19.如图所示,在△ABC中,∠C=2∠B,点D是BC上一点,AD=5,且AD⊥AB,点E是BD上的点,AE=BD,AC=6.5,则AB的长度为12.【解答】解:∵Rt△ABD中,AE=BD,∴AE=BE=DE;∴∠B=∠BAE,即∠AED=2∠B;∵∠C=2∠B,∴∠AEC=∠C,即AE=AC=6.5;∴BD=2AE=13;由勾股定理,得:AB==12.20.如图,△AEF是直角三角形,∠AEF=90°,B为AE上一点,BG⊥AE于点B,GF∥BE,且AD=BD=BF,∠BFG=60°,则∠AFG的度数是20°.【解答】解:∵四边形BEFG是长方形,∴FG∥BE,∴∠FBE=∠BFG=60°,∵AD=BD=BF,∴∠A=∠ABD,∠BDF=∠BFD,∵∠BDF=∠DFB=∠A+∠ABD=2∠A,∴∠EBF=∠A+∠AFB=3∠A=60°,∴∠A=20°,∵FG∥BE,∴∠AFG=∠A=20°,故答案为:20°.21.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.【解答】解:如图,连接DM,DN,由图可以得到M的轨迹是一条线段(AD的垂直平分线的一部分),M在AN上的时候最大(此时AM最大,MN最小),当M在AN上时,设AM=x,则MN=3﹣x,DM=AM=x,DN=AB=,在直角三角形DMN中,根据勾股定理,得DM2=DN2+MN2,∴x2=(3﹣x)2+2.52,解得x=,∴3﹣x=,此时AM﹣MN=﹣=.∴AM﹣MN的最大值为.故答案为:.22.如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B 作BE∥DC交AF的延长线于点E,则BE的长为6.【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故答案为6.23.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=10°.【解答】解:∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.三.解答题(共4小题)24.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于G,CD=AE.(1)求证:CG=EG.(2)已知BC=13,CD=5,连接ED,求△EDC的面积.【解答】(1)证明:连接DE,在Rt△ADB中,点E是AB的中点,∴DE=AB=AE,∵CD=AE,∴DE=DC,又DG⊥CE,∴CG=EG.(2)解:作EF⊥BC于F,∵BC=13,CD=5,∴BD=13﹣5=8,∵DE=BE,EF⊥BC,∴DF=BF=4,∴EF===3,∴△EDC的面积=×CD×EF=×5×3=7.5.25.如图:BE、CF是锐角△ABC的两条高,M、N分别是BC、EF的中点,若EF=6,BC=24.(1)证明∠ABE=∠ACF;(2)判断EF与MN的位置关系,并证明你的结论;(3)求MN的长.【解答】解:(1)∵BE、CF是锐角△ABC的两条高,∴∠ABE+∠A=90°,∠ACF+∠A=90°,∴∠ABE=∠ACF;(2)MN垂直平分EF.证明:如图,连接EM、FM,∵BE、CF是锐角△ABC的两条高,M是BC的中点,∴EM=FM=BC,∵N是EF的中点,∴MN垂直平分EF;(3)∵EF=6,BC=24,∴EM=BC=×24=12,EN=EF=×6=3,由勾股定理得,MN===3.26.拓展:如图四边形ABCD中,∠ABC=∠ADC=90°,E是AC中点,EF平分∠BED交BD于点F.(1)猜想EF与BD具有怎样的关系?(2)试证明你的猜想.【解答】解:(1)EF垂直平分BD,(2)∵∠ABC=∠ADC=90°,E是AC中点,∴BE=AE=EC,ED=AE=EC,∴BE=DE,∵EF平分∠BED交BD于点F,∴EF⊥BD,BF=FD,即EF垂直平分BD.27.如图,在Rt△ABC中,∠ACB=90°,M是斜边AB的中点,AM=AN,∠N+∠CAN=180°.求证:MN=AC.【解答】证明:∵∠ACB=90°,M是斜边AB的中点,∴CM=AM,∴∠MCA=∠MAC,∵AM=AN,∴∠AMN=∠ANM,∵∠N+∠CAN=180°,∴AC∥MN,∴∠AMN=∠MAC,∴∠AMC=∠NAM,∴AN∥MC,又AC∥MN,∴四边形ACMN是平行四边形,∴MN=AC.。

直角三角形斜边上的中线性质练习

直角三角形斜边上的中线性质练习

“直角三角形斜边上的中线”的性质及其应用“直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明.一、有直角、有中点,连线出中线,用性质例1.如图1,BD 、CE 是△ABC 的两条高,M 是BC 的中点, N 是DE 的中点.试问:MN 与DE 有什么关系?证明你的猜想.二、有直角、无中点,取中点,连线出中线,用性质 例2.如图2,在Rt △ABC 中,∠C=900,AD ∥BC ,∠CBE=12∠ABE ,请同学们试一试吧!1.如图5,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E , 求证:CD=12BE .2.如图6,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的 中点,求证:AB=2DM .直角三角形斜边上中线性质的应用直角三角形斜边上中线的性质是直角三角形的一个重要性质,同时也是常考的知识点.它为证明线段相等、角相等、线段的倍分等问题提供了很好的思路和理论依据。

下面谈谈直角三角形斜边上中线的图1BADCEF图2B图5ACBD M · 图6性质及应用。

一、直角三角形斜边上中线的性质1、性质:直角三角形斜边上的中线等于斜边的一半.如图1,在Rt △BAC 中,∠BAC=︒90,D 为BC 的中点,则BC 21AD =。

2、性质的拓展:如图1:因为D 为BC 中点,所以BC 21DC BD ==,所以AD=BD=DC=BC21,所以∠1=∠2,∠3=∠4, 因此∠ADB=2∠3=2∠4, ∠ADC=2∠1=2∠2。

因而可得如下几个结论:①直角三角形斜边上的中线将直角三角形分成两个等腰三角形;②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍. 二、性质的应用 1、求值例1、(2004年江苏省苏州市中考)如图2,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= .2、证明线段相等例2、(2004年上海市中考)如图4,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 21AD =,点E 、F 分别为边BC 、AC 的中点。

直角三角形斜边上的中线

直角三角形斜边上的中线

A
EN D
B
M
C
直角三角形斜边上的中线等于斜边的一半 B
数学语言表述为:
在Rt△ABC中
D
∵CD是斜边AB上的中线
∴CD=AD=BD=
1 2
AB
A战营
直角三角形斜边上的中线等于斜边的一半。
3、如图,已知AD⊥BD,AC⊥BC,E为AB的中点,试判 断 DE与CDE是否相等C,并说明理由。
A
E
B
说明两条线段相等,有时还可以通过第三条线段 进行等量代换。
挑战营
直角三角形斜边上的中线等于斜边的一半。
4、如图所示,BD、CE是三角形ABC的两条高,M、N分别 是BC、DE的中点,请判断MN和DE的关系并说明理由。
荔湾区四中聚贤中学 林丽珊老师
四个学生正在做投圈游戏,他们分别站在一 个矩形的四个顶点处,目标物放在对角线的交 点处,这样的队形对每个人公平吗?为什么?
AA
DD
O
BB 因为OA=OC=OB=OD,
CC
这个游戏是公平的。
直角三角形斜边上的中线等于斜边的一半。
推导
A┛
D
O
如图: 在矩形ABCD中
AO=CO=BO=DO=
1 2
AC=
1 2
B
BD
C
∵在Rt△ABD中,AO是斜边BD的中线
∴AO=
1
BD
2
训练营
直角三角形斜边上的中线等于斜边的一半。
1、已知Rt△ABC中,斜边AB=10cm,则斜边 上的中线的长为5_c_m____
2、如图,在Rt△ABC中,CD是斜边AB上的中 线,∠CDA=80°,则∠A=5__0_°__ ∠B=_4_0_°__

直角三角形斜边中线问题

直角三角形斜边中线问题

x y 90
即∠ACB=90°
(1)证法:取AB中点D,证等边 (2)证法:倍长AC (3)证法:作△ABC外接圆 A
C
在一个三角形中,一边上的中线等于这边的一半 ,则它是直角三角形。 B 1 在△ABC中,若D为AB中点,且 AC AB 2 x 求证:∠ACB=90°.
证明: ∵ 2 x 2 y 180 D x A y y C
直角三角形斜边上的中线等于斜边的一半
直角三角形斜边上的中线等于斜边的一半
数学语言表述为: B
在Rt△ABC中,
∵CD是斜边AB上的中线 1 ∴CD=AD=BD= 2 AB (1)证法:倍长CD (2)证法:取BC(AC)中点 (3)证法:以D为圆心,AB为直径画圆 A D
C
在直角三角形中,30°所对的直角边等于斜边的一半。
数学语言表述为:
B
30°
在Rt△ABC中,
∵∠B=30° 1 ∴AC= 2 AB (1)证法:倍长AC (2)证法:在AB上截取AD=AC A (3)证法:作∠ACD=60°,证2次等腰 (4)证法:取AB中点D,证等边 (5来自证法:作△ABC的外接圆C
在直角三角形中,等于斜边长一半的直角边所对 的角为30°。 B 1 在Rt△ABC中,若AC AB 2 求证:∠B=30°.

直角三角形斜边上的高等于斜边的一半

直角三角形斜边上的高等于斜边的一半

ABDM ECABDF直角三角形斜边的中线等于斜边的一半已知直角三角形斜边中点,可以考虑构造斜边中线模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即12CD AB,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD和△BCD,该模型经常会与中位线定理一起综合应用。

模型实例例1.如图,在△ABC中,BE、CF分别为AC、AB上的高,D为BC的中点, DM⊥EF于点M。

求证:FM=EM。

热搜精练1.如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,M为BC的中点,AB=10。

求DM的长度。

CM EA B D3图ADBEM FC图2MADB E CF 1图E CABDF M2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD=∠ACE=90°,连接DE ,M 为DE 的中点,连接MB 、MC 。

求证:MB=MC 。

3.问题1:如图①,△ABC 中,点D 是AB 边的中点,AE ⊥BC ,BF ⊥AC ,垂足分别为点E 、F ,AE 、BF 交于点M ,连接DE 、DF 。

若DE kDF ,则k 的值为 ;问题2:如图②,△ABC 中,CB=CA ,点D 是AB 边的中点,点M 在△ABC 内部,且∠MAC=∠MBC 。

过点M 分别作ME ⊥BC ,MF ⊥AC ,垂足分别为点E 、F ,连接DE 、DF 。

若DE=DF ;问题3:如图③,若将上面问题②中的条件“CB=CA ”变为“CB ≠CA ”,其它条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论。

与等腰直角三角形相关的压轴题

与等腰直角三角形相关的压轴题

与等腰直角三角形相关的压轴题知识储备:1、直角三角形斜边上的中线等于斜边的一半;2、勾股定理:直角三角形中,直角边的平方和等于斜边的平方;勾股定理逆定理:若一个三角形两条边的平方和等于第三边的平方,那么这个三角形是直角三角形。

3、等腰直角三角形中边角间的数量关系:4、等腰直角三角形中常见的图形背景:1°以斜边中点为顶点作90°角;2°以直角顶点为顶点作等腰直角三角形;以上两种背景都能产生旋转型的全等三角形;3°半角模型,即以直角顶点作45°半角,通过旋转构造全等三角形。

压轴题赏析:解法分析:本题的背景是等腰直角三角形以斜边中点为顶点作90°角。

通过联结CD,得到一组全等三角形。

不论E、F是否在边AC或BC上,总能通过面积的和差关系找到▲DEF、▲CEF和▲ABC之间的数量关系。

需要注意的是,不论点在线段或其延长线上,添线的方法和证明的思路是不变的。

本题的第一问除了可以设边长,用代数的方法计算以外,还可以联结CD,证明三角形全等,进行面积转化,其解法就同第二问了。

本题的第三问点E和点F运动到了延长线上,此时就要将面积和变为面积差了,但是解决问题的方法依旧是不变的。

解法分析:本题的背景是等腰直角三角形以斜边中点为顶点作90°角。

第一问同上一题证明全等的方法一致。

第二问是建立两条线段间的函数关系式,可以通过将两条线段放在直角三角形中,利用勾股定理建立函数关系。

本题的第三问是等腰三角形的存在性问题,需要分类讨论,值得注意的是∠FAG是定角45°,由此从角度切入,寻找边之间的数量关系。

本题的第二问可以选择不同的直角三角形运用勾股定理建立函数关系,只要这个直角三角形的三条线段都可以用含x或y的代数式表示即可。

解法分析:本题的背景是等腰直角三角与垂直平分线、角平分线的综合应用。

本题的第一问就是一组平行线下的X型全等三角形;第二问同上一题,将线段转化到一个直角三角形中,利用勾股定理建立数量关系;第三问是角平分线逆定理和30°-60°-90°三角形的综合应用。

专题13 斜边上的中线问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题13  斜边上的中线问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题13 斜边上的中线问题【规律总结】直角三角形中遇到斜边上的中点,常联想“斜边上的中线等于斜边的一半”【典例分析】例1.(2021·上海九年级专题练习)一副三角板如图摆放,点F 是45角三角板ABC 的斜边的中点,4AC .当30角三角DEF 的直角顶点绕着点F 旋转时,直角边DF EF ,分别与,AC BC 相交于点.M N ,则CMFN 的面积为____________.【答案】4【分析】连结CF ,证明CFM BFN =,根据12BFC ACB CMFN S SS ==四边形即可求解. 【详解】解:连结CF ,如图,点F 是45角三角板ABC 的斜边的中点,CF BF CF ∴=,平分,,45ACB CF AB B ∠⊥∠=︒,45,2345ACF ∴∠=︒∠+∠=︒1290∠+∠=︒,13∴∠=∠,在CFM △和BFN 中,13MCF B CF BF∠=∠⎧⎪=⎨⎪∠=∠⎩()CFM BFN ASA ∴=,CFM BFNS S ∴=,111444222BFC ACB CMFN S SS ∴===⨯⨯⨯=四边形. 【点睛】 此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,综合性强,难度较大,是一道难题.例2.(2020·湖北恩施土家族苗族自治州·九年级期中)如图,在等腰直角三角形ABC 中,90C ∠=︒,AC a =,点E 为边AC 上任意一点,点D 为AB 的中点,过点D 作DF DE ⊥交BC 于点F .求证:CE CF +为定值.【答案】证明见解析【分析】连接CD ,证明△CDE△△BDF ,得CE=BF ,进一步证明CE+CF=BC=AC a =,从而得到结论.【详解】 证明:连接CD ,如图,△△ABC 是等腰直角三角形,且D 为AB 的中点,△CD△AB ,CD 平分△ACB ,AD=BD=CD△△DCA=△DCB=△DBC=45°又DE△DF△△EDC+△FDC=90°而△FDC+△FDB=90°△△EDC=△FDB在△CDE 和△BDF 中,DCE DBF CD CDEDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩△△CDE△△BDF△CE=BF△BC=AC=a△CE+CF=BE+CF=BC=AC=a ,故:CE CF +为定值.【点睛】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,证明CE=BF 是解答此题的关键.【真题演练】一、填空题1.(2020·哈尔滨市萧红中学八年级月考)如图,在ABC 中,∠B=60°,CD 为AB 边上的高,E 为AC 边的中点,点 F 在BC 边上,∠EDF=60°,若 BF=3,CF=5,则AC 边的长为 .【答案】【分析】如图(见解析),先根据直角三角形的性质、勾股定理得出,4D B F D ==,再根据等边三角形的判定与性质得出4,60DH BDH =∠=︒,然后根据三角形的中位线定理、平行线的性质得出60EHD BDH ∠=∠=︒,从而可得EHD B ∠=∠,BDF HDE ∠=∠,最后根据三角形全等的判定定理与性质得出DE DF ==据此根据直角三角形斜边上的中线等于斜边的一半即可得.【详解】如图,过点D 作DG BC ⊥于点G3,5BF CF ==8BC BF CF ∴=+=在Rt BCD 中,60B ∠=︒,9030BCD B ∠=︒-∠=︒142BD BC ∴== 在Rt BDG 中,60B ∠=︒,9030BDG B ∠=︒-∠=︒12,2BG BD DG ∴====1GF BF BG ∴=-=,DF =取BC 的中点H ,连接DH 、EH142DH BH BC BD ∴==== BDH ∴是等边三角形60BDH ∴∠=︒点E 是AC 边的中点∴EH 是ABC 的中位线//EH AB ∴60EHD BDH ∴∠=∠=︒60EHD B ∴∠=∠=︒又60BDF FDH BDH ∠+∠=∠=︒,60HDE FDH EDF ∠+∠=∠=︒BDF HDE ∴∠=∠在HDE 和BDF 中,EHD B DH DBHDE BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩()HDE BDF ASA ∴≅DE DF ∴==则在Rt ACD △中,12DE AC =,即2AC DE ==故答案为:【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质、三角形的中位线定理等知识点,通过作辅助线,构造等边三角形和全等三角形是解题关键.二、解答题2.(2020·庆云县第二中学八年级期中)已知:在ABC 中,AC=BC ,∠ACB=90°,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直于CE 于点F ,交CD 于点G (如图1),求证:AE=CG ;(2)直线AH 垂直于CE ,垂足为H ,交CD 的延长线于点M (如图2),求证:BCE CAM ≌.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)运用等腰直角三角形性质,三线合一,可以得到△AEC 和△CGB 一组对应边、一组对应角相等,AC BC =,CAE BCG ∠=∠;然后利用同角的余角相等,证得ACE CBG ∠=∠;两角及其夹边对应相等()ASA 则两三角形全等.(2)运用等腰直角三角形性质,三线合一,可以得到△BCE 和△CAM 一组对应边、一组对应角相等,AC BC =,ACM CBE ∠=∠;然后利用同角的余角相等,证得BEC CMA ∠=∠;两角及其中一角的对边对应相等()AAS 则两三角形全等.【详解】(1)证明:△点D 是AB 中点,AC=BC ,△ACB=90°,△CD△AB ,△ACD=△BCD=45°,△△CAD=△CBD=45°,△△CAE=△BCG ,又△BF△CE ,△△CBG+△BCF=90°,又△△ACE+△BCF=90°,△△ACE=△CBG ,在△AEC 和△CGB 中,CAE BCG AC BCACE CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩△△AEC△△CGB (ASA ),△AE=CG ,(2)证明:△CH△HM ,CD△ED ,△△CMA+△MCH=90°,△BEC+△MCH=90°,△△CMA=△BEC ,又△△ACM=△CBE=45°,在△BCE 和△CAM 中,BEC CMA ACM CBE BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△BCE△△CAM (AAS ).【点睛】本题考查全等三角形判定定理,从题中找到对应边、角的信息,灵活运用三角形判定定理是解题关键.3.(2020·张家港市梁丰初级中学八年级期中)已知,∠ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,若E是线段CA上任意一点,DF∠DE,交直线BC于F点.G为EF的中点,连接CG并延长交直线AB于点H.(1)试说明:①AE=CF;②CG=GD;(2)若AE=6,CH=10,求边AC的长.【答案】(1)理由见详解;(2)AC=14【分析】(1)①由题意易得AD=DC=DB,△A=△B=45°,CD△AB,进而可证△ADE△△CDF,然后根据全等三角形的性质可得;②由直角三角形斜边中线定理可得11,22CG EF DG EF==,进而问题得证;(2)由(1)可得AE=CF=6,由题意易得12DG CH=,则有EF=CH=10,然后根据勾股定理可求解.【详解】解:(1)①AE=CF,理由如下:△AC=BC,△ACB=90°,CD为边AB上的中线,△AD=DC=DB,△A=△B=45°,CD△AB,△△A=△BCD=45°,△DF△DE,△△EDC+△CDF=90°,又△△ADE+△EDC=90°,△△ADE=△CDF,△△ADE△△CDF(ASA),△AE=CF,②CG=GD,理由如下:△△ACB=90°,△EDF=90°,EG=GF,△11,22CG EF DG EF==,△CG=GD;(2)由(1)得:AE=CF=6,CG=GD,12DG EF=,△△GCD=△GDC,△△GCD+△CHD=90°,△GDC+△GDH=90°,△△CHD=△GDH,△GH=GD,△12DG CH=,△CH=10,△CH=EF=10,在Rt△CEF 中,222+=CF CE EF ,即222610CE +=,解得:CE=8,△AC=AE+CE=14.【点睛】本题主要考查等腰三角形的性质与判定、勾股定理及直角三角形斜边中线定理,熟练掌握等腰三角形的性质与判定、勾股定理及直角三角形斜边中线定理是解题的关键.4.(2019·陇东学院附属中学八年级期末)如图在Rt ABC △中,AB AC =,90BAC ∠=︒,O 为BC 的中点.(1)写出点O 到ABC 的三个顶点A 、B 、C 的距离的大小关系.(2)如果点M 、N 分别在线段AB 、AC 上移动,移动中保持AN BM =,请判断OMN 的形状,并证明你的结论.(3)当点M 、N 分别在AB 、AC 上运动时,四边形AMON 的面积是否发生变化?说明理由.【答案】(1)OA OB OC ==;(2)OMN 是等腰直角三角形,证明见解析;(3)四边形AMON 的面积不变,理由见解析【分析】(1)连接OA ,由O 为BC 的中点可得OC OB =,由直角三角形斜边上的中线的性质可得12OA BC =,即可得OA OB OC ==. (2)由(1)不难证明45CAO B ∠=∠=︒,结合已知条件进而证明OAN △OBM ,即可得OM ON =,NOA MOB ∠=∠,即90NOM AOB ∠=∠=︒,所以OMN 是等腰直角三角形.(3)由(2)可得OAN S =OBM S ,进而将四边形AMON 的面积转化为AOB 的面积,AOB 的面积保持不变,故四边形AMON 的面积保持不变.【详解】(1)连接OA ,Rt ABC △中,O 为BC 的中点,∴12OA BC =,OC OB =, ∴122OA OB OB =⨯⨯=, ∴OA OB OC ==.(2)OMN 是等腰直角三角形,证明如下:AB AC =,O 为BC 的中点,∴AO BC ⊥,∴90AOB ∠=︒,OA OB OC ==,∴45CAO B ∠=∠=︒,在OAN 与OBM 中,OA OB CAO B AN BM =⎧⎪∠=∠⎨⎪=⎩,∴OAN △OBM ,∴OM ON =,NOA MOB ∠=∠,∴90NOM AOB ∠=∠=︒,∴OMN 是等腰直角三角形.(3)四边形AMON 的面积保持不变,理由如下:由(2)可得: OAN S =OBM S , ∴OAN AOM OBM AOM AOB AMON S S S S S S =+=+=四边形. AOB 的面积保持不变∴四边形AMON 的面积保持不变.【点睛】本题主要考查直接三角形斜边上中线的性质以及全等三角形的判定与性质,掌握全等三角形的判定与性质定理并灵活运用是解题关键.5.(2020·乌兰察布市·内蒙古凉城县宏远中学八年级月考)已知:三角形ABC 中,∠A =90°,AB =AC ,D 为BC 边的中点,(1)如图①,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:∠DEF 为等腰直角三角形.(2)如图②,若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,∠DEF 是否仍为等腰直角三角形?证明你的结论.【答案】(1)见解析;(2)△DEF为等腰直角三角,证明见解析【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有△CAD=△BAD=45°,AD=BD=CD,而△B=△C=45°,所以△B=△DAF,再加上BE=AF,AD=BD,可证出:△BED△△AFD,从而得出DE=DF,△BDE=△ADF,从而得出△EDF=90°,即△DEF是等腰直角三角形;(2)还是证明:△BED△△AFD,主要证△DAF=△DBE(△DBE=180°-45°=135°,△DAF=90°+45°=135°),再结合两组对边对应相等,所以两个三角形全等.【详解】(1)证明:连接AD,△AB=AC,△BAC=90°,D为BC的中点,△AD△BC,BD=AD.△△B=△DAC=45° 又BE=AF,△△BDE△△ADF(SAS).△ED=FD,△BDE=△ADF.△△EDF=△EDA+△ADF=△EDA+△BDE=△BDA=90°.△△DEF为等腰直角三角形.(2)△DEF为等腰直角三角形.证明:若E,F分别是AB,CA延长线上的点,如图所示:连接AD,△AB=AC,△△ABC为等腰三角形,△△BAC=90°,D为BC的中点,△AD=BD,AD△BC(三线合一),△△DAC=△ABD=45°.△△DAF=△DBE=135°.又AF=BE,△△DAF△△DBE(SAS).△FD=ED,△FDA=△EDB.△△EDF=△EDB+△FDB=△FDA+△FDB=△ADB=90°.△△DEF仍为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.6.(2019·全国九年级专题练习)如图所示,E,F分别是正方形ABCD的边AD,CD上AB=,连DH.求线段DH长度的最小的两个动点,且AE DF=,BE交AF于点H,2值.【答案】DH1【解析】【分析】根据正方形性质可得AB=DA ,△BAD=△ADF=90°,又根据AE=DF ,利用SAS 可证得△ABE△△DAF ,于是△ABE=△DAF ;由于△DAF+△BAH=△ABE+△BAH=90°,从而△AHB=90°,取AB 的中点O ,连接OH 、OD ,则OH=12AB=1,在Rt△AOD 中,根据勾股定理计算出OD 的值;根据三角形的三边关系,可得OH+DH >OD ,于是当O 、D 、H 三点共线时,DH 的长度最小为OD -OH ,据此解答.【详解】解:△四边形ABCD 是正方形,△AB=DA ,△BAD=△ADF=90°,又△AE=DF ,△△ABE△△DAF ,△△ABE=△DAF.△△DAF+△BAH=△ABE+△BAH=90°,△△AHB=90°,取AB 的中点O ,连OH 、OD ,△112OH AB ==,OD ==OHD ∆中有DH OD OH >-,即1DH >.故O、H、D三点共线时DH最小,△DH1.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边的中线等于斜边的一半,勾股定理及三角形三条边的关系,确定出点H的位置是解答本题的关键.。

《直角三角形边上的中线等于斜边的一半》经典练习

《直角三角形边上的中线等于斜边的一半》经典练习

《直角三角形边上的中线等于斜边的一半》1、如图所示,BD、CE是三角形ABC的两条高,M、N分别是BC、DE的中点求证:MN⊥DEM C2、如图,四边形ABCD中,∠DAB=∠DCB=90o,点M、N分别是BD、AC的中点。

MN、AC的位置关系如何?证明你的猜想。

DAB3.如图,在△ABC中,AD是高,CE是中线,DC=BE,DF⊥CE,F为垂足,求证:(1)F是CE的中点;(2)∠B=2∠BCE.4、如图△ABC 中,∠B=2∠C,AH 为高,M 是BC 边的中点.求证:AB=2HMMABC5.如图,在四边形ABCD 中,CD ∥AB ,对角线AC 、BD 相交于点O ,AB=CD ,60ACD ∠=︒,点S 、P 、Q 分别是DO 、AO 、BC 的中点.求证:△SPQ 是等边三角形。

P O AB CD 图6-1SQ6、如图甲,在正方形ABCD 和正方形CGEF (CG >BC )中,点B 、C 、G 在同一直线上,M 是AE 的中点,(1)探究线段MD 、MF 的位置及数量关系,并证明;(2)将图甲中的正方形CGEF 绕点C 顺时针旋转,使正方形CGEF 的对角线CE 恰好与正方形ABCD 的边BC 在同一条直线上,原问题中的其他条件不变。

(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明图乙 图甲B A EF7.已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为;(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.图①图②A B C D EFM 8.在正方形ABCD 中,点E 、F 分别为BC 和AB 的中点,DE 与CF 交于点M ,连接AM 。

求证:AM=AD。

中考经典题型--“直角三角形斜边上的中线”的性质及其应用

中考经典题型--“直角三角形斜边上的中线”的性质及其应用

“直角三角形斜边上的中线”的性质及其应用 “直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明.一、有直角、有中点,利用垂直平分线性质【例1】如图,BD 、CE 是△ABC 的两条高,M 是BC 的中点,N 是DE 的中点.求证:MN 垂直平分DE .二、有直角、无中点,取中点,连线出中线【例2】如图,在Rt △ABC 中,∠C=90°,AD ∥BC ,∠CBE=21∠ABE ,求证:DE=2AB .三、有中点、无直角,造直角【例3】如图,梯形ABCD 中,AB ∥CD ,M 、N 是AB 、CD 的中点,∠ADC+∠BCD=270°,求证:MN=21(AB -CD ).四、逆用性质解题 【例4】如图,延长矩形ABCD 的边CB 至E ,使CE=CA ,P 是AE 的中点.求证:BP ⊥DP .【习题练习】1、如图,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E ,求证:CD=21BE .2、如图,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的中点,求证:AB=2DM .3、如图,在四边形ABCD 中,∠DAB=∠DCB=90°,点M 、N 分别是BD 、AC 的中点.确定MN 、AC 的位置关系.直角三角形斜边上中线性质的应用 一、直角三角形斜边上中线的性质 1、性质:直角三角形斜边上的中线等于斜边的一半.如图,在Rt △BAC 中,∠BAC=90°,D 为BC 的中点,则BC 21AD =. 2、性质的拓展:如图:因为D 为BC 中点,所以BC 21DC BD ==, 所以AD=BD=DC=BC 21, 所以∠1=∠2,∠3=∠4,因此∠ADB=2∠1=2∠2,∠ADC=2∠3=2∠4.因而可得如下几个结论:①直角三角形斜边上的中线将直角三角形分成两个等腰三角形;②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍.二、性质的应用1、21倍关系求值 例1、如图,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= .2、证明线段相等例2、如图,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 21AD =,点E 、F 分别为边BC 、AC 的中点.(1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于G .求证:AG=DG .3、证明角相等及角的倍分关系例3、已知,如图,在△ABC中,∠BAC 90°,BD、CE分别为AC、AB上的高,F为BC的中点,求证:∠FED=∠FDE.例4、已知:如图,在△ABC中,AD是高,CE是中线。

2020-2021学年 北师大版八年级数学下册 第一章 三角形的证明 之直角三角形综合练(一)

2020-2021学年 北师大版八年级数学下册 第一章 三角形的证明 之直角三角形综合练(一)

北师大版下册第一章《三角形的证明》之直角三角形综合练(一)1.如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.2.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE ∥DF.3.如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足D,延长CE 与外角∠ABG的平分线交于点F.(1)若∠A=60°,求∠DCE和∠F的度数;(2)若∠A=n°(0<n<90)直接写出用含n的代数式表示∠DCE和∠F.(3)在图中画△FCB高FH和∠DCB的角平分线交于点Q,在(2)的条件下求∠CQH的度数,请直接写出∠CQH的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠DEC=25°,求∠B的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)请你写出这个定理的逆命题是;(2)下面我们来证明这个逆命题:已知:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程:6.如图在正方形ABCD中,E,F,G,H分别是AD,BC,AB,CD上的点,连接EF,GH.①若EF⊥GH,则必有EF=GH.②若EF=GH,则必有EF⊥GH.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.7.在△AOB中,∠AOB=90°,点C为直线AO上的一个动点(与点O,A不重合),分别作∠OBC和∠ACB的角平分线,两角平分线所在直线交于点E.(1)若点C在线段AO上,如图1.①依题意补全图1;②求∠BEC的度数;(2)当点C在直线AO上运动时,∠BEC的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出∠BEC的度数.8.已知△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G.(1)如图1,若∠ACB=90°,∠A=50°,直接求出∠G的度数;(2)如图2,若∠ACB≠90°,试判断∠G与∠A的数量关系,并证明你的结论;(3)如图3,若FE∥AD,求证:∠DFE=∠ABC+∠G.9.如图1,直线PQ⊥直线MN,垂足为O,△AOB是直角三角形,∠AOB=90°,斜边AB与直线PQ交于点C.(1)若∠A=∠AOC=30°,则BC BO(填“>”“=”“<”);(2)如图2,延长AB交直线MN于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠AEO=α,求∠AOE的度数(用含α的代数式表示);(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点R,∠A=36°,当△AOB绕O点旋转时(斜边AB与直线PQ始终相交于点C),问∠R的度数是否发生改变?若不变,求其度数;若改变,请说明理由.10.锐角三角形ABC中,AC>BC,点D是边AC的中点,点E在边AB上.①如果DE∥BC,那么DE=BC②如果DE=BC,那么DE∥BC.判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.11.如图,在△ABC中,AC=CB,∠ACB=90°,在AB上取点F,过A作AB的垂线,使得AD=BF,连接BD,CD、CF,CE是∠ACB的角平分线,交BD于点M,交AB于点E.(1)若AC=6,AF=4.求BD的长:(2)求证:2CM=AF12.如图,在△ABC中,BD是∠ABC的平分线,过点C作CE⊥BD,交BD的延长线于点E,∠ABC=60°,∠ECD=15°.(1)直接写出∠ADB的度数是;(2)求证:BD=AB;(3)若AB=2,求BC的长.13.如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点A,C重合,那么当点P 运动到什么位置时,才能使△ABC与△APQ全等?参考答案1.证明:(1)∵CE⊥AD,∠ACD=90°,∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D.∵∠D=∠ABC,∴∠ACE=∠ABC;(2)∵∠BAC=∠ACD=90°,∠ABC=∠ADC,∴∠ACB=∠DAC,∴AD∥BC,∵CE⊥AD,∴CE⊥BC,∴∠BEC+∠EBC=90°,∵∠D+∠ECD=90°,∠D=∠ABC,∴∠ABC+∠ECD=90°,∵BE平分∠ABC,∴∠ABC=2∠EBC∴2∠EBC+∠ECD=90°,∴2∠EBC+∠ECD=∠BEC+∠EBC,即∠EBC+∠ECD=∠BEC;(3)∵∠ABF+∠AFB=90°,∠AFB=∠CFE,∴∠ABF+∠CFE=90°,∵∠CBE+∠CEF=90°,∠ABF=∠CAE,∴∠CEF=CFE.2.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=36°,∴∠ABC=90°﹣∠A=54°,∴∠CBD=126°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=63°;(2)∵∠ACB=90°,∠CBE=63°,∴∠CEB=90°﹣63°=27°.又∵∠F=27°,∴∠F=∠CEB=27°,∴DF∥BE3.解:(1)∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣30°=15°,∵∠ABG=∠A+∠ACB=150°,∵BF平分∠ABG,∴∠FBG=∠ABG=75°,∵∠FBG=∠F+∠FCB,∴∠F=75°﹣45°=30°.(2)∵CD⊥AB,∠A=n°,∴∠ADC=90°,∠ACD=90°﹣n°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣90°+n°=n°﹣45°,∵∠ABG=∠A+∠ACB=90°+n°,∵BF平分∠ABG,∴∠FBG=∠ABG=45°+n°∵∠FBG=∠F+∠FCB,∴∠F=n°.(3)如图,∵FH⊥CG,∴∠FHC=90°,∵∠A+∠ACD=90°,∠ACD+∠DCB=90°∴∠A=∠DCB=n°,∵CQ平分∠DCB,∴∠QCH=n°,∴∠CQH=90°﹣n°.4.解:(1)∵∠ACB=90°,AD平分∠BAC,DE⊥AB,∴DE=DC,∴∠DEC=∠DCE=25°,∴∠BDE=50°,又∵DE⊥AB,∴Rt△BDE中,∠B=90°﹣∠BDE=90°﹣50°=40°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又∵DE=DC,AD=AD,∴△AED≌△ACD(HL),∴AE=AC,∴点D在CE的垂直平分线上,点A在CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.5.解:(1)∵“直角三角形斜边上的中线等于斜边的一半”,∴它逆命题是:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,故答案为:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)∵CD是△ABC的中线∴AD=BD=AB,∵CD=AB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠DCB,在△ABC中,∠A+∠B+∠ACD+∠DCB=180°∴∠A+∠B+∠A+∠B=180°,∴∠A+∠B=90°,∴∠ACB=∠ACD+∠DCB=90°,∴△ABC为直角三角形.6.解:①成立,②不成立;理由如下:①作GM⊥CD于M,FN⊥AD于N,如图1所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∴∠OGQ+∠OQG=90°,∵EF⊥GH,∴∠PFQ+∠PQF=90°,∵∠OQG=∠PQF,∴∠OGQ=∠PFQ,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在△EFN和△HGM中,,∴△EFN≌△HGM(ASA),∴EF=GH;②作GM⊥CD于M,FN⊥AD于N,如图2所示:则∠GMH=∠FNE=90°,GM⊥FN,GM=AD,FN=AB,∵四边形ABCD是正方形,∴AD=AB,∴FN=GM,在Rt△EFN和Rt△HGM中,,∴Rt△EFN≌Rt△HGM(HL),∴∠OGQ=∠PFQ,∵∠OGQ+∠OQG=90°,∠OQG=∠PQF,∴∠PQF+∠PFQ=90°,∴∠FPQ=90°,∴EF⊥GH;作GH关于GM的对称线段GH',则GH'=GH=EF,显然EF与GH'不垂直;综上所述,若EF=GH,则必有EF⊥GH.不成立.7.解:(1)①图形如图所示.②设∠EBO=∠EBC=x,∠OCE=∠ECK=y.则有:,可得∠E=×90°=45°.(2)如图,当点C在OA的延长线上时,结论∠BEC=135°.理由:∵∠AOB=90°,∴∠OBC+∠OCB=90°,∵∠EBC=∠OBC,∠ECB=∠OCB,∴∠EBC+∠ECB=×90°=45°,∴∠BEC=180°﹣45°=135°.如图当点C在AO的延长线上时,同法可证:∠BEC=135°.8.解:(1)如图1,∵∠ACB=90°,∠A=50°,∴∠ABC=40°,∵BG平分∠ABC,∴∠CBG=20°,∵DE∥BC,∴∠CDE=∠BCD=90°,∵DG平分∠ADE,∴∠CDF=45°,∴∠CFD=45°,∴∠BFD=180°﹣45°=135°,∴∠G=180°﹣20°﹣135°=25°;(2)如图2,∠A=2∠G,理由是:由(1)知:∠ABC=2∠FBG,∠CDF=∠CFD,设∠ABG=x,∠CDF=y,∵∠ACB=∠DCF,∴∠A+∠ABC=∠CDF+∠CFD,即∠A+2x=2y,∴y=,同理得∠A+∠ABG=∠G+∠CDF,∴∠A+x=∠G+y,即∠A+x=∠G++x,∴∠A=2∠G;(3)如图3,∵EF∥AD,∴∠DFE=∠CDF,由(2)得:∠CFD=∠CDF,△FBG中,∠G+∠FBG+∠BFG=180°,∠BFG+∠DFC=180°,∴∠DFC=∠G+∠FBG,∴∠DFE=∠CFD=∠FBG+∠G=+∠G.9.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°,∵∠A=∠AOC=30°,∴∠B=∠BOC=60°∴△BOC是等边三角形,∴BC=BO故答案为:=;(2)∵OD⊥AB,∠AEO=α,∴∠DOE=90°﹣α,∵∠DOB=∠BOE,∴∠BOE==(90°﹣α)=45°﹣α,∴∠AOE=∠AOB+∠BOE=90°+45°﹣=135°﹣;(3)∠R的度数不变,∠R=27°.理由如下:设∠AOM=β,则∠AOC=90°﹣β,∵OF平分∠AOM,∴∠FOM=∠RON=,∴∠COR=∠CON+∠RON=90°+,∵∠OCB=∠A+∠AOC=36°+90°﹣β=126°﹣β,∵CR平分∠BCO,∴∠OCR==63°﹣,∴∠R=180°﹣(∠OCR+∠COR)=180°﹣63°+﹣90°﹣=27°,∴∠R的度数不变,∠R=27°.10.解:①∵锐角三角形ABC中,AC>BC,点D是边AC的中点,DE∥BC,∴AE=EB,即DE是△ABC的中位线,∴DE=BC故①正确;②令E为AB中点,可以在AB上取到一点F,使DF=DE,但DF与BC不平行.故②错误.11.解:(1)∵AC=CB=6,∠ACB=90°,∴AB=12∵AF=4,∴BF=AB﹣AF=12﹣4=8,∴AD=BF=8,在Rt△ADB中,BD==4;(2)∵AC=CB,∠ACB=90°,CE平分∠ACB,∴AE=BE=CE=AB,CE⊥AB,∵∠DAB=∠MEB=90°,∠DBA=∠MBE,∴△MBE∽△DBA,∴==,∴ME=AD,∴ME=BF,∵CE=AB,∴CM+ME=(BF+AF),∴CM+BF=BF+AF,∴CM=AF,即AF=2CM.12.解:(1)∵CE⊥BE,∴∠E=90°,∵∠ECD=15°,∴∠ADB=∠CDE=90°﹣15°=75°故答案为75°.(2)证明:∵BD平分∠ABC,∠ABC=60°,∴∠ABD=∠DBC=30°,∵∠ADB=75°,∴∠A=75°,∴∠A=∠ADB,∴AB=DB.(3)过点D作DF⊥BC,交BC于F点.∵DF⊥BC,∴∠DFB=∠DFC=90°,∵∠DBF=30°,∴DF=BD,∵BD=AB=2,∴DF=1,∴FB=,∵CE⊥BE,∴∠E=90°,∵∠DBC=30°,∴∠ECB=60°,∵∠ECD=15°,∴∠DCB=45°,∴∠DCF=∠FDC=45°,∴FD=FC=1,∴BC=.13.解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=10;②当P运动到与C点重合时,AP=AC,不合题意.综上所述,当点P运动到距离点A为10时,△ABC与△APQ全等.。

直角三角形斜边的中线等于斜边的一半

直角三角形斜边的中线等于斜边的一半
直角三角形斜边中线 定理
A
D
O
在Rt△ABC中,
BO=
1 2
AC
B
C
得到:直角三角形的一个性质
直角三角形斜边上的中线等于斜边的一半.
数学语言:
在Rt△ABC中, 若BO是斜边AC上的中线 则 BO12= AC
已知:在Rt△ABC中,∠ABC=90 °,BO是AC上的中线.
求证: BO =
1 2
AC
B
M
C
如图,在△ABC中, AD⊥BC于点D,E,F, G分别是BC,AC,AB的 中点,若 AB=BC=3DE=6,求四 边形DEFG的周长。
C DN
M A
如图,四边形ABCD中, ∠DAB=∠DCB=90°,点 M、N分别是BD、AC的 中点。MN、AC的位置 关系如何? 证明你的猜想 。
B
∴CD=AD=斜边的一半)
1、已知Rt△ABC中,斜边AB=10cm,则斜边
上的中线的长为_5__c___ m
2、如图,在Rt△ABC中,CD是斜边AB上的中
线,∠CDA=80°,则∠A=__5__0_° ∠B=___4_0_°
D
B
C
训练营 A
已知 如图: △ABC是Rt△,∠ABC=Rt∠,
BD是斜边AC上的中线

B
D C
• 若BD=3㎝,则AC= 6

2 若∠C=30°,AB=5㎝,则AC= 10
㎝,
BD= 5
㎝,∠BDC= 120°
3 判断△ABD形状: 等边三角形
判断△CBD形状: 等腰三角形
D 如图,已知AD⊥BD,AC⊥BC,E为AB的中点,试 C 01
证明: 延长BO至D,使OD=BO, A

八年级数学常考点精练(苏科版):专题16 直角三角形斜边上的中线(解析版)

八年级数学常考点精练(苏科版):专题16 直角三角形斜边上的中线(解析版)

专题16直角三角形斜边上的中线知识点一直角三角形斜边上的中线性质1.直角三角形斜边上的中线等于斜边的_____.【答案】一半【解析】【详解】试题解析:根据在直角三角形中,斜边上的中线等于斜边的一半得解.故答案为一半.2.Rt△ABC中,∠C=90°,D是AB的中点,若AB=10,则CD的长等于_____.【答案】5【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=12AB,∵AB=10,∴CD=12×10=5.故答案为5.【点睛】本题考查了直角三角形斜边上的中线的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.3.如图,在Rt ABC△中,斜边AB上的中线5CD ,则AB ________.【答案】10【解析】【分析】根据直角三角形斜边上中线性质得出AB =2CD ,代入求出即可.【详解】解:∵CD 是直角三角形ABC 斜边AB 上的中线,CD =5,∴AB =2CD =10,故答案为:10.【点睛】本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上的中线等于斜边的一半.4.如图, ABC 中,90ACB ,CD 是AB 边上的中线,且12CD AB ,则AB 的长为______.【答案】8【解析】【分析】根据在直角三角形中,斜边上的中线等于斜边的一半解答.【详解】解:∵∠ACB =90°,D 是AB 边的中点,12CD AB ,∵12CD AB 8AB 故答案为:8.【点睛】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.5.若直角三角形斜边上的高是4cm ,斜边上的中线是5m ,则这个直角三角形的面积是_____.【答案】20m 2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求出斜边的长,再根据三角形的面积公式列式计算即可得解.【详解】解:∵直角三角形斜边上的中线长是5m∴斜边长为10m∵直角三角形斜边上的高是4m ∴这个直角三角形的面积=12×10×4=20m 2故答案为20m 2【点睛】本题考查直角三角形斜边上中线的性质,熟记直角三角形斜边上的中线等于斜边的一半是解题的关键.6.如图,在Rt ABC 中,90ACB ,点D 是AC 上一点,连接BD ,P 点是BD 的中点,若D A BA ,8AD ,则CP 的长为().A .8B .4C .16D .6【答案】B【解析】【分析】由题意推出BD =AD ,然后在Rt △BCD 中,CP =12BD ,即可推出CP 的长度.【详解】∵D A BA ,∴BD =AD=8,∵P 点是BD 的中点,90ACB∴CP =12BD =4,故选:B .【点睛】本题主要考查等腰三角形的判定和性质、直角三角形斜边上的中线的性质,关键在于根据已知推出BD =AD ,求出BD 的长度.7.如图,AD 是ABC 的角平分线,点E 为AC 的中点,连结DE .若10AB AC ,8BC ,则CDE △的周长为()A .20B .12C .14D .13【答案】C【解析】【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,CD=BD ,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=12AC ,然后根据三角形的周长公式列式计算即可得解.【详解】解:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD ⊥BC ,CD=BD=12BC=4,∵点E 为AC 的中点,∴DE=CE=12AC=5,∴△CDE 的周长=CD+DE+CE=4+5+5=14.故选:C .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.知识点二斜边上中线分割直角三角形成两个等腰三角形8.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,若∠A =26°,则∠BDC 的度数是()A .26°B .38°C .42°D .52°【答案】D【解析】【分析】根据直角三角形斜边上中线定理得出CD=AD,求出∠DCA=∠A,根据三角形的外角性质求出求出即可.【详解】解:∵∠ACB=90 ,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=26 ,∴∠BDC=∠A+∠DCA=26 +26 =52 .故选:D.【点睛】本题考查了对三角形的外角性质,直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠DCA的度数是解此题的关键.9.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD=_____.【答案】50°【解析】【分析】由“直角三角形的两个锐角互余”得到∠A=50°,根据“直角三角形斜边上的中线等于斜边的一半”得到CD=AD,则等边对等角,即∠ACD=∠A=50°.【详解】解:如图,∵在△ABC中,∠ACB=90°,∠B=40°,∴∠A=50°.∵D为线段AB的中点,∴CD=AD,∴∠ACD=∠A=50°.故答案是:50°.【点睛】本题考查了直角三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半.10.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.【答案】30【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD=BD,∵BC=BD,∴CD=BC=BD,∴△BCD是等边三角形,∴∠B=60°,∴∠A=30°.故答案为30.【点睛】考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.11.如图,△ABC中,若∠ACB=90°,∠B=56°,D是AB的中点,则∠ACD=_____°.【答案】34°.【解析】【分析】由∠ACB=90°,D是AB的中点,可得出CD=BD=AD,结合∠B的度数可得出∠BCD的度数,再由∠ACD和∠BCD互余可求出∠ACD的度数.【详解】解:∵∠ACB=90°,D是AB的中点,∴CD=BD=AD=12AB,∴∠BCD=∠B=56°,∴∠ACD=∠ACB﹣∠BCD=90°﹣56°=34°.故答案为34°.【点睛】本题考查了直角三角形斜边上的中线以及等腰三角形的性质,牢记“在直角三角形中,斜边上的中线等于斜边的一半”是解题的关键.12.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=______.【答案】10°【解析】【分析】根据三角形内角和定理求出∠A的度数,根据直角三角形的性质分别求出∠BCD、∠DCA的度数,根据翻折变换的性质求出∠B′CD的度数,计算即可.【详解】∵∠ACB=90 ,∠B=50 ,∴∠A=40 ,∵∠ACB=90 ,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50 ,∠DCA=∠A=40 ,由翻折变换的性质可知,∠B′CD=∠BCD=50 ,∴∠ACB′=∠B′CD−∠DCA=10 ,故答案为10 .【点睛】本题考查直角三角形斜边上的中线.知识点三斜边上的中线应用13.如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为5km ,则M ,C 两点间的距离为()A .2kmB .2.5kmC .3kmD .4km【答案】B【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半直接可以得出答案.【详解】∵AC ,BC 互相垂直,ABC 是直角三角形,M ∵是AB 的中点, 1 2.52CM AB ,故选B .【点睛】本题考查了直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出12CM AB 是解此题的关键.14.如图,有一架梯子斜靠在与地面(OM )垂直的墙(ON )上,在墙角(点O 处)有一只猫紧紧盯住位于梯子(AB )正中间(点P 处)的老鼠,等待与老鼠距离最小时扑捉,把梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,若梯子A 端沿墙下滑,且梯子B 端沿地面向右滑行.在此滑动过程中,猫与老鼠的距离()A .不变B .变小C .变大D .无法判断【解析】【分析】根据直角三角形斜边的中线等于斜边的一半,即可解答.【详解】如图,连接OP ,由题意可知:点P 为AB 的中点,∠AOB =90 ,在Rt AOB 中,12OP AB ,若梯子A 端沿墙下滑,且梯子B 端沿地面向右滑行.在此滑动过程中,OP 始终等于AB 的一半,故OP 的长不变,即猫与老鼠的距离不变.故选:A【点睛】本题主要考查了直角三角形形斜边中线的性质,解题的关键是熟练掌握直角三角形形斜边中线的性质,并会利用数学建模思想.知识点四共斜边的两个直角三角形的斜边上的中线相等15.如图,四边形ABCD 中,90ACB ADB ,取AB 中点E ,连接DE ,CE ,CD ,则EDC △为______三角形.【答案】等腰【解析】【分析】根据题意结合直角三角形中“斜中半”定理即可推出结论.由题ABC ADB,均为直角三角形,且都以AB为斜边,∵E为AB的中点,∴1122CE AB DE AB CE DE,,,即:EDC为等腰三角形,故答案为:等腰.【点睛】本题考查直角三角形中“斜中半”定理,理解并灵活运用定理是解题关键.16.如图,点C为线段AB的中点,90AMB ANB,则CMN△是_______________三角形.【答案】等腰【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】∵90AMB ANB∴在Rt△ABM中,C是斜边AB上的中点,∴MC=12AB,同理在Rt△ABN中,CN=12AB,∴MC=CN∴CMN△是等腰三角形,故答案为:等腰.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.三、解答题(共0分)17.如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.(1)已知∠A=30°,求∠ACB的度数;(2)已知∠A=40°,求∠ACB的度数;(3)已知∠A=x°,求∠ACB的度数;(4)请你根据解题结果归纳出一个结论.【答案】(1)90°;(2)90°;(3)90°;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.【解析】【分析】(1)(2)(3)利用等腰三角形及三角形内角和定理即可求出答案;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.【详解】解:(1)∵在△ABC中,CD是AB上的中线,且DA=DC,∠A=30°∴∠ACD=30°∵∠CDB是△ACD的外角∴∠CDB=60°∵DB=CD∴∠DCB=∠B=60°∴∠ACB=∠ACD+∠DCB=30°+60°=90°;(2)若∠A=40°,同(1),可知∠ACD=40°,∠CDB=40°+40°=80°∠DCB=12(180°﹣∠CDB)=12(180°﹣80°)=50°∴∠ACB=∠ACD+∠DCB=40°+50°=90°;(3)若∠A=x°,同(1),可知∠ACD=x°,∠CDB=x°+x°=2x°∠DCB=12(180°﹣∠CDB)=12(180°﹣2x°)=90°﹣x°,故∠ACB=∠ACD+∠DCB=x°+90°﹣x°=90°;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知直线三角形斜边上的中线的性质.18.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点.(1)求证:△MEF是等腰三角形;(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.【答案】(1)见解析,(2)40°【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半证明EM=FM即可;(2)根据等腰三角形两底角相等求出∠BMF,∠CME,然后根据平角等于180°列式计算即可求出∠EMF.【详解】(1)证明:∵CF⊥AB,BE⊥AC,M为BC的中点,∴EM=12BC,FM=12BC,∴BM=FM,∴△MEF是等腰三角形;(2)∵BM=FM,∠ABC=50°,∴∠MBF=∠MFB=50°,∴∠BMF=180°﹣2×50°=80°,∵CM=EM,∠ACB=60°,∴∠MCE=∠MEC=60°,∴∠CME=180°﹣2×60°=60°,∴∠EMF=180°﹣∠BMF﹣∠CME=40°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.19.如图,已知ABC 的高BD CE 、相交于点O M N ,、分别是BC AO 、的中点,求证:MN 垂直平分DE .(括号中需写本学期新学理由)【答案】见解析【解析】【分析】联结EN DN EM DM 、、、,根据直角三角形斜边中线等于斜边一半可得EN DN EM DM ,,进而判断M N 、在线段DE 的垂直平分线上,即可证明MN 垂直平分DE【详解】证明:联结EN DN EM DM 、、、,∵BD AC ,CE AB ,∴90AEC ADB BEC BDC ,∵M N 、是BC AO 、的中点,∴1111,,,2222EN AO DN AO EM BC DM BC (直角三角形斜边中线等于斜边一半),∴EN DN EM DM ,,∴M N 、在线段DE 的垂直平分线上(垂直平分线的逆定理),∴MN 垂直平分DE .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,垂直平分线的判定,掌握以上性质定理是解题的关键.。

中考数学 分类解析矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半

中考数学 分类解析矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半

一. 币仍仅州斤爪反市希望学校2021分类解析.矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半 苏教二.选择题〔2021,12,3分〕如图,在一张△ABC 纸片中,∠C=90°,∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,方案拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为〔 〕 A .1B .2C .3D .4【答案】C【思路分析】∵DE 是△ABC 的中位线,∴DE ∥BC ,且DE =12BC .∵∠C=90°,∠B=60°,∴AB =2BC ,AE =BE =BC .又∠C =90°,∴AC <AB ,DC <BE .如图(1),把△ADE 绕点E 旋转180°,使AE 与BE 重合,由题意可得∠C =∠D =∠F =90°,那么四边形BCDF 是矩形,且CD <BC ,所以构成邻边不等的矩形,那么①成立.如图(2),把△ADE 绕点D 旋转180°,使AD 与CD 重合,由题意可得BC =BE =EM =MC ,那么四边形BCME 是菱形,且∠B =60°为锐角,那么③成立.如图(3),移动△ADE ,使A 与D 重合,D 与C 重合,点E 在BC 的延长线上,由题意可知DE ∥BN ,且DE ≠BN ,所以四边形BNDE 是梯形,又DN =BE ,所以梯形BNDE 是等腰梯形,那么②成立.因拼成矩形只有图(1)一种情况,而图(1)中的矩形不是正方形,那么④不成立.【方法规律】在拼合时,可以把所有情况列举出来,再挑出符合条件的情况. 【易错点分析】【关键词】三角形的中位线,直角三角形的性质,矩形、菱形、正方形、等腰梯形的判定〔2021,7,3分〕如图,矩形纸片ABCD 中,AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,那么AB 的长为〔 〕A.3B.4C.5D.6【答案】D【思路分析】由矩形的性质可得BC =AD =8.因为△ABE ≌△AFE ,所以AB =AF ,BE =FE =3,EC =BC -BE =AD -BE =8-3=5.在Rt △EFC 中,由勾股定理,得〔第7题图〕ECBA4352222=-=-=EF EC FC .在Rt △ABC 中,由勾股定理,得222AC BC AB =+,即222)4(8+=+AB AB .解得AB =6.应选D.【方法规律】此题可从条件入手,结合三角形全等、矩形的性质,利用线段代换,在Rt △ABC 中,利用勾股定理,构造以所求线段为未知数的一元二次方程求解.【易错点分析】因审题不深入,找不到与未知的关系,导致解题中断. 【关键词】矩形的折叠、勾股定理、三角形全等. 【推荐指数】★★★☆☆ 【题型】好题,易错题.〔2021,13,3分〕如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将矩形OABC 绕点0 旋转180°,旋转后的图形为矩形OA 1B 1C 1,那么点B 1 的坐标为( ). A. (2,1) B.(-2,l) C.(-2,-l) D.(2,-1) 〔第13题图〕【答案】C【思路分析】矩形OA 1B 1C 1是由矩形OABC 绕原点旋转180°得到的,矩形OABC 与矩形OA 1B 1C 1关于原点成中心对称,因此B 1的坐标为(-2,-l).【方法规律】此题通过观察图形中点的坐标,找出图形的变换关系,确定点的坐标.【易错点分析】解答中心对称有关问题时,要熟练掌握中心对称的性质并能灵活运用性质进行解答. 【关键词】图形变换 中心对称 坐标系 【推荐指数】★ ★ 【题型】常规题〔2021,14,3分〕如下列图,在矩形ABCD 中,垂直于对角线BD 的直线l ,从点B 开始沿着线段BD 匀速平移到D .设直线l 被矩形所截线段EF 的长度为y ,运动时间为t ,那么y 关于t 的函数的大致图象是〔 〕【答案】A .【思路分析】直线l 在线段BD 上匀速平移,从整个过程来看分三个阶段:直线l 交矩形的边A B 上,此时截线段EF 的长度为y 逐渐增大,且交于点A 处最大,直线l 交矩形的边A D 上且F 与C 重合,此时截线段EF 的长度为y 不变,直线l 交矩形的边CD 上,此时截线段EF 的长度为y 逐渐减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形斜边上的中线等于斜边的一半
1、如图,在锐角三角形ABC 中,AD ⊥BC 于D,E 、F 、G 分别是AC 、AB 、BC 的中点。

求证:四边形OEFG 是等腰梯形。

2、如图所示,BD 、CE 是三角形ABC 的两条高,M 、N 分别是BC 、DE 的中点 求证:MN ⊥DE
3、已知梯形ABCD 中,∠B+∠C =90o ,EF 是两底中点的连线,试说明AB -AD =2EF
G D C B
M C
F
C B
4、如图,四边形ABCD 中,∠DAB=∠DCB=90o ,点M 、N 分别是BD 、AC 的中点。

MN 、AC 的位置关系如何?证明你的猜想。

5、过矩形ABCD 对对角线AC 的中点O 作EF ⊥AC 分别交AB 、DC 于E 、F ,点G 为AE 的中点,若∠AOG =30o
求证:3OG=DC 6、如图所示;过矩形ABCD 的顶点A 作一直线,交BC 的延长线于点E ,F 是AE 的中点,连接FC 、FD 。

求证:∠FDA=∠FCB
D B
A
A E C
B A。

相关文档
最新文档